1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 17 #include "nvme.h" 18 #include "fabrics.h" 19 20 struct nvme_tcp_queue; 21 22 enum nvme_tcp_send_state { 23 NVME_TCP_SEND_CMD_PDU = 0, 24 NVME_TCP_SEND_H2C_PDU, 25 NVME_TCP_SEND_DATA, 26 NVME_TCP_SEND_DDGST, 27 }; 28 29 struct nvme_tcp_request { 30 struct nvme_request req; 31 void *pdu; 32 struct nvme_tcp_queue *queue; 33 u32 data_len; 34 u32 pdu_len; 35 u32 pdu_sent; 36 u16 ttag; 37 struct list_head entry; 38 __le32 ddgst; 39 40 struct bio *curr_bio; 41 struct iov_iter iter; 42 43 /* send state */ 44 size_t offset; 45 size_t data_sent; 46 enum nvme_tcp_send_state state; 47 }; 48 49 enum nvme_tcp_queue_flags { 50 NVME_TCP_Q_ALLOCATED = 0, 51 NVME_TCP_Q_LIVE = 1, 52 }; 53 54 enum nvme_tcp_recv_state { 55 NVME_TCP_RECV_PDU = 0, 56 NVME_TCP_RECV_DATA, 57 NVME_TCP_RECV_DDGST, 58 }; 59 60 struct nvme_tcp_ctrl; 61 struct nvme_tcp_queue { 62 struct socket *sock; 63 struct work_struct io_work; 64 int io_cpu; 65 66 spinlock_t lock; 67 struct list_head send_list; 68 69 /* recv state */ 70 void *pdu; 71 int pdu_remaining; 72 int pdu_offset; 73 size_t data_remaining; 74 size_t ddgst_remaining; 75 76 /* send state */ 77 struct nvme_tcp_request *request; 78 79 int queue_size; 80 size_t cmnd_capsule_len; 81 struct nvme_tcp_ctrl *ctrl; 82 unsigned long flags; 83 bool rd_enabled; 84 85 bool hdr_digest; 86 bool data_digest; 87 struct ahash_request *rcv_hash; 88 struct ahash_request *snd_hash; 89 __le32 exp_ddgst; 90 __le32 recv_ddgst; 91 92 struct page_frag_cache pf_cache; 93 94 void (*state_change)(struct sock *); 95 void (*data_ready)(struct sock *); 96 void (*write_space)(struct sock *); 97 }; 98 99 struct nvme_tcp_ctrl { 100 /* read only in the hot path */ 101 struct nvme_tcp_queue *queues; 102 struct blk_mq_tag_set tag_set; 103 104 /* other member variables */ 105 struct list_head list; 106 struct blk_mq_tag_set admin_tag_set; 107 struct sockaddr_storage addr; 108 struct sockaddr_storage src_addr; 109 struct nvme_ctrl ctrl; 110 111 struct work_struct err_work; 112 struct delayed_work connect_work; 113 struct nvme_tcp_request async_req; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static LIST_HEAD(nvme_tcp_ctrl_list); 118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 119 static struct workqueue_struct *nvme_tcp_wq; 120 static struct blk_mq_ops nvme_tcp_mq_ops; 121 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 122 123 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 124 { 125 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 126 } 127 128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 129 { 130 return queue - queue->ctrl->queues; 131 } 132 133 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 134 { 135 u32 queue_idx = nvme_tcp_queue_id(queue); 136 137 if (queue_idx == 0) 138 return queue->ctrl->admin_tag_set.tags[queue_idx]; 139 return queue->ctrl->tag_set.tags[queue_idx - 1]; 140 } 141 142 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 143 { 144 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 145 } 146 147 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 148 { 149 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 150 } 151 152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 153 { 154 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 155 } 156 157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 158 { 159 return req == &req->queue->ctrl->async_req; 160 } 161 162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 163 { 164 struct request *rq; 165 unsigned int bytes; 166 167 if (unlikely(nvme_tcp_async_req(req))) 168 return false; /* async events don't have a request */ 169 170 rq = blk_mq_rq_from_pdu(req); 171 bytes = blk_rq_payload_bytes(rq); 172 173 return rq_data_dir(rq) == WRITE && bytes && 174 bytes <= nvme_tcp_inline_data_size(req->queue); 175 } 176 177 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 178 { 179 return req->iter.bvec->bv_page; 180 } 181 182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 183 { 184 return req->iter.bvec->bv_offset + req->iter.iov_offset; 185 } 186 187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 188 { 189 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 190 req->pdu_len - req->pdu_sent); 191 } 192 193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 194 { 195 return req->iter.iov_offset; 196 } 197 198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 199 { 200 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 201 req->pdu_len - req->pdu_sent : 0; 202 } 203 204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 205 int len) 206 { 207 return nvme_tcp_pdu_data_left(req) <= len; 208 } 209 210 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 211 unsigned int dir) 212 { 213 struct request *rq = blk_mq_rq_from_pdu(req); 214 struct bio_vec *vec; 215 unsigned int size; 216 int nsegs; 217 size_t offset; 218 219 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 220 vec = &rq->special_vec; 221 nsegs = 1; 222 size = blk_rq_payload_bytes(rq); 223 offset = 0; 224 } else { 225 struct bio *bio = req->curr_bio; 226 227 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 228 nsegs = bio_segments(bio); 229 size = bio->bi_iter.bi_size; 230 offset = bio->bi_iter.bi_bvec_done; 231 } 232 233 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 234 req->iter.iov_offset = offset; 235 } 236 237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 238 int len) 239 { 240 req->data_sent += len; 241 req->pdu_sent += len; 242 iov_iter_advance(&req->iter, len); 243 if (!iov_iter_count(&req->iter) && 244 req->data_sent < req->data_len) { 245 req->curr_bio = req->curr_bio->bi_next; 246 nvme_tcp_init_iter(req, WRITE); 247 } 248 } 249 250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 251 { 252 struct nvme_tcp_queue *queue = req->queue; 253 254 spin_lock(&queue->lock); 255 list_add_tail(&req->entry, &queue->send_list); 256 spin_unlock(&queue->lock); 257 258 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 259 } 260 261 static inline struct nvme_tcp_request * 262 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 263 { 264 struct nvme_tcp_request *req; 265 266 spin_lock(&queue->lock); 267 req = list_first_entry_or_null(&queue->send_list, 268 struct nvme_tcp_request, entry); 269 if (req) 270 list_del(&req->entry); 271 spin_unlock(&queue->lock); 272 273 return req; 274 } 275 276 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 277 __le32 *dgst) 278 { 279 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 280 crypto_ahash_final(hash); 281 } 282 283 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 284 struct page *page, off_t off, size_t len) 285 { 286 struct scatterlist sg; 287 288 sg_init_marker(&sg, 1); 289 sg_set_page(&sg, page, len, off); 290 ahash_request_set_crypt(hash, &sg, NULL, len); 291 crypto_ahash_update(hash); 292 } 293 294 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 295 void *pdu, size_t len) 296 { 297 struct scatterlist sg; 298 299 sg_init_one(&sg, pdu, len); 300 ahash_request_set_crypt(hash, &sg, pdu + len, len); 301 crypto_ahash_digest(hash); 302 } 303 304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 305 void *pdu, size_t pdu_len) 306 { 307 struct nvme_tcp_hdr *hdr = pdu; 308 __le32 recv_digest; 309 __le32 exp_digest; 310 311 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 312 dev_err(queue->ctrl->ctrl.device, 313 "queue %d: header digest flag is cleared\n", 314 nvme_tcp_queue_id(queue)); 315 return -EPROTO; 316 } 317 318 recv_digest = *(__le32 *)(pdu + hdr->hlen); 319 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 320 exp_digest = *(__le32 *)(pdu + hdr->hlen); 321 if (recv_digest != exp_digest) { 322 dev_err(queue->ctrl->ctrl.device, 323 "header digest error: recv %#x expected %#x\n", 324 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 325 return -EIO; 326 } 327 328 return 0; 329 } 330 331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 332 { 333 struct nvme_tcp_hdr *hdr = pdu; 334 u8 digest_len = nvme_tcp_hdgst_len(queue); 335 u32 len; 336 337 len = le32_to_cpu(hdr->plen) - hdr->hlen - 338 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 339 340 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 341 dev_err(queue->ctrl->ctrl.device, 342 "queue %d: data digest flag is cleared\n", 343 nvme_tcp_queue_id(queue)); 344 return -EPROTO; 345 } 346 crypto_ahash_init(queue->rcv_hash); 347 348 return 0; 349 } 350 351 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 352 struct request *rq, unsigned int hctx_idx) 353 { 354 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 355 356 page_frag_free(req->pdu); 357 } 358 359 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 360 struct request *rq, unsigned int hctx_idx, 361 unsigned int numa_node) 362 { 363 struct nvme_tcp_ctrl *ctrl = set->driver_data; 364 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 365 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 366 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 367 u8 hdgst = nvme_tcp_hdgst_len(queue); 368 369 req->pdu = page_frag_alloc(&queue->pf_cache, 370 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 371 GFP_KERNEL | __GFP_ZERO); 372 if (!req->pdu) 373 return -ENOMEM; 374 375 req->queue = queue; 376 nvme_req(rq)->ctrl = &ctrl->ctrl; 377 378 return 0; 379 } 380 381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 382 unsigned int hctx_idx) 383 { 384 struct nvme_tcp_ctrl *ctrl = data; 385 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 386 387 hctx->driver_data = queue; 388 return 0; 389 } 390 391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 392 unsigned int hctx_idx) 393 { 394 struct nvme_tcp_ctrl *ctrl = data; 395 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 396 397 hctx->driver_data = queue; 398 return 0; 399 } 400 401 static enum nvme_tcp_recv_state 402 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 403 { 404 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 405 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 406 NVME_TCP_RECV_DATA; 407 } 408 409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 410 { 411 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 412 nvme_tcp_hdgst_len(queue); 413 queue->pdu_offset = 0; 414 queue->data_remaining = -1; 415 queue->ddgst_remaining = 0; 416 } 417 418 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 419 { 420 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 421 return; 422 423 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work); 424 } 425 426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 427 struct nvme_completion *cqe) 428 { 429 struct request *rq; 430 431 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 432 if (!rq) { 433 dev_err(queue->ctrl->ctrl.device, 434 "queue %d tag 0x%x not found\n", 435 nvme_tcp_queue_id(queue), cqe->command_id); 436 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 437 return -EINVAL; 438 } 439 440 nvme_end_request(rq, cqe->status, cqe->result); 441 442 return 0; 443 } 444 445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 446 struct nvme_tcp_data_pdu *pdu) 447 { 448 struct request *rq; 449 450 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 451 if (!rq) { 452 dev_err(queue->ctrl->ctrl.device, 453 "queue %d tag %#x not found\n", 454 nvme_tcp_queue_id(queue), pdu->command_id); 455 return -ENOENT; 456 } 457 458 if (!blk_rq_payload_bytes(rq)) { 459 dev_err(queue->ctrl->ctrl.device, 460 "queue %d tag %#x unexpected data\n", 461 nvme_tcp_queue_id(queue), rq->tag); 462 return -EIO; 463 } 464 465 queue->data_remaining = le32_to_cpu(pdu->data_length); 466 467 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 468 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 469 dev_err(queue->ctrl->ctrl.device, 470 "queue %d tag %#x SUCCESS set but not last PDU\n", 471 nvme_tcp_queue_id(queue), rq->tag); 472 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 473 return -EPROTO; 474 } 475 476 return 0; 477 } 478 479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 480 struct nvme_tcp_rsp_pdu *pdu) 481 { 482 struct nvme_completion *cqe = &pdu->cqe; 483 int ret = 0; 484 485 /* 486 * AEN requests are special as they don't time out and can 487 * survive any kind of queue freeze and often don't respond to 488 * aborts. We don't even bother to allocate a struct request 489 * for them but rather special case them here. 490 */ 491 if (unlikely(nvme_tcp_queue_id(queue) == 0 && 492 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 493 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 494 &cqe->result); 495 else 496 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 497 498 return ret; 499 } 500 501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 502 struct nvme_tcp_r2t_pdu *pdu) 503 { 504 struct nvme_tcp_data_pdu *data = req->pdu; 505 struct nvme_tcp_queue *queue = req->queue; 506 struct request *rq = blk_mq_rq_from_pdu(req); 507 u8 hdgst = nvme_tcp_hdgst_len(queue); 508 u8 ddgst = nvme_tcp_ddgst_len(queue); 509 510 req->pdu_len = le32_to_cpu(pdu->r2t_length); 511 req->pdu_sent = 0; 512 513 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 514 dev_err(queue->ctrl->ctrl.device, 515 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 516 rq->tag, req->pdu_len, req->data_len, 517 req->data_sent); 518 return -EPROTO; 519 } 520 521 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 522 dev_err(queue->ctrl->ctrl.device, 523 "req %d unexpected r2t offset %u (expected %zu)\n", 524 rq->tag, le32_to_cpu(pdu->r2t_offset), 525 req->data_sent); 526 return -EPROTO; 527 } 528 529 memset(data, 0, sizeof(*data)); 530 data->hdr.type = nvme_tcp_h2c_data; 531 data->hdr.flags = NVME_TCP_F_DATA_LAST; 532 if (queue->hdr_digest) 533 data->hdr.flags |= NVME_TCP_F_HDGST; 534 if (queue->data_digest) 535 data->hdr.flags |= NVME_TCP_F_DDGST; 536 data->hdr.hlen = sizeof(*data); 537 data->hdr.pdo = data->hdr.hlen + hdgst; 538 data->hdr.plen = 539 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 540 data->ttag = pdu->ttag; 541 data->command_id = rq->tag; 542 data->data_offset = cpu_to_le32(req->data_sent); 543 data->data_length = cpu_to_le32(req->pdu_len); 544 return 0; 545 } 546 547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 548 struct nvme_tcp_r2t_pdu *pdu) 549 { 550 struct nvme_tcp_request *req; 551 struct request *rq; 552 int ret; 553 554 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 555 if (!rq) { 556 dev_err(queue->ctrl->ctrl.device, 557 "queue %d tag %#x not found\n", 558 nvme_tcp_queue_id(queue), pdu->command_id); 559 return -ENOENT; 560 } 561 req = blk_mq_rq_to_pdu(rq); 562 563 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 564 if (unlikely(ret)) 565 return ret; 566 567 req->state = NVME_TCP_SEND_H2C_PDU; 568 req->offset = 0; 569 570 nvme_tcp_queue_request(req); 571 572 return 0; 573 } 574 575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 576 unsigned int *offset, size_t *len) 577 { 578 struct nvme_tcp_hdr *hdr; 579 char *pdu = queue->pdu; 580 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 581 int ret; 582 583 ret = skb_copy_bits(skb, *offset, 584 &pdu[queue->pdu_offset], rcv_len); 585 if (unlikely(ret)) 586 return ret; 587 588 queue->pdu_remaining -= rcv_len; 589 queue->pdu_offset += rcv_len; 590 *offset += rcv_len; 591 *len -= rcv_len; 592 if (queue->pdu_remaining) 593 return 0; 594 595 hdr = queue->pdu; 596 if (queue->hdr_digest) { 597 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 598 if (unlikely(ret)) 599 return ret; 600 } 601 602 603 if (queue->data_digest) { 604 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 605 if (unlikely(ret)) 606 return ret; 607 } 608 609 switch (hdr->type) { 610 case nvme_tcp_c2h_data: 611 ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 612 break; 613 case nvme_tcp_rsp: 614 nvme_tcp_init_recv_ctx(queue); 615 ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu); 616 break; 617 case nvme_tcp_r2t: 618 nvme_tcp_init_recv_ctx(queue); 619 ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 620 break; 621 default: 622 dev_err(queue->ctrl->ctrl.device, 623 "unsupported pdu type (%d)\n", hdr->type); 624 return -EINVAL; 625 } 626 627 return ret; 628 } 629 630 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 631 { 632 union nvme_result res = {}; 633 634 nvme_end_request(rq, cpu_to_le16(status << 1), res); 635 } 636 637 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 638 unsigned int *offset, size_t *len) 639 { 640 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 641 struct nvme_tcp_request *req; 642 struct request *rq; 643 644 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 645 if (!rq) { 646 dev_err(queue->ctrl->ctrl.device, 647 "queue %d tag %#x not found\n", 648 nvme_tcp_queue_id(queue), pdu->command_id); 649 return -ENOENT; 650 } 651 req = blk_mq_rq_to_pdu(rq); 652 653 while (true) { 654 int recv_len, ret; 655 656 recv_len = min_t(size_t, *len, queue->data_remaining); 657 if (!recv_len) 658 break; 659 660 if (!iov_iter_count(&req->iter)) { 661 req->curr_bio = req->curr_bio->bi_next; 662 663 /* 664 * If we don`t have any bios it means that controller 665 * sent more data than we requested, hence error 666 */ 667 if (!req->curr_bio) { 668 dev_err(queue->ctrl->ctrl.device, 669 "queue %d no space in request %#x", 670 nvme_tcp_queue_id(queue), rq->tag); 671 nvme_tcp_init_recv_ctx(queue); 672 return -EIO; 673 } 674 nvme_tcp_init_iter(req, READ); 675 } 676 677 /* we can read only from what is left in this bio */ 678 recv_len = min_t(size_t, recv_len, 679 iov_iter_count(&req->iter)); 680 681 if (queue->data_digest) 682 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 683 &req->iter, recv_len, queue->rcv_hash); 684 else 685 ret = skb_copy_datagram_iter(skb, *offset, 686 &req->iter, recv_len); 687 if (ret) { 688 dev_err(queue->ctrl->ctrl.device, 689 "queue %d failed to copy request %#x data", 690 nvme_tcp_queue_id(queue), rq->tag); 691 return ret; 692 } 693 694 *len -= recv_len; 695 *offset += recv_len; 696 queue->data_remaining -= recv_len; 697 } 698 699 if (!queue->data_remaining) { 700 if (queue->data_digest) { 701 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 702 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 703 } else { 704 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) 705 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 706 nvme_tcp_init_recv_ctx(queue); 707 } 708 } 709 710 return 0; 711 } 712 713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 714 struct sk_buff *skb, unsigned int *offset, size_t *len) 715 { 716 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 717 char *ddgst = (char *)&queue->recv_ddgst; 718 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 719 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 720 int ret; 721 722 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 723 if (unlikely(ret)) 724 return ret; 725 726 queue->ddgst_remaining -= recv_len; 727 *offset += recv_len; 728 *len -= recv_len; 729 if (queue->ddgst_remaining) 730 return 0; 731 732 if (queue->recv_ddgst != queue->exp_ddgst) { 733 dev_err(queue->ctrl->ctrl.device, 734 "data digest error: recv %#x expected %#x\n", 735 le32_to_cpu(queue->recv_ddgst), 736 le32_to_cpu(queue->exp_ddgst)); 737 return -EIO; 738 } 739 740 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 741 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 742 pdu->command_id); 743 744 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 745 } 746 747 nvme_tcp_init_recv_ctx(queue); 748 return 0; 749 } 750 751 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 752 unsigned int offset, size_t len) 753 { 754 struct nvme_tcp_queue *queue = desc->arg.data; 755 size_t consumed = len; 756 int result; 757 758 while (len) { 759 switch (nvme_tcp_recv_state(queue)) { 760 case NVME_TCP_RECV_PDU: 761 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 762 break; 763 case NVME_TCP_RECV_DATA: 764 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 765 break; 766 case NVME_TCP_RECV_DDGST: 767 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 768 break; 769 default: 770 result = -EFAULT; 771 } 772 if (result) { 773 dev_err(queue->ctrl->ctrl.device, 774 "receive failed: %d\n", result); 775 queue->rd_enabled = false; 776 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 777 return result; 778 } 779 } 780 781 return consumed; 782 } 783 784 static void nvme_tcp_data_ready(struct sock *sk) 785 { 786 struct nvme_tcp_queue *queue; 787 788 read_lock(&sk->sk_callback_lock); 789 queue = sk->sk_user_data; 790 if (likely(queue && queue->rd_enabled)) 791 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 792 read_unlock(&sk->sk_callback_lock); 793 } 794 795 static void nvme_tcp_write_space(struct sock *sk) 796 { 797 struct nvme_tcp_queue *queue; 798 799 read_lock_bh(&sk->sk_callback_lock); 800 queue = sk->sk_user_data; 801 if (likely(queue && sk_stream_is_writeable(sk))) { 802 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 803 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 804 } 805 read_unlock_bh(&sk->sk_callback_lock); 806 } 807 808 static void nvme_tcp_state_change(struct sock *sk) 809 { 810 struct nvme_tcp_queue *queue; 811 812 read_lock(&sk->sk_callback_lock); 813 queue = sk->sk_user_data; 814 if (!queue) 815 goto done; 816 817 switch (sk->sk_state) { 818 case TCP_CLOSE: 819 case TCP_CLOSE_WAIT: 820 case TCP_LAST_ACK: 821 case TCP_FIN_WAIT1: 822 case TCP_FIN_WAIT2: 823 /* fallthrough */ 824 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 825 break; 826 default: 827 dev_info(queue->ctrl->ctrl.device, 828 "queue %d socket state %d\n", 829 nvme_tcp_queue_id(queue), sk->sk_state); 830 } 831 832 queue->state_change(sk); 833 done: 834 read_unlock(&sk->sk_callback_lock); 835 } 836 837 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 838 { 839 queue->request = NULL; 840 } 841 842 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 843 { 844 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR); 845 } 846 847 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 848 { 849 struct nvme_tcp_queue *queue = req->queue; 850 851 while (true) { 852 struct page *page = nvme_tcp_req_cur_page(req); 853 size_t offset = nvme_tcp_req_cur_offset(req); 854 size_t len = nvme_tcp_req_cur_length(req); 855 bool last = nvme_tcp_pdu_last_send(req, len); 856 int ret, flags = MSG_DONTWAIT; 857 858 if (last && !queue->data_digest) 859 flags |= MSG_EOR; 860 else 861 flags |= MSG_MORE; 862 863 ret = kernel_sendpage(queue->sock, page, offset, len, flags); 864 if (ret <= 0) 865 return ret; 866 867 nvme_tcp_advance_req(req, ret); 868 if (queue->data_digest) 869 nvme_tcp_ddgst_update(queue->snd_hash, page, 870 offset, ret); 871 872 /* fully successful last write*/ 873 if (last && ret == len) { 874 if (queue->data_digest) { 875 nvme_tcp_ddgst_final(queue->snd_hash, 876 &req->ddgst); 877 req->state = NVME_TCP_SEND_DDGST; 878 req->offset = 0; 879 } else { 880 nvme_tcp_done_send_req(queue); 881 } 882 return 1; 883 } 884 } 885 return -EAGAIN; 886 } 887 888 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 889 { 890 struct nvme_tcp_queue *queue = req->queue; 891 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 892 bool inline_data = nvme_tcp_has_inline_data(req); 893 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 894 u8 hdgst = nvme_tcp_hdgst_len(queue); 895 int len = sizeof(*pdu) + hdgst - req->offset; 896 int ret; 897 898 if (queue->hdr_digest && !req->offset) 899 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 900 901 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 902 offset_in_page(pdu) + req->offset, len, flags); 903 if (unlikely(ret <= 0)) 904 return ret; 905 906 len -= ret; 907 if (!len) { 908 if (inline_data) { 909 req->state = NVME_TCP_SEND_DATA; 910 if (queue->data_digest) 911 crypto_ahash_init(queue->snd_hash); 912 nvme_tcp_init_iter(req, WRITE); 913 } else { 914 nvme_tcp_done_send_req(queue); 915 } 916 return 1; 917 } 918 req->offset += ret; 919 920 return -EAGAIN; 921 } 922 923 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 924 { 925 struct nvme_tcp_queue *queue = req->queue; 926 struct nvme_tcp_data_pdu *pdu = req->pdu; 927 u8 hdgst = nvme_tcp_hdgst_len(queue); 928 int len = sizeof(*pdu) - req->offset + hdgst; 929 int ret; 930 931 if (queue->hdr_digest && !req->offset) 932 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 933 934 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 935 offset_in_page(pdu) + req->offset, len, 936 MSG_DONTWAIT | MSG_MORE); 937 if (unlikely(ret <= 0)) 938 return ret; 939 940 len -= ret; 941 if (!len) { 942 req->state = NVME_TCP_SEND_DATA; 943 if (queue->data_digest) 944 crypto_ahash_init(queue->snd_hash); 945 if (!req->data_sent) 946 nvme_tcp_init_iter(req, WRITE); 947 return 1; 948 } 949 req->offset += ret; 950 951 return -EAGAIN; 952 } 953 954 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 955 { 956 struct nvme_tcp_queue *queue = req->queue; 957 int ret; 958 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 959 struct kvec iov = { 960 .iov_base = &req->ddgst + req->offset, 961 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 962 }; 963 964 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 965 if (unlikely(ret <= 0)) 966 return ret; 967 968 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 969 nvme_tcp_done_send_req(queue); 970 return 1; 971 } 972 973 req->offset += ret; 974 return -EAGAIN; 975 } 976 977 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 978 { 979 struct nvme_tcp_request *req; 980 int ret = 1; 981 982 if (!queue->request) { 983 queue->request = nvme_tcp_fetch_request(queue); 984 if (!queue->request) 985 return 0; 986 } 987 req = queue->request; 988 989 if (req->state == NVME_TCP_SEND_CMD_PDU) { 990 ret = nvme_tcp_try_send_cmd_pdu(req); 991 if (ret <= 0) 992 goto done; 993 if (!nvme_tcp_has_inline_data(req)) 994 return ret; 995 } 996 997 if (req->state == NVME_TCP_SEND_H2C_PDU) { 998 ret = nvme_tcp_try_send_data_pdu(req); 999 if (ret <= 0) 1000 goto done; 1001 } 1002 1003 if (req->state == NVME_TCP_SEND_DATA) { 1004 ret = nvme_tcp_try_send_data(req); 1005 if (ret <= 0) 1006 goto done; 1007 } 1008 1009 if (req->state == NVME_TCP_SEND_DDGST) 1010 ret = nvme_tcp_try_send_ddgst(req); 1011 done: 1012 if (ret == -EAGAIN) 1013 ret = 0; 1014 return ret; 1015 } 1016 1017 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1018 { 1019 struct sock *sk = queue->sock->sk; 1020 read_descriptor_t rd_desc; 1021 int consumed; 1022 1023 rd_desc.arg.data = queue; 1024 rd_desc.count = 1; 1025 lock_sock(sk); 1026 consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1027 release_sock(sk); 1028 return consumed; 1029 } 1030 1031 static void nvme_tcp_io_work(struct work_struct *w) 1032 { 1033 struct nvme_tcp_queue *queue = 1034 container_of(w, struct nvme_tcp_queue, io_work); 1035 unsigned long start = jiffies + msecs_to_jiffies(1); 1036 1037 do { 1038 bool pending = false; 1039 int result; 1040 1041 result = nvme_tcp_try_send(queue); 1042 if (result > 0) { 1043 pending = true; 1044 } else if (unlikely(result < 0)) { 1045 dev_err(queue->ctrl->ctrl.device, 1046 "failed to send request %d\n", result); 1047 if (result != -EPIPE) 1048 nvme_tcp_fail_request(queue->request); 1049 nvme_tcp_done_send_req(queue); 1050 return; 1051 } 1052 1053 result = nvme_tcp_try_recv(queue); 1054 if (result > 0) 1055 pending = true; 1056 1057 if (!pending) 1058 return; 1059 1060 } while (time_after(jiffies, start)); /* quota is exhausted */ 1061 1062 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1063 } 1064 1065 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1066 { 1067 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1068 1069 ahash_request_free(queue->rcv_hash); 1070 ahash_request_free(queue->snd_hash); 1071 crypto_free_ahash(tfm); 1072 } 1073 1074 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1075 { 1076 struct crypto_ahash *tfm; 1077 1078 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1079 if (IS_ERR(tfm)) 1080 return PTR_ERR(tfm); 1081 1082 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1083 if (!queue->snd_hash) 1084 goto free_tfm; 1085 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1086 1087 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1088 if (!queue->rcv_hash) 1089 goto free_snd_hash; 1090 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1091 1092 return 0; 1093 free_snd_hash: 1094 ahash_request_free(queue->snd_hash); 1095 free_tfm: 1096 crypto_free_ahash(tfm); 1097 return -ENOMEM; 1098 } 1099 1100 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1101 { 1102 struct nvme_tcp_request *async = &ctrl->async_req; 1103 1104 page_frag_free(async->pdu); 1105 } 1106 1107 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1108 { 1109 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1110 struct nvme_tcp_request *async = &ctrl->async_req; 1111 u8 hdgst = nvme_tcp_hdgst_len(queue); 1112 1113 async->pdu = page_frag_alloc(&queue->pf_cache, 1114 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1115 GFP_KERNEL | __GFP_ZERO); 1116 if (!async->pdu) 1117 return -ENOMEM; 1118 1119 async->queue = &ctrl->queues[0]; 1120 return 0; 1121 } 1122 1123 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1124 { 1125 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1126 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1127 1128 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1129 return; 1130 1131 if (queue->hdr_digest || queue->data_digest) 1132 nvme_tcp_free_crypto(queue); 1133 1134 sock_release(queue->sock); 1135 kfree(queue->pdu); 1136 } 1137 1138 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1139 { 1140 struct nvme_tcp_icreq_pdu *icreq; 1141 struct nvme_tcp_icresp_pdu *icresp; 1142 struct msghdr msg = {}; 1143 struct kvec iov; 1144 bool ctrl_hdgst, ctrl_ddgst; 1145 int ret; 1146 1147 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1148 if (!icreq) 1149 return -ENOMEM; 1150 1151 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1152 if (!icresp) { 1153 ret = -ENOMEM; 1154 goto free_icreq; 1155 } 1156 1157 icreq->hdr.type = nvme_tcp_icreq; 1158 icreq->hdr.hlen = sizeof(*icreq); 1159 icreq->hdr.pdo = 0; 1160 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1161 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1162 icreq->maxr2t = 0; /* single inflight r2t supported */ 1163 icreq->hpda = 0; /* no alignment constraint */ 1164 if (queue->hdr_digest) 1165 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1166 if (queue->data_digest) 1167 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1168 1169 iov.iov_base = icreq; 1170 iov.iov_len = sizeof(*icreq); 1171 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1172 if (ret < 0) 1173 goto free_icresp; 1174 1175 memset(&msg, 0, sizeof(msg)); 1176 iov.iov_base = icresp; 1177 iov.iov_len = sizeof(*icresp); 1178 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1179 iov.iov_len, msg.msg_flags); 1180 if (ret < 0) 1181 goto free_icresp; 1182 1183 ret = -EINVAL; 1184 if (icresp->hdr.type != nvme_tcp_icresp) { 1185 pr_err("queue %d: bad type returned %d\n", 1186 nvme_tcp_queue_id(queue), icresp->hdr.type); 1187 goto free_icresp; 1188 } 1189 1190 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1191 pr_err("queue %d: bad pdu length returned %d\n", 1192 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1193 goto free_icresp; 1194 } 1195 1196 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1197 pr_err("queue %d: bad pfv returned %d\n", 1198 nvme_tcp_queue_id(queue), icresp->pfv); 1199 goto free_icresp; 1200 } 1201 1202 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1203 if ((queue->data_digest && !ctrl_ddgst) || 1204 (!queue->data_digest && ctrl_ddgst)) { 1205 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1206 nvme_tcp_queue_id(queue), 1207 queue->data_digest ? "enabled" : "disabled", 1208 ctrl_ddgst ? "enabled" : "disabled"); 1209 goto free_icresp; 1210 } 1211 1212 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1213 if ((queue->hdr_digest && !ctrl_hdgst) || 1214 (!queue->hdr_digest && ctrl_hdgst)) { 1215 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1216 nvme_tcp_queue_id(queue), 1217 queue->hdr_digest ? "enabled" : "disabled", 1218 ctrl_hdgst ? "enabled" : "disabled"); 1219 goto free_icresp; 1220 } 1221 1222 if (icresp->cpda != 0) { 1223 pr_err("queue %d: unsupported cpda returned %d\n", 1224 nvme_tcp_queue_id(queue), icresp->cpda); 1225 goto free_icresp; 1226 } 1227 1228 ret = 0; 1229 free_icresp: 1230 kfree(icresp); 1231 free_icreq: 1232 kfree(icreq); 1233 return ret; 1234 } 1235 1236 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1237 int qid, size_t queue_size) 1238 { 1239 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1240 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1241 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1242 int ret, opt, rcv_pdu_size, n; 1243 1244 queue->ctrl = ctrl; 1245 INIT_LIST_HEAD(&queue->send_list); 1246 spin_lock_init(&queue->lock); 1247 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1248 queue->queue_size = queue_size; 1249 1250 if (qid > 0) 1251 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1252 else 1253 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1254 NVME_TCP_ADMIN_CCSZ; 1255 1256 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1257 IPPROTO_TCP, &queue->sock); 1258 if (ret) { 1259 dev_err(ctrl->ctrl.device, 1260 "failed to create socket: %d\n", ret); 1261 return ret; 1262 } 1263 1264 /* Single syn retry */ 1265 opt = 1; 1266 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1267 (char *)&opt, sizeof(opt)); 1268 if (ret) { 1269 dev_err(ctrl->ctrl.device, 1270 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1271 goto err_sock; 1272 } 1273 1274 /* Set TCP no delay */ 1275 opt = 1; 1276 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1277 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1278 if (ret) { 1279 dev_err(ctrl->ctrl.device, 1280 "failed to set TCP_NODELAY sock opt %d\n", ret); 1281 goto err_sock; 1282 } 1283 1284 /* 1285 * Cleanup whatever is sitting in the TCP transmit queue on socket 1286 * close. This is done to prevent stale data from being sent should 1287 * the network connection be restored before TCP times out. 1288 */ 1289 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1290 (char *)&sol, sizeof(sol)); 1291 if (ret) { 1292 dev_err(ctrl->ctrl.device, 1293 "failed to set SO_LINGER sock opt %d\n", ret); 1294 goto err_sock; 1295 } 1296 1297 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1298 if (!qid) 1299 n = 0; 1300 else 1301 n = (qid - 1) % num_online_cpus(); 1302 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1303 queue->request = NULL; 1304 queue->data_remaining = 0; 1305 queue->ddgst_remaining = 0; 1306 queue->pdu_remaining = 0; 1307 queue->pdu_offset = 0; 1308 sk_set_memalloc(queue->sock->sk); 1309 1310 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1311 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1312 sizeof(ctrl->src_addr)); 1313 if (ret) { 1314 dev_err(ctrl->ctrl.device, 1315 "failed to bind queue %d socket %d\n", 1316 qid, ret); 1317 goto err_sock; 1318 } 1319 } 1320 1321 queue->hdr_digest = nctrl->opts->hdr_digest; 1322 queue->data_digest = nctrl->opts->data_digest; 1323 if (queue->hdr_digest || queue->data_digest) { 1324 ret = nvme_tcp_alloc_crypto(queue); 1325 if (ret) { 1326 dev_err(ctrl->ctrl.device, 1327 "failed to allocate queue %d crypto\n", qid); 1328 goto err_sock; 1329 } 1330 } 1331 1332 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1333 nvme_tcp_hdgst_len(queue); 1334 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1335 if (!queue->pdu) { 1336 ret = -ENOMEM; 1337 goto err_crypto; 1338 } 1339 1340 dev_dbg(ctrl->ctrl.device, "connecting queue %d\n", 1341 nvme_tcp_queue_id(queue)); 1342 1343 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1344 sizeof(ctrl->addr), 0); 1345 if (ret) { 1346 dev_err(ctrl->ctrl.device, 1347 "failed to connect socket: %d\n", ret); 1348 goto err_rcv_pdu; 1349 } 1350 1351 ret = nvme_tcp_init_connection(queue); 1352 if (ret) 1353 goto err_init_connect; 1354 1355 queue->rd_enabled = true; 1356 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1357 nvme_tcp_init_recv_ctx(queue); 1358 1359 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1360 queue->sock->sk->sk_user_data = queue; 1361 queue->state_change = queue->sock->sk->sk_state_change; 1362 queue->data_ready = queue->sock->sk->sk_data_ready; 1363 queue->write_space = queue->sock->sk->sk_write_space; 1364 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1365 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1366 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1367 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1368 1369 return 0; 1370 1371 err_init_connect: 1372 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1373 err_rcv_pdu: 1374 kfree(queue->pdu); 1375 err_crypto: 1376 if (queue->hdr_digest || queue->data_digest) 1377 nvme_tcp_free_crypto(queue); 1378 err_sock: 1379 sock_release(queue->sock); 1380 queue->sock = NULL; 1381 return ret; 1382 } 1383 1384 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1385 { 1386 struct socket *sock = queue->sock; 1387 1388 write_lock_bh(&sock->sk->sk_callback_lock); 1389 sock->sk->sk_user_data = NULL; 1390 sock->sk->sk_data_ready = queue->data_ready; 1391 sock->sk->sk_state_change = queue->state_change; 1392 sock->sk->sk_write_space = queue->write_space; 1393 write_unlock_bh(&sock->sk->sk_callback_lock); 1394 } 1395 1396 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1397 { 1398 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1399 nvme_tcp_restore_sock_calls(queue); 1400 cancel_work_sync(&queue->io_work); 1401 } 1402 1403 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1404 { 1405 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1406 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1407 1408 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1409 return; 1410 1411 __nvme_tcp_stop_queue(queue); 1412 } 1413 1414 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1415 { 1416 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1417 int ret; 1418 1419 if (idx) 1420 ret = nvmf_connect_io_queue(nctrl, idx, false); 1421 else 1422 ret = nvmf_connect_admin_queue(nctrl); 1423 1424 if (!ret) { 1425 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1426 } else { 1427 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1428 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1429 dev_err(nctrl->device, 1430 "failed to connect queue: %d ret=%d\n", idx, ret); 1431 } 1432 return ret; 1433 } 1434 1435 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1436 bool admin) 1437 { 1438 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1439 struct blk_mq_tag_set *set; 1440 int ret; 1441 1442 if (admin) { 1443 set = &ctrl->admin_tag_set; 1444 memset(set, 0, sizeof(*set)); 1445 set->ops = &nvme_tcp_admin_mq_ops; 1446 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1447 set->reserved_tags = 2; /* connect + keep-alive */ 1448 set->numa_node = NUMA_NO_NODE; 1449 set->cmd_size = sizeof(struct nvme_tcp_request); 1450 set->driver_data = ctrl; 1451 set->nr_hw_queues = 1; 1452 set->timeout = ADMIN_TIMEOUT; 1453 } else { 1454 set = &ctrl->tag_set; 1455 memset(set, 0, sizeof(*set)); 1456 set->ops = &nvme_tcp_mq_ops; 1457 set->queue_depth = nctrl->sqsize + 1; 1458 set->reserved_tags = 1; /* fabric connect */ 1459 set->numa_node = NUMA_NO_NODE; 1460 set->flags = BLK_MQ_F_SHOULD_MERGE; 1461 set->cmd_size = sizeof(struct nvme_tcp_request); 1462 set->driver_data = ctrl; 1463 set->nr_hw_queues = nctrl->queue_count - 1; 1464 set->timeout = NVME_IO_TIMEOUT; 1465 set->nr_maps = 2 /* default + read */; 1466 } 1467 1468 ret = blk_mq_alloc_tag_set(set); 1469 if (ret) 1470 return ERR_PTR(ret); 1471 1472 return set; 1473 } 1474 1475 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1476 { 1477 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1478 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1479 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1480 } 1481 1482 nvme_tcp_free_queue(ctrl, 0); 1483 } 1484 1485 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1486 { 1487 int i; 1488 1489 for (i = 1; i < ctrl->queue_count; i++) 1490 nvme_tcp_free_queue(ctrl, i); 1491 } 1492 1493 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1494 { 1495 int i; 1496 1497 for (i = 1; i < ctrl->queue_count; i++) 1498 nvme_tcp_stop_queue(ctrl, i); 1499 } 1500 1501 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1502 { 1503 int i, ret = 0; 1504 1505 for (i = 1; i < ctrl->queue_count; i++) { 1506 ret = nvme_tcp_start_queue(ctrl, i); 1507 if (ret) 1508 goto out_stop_queues; 1509 } 1510 1511 return 0; 1512 1513 out_stop_queues: 1514 for (i--; i >= 1; i--) 1515 nvme_tcp_stop_queue(ctrl, i); 1516 return ret; 1517 } 1518 1519 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1520 { 1521 int ret; 1522 1523 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1524 if (ret) 1525 return ret; 1526 1527 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1528 if (ret) 1529 goto out_free_queue; 1530 1531 return 0; 1532 1533 out_free_queue: 1534 nvme_tcp_free_queue(ctrl, 0); 1535 return ret; 1536 } 1537 1538 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1539 { 1540 int i, ret; 1541 1542 for (i = 1; i < ctrl->queue_count; i++) { 1543 ret = nvme_tcp_alloc_queue(ctrl, i, 1544 ctrl->sqsize + 1); 1545 if (ret) 1546 goto out_free_queues; 1547 } 1548 1549 return 0; 1550 1551 out_free_queues: 1552 for (i--; i >= 1; i--) 1553 nvme_tcp_free_queue(ctrl, i); 1554 1555 return ret; 1556 } 1557 1558 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1559 { 1560 unsigned int nr_io_queues; 1561 1562 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1563 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1564 1565 return nr_io_queues; 1566 } 1567 1568 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1569 unsigned int nr_io_queues) 1570 { 1571 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1572 struct nvmf_ctrl_options *opts = nctrl->opts; 1573 1574 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1575 /* 1576 * separate read/write queues 1577 * hand out dedicated default queues only after we have 1578 * sufficient read queues. 1579 */ 1580 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1581 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1582 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1583 min(opts->nr_write_queues, nr_io_queues); 1584 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1585 } else { 1586 /* 1587 * shared read/write queues 1588 * either no write queues were requested, or we don't have 1589 * sufficient queue count to have dedicated default queues. 1590 */ 1591 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1592 min(opts->nr_io_queues, nr_io_queues); 1593 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1594 } 1595 } 1596 1597 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1598 { 1599 unsigned int nr_io_queues; 1600 int ret; 1601 1602 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1603 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1604 if (ret) 1605 return ret; 1606 1607 ctrl->queue_count = nr_io_queues + 1; 1608 if (ctrl->queue_count < 2) 1609 return 0; 1610 1611 dev_info(ctrl->device, 1612 "creating %d I/O queues.\n", nr_io_queues); 1613 1614 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1615 1616 return __nvme_tcp_alloc_io_queues(ctrl); 1617 } 1618 1619 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1620 { 1621 nvme_tcp_stop_io_queues(ctrl); 1622 if (remove) { 1623 blk_cleanup_queue(ctrl->connect_q); 1624 blk_mq_free_tag_set(ctrl->tagset); 1625 } 1626 nvme_tcp_free_io_queues(ctrl); 1627 } 1628 1629 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1630 { 1631 int ret; 1632 1633 ret = nvme_tcp_alloc_io_queues(ctrl); 1634 if (ret) 1635 return ret; 1636 1637 if (new) { 1638 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1639 if (IS_ERR(ctrl->tagset)) { 1640 ret = PTR_ERR(ctrl->tagset); 1641 goto out_free_io_queues; 1642 } 1643 1644 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1645 if (IS_ERR(ctrl->connect_q)) { 1646 ret = PTR_ERR(ctrl->connect_q); 1647 goto out_free_tag_set; 1648 } 1649 } else { 1650 blk_mq_update_nr_hw_queues(ctrl->tagset, 1651 ctrl->queue_count - 1); 1652 } 1653 1654 ret = nvme_tcp_start_io_queues(ctrl); 1655 if (ret) 1656 goto out_cleanup_connect_q; 1657 1658 return 0; 1659 1660 out_cleanup_connect_q: 1661 if (new) 1662 blk_cleanup_queue(ctrl->connect_q); 1663 out_free_tag_set: 1664 if (new) 1665 blk_mq_free_tag_set(ctrl->tagset); 1666 out_free_io_queues: 1667 nvme_tcp_free_io_queues(ctrl); 1668 return ret; 1669 } 1670 1671 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1672 { 1673 nvme_tcp_stop_queue(ctrl, 0); 1674 if (remove) { 1675 blk_cleanup_queue(ctrl->admin_q); 1676 blk_mq_free_tag_set(ctrl->admin_tagset); 1677 } 1678 nvme_tcp_free_admin_queue(ctrl); 1679 } 1680 1681 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1682 { 1683 int error; 1684 1685 error = nvme_tcp_alloc_admin_queue(ctrl); 1686 if (error) 1687 return error; 1688 1689 if (new) { 1690 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1691 if (IS_ERR(ctrl->admin_tagset)) { 1692 error = PTR_ERR(ctrl->admin_tagset); 1693 goto out_free_queue; 1694 } 1695 1696 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1697 if (IS_ERR(ctrl->admin_q)) { 1698 error = PTR_ERR(ctrl->admin_q); 1699 goto out_free_tagset; 1700 } 1701 } 1702 1703 error = nvme_tcp_start_queue(ctrl, 0); 1704 if (error) 1705 goto out_cleanup_queue; 1706 1707 error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 1708 if (error) { 1709 dev_err(ctrl->device, 1710 "prop_get NVME_REG_CAP failed\n"); 1711 goto out_stop_queue; 1712 } 1713 1714 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 1715 1716 error = nvme_enable_ctrl(ctrl, ctrl->cap); 1717 if (error) 1718 goto out_stop_queue; 1719 1720 error = nvme_init_identify(ctrl); 1721 if (error) 1722 goto out_stop_queue; 1723 1724 return 0; 1725 1726 out_stop_queue: 1727 nvme_tcp_stop_queue(ctrl, 0); 1728 out_cleanup_queue: 1729 if (new) 1730 blk_cleanup_queue(ctrl->admin_q); 1731 out_free_tagset: 1732 if (new) 1733 blk_mq_free_tag_set(ctrl->admin_tagset); 1734 out_free_queue: 1735 nvme_tcp_free_admin_queue(ctrl); 1736 return error; 1737 } 1738 1739 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1740 bool remove) 1741 { 1742 blk_mq_quiesce_queue(ctrl->admin_q); 1743 nvme_tcp_stop_queue(ctrl, 0); 1744 if (ctrl->admin_tagset) 1745 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1746 nvme_cancel_request, ctrl); 1747 blk_mq_unquiesce_queue(ctrl->admin_q); 1748 nvme_tcp_destroy_admin_queue(ctrl, remove); 1749 } 1750 1751 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1752 bool remove) 1753 { 1754 if (ctrl->queue_count <= 1) 1755 return; 1756 nvme_stop_queues(ctrl); 1757 nvme_tcp_stop_io_queues(ctrl); 1758 if (ctrl->tagset) 1759 blk_mq_tagset_busy_iter(ctrl->tagset, 1760 nvme_cancel_request, ctrl); 1761 if (remove) 1762 nvme_start_queues(ctrl); 1763 nvme_tcp_destroy_io_queues(ctrl, remove); 1764 } 1765 1766 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1767 { 1768 /* If we are resetting/deleting then do nothing */ 1769 if (ctrl->state != NVME_CTRL_CONNECTING) { 1770 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1771 ctrl->state == NVME_CTRL_LIVE); 1772 return; 1773 } 1774 1775 if (nvmf_should_reconnect(ctrl)) { 1776 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1777 ctrl->opts->reconnect_delay); 1778 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1779 ctrl->opts->reconnect_delay * HZ); 1780 } else { 1781 dev_info(ctrl->device, "Removing controller...\n"); 1782 nvme_delete_ctrl(ctrl); 1783 } 1784 } 1785 1786 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1787 { 1788 struct nvmf_ctrl_options *opts = ctrl->opts; 1789 int ret = -EINVAL; 1790 1791 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1792 if (ret) 1793 return ret; 1794 1795 if (ctrl->icdoff) { 1796 dev_err(ctrl->device, "icdoff is not supported!\n"); 1797 goto destroy_admin; 1798 } 1799 1800 if (opts->queue_size > ctrl->sqsize + 1) 1801 dev_warn(ctrl->device, 1802 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1803 opts->queue_size, ctrl->sqsize + 1); 1804 1805 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1806 dev_warn(ctrl->device, 1807 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1808 ctrl->sqsize + 1, ctrl->maxcmd); 1809 ctrl->sqsize = ctrl->maxcmd - 1; 1810 } 1811 1812 if (ctrl->queue_count > 1) { 1813 ret = nvme_tcp_configure_io_queues(ctrl, new); 1814 if (ret) 1815 goto destroy_admin; 1816 } 1817 1818 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1819 /* state change failure is ok if we're in DELETING state */ 1820 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1821 ret = -EINVAL; 1822 goto destroy_io; 1823 } 1824 1825 nvme_start_ctrl(ctrl); 1826 return 0; 1827 1828 destroy_io: 1829 if (ctrl->queue_count > 1) 1830 nvme_tcp_destroy_io_queues(ctrl, new); 1831 destroy_admin: 1832 nvme_tcp_stop_queue(ctrl, 0); 1833 nvme_tcp_destroy_admin_queue(ctrl, new); 1834 return ret; 1835 } 1836 1837 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1838 { 1839 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1840 struct nvme_tcp_ctrl, connect_work); 1841 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1842 1843 ++ctrl->nr_reconnects; 1844 1845 if (nvme_tcp_setup_ctrl(ctrl, false)) 1846 goto requeue; 1847 1848 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1849 ctrl->nr_reconnects); 1850 1851 ctrl->nr_reconnects = 0; 1852 1853 return; 1854 1855 requeue: 1856 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1857 ctrl->nr_reconnects); 1858 nvme_tcp_reconnect_or_remove(ctrl); 1859 } 1860 1861 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1862 { 1863 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1864 struct nvme_tcp_ctrl, err_work); 1865 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1866 1867 nvme_stop_keep_alive(ctrl); 1868 nvme_tcp_teardown_io_queues(ctrl, false); 1869 /* unquiesce to fail fast pending requests */ 1870 nvme_start_queues(ctrl); 1871 nvme_tcp_teardown_admin_queue(ctrl, false); 1872 1873 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1874 /* state change failure is ok if we're in DELETING state */ 1875 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1876 return; 1877 } 1878 1879 nvme_tcp_reconnect_or_remove(ctrl); 1880 } 1881 1882 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1883 { 1884 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1885 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1886 1887 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1888 if (shutdown) 1889 nvme_shutdown_ctrl(ctrl); 1890 else 1891 nvme_disable_ctrl(ctrl, ctrl->cap); 1892 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 1893 } 1894 1895 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 1896 { 1897 nvme_tcp_teardown_ctrl(ctrl, true); 1898 } 1899 1900 static void nvme_reset_ctrl_work(struct work_struct *work) 1901 { 1902 struct nvme_ctrl *ctrl = 1903 container_of(work, struct nvme_ctrl, reset_work); 1904 1905 nvme_stop_ctrl(ctrl); 1906 nvme_tcp_teardown_ctrl(ctrl, false); 1907 1908 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1909 /* state change failure is ok if we're in DELETING state */ 1910 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1911 return; 1912 } 1913 1914 if (nvme_tcp_setup_ctrl(ctrl, false)) 1915 goto out_fail; 1916 1917 return; 1918 1919 out_fail: 1920 ++ctrl->nr_reconnects; 1921 nvme_tcp_reconnect_or_remove(ctrl); 1922 } 1923 1924 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 1925 { 1926 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1927 1928 if (list_empty(&ctrl->list)) 1929 goto free_ctrl; 1930 1931 mutex_lock(&nvme_tcp_ctrl_mutex); 1932 list_del(&ctrl->list); 1933 mutex_unlock(&nvme_tcp_ctrl_mutex); 1934 1935 nvmf_free_options(nctrl->opts); 1936 free_ctrl: 1937 kfree(ctrl->queues); 1938 kfree(ctrl); 1939 } 1940 1941 static void nvme_tcp_set_sg_null(struct nvme_command *c) 1942 { 1943 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1944 1945 sg->addr = 0; 1946 sg->length = 0; 1947 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1948 NVME_SGL_FMT_TRANSPORT_A; 1949 } 1950 1951 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 1952 struct nvme_command *c, u32 data_len) 1953 { 1954 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1955 1956 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1957 sg->length = cpu_to_le32(data_len); 1958 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1959 } 1960 1961 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 1962 u32 data_len) 1963 { 1964 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1965 1966 sg->addr = 0; 1967 sg->length = cpu_to_le32(data_len); 1968 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1969 NVME_SGL_FMT_TRANSPORT_A; 1970 } 1971 1972 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 1973 { 1974 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 1975 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1976 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 1977 struct nvme_command *cmd = &pdu->cmd; 1978 u8 hdgst = nvme_tcp_hdgst_len(queue); 1979 1980 memset(pdu, 0, sizeof(*pdu)); 1981 pdu->hdr.type = nvme_tcp_cmd; 1982 if (queue->hdr_digest) 1983 pdu->hdr.flags |= NVME_TCP_F_HDGST; 1984 pdu->hdr.hlen = sizeof(*pdu); 1985 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 1986 1987 cmd->common.opcode = nvme_admin_async_event; 1988 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1989 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1990 nvme_tcp_set_sg_null(cmd); 1991 1992 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 1993 ctrl->async_req.offset = 0; 1994 ctrl->async_req.curr_bio = NULL; 1995 ctrl->async_req.data_len = 0; 1996 1997 nvme_tcp_queue_request(&ctrl->async_req); 1998 } 1999 2000 static enum blk_eh_timer_return 2001 nvme_tcp_timeout(struct request *rq, bool reserved) 2002 { 2003 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2004 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2005 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2006 2007 dev_warn(ctrl->ctrl.device, 2008 "queue %d: timeout request %#x type %d\n", 2009 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2010 2011 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2012 /* 2013 * Teardown immediately if controller times out while starting 2014 * or we are already started error recovery. all outstanding 2015 * requests are completed on shutdown, so we return BLK_EH_DONE. 2016 */ 2017 flush_work(&ctrl->err_work); 2018 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2019 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2020 return BLK_EH_DONE; 2021 } 2022 2023 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2024 nvme_tcp_error_recovery(&ctrl->ctrl); 2025 2026 return BLK_EH_RESET_TIMER; 2027 } 2028 2029 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2030 struct request *rq) 2031 { 2032 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2033 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2034 struct nvme_command *c = &pdu->cmd; 2035 2036 c->common.flags |= NVME_CMD_SGL_METABUF; 2037 2038 if (rq_data_dir(rq) == WRITE && req->data_len && 2039 req->data_len <= nvme_tcp_inline_data_size(queue)) 2040 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2041 else 2042 nvme_tcp_set_sg_host_data(c, req->data_len); 2043 2044 return 0; 2045 } 2046 2047 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2048 struct request *rq) 2049 { 2050 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2051 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2052 struct nvme_tcp_queue *queue = req->queue; 2053 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2054 blk_status_t ret; 2055 2056 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2057 if (ret) 2058 return ret; 2059 2060 req->state = NVME_TCP_SEND_CMD_PDU; 2061 req->offset = 0; 2062 req->data_sent = 0; 2063 req->pdu_len = 0; 2064 req->pdu_sent = 0; 2065 req->data_len = blk_rq_payload_bytes(rq); 2066 req->curr_bio = rq->bio; 2067 2068 if (rq_data_dir(rq) == WRITE && 2069 req->data_len <= nvme_tcp_inline_data_size(queue)) 2070 req->pdu_len = req->data_len; 2071 else if (req->curr_bio) 2072 nvme_tcp_init_iter(req, READ); 2073 2074 pdu->hdr.type = nvme_tcp_cmd; 2075 pdu->hdr.flags = 0; 2076 if (queue->hdr_digest) 2077 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2078 if (queue->data_digest && req->pdu_len) { 2079 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2080 ddgst = nvme_tcp_ddgst_len(queue); 2081 } 2082 pdu->hdr.hlen = sizeof(*pdu); 2083 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2084 pdu->hdr.plen = 2085 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2086 2087 ret = nvme_tcp_map_data(queue, rq); 2088 if (unlikely(ret)) { 2089 dev_err(queue->ctrl->ctrl.device, 2090 "Failed to map data (%d)\n", ret); 2091 return ret; 2092 } 2093 2094 return 0; 2095 } 2096 2097 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2098 const struct blk_mq_queue_data *bd) 2099 { 2100 struct nvme_ns *ns = hctx->queue->queuedata; 2101 struct nvme_tcp_queue *queue = hctx->driver_data; 2102 struct request *rq = bd->rq; 2103 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2104 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2105 blk_status_t ret; 2106 2107 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2108 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2109 2110 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2111 if (unlikely(ret)) 2112 return ret; 2113 2114 blk_mq_start_request(rq); 2115 2116 nvme_tcp_queue_request(req); 2117 2118 return BLK_STS_OK; 2119 } 2120 2121 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2122 { 2123 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2124 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2125 2126 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2127 /* separate read/write queues */ 2128 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2129 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2130 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2131 set->map[HCTX_TYPE_READ].nr_queues = 2132 ctrl->io_queues[HCTX_TYPE_READ]; 2133 set->map[HCTX_TYPE_READ].queue_offset = 2134 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2135 } else { 2136 /* shared read/write queues */ 2137 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2138 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2139 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2140 set->map[HCTX_TYPE_READ].nr_queues = 2141 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2142 set->map[HCTX_TYPE_READ].queue_offset = 0; 2143 } 2144 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2145 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2146 2147 dev_info(ctrl->ctrl.device, 2148 "mapped %d/%d default/read queues.\n", 2149 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2150 ctrl->io_queues[HCTX_TYPE_READ]); 2151 2152 return 0; 2153 } 2154 2155 static struct blk_mq_ops nvme_tcp_mq_ops = { 2156 .queue_rq = nvme_tcp_queue_rq, 2157 .complete = nvme_complete_rq, 2158 .init_request = nvme_tcp_init_request, 2159 .exit_request = nvme_tcp_exit_request, 2160 .init_hctx = nvme_tcp_init_hctx, 2161 .timeout = nvme_tcp_timeout, 2162 .map_queues = nvme_tcp_map_queues, 2163 }; 2164 2165 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2166 .queue_rq = nvme_tcp_queue_rq, 2167 .complete = nvme_complete_rq, 2168 .init_request = nvme_tcp_init_request, 2169 .exit_request = nvme_tcp_exit_request, 2170 .init_hctx = nvme_tcp_init_admin_hctx, 2171 .timeout = nvme_tcp_timeout, 2172 }; 2173 2174 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2175 .name = "tcp", 2176 .module = THIS_MODULE, 2177 .flags = NVME_F_FABRICS, 2178 .reg_read32 = nvmf_reg_read32, 2179 .reg_read64 = nvmf_reg_read64, 2180 .reg_write32 = nvmf_reg_write32, 2181 .free_ctrl = nvme_tcp_free_ctrl, 2182 .submit_async_event = nvme_tcp_submit_async_event, 2183 .delete_ctrl = nvme_tcp_delete_ctrl, 2184 .get_address = nvmf_get_address, 2185 }; 2186 2187 static bool 2188 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2189 { 2190 struct nvme_tcp_ctrl *ctrl; 2191 bool found = false; 2192 2193 mutex_lock(&nvme_tcp_ctrl_mutex); 2194 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2195 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2196 if (found) 2197 break; 2198 } 2199 mutex_unlock(&nvme_tcp_ctrl_mutex); 2200 2201 return found; 2202 } 2203 2204 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2205 struct nvmf_ctrl_options *opts) 2206 { 2207 struct nvme_tcp_ctrl *ctrl; 2208 int ret; 2209 2210 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2211 if (!ctrl) 2212 return ERR_PTR(-ENOMEM); 2213 2214 INIT_LIST_HEAD(&ctrl->list); 2215 ctrl->ctrl.opts = opts; 2216 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1; 2217 ctrl->ctrl.sqsize = opts->queue_size - 1; 2218 ctrl->ctrl.kato = opts->kato; 2219 2220 INIT_DELAYED_WORK(&ctrl->connect_work, 2221 nvme_tcp_reconnect_ctrl_work); 2222 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2223 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2224 2225 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2226 opts->trsvcid = 2227 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2228 if (!opts->trsvcid) { 2229 ret = -ENOMEM; 2230 goto out_free_ctrl; 2231 } 2232 opts->mask |= NVMF_OPT_TRSVCID; 2233 } 2234 2235 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2236 opts->traddr, opts->trsvcid, &ctrl->addr); 2237 if (ret) { 2238 pr_err("malformed address passed: %s:%s\n", 2239 opts->traddr, opts->trsvcid); 2240 goto out_free_ctrl; 2241 } 2242 2243 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2244 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2245 opts->host_traddr, NULL, &ctrl->src_addr); 2246 if (ret) { 2247 pr_err("malformed src address passed: %s\n", 2248 opts->host_traddr); 2249 goto out_free_ctrl; 2250 } 2251 } 2252 2253 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2254 ret = -EALREADY; 2255 goto out_free_ctrl; 2256 } 2257 2258 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2259 GFP_KERNEL); 2260 if (!ctrl->queues) { 2261 ret = -ENOMEM; 2262 goto out_free_ctrl; 2263 } 2264 2265 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2266 if (ret) 2267 goto out_kfree_queues; 2268 2269 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2270 WARN_ON_ONCE(1); 2271 ret = -EINTR; 2272 goto out_uninit_ctrl; 2273 } 2274 2275 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2276 if (ret) 2277 goto out_uninit_ctrl; 2278 2279 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2280 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2281 2282 nvme_get_ctrl(&ctrl->ctrl); 2283 2284 mutex_lock(&nvme_tcp_ctrl_mutex); 2285 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2286 mutex_unlock(&nvme_tcp_ctrl_mutex); 2287 2288 return &ctrl->ctrl; 2289 2290 out_uninit_ctrl: 2291 nvme_uninit_ctrl(&ctrl->ctrl); 2292 nvme_put_ctrl(&ctrl->ctrl); 2293 if (ret > 0) 2294 ret = -EIO; 2295 return ERR_PTR(ret); 2296 out_kfree_queues: 2297 kfree(ctrl->queues); 2298 out_free_ctrl: 2299 kfree(ctrl); 2300 return ERR_PTR(ret); 2301 } 2302 2303 static struct nvmf_transport_ops nvme_tcp_transport = { 2304 .name = "tcp", 2305 .module = THIS_MODULE, 2306 .required_opts = NVMF_OPT_TRADDR, 2307 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2308 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2309 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2310 NVMF_OPT_NR_WRITE_QUEUES, 2311 .create_ctrl = nvme_tcp_create_ctrl, 2312 }; 2313 2314 static int __init nvme_tcp_init_module(void) 2315 { 2316 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2317 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2318 if (!nvme_tcp_wq) 2319 return -ENOMEM; 2320 2321 nvmf_register_transport(&nvme_tcp_transport); 2322 return 0; 2323 } 2324 2325 static void __exit nvme_tcp_cleanup_module(void) 2326 { 2327 struct nvme_tcp_ctrl *ctrl; 2328 2329 nvmf_unregister_transport(&nvme_tcp_transport); 2330 2331 mutex_lock(&nvme_tcp_ctrl_mutex); 2332 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2333 nvme_delete_ctrl(&ctrl->ctrl); 2334 mutex_unlock(&nvme_tcp_ctrl_mutex); 2335 flush_workqueue(nvme_delete_wq); 2336 2337 destroy_workqueue(nvme_tcp_wq); 2338 } 2339 2340 module_init(nvme_tcp_init_module); 2341 module_exit(nvme_tcp_cleanup_module); 2342 2343 MODULE_LICENSE("GPL v2"); 2344