1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 #include <trace/events/sock.h> 18 19 #include "nvme.h" 20 #include "fabrics.h" 21 22 struct nvme_tcp_queue; 23 24 /* Define the socket priority to use for connections were it is desirable 25 * that the NIC consider performing optimized packet processing or filtering. 26 * A non-zero value being sufficient to indicate general consideration of any 27 * possible optimization. Making it a module param allows for alternative 28 * values that may be unique for some NIC implementations. 29 */ 30 static int so_priority; 31 module_param(so_priority, int, 0644); 32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 33 34 #ifdef CONFIG_DEBUG_LOCK_ALLOC 35 /* lockdep can detect a circular dependency of the form 36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 37 * because dependencies are tracked for both nvme-tcp and user contexts. Using 38 * a separate class prevents lockdep from conflating nvme-tcp socket use with 39 * user-space socket API use. 40 */ 41 static struct lock_class_key nvme_tcp_sk_key[2]; 42 static struct lock_class_key nvme_tcp_slock_key[2]; 43 44 static void nvme_tcp_reclassify_socket(struct socket *sock) 45 { 46 struct sock *sk = sock->sk; 47 48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 49 return; 50 51 switch (sk->sk_family) { 52 case AF_INET: 53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 54 &nvme_tcp_slock_key[0], 55 "sk_lock-AF_INET-NVME", 56 &nvme_tcp_sk_key[0]); 57 break; 58 case AF_INET6: 59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 60 &nvme_tcp_slock_key[1], 61 "sk_lock-AF_INET6-NVME", 62 &nvme_tcp_sk_key[1]); 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 } 67 } 68 #else 69 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 70 #endif 71 72 enum nvme_tcp_send_state { 73 NVME_TCP_SEND_CMD_PDU = 0, 74 NVME_TCP_SEND_H2C_PDU, 75 NVME_TCP_SEND_DATA, 76 NVME_TCP_SEND_DDGST, 77 }; 78 79 struct nvme_tcp_request { 80 struct nvme_request req; 81 void *pdu; 82 struct nvme_tcp_queue *queue; 83 u32 data_len; 84 u32 pdu_len; 85 u32 pdu_sent; 86 u32 h2cdata_left; 87 u32 h2cdata_offset; 88 u16 ttag; 89 __le16 status; 90 struct list_head entry; 91 struct llist_node lentry; 92 __le32 ddgst; 93 94 struct bio *curr_bio; 95 struct iov_iter iter; 96 97 /* send state */ 98 size_t offset; 99 size_t data_sent; 100 enum nvme_tcp_send_state state; 101 }; 102 103 enum nvme_tcp_queue_flags { 104 NVME_TCP_Q_ALLOCATED = 0, 105 NVME_TCP_Q_LIVE = 1, 106 NVME_TCP_Q_POLLING = 2, 107 }; 108 109 enum nvme_tcp_recv_state { 110 NVME_TCP_RECV_PDU = 0, 111 NVME_TCP_RECV_DATA, 112 NVME_TCP_RECV_DDGST, 113 }; 114 115 struct nvme_tcp_ctrl; 116 struct nvme_tcp_queue { 117 struct socket *sock; 118 struct work_struct io_work; 119 int io_cpu; 120 121 struct mutex queue_lock; 122 struct mutex send_mutex; 123 struct llist_head req_list; 124 struct list_head send_list; 125 126 /* recv state */ 127 void *pdu; 128 int pdu_remaining; 129 int pdu_offset; 130 size_t data_remaining; 131 size_t ddgst_remaining; 132 unsigned int nr_cqe; 133 134 /* send state */ 135 struct nvme_tcp_request *request; 136 137 u32 maxh2cdata; 138 size_t cmnd_capsule_len; 139 struct nvme_tcp_ctrl *ctrl; 140 unsigned long flags; 141 bool rd_enabled; 142 143 bool hdr_digest; 144 bool data_digest; 145 struct ahash_request *rcv_hash; 146 struct ahash_request *snd_hash; 147 __le32 exp_ddgst; 148 __le32 recv_ddgst; 149 150 struct page_frag_cache pf_cache; 151 152 void (*state_change)(struct sock *); 153 void (*data_ready)(struct sock *); 154 void (*write_space)(struct sock *); 155 }; 156 157 struct nvme_tcp_ctrl { 158 /* read only in the hot path */ 159 struct nvme_tcp_queue *queues; 160 struct blk_mq_tag_set tag_set; 161 162 /* other member variables */ 163 struct list_head list; 164 struct blk_mq_tag_set admin_tag_set; 165 struct sockaddr_storage addr; 166 struct sockaddr_storage src_addr; 167 struct nvme_ctrl ctrl; 168 169 struct work_struct err_work; 170 struct delayed_work connect_work; 171 struct nvme_tcp_request async_req; 172 u32 io_queues[HCTX_MAX_TYPES]; 173 }; 174 175 static LIST_HEAD(nvme_tcp_ctrl_list); 176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 177 static struct workqueue_struct *nvme_tcp_wq; 178 static const struct blk_mq_ops nvme_tcp_mq_ops; 179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 181 182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 183 { 184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 185 } 186 187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 188 { 189 return queue - queue->ctrl->queues; 190 } 191 192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 193 { 194 u32 queue_idx = nvme_tcp_queue_id(queue); 195 196 if (queue_idx == 0) 197 return queue->ctrl->admin_tag_set.tags[queue_idx]; 198 return queue->ctrl->tag_set.tags[queue_idx - 1]; 199 } 200 201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 202 { 203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 204 } 205 206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 207 { 208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 209 } 210 211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 212 { 213 return req->pdu; 214 } 215 216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 217 { 218 /* use the pdu space in the back for the data pdu */ 219 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 220 sizeof(struct nvme_tcp_data_pdu); 221 } 222 223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 224 { 225 if (nvme_is_fabrics(req->req.cmd)) 226 return NVME_TCP_ADMIN_CCSZ; 227 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 228 } 229 230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 231 { 232 return req == &req->queue->ctrl->async_req; 233 } 234 235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 236 { 237 struct request *rq; 238 239 if (unlikely(nvme_tcp_async_req(req))) 240 return false; /* async events don't have a request */ 241 242 rq = blk_mq_rq_from_pdu(req); 243 244 return rq_data_dir(rq) == WRITE && req->data_len && 245 req->data_len <= nvme_tcp_inline_data_size(req); 246 } 247 248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 249 { 250 return req->iter.bvec->bv_page; 251 } 252 253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 254 { 255 return req->iter.bvec->bv_offset + req->iter.iov_offset; 256 } 257 258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 259 { 260 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 261 req->pdu_len - req->pdu_sent); 262 } 263 264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 265 { 266 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 267 req->pdu_len - req->pdu_sent : 0; 268 } 269 270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 271 int len) 272 { 273 return nvme_tcp_pdu_data_left(req) <= len; 274 } 275 276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 277 unsigned int dir) 278 { 279 struct request *rq = blk_mq_rq_from_pdu(req); 280 struct bio_vec *vec; 281 unsigned int size; 282 int nr_bvec; 283 size_t offset; 284 285 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 286 vec = &rq->special_vec; 287 nr_bvec = 1; 288 size = blk_rq_payload_bytes(rq); 289 offset = 0; 290 } else { 291 struct bio *bio = req->curr_bio; 292 struct bvec_iter bi; 293 struct bio_vec bv; 294 295 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 296 nr_bvec = 0; 297 bio_for_each_bvec(bv, bio, bi) { 298 nr_bvec++; 299 } 300 size = bio->bi_iter.bi_size; 301 offset = bio->bi_iter.bi_bvec_done; 302 } 303 304 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 305 req->iter.iov_offset = offset; 306 } 307 308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 309 int len) 310 { 311 req->data_sent += len; 312 req->pdu_sent += len; 313 iov_iter_advance(&req->iter, len); 314 if (!iov_iter_count(&req->iter) && 315 req->data_sent < req->data_len) { 316 req->curr_bio = req->curr_bio->bi_next; 317 nvme_tcp_init_iter(req, ITER_SOURCE); 318 } 319 } 320 321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 322 { 323 int ret; 324 325 /* drain the send queue as much as we can... */ 326 do { 327 ret = nvme_tcp_try_send(queue); 328 } while (ret > 0); 329 } 330 331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 332 { 333 return !list_empty(&queue->send_list) || 334 !llist_empty(&queue->req_list); 335 } 336 337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 338 bool sync, bool last) 339 { 340 struct nvme_tcp_queue *queue = req->queue; 341 bool empty; 342 343 empty = llist_add(&req->lentry, &queue->req_list) && 344 list_empty(&queue->send_list) && !queue->request; 345 346 /* 347 * if we're the first on the send_list and we can try to send 348 * directly, otherwise queue io_work. Also, only do that if we 349 * are on the same cpu, so we don't introduce contention. 350 */ 351 if (queue->io_cpu == raw_smp_processor_id() && 352 sync && empty && mutex_trylock(&queue->send_mutex)) { 353 nvme_tcp_send_all(queue); 354 mutex_unlock(&queue->send_mutex); 355 } 356 357 if (last && nvme_tcp_queue_more(queue)) 358 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 359 } 360 361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 362 { 363 struct nvme_tcp_request *req; 364 struct llist_node *node; 365 366 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 367 req = llist_entry(node, struct nvme_tcp_request, lentry); 368 list_add(&req->entry, &queue->send_list); 369 } 370 } 371 372 static inline struct nvme_tcp_request * 373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 374 { 375 struct nvme_tcp_request *req; 376 377 req = list_first_entry_or_null(&queue->send_list, 378 struct nvme_tcp_request, entry); 379 if (!req) { 380 nvme_tcp_process_req_list(queue); 381 req = list_first_entry_or_null(&queue->send_list, 382 struct nvme_tcp_request, entry); 383 if (unlikely(!req)) 384 return NULL; 385 } 386 387 list_del(&req->entry); 388 return req; 389 } 390 391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 392 __le32 *dgst) 393 { 394 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 395 crypto_ahash_final(hash); 396 } 397 398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 399 struct page *page, off_t off, size_t len) 400 { 401 struct scatterlist sg; 402 403 sg_init_table(&sg, 1); 404 sg_set_page(&sg, page, len, off); 405 ahash_request_set_crypt(hash, &sg, NULL, len); 406 crypto_ahash_update(hash); 407 } 408 409 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 410 void *pdu, size_t len) 411 { 412 struct scatterlist sg; 413 414 sg_init_one(&sg, pdu, len); 415 ahash_request_set_crypt(hash, &sg, pdu + len, len); 416 crypto_ahash_digest(hash); 417 } 418 419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 420 void *pdu, size_t pdu_len) 421 { 422 struct nvme_tcp_hdr *hdr = pdu; 423 __le32 recv_digest; 424 __le32 exp_digest; 425 426 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 427 dev_err(queue->ctrl->ctrl.device, 428 "queue %d: header digest flag is cleared\n", 429 nvme_tcp_queue_id(queue)); 430 return -EPROTO; 431 } 432 433 recv_digest = *(__le32 *)(pdu + hdr->hlen); 434 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 435 exp_digest = *(__le32 *)(pdu + hdr->hlen); 436 if (recv_digest != exp_digest) { 437 dev_err(queue->ctrl->ctrl.device, 438 "header digest error: recv %#x expected %#x\n", 439 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 440 return -EIO; 441 } 442 443 return 0; 444 } 445 446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 447 { 448 struct nvme_tcp_hdr *hdr = pdu; 449 u8 digest_len = nvme_tcp_hdgst_len(queue); 450 u32 len; 451 452 len = le32_to_cpu(hdr->plen) - hdr->hlen - 453 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 454 455 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 456 dev_err(queue->ctrl->ctrl.device, 457 "queue %d: data digest flag is cleared\n", 458 nvme_tcp_queue_id(queue)); 459 return -EPROTO; 460 } 461 crypto_ahash_init(queue->rcv_hash); 462 463 return 0; 464 } 465 466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 467 struct request *rq, unsigned int hctx_idx) 468 { 469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 470 471 page_frag_free(req->pdu); 472 } 473 474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 475 struct request *rq, unsigned int hctx_idx, 476 unsigned int numa_node) 477 { 478 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 479 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 480 struct nvme_tcp_cmd_pdu *pdu; 481 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 482 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 483 u8 hdgst = nvme_tcp_hdgst_len(queue); 484 485 req->pdu = page_frag_alloc(&queue->pf_cache, 486 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 487 GFP_KERNEL | __GFP_ZERO); 488 if (!req->pdu) 489 return -ENOMEM; 490 491 pdu = req->pdu; 492 req->queue = queue; 493 nvme_req(rq)->ctrl = &ctrl->ctrl; 494 nvme_req(rq)->cmd = &pdu->cmd; 495 496 return 0; 497 } 498 499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 500 unsigned int hctx_idx) 501 { 502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 503 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 504 505 hctx->driver_data = queue; 506 return 0; 507 } 508 509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 510 unsigned int hctx_idx) 511 { 512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 513 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 514 515 hctx->driver_data = queue; 516 return 0; 517 } 518 519 static enum nvme_tcp_recv_state 520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 521 { 522 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 523 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 524 NVME_TCP_RECV_DATA; 525 } 526 527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 528 { 529 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 530 nvme_tcp_hdgst_len(queue); 531 queue->pdu_offset = 0; 532 queue->data_remaining = -1; 533 queue->ddgst_remaining = 0; 534 } 535 536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 537 { 538 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 539 return; 540 541 dev_warn(ctrl->device, "starting error recovery\n"); 542 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 543 } 544 545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 546 struct nvme_completion *cqe) 547 { 548 struct nvme_tcp_request *req; 549 struct request *rq; 550 551 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 552 if (!rq) { 553 dev_err(queue->ctrl->ctrl.device, 554 "got bad cqe.command_id %#x on queue %d\n", 555 cqe->command_id, nvme_tcp_queue_id(queue)); 556 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 557 return -EINVAL; 558 } 559 560 req = blk_mq_rq_to_pdu(rq); 561 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 562 req->status = cqe->status; 563 564 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 565 nvme_complete_rq(rq); 566 queue->nr_cqe++; 567 568 return 0; 569 } 570 571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 572 struct nvme_tcp_data_pdu *pdu) 573 { 574 struct request *rq; 575 576 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 577 if (!rq) { 578 dev_err(queue->ctrl->ctrl.device, 579 "got bad c2hdata.command_id %#x on queue %d\n", 580 pdu->command_id, nvme_tcp_queue_id(queue)); 581 return -ENOENT; 582 } 583 584 if (!blk_rq_payload_bytes(rq)) { 585 dev_err(queue->ctrl->ctrl.device, 586 "queue %d tag %#x unexpected data\n", 587 nvme_tcp_queue_id(queue), rq->tag); 588 return -EIO; 589 } 590 591 queue->data_remaining = le32_to_cpu(pdu->data_length); 592 593 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 594 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 595 dev_err(queue->ctrl->ctrl.device, 596 "queue %d tag %#x SUCCESS set but not last PDU\n", 597 nvme_tcp_queue_id(queue), rq->tag); 598 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 599 return -EPROTO; 600 } 601 602 return 0; 603 } 604 605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 606 struct nvme_tcp_rsp_pdu *pdu) 607 { 608 struct nvme_completion *cqe = &pdu->cqe; 609 int ret = 0; 610 611 /* 612 * AEN requests are special as they don't time out and can 613 * survive any kind of queue freeze and often don't respond to 614 * aborts. We don't even bother to allocate a struct request 615 * for them but rather special case them here. 616 */ 617 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 618 cqe->command_id))) 619 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 620 &cqe->result); 621 else 622 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 623 624 return ret; 625 } 626 627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 628 { 629 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 630 struct nvme_tcp_queue *queue = req->queue; 631 struct request *rq = blk_mq_rq_from_pdu(req); 632 u32 h2cdata_sent = req->pdu_len; 633 u8 hdgst = nvme_tcp_hdgst_len(queue); 634 u8 ddgst = nvme_tcp_ddgst_len(queue); 635 636 req->state = NVME_TCP_SEND_H2C_PDU; 637 req->offset = 0; 638 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 639 req->pdu_sent = 0; 640 req->h2cdata_left -= req->pdu_len; 641 req->h2cdata_offset += h2cdata_sent; 642 643 memset(data, 0, sizeof(*data)); 644 data->hdr.type = nvme_tcp_h2c_data; 645 if (!req->h2cdata_left) 646 data->hdr.flags = NVME_TCP_F_DATA_LAST; 647 if (queue->hdr_digest) 648 data->hdr.flags |= NVME_TCP_F_HDGST; 649 if (queue->data_digest) 650 data->hdr.flags |= NVME_TCP_F_DDGST; 651 data->hdr.hlen = sizeof(*data); 652 data->hdr.pdo = data->hdr.hlen + hdgst; 653 data->hdr.plen = 654 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 655 data->ttag = req->ttag; 656 data->command_id = nvme_cid(rq); 657 data->data_offset = cpu_to_le32(req->h2cdata_offset); 658 data->data_length = cpu_to_le32(req->pdu_len); 659 } 660 661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 662 struct nvme_tcp_r2t_pdu *pdu) 663 { 664 struct nvme_tcp_request *req; 665 struct request *rq; 666 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 667 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 668 669 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 670 if (!rq) { 671 dev_err(queue->ctrl->ctrl.device, 672 "got bad r2t.command_id %#x on queue %d\n", 673 pdu->command_id, nvme_tcp_queue_id(queue)); 674 return -ENOENT; 675 } 676 req = blk_mq_rq_to_pdu(rq); 677 678 if (unlikely(!r2t_length)) { 679 dev_err(queue->ctrl->ctrl.device, 680 "req %d r2t len is %u, probably a bug...\n", 681 rq->tag, r2t_length); 682 return -EPROTO; 683 } 684 685 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 686 dev_err(queue->ctrl->ctrl.device, 687 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 688 rq->tag, r2t_length, req->data_len, req->data_sent); 689 return -EPROTO; 690 } 691 692 if (unlikely(r2t_offset < req->data_sent)) { 693 dev_err(queue->ctrl->ctrl.device, 694 "req %d unexpected r2t offset %u (expected %zu)\n", 695 rq->tag, r2t_offset, req->data_sent); 696 return -EPROTO; 697 } 698 699 req->pdu_len = 0; 700 req->h2cdata_left = r2t_length; 701 req->h2cdata_offset = r2t_offset; 702 req->ttag = pdu->ttag; 703 704 nvme_tcp_setup_h2c_data_pdu(req); 705 nvme_tcp_queue_request(req, false, true); 706 707 return 0; 708 } 709 710 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue, 711 struct nvme_tcp_term_pdu *pdu) 712 { 713 u16 fes; 714 const char *msg; 715 u32 plen = le32_to_cpu(pdu->hdr.plen); 716 717 static const char * const msg_table[] = { 718 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field", 719 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error", 720 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error", 721 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range", 722 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded", 723 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter", 724 }; 725 726 if (plen < NVME_TCP_MIN_C2HTERM_PLEN || 727 plen > NVME_TCP_MAX_C2HTERM_PLEN) { 728 dev_err(queue->ctrl->ctrl.device, 729 "Received a malformed C2HTermReq PDU (plen = %u)\n", 730 plen); 731 return; 732 } 733 734 fes = le16_to_cpu(pdu->fes); 735 if (fes && fes < ARRAY_SIZE(msg_table)) 736 msg = msg_table[fes]; 737 else 738 msg = "Unknown"; 739 740 dev_err(queue->ctrl->ctrl.device, 741 "Received C2HTermReq (FES = %s)\n", msg); 742 } 743 744 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 745 unsigned int *offset, size_t *len) 746 { 747 struct nvme_tcp_hdr *hdr; 748 char *pdu = queue->pdu; 749 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 750 int ret; 751 752 ret = skb_copy_bits(skb, *offset, 753 &pdu[queue->pdu_offset], rcv_len); 754 if (unlikely(ret)) 755 return ret; 756 757 queue->pdu_remaining -= rcv_len; 758 queue->pdu_offset += rcv_len; 759 *offset += rcv_len; 760 *len -= rcv_len; 761 if (queue->pdu_remaining) 762 return 0; 763 764 hdr = queue->pdu; 765 if (unlikely(hdr->type == nvme_tcp_c2h_term)) { 766 /* 767 * C2HTermReq never includes Header or Data digests. 768 * Skip the checks. 769 */ 770 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu); 771 return -EINVAL; 772 } 773 774 if (queue->hdr_digest) { 775 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 776 if (unlikely(ret)) 777 return ret; 778 } 779 780 781 if (queue->data_digest) { 782 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 783 if (unlikely(ret)) 784 return ret; 785 } 786 787 switch (hdr->type) { 788 case nvme_tcp_c2h_data: 789 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 790 case nvme_tcp_rsp: 791 nvme_tcp_init_recv_ctx(queue); 792 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 793 case nvme_tcp_r2t: 794 nvme_tcp_init_recv_ctx(queue); 795 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 796 default: 797 dev_err(queue->ctrl->ctrl.device, 798 "unsupported pdu type (%d)\n", hdr->type); 799 return -EINVAL; 800 } 801 } 802 803 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 804 { 805 union nvme_result res = {}; 806 807 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 808 nvme_complete_rq(rq); 809 } 810 811 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 812 unsigned int *offset, size_t *len) 813 { 814 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 815 struct request *rq = 816 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 817 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 818 819 while (true) { 820 int recv_len, ret; 821 822 recv_len = min_t(size_t, *len, queue->data_remaining); 823 if (!recv_len) 824 break; 825 826 if (!iov_iter_count(&req->iter)) { 827 req->curr_bio = req->curr_bio->bi_next; 828 829 /* 830 * If we don`t have any bios it means that controller 831 * sent more data than we requested, hence error 832 */ 833 if (!req->curr_bio) { 834 dev_err(queue->ctrl->ctrl.device, 835 "queue %d no space in request %#x", 836 nvme_tcp_queue_id(queue), rq->tag); 837 nvme_tcp_init_recv_ctx(queue); 838 return -EIO; 839 } 840 nvme_tcp_init_iter(req, ITER_DEST); 841 } 842 843 /* we can read only from what is left in this bio */ 844 recv_len = min_t(size_t, recv_len, 845 iov_iter_count(&req->iter)); 846 847 if (queue->data_digest) 848 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 849 &req->iter, recv_len, queue->rcv_hash); 850 else 851 ret = skb_copy_datagram_iter(skb, *offset, 852 &req->iter, recv_len); 853 if (ret) { 854 dev_err(queue->ctrl->ctrl.device, 855 "queue %d failed to copy request %#x data", 856 nvme_tcp_queue_id(queue), rq->tag); 857 return ret; 858 } 859 860 *len -= recv_len; 861 *offset += recv_len; 862 queue->data_remaining -= recv_len; 863 } 864 865 if (!queue->data_remaining) { 866 if (queue->data_digest) { 867 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 868 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 869 } else { 870 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 871 nvme_tcp_end_request(rq, 872 le16_to_cpu(req->status)); 873 queue->nr_cqe++; 874 } 875 nvme_tcp_init_recv_ctx(queue); 876 } 877 } 878 879 return 0; 880 } 881 882 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 883 struct sk_buff *skb, unsigned int *offset, size_t *len) 884 { 885 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 886 char *ddgst = (char *)&queue->recv_ddgst; 887 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 888 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 889 int ret; 890 891 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 892 if (unlikely(ret)) 893 return ret; 894 895 queue->ddgst_remaining -= recv_len; 896 *offset += recv_len; 897 *len -= recv_len; 898 if (queue->ddgst_remaining) 899 return 0; 900 901 if (queue->recv_ddgst != queue->exp_ddgst) { 902 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 903 pdu->command_id); 904 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 905 906 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 907 908 dev_err(queue->ctrl->ctrl.device, 909 "data digest error: recv %#x expected %#x\n", 910 le32_to_cpu(queue->recv_ddgst), 911 le32_to_cpu(queue->exp_ddgst)); 912 } 913 914 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 915 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 916 pdu->command_id); 917 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 918 919 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 920 queue->nr_cqe++; 921 } 922 923 nvme_tcp_init_recv_ctx(queue); 924 return 0; 925 } 926 927 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 928 unsigned int offset, size_t len) 929 { 930 struct nvme_tcp_queue *queue = desc->arg.data; 931 size_t consumed = len; 932 int result; 933 934 if (unlikely(!queue->rd_enabled)) 935 return -EFAULT; 936 937 while (len) { 938 switch (nvme_tcp_recv_state(queue)) { 939 case NVME_TCP_RECV_PDU: 940 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 941 break; 942 case NVME_TCP_RECV_DATA: 943 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 944 break; 945 case NVME_TCP_RECV_DDGST: 946 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 947 break; 948 default: 949 result = -EFAULT; 950 } 951 if (result) { 952 dev_err(queue->ctrl->ctrl.device, 953 "receive failed: %d\n", result); 954 queue->rd_enabled = false; 955 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 956 return result; 957 } 958 } 959 960 return consumed; 961 } 962 963 static void nvme_tcp_data_ready(struct sock *sk) 964 { 965 struct nvme_tcp_queue *queue; 966 967 trace_sk_data_ready(sk); 968 969 read_lock_bh(&sk->sk_callback_lock); 970 queue = sk->sk_user_data; 971 if (likely(queue && queue->rd_enabled) && 972 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 973 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 974 read_unlock_bh(&sk->sk_callback_lock); 975 } 976 977 static void nvme_tcp_write_space(struct sock *sk) 978 { 979 struct nvme_tcp_queue *queue; 980 981 read_lock_bh(&sk->sk_callback_lock); 982 queue = sk->sk_user_data; 983 if (likely(queue && sk_stream_is_writeable(sk))) { 984 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 985 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 986 } 987 read_unlock_bh(&sk->sk_callback_lock); 988 } 989 990 static void nvme_tcp_state_change(struct sock *sk) 991 { 992 struct nvme_tcp_queue *queue; 993 994 read_lock_bh(&sk->sk_callback_lock); 995 queue = sk->sk_user_data; 996 if (!queue) 997 goto done; 998 999 switch (sk->sk_state) { 1000 case TCP_CLOSE: 1001 case TCP_CLOSE_WAIT: 1002 case TCP_LAST_ACK: 1003 case TCP_FIN_WAIT1: 1004 case TCP_FIN_WAIT2: 1005 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1006 break; 1007 default: 1008 dev_info(queue->ctrl->ctrl.device, 1009 "queue %d socket state %d\n", 1010 nvme_tcp_queue_id(queue), sk->sk_state); 1011 } 1012 1013 queue->state_change(sk); 1014 done: 1015 read_unlock_bh(&sk->sk_callback_lock); 1016 } 1017 1018 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1019 { 1020 queue->request = NULL; 1021 } 1022 1023 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1024 { 1025 if (nvme_tcp_async_req(req)) { 1026 union nvme_result res = {}; 1027 1028 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1029 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1030 } else { 1031 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1032 NVME_SC_HOST_PATH_ERROR); 1033 } 1034 } 1035 1036 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1037 { 1038 struct nvme_tcp_queue *queue = req->queue; 1039 int req_data_len = req->data_len; 1040 u32 h2cdata_left = req->h2cdata_left; 1041 1042 while (true) { 1043 struct bio_vec bvec; 1044 struct msghdr msg = { 1045 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1046 }; 1047 struct page *page = nvme_tcp_req_cur_page(req); 1048 size_t offset = nvme_tcp_req_cur_offset(req); 1049 size_t len = nvme_tcp_req_cur_length(req); 1050 bool last = nvme_tcp_pdu_last_send(req, len); 1051 int req_data_sent = req->data_sent; 1052 int ret; 1053 1054 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1055 msg.msg_flags |= MSG_EOR; 1056 else 1057 msg.msg_flags |= MSG_MORE; 1058 1059 if (!sendpage_ok(page)) 1060 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1061 1062 bvec_set_page(&bvec, page, len, offset); 1063 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1064 ret = sock_sendmsg(queue->sock, &msg); 1065 if (ret <= 0) 1066 return ret; 1067 1068 if (queue->data_digest) 1069 nvme_tcp_ddgst_update(queue->snd_hash, page, 1070 offset, ret); 1071 1072 /* 1073 * update the request iterator except for the last payload send 1074 * in the request where we don't want to modify it as we may 1075 * compete with the RX path completing the request. 1076 */ 1077 if (req_data_sent + ret < req_data_len) 1078 nvme_tcp_advance_req(req, ret); 1079 1080 /* fully successful last send in current PDU */ 1081 if (last && ret == len) { 1082 if (queue->data_digest) { 1083 nvme_tcp_ddgst_final(queue->snd_hash, 1084 &req->ddgst); 1085 req->state = NVME_TCP_SEND_DDGST; 1086 req->offset = 0; 1087 } else { 1088 if (h2cdata_left) 1089 nvme_tcp_setup_h2c_data_pdu(req); 1090 else 1091 nvme_tcp_done_send_req(queue); 1092 } 1093 return 1; 1094 } 1095 } 1096 return -EAGAIN; 1097 } 1098 1099 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1100 { 1101 struct nvme_tcp_queue *queue = req->queue; 1102 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1103 struct bio_vec bvec; 1104 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1105 bool inline_data = nvme_tcp_has_inline_data(req); 1106 u8 hdgst = nvme_tcp_hdgst_len(queue); 1107 int len = sizeof(*pdu) + hdgst - req->offset; 1108 int ret; 1109 1110 if (inline_data || nvme_tcp_queue_more(queue)) 1111 msg.msg_flags |= MSG_MORE; 1112 else 1113 msg.msg_flags |= MSG_EOR; 1114 1115 if (queue->hdr_digest && !req->offset) 1116 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1117 1118 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1119 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1120 ret = sock_sendmsg(queue->sock, &msg); 1121 if (unlikely(ret <= 0)) 1122 return ret; 1123 1124 len -= ret; 1125 if (!len) { 1126 if (inline_data) { 1127 req->state = NVME_TCP_SEND_DATA; 1128 if (queue->data_digest) 1129 crypto_ahash_init(queue->snd_hash); 1130 } else { 1131 nvme_tcp_done_send_req(queue); 1132 } 1133 return 1; 1134 } 1135 req->offset += ret; 1136 1137 return -EAGAIN; 1138 } 1139 1140 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1141 { 1142 struct nvme_tcp_queue *queue = req->queue; 1143 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1144 struct bio_vec bvec; 1145 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1146 u8 hdgst = nvme_tcp_hdgst_len(queue); 1147 int len = sizeof(*pdu) - req->offset + hdgst; 1148 int ret; 1149 1150 if (queue->hdr_digest && !req->offset) 1151 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1152 1153 if (!req->h2cdata_left) 1154 msg.msg_flags |= MSG_SPLICE_PAGES; 1155 1156 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1157 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1158 ret = sock_sendmsg(queue->sock, &msg); 1159 if (unlikely(ret <= 0)) 1160 return ret; 1161 1162 len -= ret; 1163 if (!len) { 1164 req->state = NVME_TCP_SEND_DATA; 1165 if (queue->data_digest) 1166 crypto_ahash_init(queue->snd_hash); 1167 return 1; 1168 } 1169 req->offset += ret; 1170 1171 return -EAGAIN; 1172 } 1173 1174 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1175 { 1176 struct nvme_tcp_queue *queue = req->queue; 1177 size_t offset = req->offset; 1178 u32 h2cdata_left = req->h2cdata_left; 1179 int ret; 1180 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1181 struct kvec iov = { 1182 .iov_base = (u8 *)&req->ddgst + req->offset, 1183 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1184 }; 1185 1186 if (nvme_tcp_queue_more(queue)) 1187 msg.msg_flags |= MSG_MORE; 1188 else 1189 msg.msg_flags |= MSG_EOR; 1190 1191 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1192 if (unlikely(ret <= 0)) 1193 return ret; 1194 1195 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1196 if (h2cdata_left) 1197 nvme_tcp_setup_h2c_data_pdu(req); 1198 else 1199 nvme_tcp_done_send_req(queue); 1200 return 1; 1201 } 1202 1203 req->offset += ret; 1204 return -EAGAIN; 1205 } 1206 1207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1208 { 1209 struct nvme_tcp_request *req; 1210 unsigned int noreclaim_flag; 1211 int ret = 1; 1212 1213 if (!queue->request) { 1214 queue->request = nvme_tcp_fetch_request(queue); 1215 if (!queue->request) 1216 return 0; 1217 } 1218 req = queue->request; 1219 1220 noreclaim_flag = memalloc_noreclaim_save(); 1221 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1222 ret = nvme_tcp_try_send_cmd_pdu(req); 1223 if (ret <= 0) 1224 goto done; 1225 if (!nvme_tcp_has_inline_data(req)) 1226 goto out; 1227 } 1228 1229 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1230 ret = nvme_tcp_try_send_data_pdu(req); 1231 if (ret <= 0) 1232 goto done; 1233 } 1234 1235 if (req->state == NVME_TCP_SEND_DATA) { 1236 ret = nvme_tcp_try_send_data(req); 1237 if (ret <= 0) 1238 goto done; 1239 } 1240 1241 if (req->state == NVME_TCP_SEND_DDGST) 1242 ret = nvme_tcp_try_send_ddgst(req); 1243 done: 1244 if (ret == -EAGAIN) { 1245 ret = 0; 1246 } else if (ret < 0) { 1247 dev_err(queue->ctrl->ctrl.device, 1248 "failed to send request %d\n", ret); 1249 nvme_tcp_fail_request(queue->request); 1250 nvme_tcp_done_send_req(queue); 1251 } 1252 out: 1253 memalloc_noreclaim_restore(noreclaim_flag); 1254 return ret; 1255 } 1256 1257 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1258 { 1259 struct socket *sock = queue->sock; 1260 struct sock *sk = sock->sk; 1261 read_descriptor_t rd_desc; 1262 int consumed; 1263 1264 rd_desc.arg.data = queue; 1265 rd_desc.count = 1; 1266 lock_sock(sk); 1267 queue->nr_cqe = 0; 1268 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1269 release_sock(sk); 1270 return consumed; 1271 } 1272 1273 static void nvme_tcp_io_work(struct work_struct *w) 1274 { 1275 struct nvme_tcp_queue *queue = 1276 container_of(w, struct nvme_tcp_queue, io_work); 1277 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1278 1279 do { 1280 bool pending = false; 1281 int result; 1282 1283 if (mutex_trylock(&queue->send_mutex)) { 1284 result = nvme_tcp_try_send(queue); 1285 mutex_unlock(&queue->send_mutex); 1286 if (result > 0) 1287 pending = true; 1288 else if (unlikely(result < 0)) 1289 break; 1290 } 1291 1292 result = nvme_tcp_try_recv(queue); 1293 if (result > 0) 1294 pending = true; 1295 else if (unlikely(result < 0)) 1296 return; 1297 1298 if (!pending || !queue->rd_enabled) 1299 return; 1300 1301 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1302 1303 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1304 } 1305 1306 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1307 { 1308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1309 1310 ahash_request_free(queue->rcv_hash); 1311 ahash_request_free(queue->snd_hash); 1312 crypto_free_ahash(tfm); 1313 } 1314 1315 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1316 { 1317 struct crypto_ahash *tfm; 1318 1319 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1320 if (IS_ERR(tfm)) 1321 return PTR_ERR(tfm); 1322 1323 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1324 if (!queue->snd_hash) 1325 goto free_tfm; 1326 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1327 1328 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1329 if (!queue->rcv_hash) 1330 goto free_snd_hash; 1331 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1332 1333 return 0; 1334 free_snd_hash: 1335 ahash_request_free(queue->snd_hash); 1336 free_tfm: 1337 crypto_free_ahash(tfm); 1338 return -ENOMEM; 1339 } 1340 1341 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1342 { 1343 struct nvme_tcp_request *async = &ctrl->async_req; 1344 1345 page_frag_free(async->pdu); 1346 } 1347 1348 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1349 { 1350 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1351 struct nvme_tcp_request *async = &ctrl->async_req; 1352 u8 hdgst = nvme_tcp_hdgst_len(queue); 1353 1354 async->pdu = page_frag_alloc(&queue->pf_cache, 1355 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1356 GFP_KERNEL | __GFP_ZERO); 1357 if (!async->pdu) 1358 return -ENOMEM; 1359 1360 async->queue = &ctrl->queues[0]; 1361 return 0; 1362 } 1363 1364 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1365 { 1366 struct page *page; 1367 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1368 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1369 unsigned int noreclaim_flag; 1370 1371 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1372 return; 1373 1374 if (queue->hdr_digest || queue->data_digest) 1375 nvme_tcp_free_crypto(queue); 1376 1377 if (queue->pf_cache.va) { 1378 page = virt_to_head_page(queue->pf_cache.va); 1379 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1380 queue->pf_cache.va = NULL; 1381 } 1382 1383 noreclaim_flag = memalloc_noreclaim_save(); 1384 sock_release(queue->sock); 1385 memalloc_noreclaim_restore(noreclaim_flag); 1386 1387 kfree(queue->pdu); 1388 mutex_destroy(&queue->send_mutex); 1389 mutex_destroy(&queue->queue_lock); 1390 } 1391 1392 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1393 { 1394 struct nvme_tcp_icreq_pdu *icreq; 1395 struct nvme_tcp_icresp_pdu *icresp; 1396 struct msghdr msg = {}; 1397 struct kvec iov; 1398 bool ctrl_hdgst, ctrl_ddgst; 1399 u32 maxh2cdata; 1400 int ret; 1401 1402 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1403 if (!icreq) 1404 return -ENOMEM; 1405 1406 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1407 if (!icresp) { 1408 ret = -ENOMEM; 1409 goto free_icreq; 1410 } 1411 1412 icreq->hdr.type = nvme_tcp_icreq; 1413 icreq->hdr.hlen = sizeof(*icreq); 1414 icreq->hdr.pdo = 0; 1415 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1416 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1417 icreq->maxr2t = 0; /* single inflight r2t supported */ 1418 icreq->hpda = 0; /* no alignment constraint */ 1419 if (queue->hdr_digest) 1420 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1421 if (queue->data_digest) 1422 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1423 1424 iov.iov_base = icreq; 1425 iov.iov_len = sizeof(*icreq); 1426 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1427 if (ret < 0) 1428 goto free_icresp; 1429 1430 memset(&msg, 0, sizeof(msg)); 1431 iov.iov_base = icresp; 1432 iov.iov_len = sizeof(*icresp); 1433 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1434 iov.iov_len, msg.msg_flags); 1435 if (ret < 0) 1436 goto free_icresp; 1437 1438 ret = -EINVAL; 1439 if (icresp->hdr.type != nvme_tcp_icresp) { 1440 pr_err("queue %d: bad type returned %d\n", 1441 nvme_tcp_queue_id(queue), icresp->hdr.type); 1442 goto free_icresp; 1443 } 1444 1445 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1446 pr_err("queue %d: bad pdu length returned %d\n", 1447 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1448 goto free_icresp; 1449 } 1450 1451 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1452 pr_err("queue %d: bad pfv returned %d\n", 1453 nvme_tcp_queue_id(queue), icresp->pfv); 1454 goto free_icresp; 1455 } 1456 1457 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1458 if ((queue->data_digest && !ctrl_ddgst) || 1459 (!queue->data_digest && ctrl_ddgst)) { 1460 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1461 nvme_tcp_queue_id(queue), 1462 queue->data_digest ? "enabled" : "disabled", 1463 ctrl_ddgst ? "enabled" : "disabled"); 1464 goto free_icresp; 1465 } 1466 1467 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1468 if ((queue->hdr_digest && !ctrl_hdgst) || 1469 (!queue->hdr_digest && ctrl_hdgst)) { 1470 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1471 nvme_tcp_queue_id(queue), 1472 queue->hdr_digest ? "enabled" : "disabled", 1473 ctrl_hdgst ? "enabled" : "disabled"); 1474 goto free_icresp; 1475 } 1476 1477 if (icresp->cpda != 0) { 1478 pr_err("queue %d: unsupported cpda returned %d\n", 1479 nvme_tcp_queue_id(queue), icresp->cpda); 1480 goto free_icresp; 1481 } 1482 1483 maxh2cdata = le32_to_cpu(icresp->maxdata); 1484 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1485 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1486 nvme_tcp_queue_id(queue), maxh2cdata); 1487 goto free_icresp; 1488 } 1489 queue->maxh2cdata = maxh2cdata; 1490 1491 ret = 0; 1492 free_icresp: 1493 kfree(icresp); 1494 free_icreq: 1495 kfree(icreq); 1496 return ret; 1497 } 1498 1499 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1500 { 1501 return nvme_tcp_queue_id(queue) == 0; 1502 } 1503 1504 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1505 { 1506 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1507 int qid = nvme_tcp_queue_id(queue); 1508 1509 return !nvme_tcp_admin_queue(queue) && 1510 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1511 } 1512 1513 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1514 { 1515 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1516 int qid = nvme_tcp_queue_id(queue); 1517 1518 return !nvme_tcp_admin_queue(queue) && 1519 !nvme_tcp_default_queue(queue) && 1520 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1521 ctrl->io_queues[HCTX_TYPE_READ]; 1522 } 1523 1524 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1525 { 1526 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1527 int qid = nvme_tcp_queue_id(queue); 1528 1529 return !nvme_tcp_admin_queue(queue) && 1530 !nvme_tcp_default_queue(queue) && 1531 !nvme_tcp_read_queue(queue) && 1532 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1533 ctrl->io_queues[HCTX_TYPE_READ] + 1534 ctrl->io_queues[HCTX_TYPE_POLL]; 1535 } 1536 1537 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1538 { 1539 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1540 int qid = nvme_tcp_queue_id(queue); 1541 int n = 0; 1542 1543 if (nvme_tcp_default_queue(queue)) 1544 n = qid - 1; 1545 else if (nvme_tcp_read_queue(queue)) 1546 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1547 else if (nvme_tcp_poll_queue(queue)) 1548 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1549 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1550 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1551 } 1552 1553 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid) 1554 { 1555 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1556 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1557 int ret, rcv_pdu_size; 1558 1559 mutex_init(&queue->queue_lock); 1560 queue->ctrl = ctrl; 1561 init_llist_head(&queue->req_list); 1562 INIT_LIST_HEAD(&queue->send_list); 1563 mutex_init(&queue->send_mutex); 1564 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1565 1566 if (qid > 0) 1567 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1568 else 1569 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1570 NVME_TCP_ADMIN_CCSZ; 1571 1572 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1573 IPPROTO_TCP, &queue->sock); 1574 if (ret) { 1575 dev_err(nctrl->device, 1576 "failed to create socket: %d\n", ret); 1577 goto err_destroy_mutex; 1578 } 1579 1580 nvme_tcp_reclassify_socket(queue->sock); 1581 1582 /* Single syn retry */ 1583 tcp_sock_set_syncnt(queue->sock->sk, 1); 1584 1585 /* Set TCP no delay */ 1586 tcp_sock_set_nodelay(queue->sock->sk); 1587 1588 /* 1589 * Cleanup whatever is sitting in the TCP transmit queue on socket 1590 * close. This is done to prevent stale data from being sent should 1591 * the network connection be restored before TCP times out. 1592 */ 1593 sock_no_linger(queue->sock->sk); 1594 1595 if (so_priority > 0) 1596 sock_set_priority(queue->sock->sk, so_priority); 1597 1598 /* Set socket type of service */ 1599 if (nctrl->opts->tos >= 0) 1600 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1601 1602 /* Set 10 seconds timeout for icresp recvmsg */ 1603 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1604 1605 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1606 queue->sock->sk->sk_use_task_frag = false; 1607 nvme_tcp_set_queue_io_cpu(queue); 1608 queue->request = NULL; 1609 queue->data_remaining = 0; 1610 queue->ddgst_remaining = 0; 1611 queue->pdu_remaining = 0; 1612 queue->pdu_offset = 0; 1613 sk_set_memalloc(queue->sock->sk); 1614 1615 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1616 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1617 sizeof(ctrl->src_addr)); 1618 if (ret) { 1619 dev_err(nctrl->device, 1620 "failed to bind queue %d socket %d\n", 1621 qid, ret); 1622 goto err_sock; 1623 } 1624 } 1625 1626 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1627 char *iface = nctrl->opts->host_iface; 1628 sockptr_t optval = KERNEL_SOCKPTR(iface); 1629 1630 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1631 optval, strlen(iface)); 1632 if (ret) { 1633 dev_err(nctrl->device, 1634 "failed to bind to interface %s queue %d err %d\n", 1635 iface, qid, ret); 1636 goto err_sock; 1637 } 1638 } 1639 1640 queue->hdr_digest = nctrl->opts->hdr_digest; 1641 queue->data_digest = nctrl->opts->data_digest; 1642 if (queue->hdr_digest || queue->data_digest) { 1643 ret = nvme_tcp_alloc_crypto(queue); 1644 if (ret) { 1645 dev_err(nctrl->device, 1646 "failed to allocate queue %d crypto\n", qid); 1647 goto err_sock; 1648 } 1649 } 1650 1651 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1652 nvme_tcp_hdgst_len(queue); 1653 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1654 if (!queue->pdu) { 1655 ret = -ENOMEM; 1656 goto err_crypto; 1657 } 1658 1659 dev_dbg(nctrl->device, "connecting queue %d\n", 1660 nvme_tcp_queue_id(queue)); 1661 1662 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1663 sizeof(ctrl->addr), 0); 1664 if (ret) { 1665 dev_err(nctrl->device, 1666 "failed to connect socket: %d\n", ret); 1667 goto err_rcv_pdu; 1668 } 1669 1670 ret = nvme_tcp_init_connection(queue); 1671 if (ret) 1672 goto err_init_connect; 1673 1674 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1675 1676 return 0; 1677 1678 err_init_connect: 1679 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1680 err_rcv_pdu: 1681 kfree(queue->pdu); 1682 err_crypto: 1683 if (queue->hdr_digest || queue->data_digest) 1684 nvme_tcp_free_crypto(queue); 1685 err_sock: 1686 sock_release(queue->sock); 1687 queue->sock = NULL; 1688 err_destroy_mutex: 1689 mutex_destroy(&queue->send_mutex); 1690 mutex_destroy(&queue->queue_lock); 1691 return ret; 1692 } 1693 1694 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1695 { 1696 struct socket *sock = queue->sock; 1697 1698 write_lock_bh(&sock->sk->sk_callback_lock); 1699 sock->sk->sk_user_data = NULL; 1700 sock->sk->sk_data_ready = queue->data_ready; 1701 sock->sk->sk_state_change = queue->state_change; 1702 sock->sk->sk_write_space = queue->write_space; 1703 write_unlock_bh(&sock->sk->sk_callback_lock); 1704 } 1705 1706 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1707 { 1708 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1709 nvme_tcp_restore_sock_ops(queue); 1710 cancel_work_sync(&queue->io_work); 1711 } 1712 1713 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1714 { 1715 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1716 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1717 1718 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1719 return; 1720 1721 mutex_lock(&queue->queue_lock); 1722 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1723 __nvme_tcp_stop_queue(queue); 1724 mutex_unlock(&queue->queue_lock); 1725 } 1726 1727 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1728 { 1729 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1730 queue->sock->sk->sk_user_data = queue; 1731 queue->state_change = queue->sock->sk->sk_state_change; 1732 queue->data_ready = queue->sock->sk->sk_data_ready; 1733 queue->write_space = queue->sock->sk->sk_write_space; 1734 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1735 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1736 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1737 #ifdef CONFIG_NET_RX_BUSY_POLL 1738 queue->sock->sk->sk_ll_usec = 1; 1739 #endif 1740 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1741 } 1742 1743 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1744 { 1745 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1746 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1747 int ret; 1748 1749 queue->rd_enabled = true; 1750 nvme_tcp_init_recv_ctx(queue); 1751 nvme_tcp_setup_sock_ops(queue); 1752 1753 if (idx) 1754 ret = nvmf_connect_io_queue(nctrl, idx); 1755 else 1756 ret = nvmf_connect_admin_queue(nctrl); 1757 1758 if (!ret) { 1759 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1760 } else { 1761 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1762 __nvme_tcp_stop_queue(queue); 1763 dev_err(nctrl->device, 1764 "failed to connect queue: %d ret=%d\n", idx, ret); 1765 } 1766 return ret; 1767 } 1768 1769 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1770 { 1771 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1772 cancel_work_sync(&ctrl->async_event_work); 1773 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1774 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1775 } 1776 1777 nvme_tcp_free_queue(ctrl, 0); 1778 } 1779 1780 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1781 { 1782 int i; 1783 1784 for (i = 1; i < ctrl->queue_count; i++) 1785 nvme_tcp_free_queue(ctrl, i); 1786 } 1787 1788 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1789 { 1790 int i; 1791 1792 for (i = 1; i < ctrl->queue_count; i++) 1793 nvme_tcp_stop_queue(ctrl, i); 1794 } 1795 1796 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1797 int first, int last) 1798 { 1799 int i, ret; 1800 1801 for (i = first; i < last; i++) { 1802 ret = nvme_tcp_start_queue(ctrl, i); 1803 if (ret) 1804 goto out_stop_queues; 1805 } 1806 1807 return 0; 1808 1809 out_stop_queues: 1810 for (i--; i >= first; i--) 1811 nvme_tcp_stop_queue(ctrl, i); 1812 return ret; 1813 } 1814 1815 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1816 { 1817 int ret; 1818 1819 ret = nvme_tcp_alloc_queue(ctrl, 0); 1820 if (ret) 1821 return ret; 1822 1823 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1824 if (ret) 1825 goto out_free_queue; 1826 1827 return 0; 1828 1829 out_free_queue: 1830 nvme_tcp_free_queue(ctrl, 0); 1831 return ret; 1832 } 1833 1834 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1835 { 1836 int i, ret; 1837 1838 for (i = 1; i < ctrl->queue_count; i++) { 1839 ret = nvme_tcp_alloc_queue(ctrl, i); 1840 if (ret) 1841 goto out_free_queues; 1842 } 1843 1844 return 0; 1845 1846 out_free_queues: 1847 for (i--; i >= 1; i--) 1848 nvme_tcp_free_queue(ctrl, i); 1849 1850 return ret; 1851 } 1852 1853 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1854 { 1855 unsigned int nr_io_queues; 1856 int ret; 1857 1858 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 1859 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1860 if (ret) 1861 return ret; 1862 1863 if (nr_io_queues == 0) { 1864 dev_err(ctrl->device, 1865 "unable to set any I/O queues\n"); 1866 return -ENOMEM; 1867 } 1868 1869 ctrl->queue_count = nr_io_queues + 1; 1870 dev_info(ctrl->device, 1871 "creating %d I/O queues.\n", nr_io_queues); 1872 1873 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 1874 to_tcp_ctrl(ctrl)->io_queues); 1875 return __nvme_tcp_alloc_io_queues(ctrl); 1876 } 1877 1878 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1879 { 1880 nvme_tcp_stop_io_queues(ctrl); 1881 if (remove) 1882 nvme_remove_io_tag_set(ctrl); 1883 nvme_tcp_free_io_queues(ctrl); 1884 } 1885 1886 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1887 { 1888 int ret, nr_queues; 1889 1890 ret = nvme_tcp_alloc_io_queues(ctrl); 1891 if (ret) 1892 return ret; 1893 1894 if (new) { 1895 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 1896 &nvme_tcp_mq_ops, 1897 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 1898 sizeof(struct nvme_tcp_request)); 1899 if (ret) 1900 goto out_free_io_queues; 1901 } 1902 1903 /* 1904 * Only start IO queues for which we have allocated the tagset 1905 * and limitted it to the available queues. On reconnects, the 1906 * queue number might have changed. 1907 */ 1908 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 1909 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 1910 if (ret) 1911 goto out_cleanup_connect_q; 1912 1913 if (!new) { 1914 nvme_start_freeze(ctrl); 1915 nvme_unquiesce_io_queues(ctrl); 1916 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1917 /* 1918 * If we timed out waiting for freeze we are likely to 1919 * be stuck. Fail the controller initialization just 1920 * to be safe. 1921 */ 1922 ret = -ENODEV; 1923 nvme_unfreeze(ctrl); 1924 goto out_wait_freeze_timed_out; 1925 } 1926 blk_mq_update_nr_hw_queues(ctrl->tagset, 1927 ctrl->queue_count - 1); 1928 nvme_unfreeze(ctrl); 1929 } 1930 1931 /* 1932 * If the number of queues has increased (reconnect case) 1933 * start all new queues now. 1934 */ 1935 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 1936 ctrl->tagset->nr_hw_queues + 1); 1937 if (ret) 1938 goto out_wait_freeze_timed_out; 1939 1940 return 0; 1941 1942 out_wait_freeze_timed_out: 1943 nvme_quiesce_io_queues(ctrl); 1944 nvme_sync_io_queues(ctrl); 1945 nvme_tcp_stop_io_queues(ctrl); 1946 out_cleanup_connect_q: 1947 nvme_cancel_tagset(ctrl); 1948 if (new) 1949 nvme_remove_io_tag_set(ctrl); 1950 out_free_io_queues: 1951 nvme_tcp_free_io_queues(ctrl); 1952 return ret; 1953 } 1954 1955 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1956 { 1957 nvme_tcp_stop_queue(ctrl, 0); 1958 if (remove) 1959 nvme_remove_admin_tag_set(ctrl); 1960 nvme_tcp_free_admin_queue(ctrl); 1961 } 1962 1963 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1964 { 1965 int error; 1966 1967 error = nvme_tcp_alloc_admin_queue(ctrl); 1968 if (error) 1969 return error; 1970 1971 if (new) { 1972 error = nvme_alloc_admin_tag_set(ctrl, 1973 &to_tcp_ctrl(ctrl)->admin_tag_set, 1974 &nvme_tcp_admin_mq_ops, 1975 sizeof(struct nvme_tcp_request)); 1976 if (error) 1977 goto out_free_queue; 1978 } 1979 1980 error = nvme_tcp_start_queue(ctrl, 0); 1981 if (error) 1982 goto out_cleanup_tagset; 1983 1984 error = nvme_enable_ctrl(ctrl); 1985 if (error) 1986 goto out_stop_queue; 1987 1988 nvme_unquiesce_admin_queue(ctrl); 1989 1990 error = nvme_init_ctrl_finish(ctrl, false); 1991 if (error) 1992 goto out_quiesce_queue; 1993 1994 return 0; 1995 1996 out_quiesce_queue: 1997 nvme_quiesce_admin_queue(ctrl); 1998 blk_sync_queue(ctrl->admin_q); 1999 out_stop_queue: 2000 nvme_tcp_stop_queue(ctrl, 0); 2001 nvme_cancel_admin_tagset(ctrl); 2002 out_cleanup_tagset: 2003 if (new) 2004 nvme_remove_admin_tag_set(ctrl); 2005 out_free_queue: 2006 nvme_tcp_free_admin_queue(ctrl); 2007 return error; 2008 } 2009 2010 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2011 bool remove) 2012 { 2013 nvme_quiesce_admin_queue(ctrl); 2014 blk_sync_queue(ctrl->admin_q); 2015 nvme_tcp_stop_queue(ctrl, 0); 2016 nvme_cancel_admin_tagset(ctrl); 2017 if (remove) 2018 nvme_unquiesce_admin_queue(ctrl); 2019 nvme_tcp_destroy_admin_queue(ctrl, remove); 2020 } 2021 2022 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2023 bool remove) 2024 { 2025 if (ctrl->queue_count <= 1) 2026 return; 2027 nvme_quiesce_admin_queue(ctrl); 2028 nvme_quiesce_io_queues(ctrl); 2029 nvme_sync_io_queues(ctrl); 2030 nvme_tcp_stop_io_queues(ctrl); 2031 nvme_cancel_tagset(ctrl); 2032 if (remove) 2033 nvme_unquiesce_io_queues(ctrl); 2034 nvme_tcp_destroy_io_queues(ctrl, remove); 2035 } 2036 2037 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 2038 { 2039 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2040 2041 /* If we are resetting/deleting then do nothing */ 2042 if (state != NVME_CTRL_CONNECTING) { 2043 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2044 return; 2045 } 2046 2047 if (nvmf_should_reconnect(ctrl)) { 2048 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2049 ctrl->opts->reconnect_delay); 2050 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2051 ctrl->opts->reconnect_delay * HZ); 2052 } else { 2053 dev_info(ctrl->device, "Removing controller...\n"); 2054 nvme_delete_ctrl(ctrl); 2055 } 2056 } 2057 2058 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2059 { 2060 struct nvmf_ctrl_options *opts = ctrl->opts; 2061 int ret; 2062 2063 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2064 if (ret) 2065 return ret; 2066 2067 if (ctrl->icdoff) { 2068 ret = -EOPNOTSUPP; 2069 dev_err(ctrl->device, "icdoff is not supported!\n"); 2070 goto destroy_admin; 2071 } 2072 2073 if (!nvme_ctrl_sgl_supported(ctrl)) { 2074 ret = -EOPNOTSUPP; 2075 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2076 goto destroy_admin; 2077 } 2078 2079 if (opts->queue_size > ctrl->sqsize + 1) 2080 dev_warn(ctrl->device, 2081 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2082 opts->queue_size, ctrl->sqsize + 1); 2083 2084 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2085 dev_warn(ctrl->device, 2086 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2087 ctrl->sqsize + 1, ctrl->maxcmd); 2088 ctrl->sqsize = ctrl->maxcmd - 1; 2089 } 2090 2091 if (ctrl->queue_count > 1) { 2092 ret = nvme_tcp_configure_io_queues(ctrl, new); 2093 if (ret) 2094 goto destroy_admin; 2095 } 2096 2097 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2098 /* 2099 * state change failure is ok if we started ctrl delete, 2100 * unless we're during creation of a new controller to 2101 * avoid races with teardown flow. 2102 */ 2103 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2104 2105 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2106 state != NVME_CTRL_DELETING_NOIO); 2107 WARN_ON_ONCE(new); 2108 ret = -EINVAL; 2109 goto destroy_io; 2110 } 2111 2112 nvme_start_ctrl(ctrl); 2113 return 0; 2114 2115 destroy_io: 2116 if (ctrl->queue_count > 1) { 2117 nvme_quiesce_io_queues(ctrl); 2118 nvme_sync_io_queues(ctrl); 2119 nvme_tcp_stop_io_queues(ctrl); 2120 nvme_cancel_tagset(ctrl); 2121 nvme_tcp_destroy_io_queues(ctrl, new); 2122 } 2123 destroy_admin: 2124 nvme_quiesce_admin_queue(ctrl); 2125 blk_sync_queue(ctrl->admin_q); 2126 nvme_tcp_stop_queue(ctrl, 0); 2127 nvme_cancel_admin_tagset(ctrl); 2128 nvme_tcp_destroy_admin_queue(ctrl, new); 2129 return ret; 2130 } 2131 2132 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2133 { 2134 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2135 struct nvme_tcp_ctrl, connect_work); 2136 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2137 2138 ++ctrl->nr_reconnects; 2139 2140 if (nvme_tcp_setup_ctrl(ctrl, false)) 2141 goto requeue; 2142 2143 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2144 ctrl->nr_reconnects); 2145 2146 ctrl->nr_reconnects = 0; 2147 2148 return; 2149 2150 requeue: 2151 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2152 ctrl->nr_reconnects); 2153 nvme_tcp_reconnect_or_remove(ctrl); 2154 } 2155 2156 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2157 { 2158 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2159 struct nvme_tcp_ctrl, err_work); 2160 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2161 2162 nvme_stop_keep_alive(ctrl); 2163 flush_work(&ctrl->async_event_work); 2164 nvme_tcp_teardown_io_queues(ctrl, false); 2165 /* unquiesce to fail fast pending requests */ 2166 nvme_unquiesce_io_queues(ctrl); 2167 nvme_tcp_teardown_admin_queue(ctrl, false); 2168 nvme_unquiesce_admin_queue(ctrl); 2169 nvme_auth_stop(ctrl); 2170 2171 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2172 /* state change failure is ok if we started ctrl delete */ 2173 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2174 2175 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2176 state != NVME_CTRL_DELETING_NOIO); 2177 return; 2178 } 2179 2180 nvme_tcp_reconnect_or_remove(ctrl); 2181 } 2182 2183 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2184 { 2185 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2186 nvme_quiesce_admin_queue(ctrl); 2187 nvme_disable_ctrl(ctrl, shutdown); 2188 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2189 } 2190 2191 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2192 { 2193 nvme_tcp_teardown_ctrl(ctrl, true); 2194 } 2195 2196 static void nvme_reset_ctrl_work(struct work_struct *work) 2197 { 2198 struct nvme_ctrl *ctrl = 2199 container_of(work, struct nvme_ctrl, reset_work); 2200 2201 nvme_stop_ctrl(ctrl); 2202 nvme_tcp_teardown_ctrl(ctrl, false); 2203 2204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2205 /* state change failure is ok if we started ctrl delete */ 2206 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2207 2208 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2209 state != NVME_CTRL_DELETING_NOIO); 2210 return; 2211 } 2212 2213 if (nvme_tcp_setup_ctrl(ctrl, false)) 2214 goto out_fail; 2215 2216 return; 2217 2218 out_fail: 2219 ++ctrl->nr_reconnects; 2220 nvme_tcp_reconnect_or_remove(ctrl); 2221 } 2222 2223 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2224 { 2225 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2226 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2227 } 2228 2229 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2230 { 2231 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2232 2233 if (list_empty(&ctrl->list)) 2234 goto free_ctrl; 2235 2236 mutex_lock(&nvme_tcp_ctrl_mutex); 2237 list_del(&ctrl->list); 2238 mutex_unlock(&nvme_tcp_ctrl_mutex); 2239 2240 nvmf_free_options(nctrl->opts); 2241 free_ctrl: 2242 kfree(ctrl->queues); 2243 kfree(ctrl); 2244 } 2245 2246 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2247 { 2248 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2249 2250 sg->addr = 0; 2251 sg->length = 0; 2252 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2253 NVME_SGL_FMT_TRANSPORT_A; 2254 } 2255 2256 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2257 struct nvme_command *c, u32 data_len) 2258 { 2259 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2260 2261 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2262 sg->length = cpu_to_le32(data_len); 2263 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2264 } 2265 2266 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2267 u32 data_len) 2268 { 2269 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2270 2271 sg->addr = 0; 2272 sg->length = cpu_to_le32(data_len); 2273 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2274 NVME_SGL_FMT_TRANSPORT_A; 2275 } 2276 2277 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2278 { 2279 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2280 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2281 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2282 struct nvme_command *cmd = &pdu->cmd; 2283 u8 hdgst = nvme_tcp_hdgst_len(queue); 2284 2285 memset(pdu, 0, sizeof(*pdu)); 2286 pdu->hdr.type = nvme_tcp_cmd; 2287 if (queue->hdr_digest) 2288 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2289 pdu->hdr.hlen = sizeof(*pdu); 2290 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2291 2292 cmd->common.opcode = nvme_admin_async_event; 2293 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2294 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2295 nvme_tcp_set_sg_null(cmd); 2296 2297 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2298 ctrl->async_req.offset = 0; 2299 ctrl->async_req.curr_bio = NULL; 2300 ctrl->async_req.data_len = 0; 2301 2302 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2303 } 2304 2305 static void nvme_tcp_complete_timed_out(struct request *rq) 2306 { 2307 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2308 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2309 2310 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2311 nvmf_complete_timed_out_request(rq); 2312 } 2313 2314 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2315 { 2316 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2317 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2318 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2319 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype; 2320 int qid = nvme_tcp_queue_id(req->queue); 2321 2322 dev_warn(ctrl->device, 2323 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n", 2324 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type, 2325 opc, nvme_opcode_str(qid, opc, fctype)); 2326 2327 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2328 /* 2329 * If we are resetting, connecting or deleting we should 2330 * complete immediately because we may block controller 2331 * teardown or setup sequence 2332 * - ctrl disable/shutdown fabrics requests 2333 * - connect requests 2334 * - initialization admin requests 2335 * - I/O requests that entered after unquiescing and 2336 * the controller stopped responding 2337 * 2338 * All other requests should be cancelled by the error 2339 * recovery work, so it's fine that we fail it here. 2340 */ 2341 nvme_tcp_complete_timed_out(rq); 2342 return BLK_EH_DONE; 2343 } 2344 2345 /* 2346 * LIVE state should trigger the normal error recovery which will 2347 * handle completing this request. 2348 */ 2349 nvme_tcp_error_recovery(ctrl); 2350 return BLK_EH_RESET_TIMER; 2351 } 2352 2353 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2354 struct request *rq) 2355 { 2356 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2357 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2358 struct nvme_command *c = &pdu->cmd; 2359 2360 c->common.flags |= NVME_CMD_SGL_METABUF; 2361 2362 if (!blk_rq_nr_phys_segments(rq)) 2363 nvme_tcp_set_sg_null(c); 2364 else if (rq_data_dir(rq) == WRITE && 2365 req->data_len <= nvme_tcp_inline_data_size(req)) 2366 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2367 else 2368 nvme_tcp_set_sg_host_data(c, req->data_len); 2369 2370 return 0; 2371 } 2372 2373 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2374 struct request *rq) 2375 { 2376 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2377 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2378 struct nvme_tcp_queue *queue = req->queue; 2379 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2380 blk_status_t ret; 2381 2382 ret = nvme_setup_cmd(ns, rq); 2383 if (ret) 2384 return ret; 2385 2386 req->state = NVME_TCP_SEND_CMD_PDU; 2387 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2388 req->offset = 0; 2389 req->data_sent = 0; 2390 req->pdu_len = 0; 2391 req->pdu_sent = 0; 2392 req->h2cdata_left = 0; 2393 req->data_len = blk_rq_nr_phys_segments(rq) ? 2394 blk_rq_payload_bytes(rq) : 0; 2395 req->curr_bio = rq->bio; 2396 if (req->curr_bio && req->data_len) 2397 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2398 2399 if (rq_data_dir(rq) == WRITE && 2400 req->data_len <= nvme_tcp_inline_data_size(req)) 2401 req->pdu_len = req->data_len; 2402 2403 pdu->hdr.type = nvme_tcp_cmd; 2404 pdu->hdr.flags = 0; 2405 if (queue->hdr_digest) 2406 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2407 if (queue->data_digest && req->pdu_len) { 2408 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2409 ddgst = nvme_tcp_ddgst_len(queue); 2410 } 2411 pdu->hdr.hlen = sizeof(*pdu); 2412 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2413 pdu->hdr.plen = 2414 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2415 2416 ret = nvme_tcp_map_data(queue, rq); 2417 if (unlikely(ret)) { 2418 nvme_cleanup_cmd(rq); 2419 dev_err(queue->ctrl->ctrl.device, 2420 "Failed to map data (%d)\n", ret); 2421 return ret; 2422 } 2423 2424 return 0; 2425 } 2426 2427 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2428 { 2429 struct nvme_tcp_queue *queue = hctx->driver_data; 2430 2431 if (!llist_empty(&queue->req_list)) 2432 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2433 } 2434 2435 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2436 const struct blk_mq_queue_data *bd) 2437 { 2438 struct nvme_ns *ns = hctx->queue->queuedata; 2439 struct nvme_tcp_queue *queue = hctx->driver_data; 2440 struct request *rq = bd->rq; 2441 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2442 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2443 blk_status_t ret; 2444 2445 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2446 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2447 2448 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2449 if (unlikely(ret)) 2450 return ret; 2451 2452 nvme_start_request(rq); 2453 2454 nvme_tcp_queue_request(req, true, bd->last); 2455 2456 return BLK_STS_OK; 2457 } 2458 2459 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2460 { 2461 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2462 2463 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2464 } 2465 2466 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2467 { 2468 struct nvme_tcp_queue *queue = hctx->driver_data; 2469 struct sock *sk = queue->sock->sk; 2470 int ret; 2471 2472 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2473 return 0; 2474 2475 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2476 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2477 sk_busy_loop(sk, true); 2478 ret = nvme_tcp_try_recv(queue); 2479 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2480 return ret < 0 ? ret : queue->nr_cqe; 2481 } 2482 2483 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2484 { 2485 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2486 struct sockaddr_storage src_addr; 2487 int ret, len; 2488 2489 len = nvmf_get_address(ctrl, buf, size); 2490 2491 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2492 return len; 2493 2494 mutex_lock(&queue->queue_lock); 2495 2496 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2497 if (ret > 0) { 2498 if (len > 0) 2499 len--; /* strip trailing newline */ 2500 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2501 (len) ? "," : "", &src_addr); 2502 } 2503 2504 mutex_unlock(&queue->queue_lock); 2505 2506 return len; 2507 } 2508 2509 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2510 .queue_rq = nvme_tcp_queue_rq, 2511 .commit_rqs = nvme_tcp_commit_rqs, 2512 .complete = nvme_complete_rq, 2513 .init_request = nvme_tcp_init_request, 2514 .exit_request = nvme_tcp_exit_request, 2515 .init_hctx = nvme_tcp_init_hctx, 2516 .timeout = nvme_tcp_timeout, 2517 .map_queues = nvme_tcp_map_queues, 2518 .poll = nvme_tcp_poll, 2519 }; 2520 2521 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2522 .queue_rq = nvme_tcp_queue_rq, 2523 .complete = nvme_complete_rq, 2524 .init_request = nvme_tcp_init_request, 2525 .exit_request = nvme_tcp_exit_request, 2526 .init_hctx = nvme_tcp_init_admin_hctx, 2527 .timeout = nvme_tcp_timeout, 2528 }; 2529 2530 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2531 .name = "tcp", 2532 .module = THIS_MODULE, 2533 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2534 .reg_read32 = nvmf_reg_read32, 2535 .reg_read64 = nvmf_reg_read64, 2536 .reg_write32 = nvmf_reg_write32, 2537 .free_ctrl = nvme_tcp_free_ctrl, 2538 .submit_async_event = nvme_tcp_submit_async_event, 2539 .delete_ctrl = nvme_tcp_delete_ctrl, 2540 .get_address = nvme_tcp_get_address, 2541 .stop_ctrl = nvme_tcp_stop_ctrl, 2542 }; 2543 2544 static bool 2545 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2546 { 2547 struct nvme_tcp_ctrl *ctrl; 2548 bool found = false; 2549 2550 mutex_lock(&nvme_tcp_ctrl_mutex); 2551 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2552 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2553 if (found) 2554 break; 2555 } 2556 mutex_unlock(&nvme_tcp_ctrl_mutex); 2557 2558 return found; 2559 } 2560 2561 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2562 struct nvmf_ctrl_options *opts) 2563 { 2564 struct nvme_tcp_ctrl *ctrl; 2565 int ret; 2566 2567 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2568 if (!ctrl) 2569 return ERR_PTR(-ENOMEM); 2570 2571 INIT_LIST_HEAD(&ctrl->list); 2572 ctrl->ctrl.opts = opts; 2573 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2574 opts->nr_poll_queues + 1; 2575 ctrl->ctrl.sqsize = opts->queue_size - 1; 2576 ctrl->ctrl.kato = opts->kato; 2577 2578 INIT_DELAYED_WORK(&ctrl->connect_work, 2579 nvme_tcp_reconnect_ctrl_work); 2580 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2581 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2582 2583 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2584 opts->trsvcid = 2585 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2586 if (!opts->trsvcid) { 2587 ret = -ENOMEM; 2588 goto out_free_ctrl; 2589 } 2590 opts->mask |= NVMF_OPT_TRSVCID; 2591 } 2592 2593 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2594 opts->traddr, opts->trsvcid, &ctrl->addr); 2595 if (ret) { 2596 pr_err("malformed address passed: %s:%s\n", 2597 opts->traddr, opts->trsvcid); 2598 goto out_free_ctrl; 2599 } 2600 2601 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2602 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2603 opts->host_traddr, NULL, &ctrl->src_addr); 2604 if (ret) { 2605 pr_err("malformed src address passed: %s\n", 2606 opts->host_traddr); 2607 goto out_free_ctrl; 2608 } 2609 } 2610 2611 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2612 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2613 pr_err("invalid interface passed: %s\n", 2614 opts->host_iface); 2615 ret = -ENODEV; 2616 goto out_free_ctrl; 2617 } 2618 } 2619 2620 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2621 ret = -EALREADY; 2622 goto out_free_ctrl; 2623 } 2624 2625 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2626 GFP_KERNEL); 2627 if (!ctrl->queues) { 2628 ret = -ENOMEM; 2629 goto out_free_ctrl; 2630 } 2631 2632 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2633 if (ret) 2634 goto out_kfree_queues; 2635 2636 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2637 WARN_ON_ONCE(1); 2638 ret = -EINTR; 2639 goto out_uninit_ctrl; 2640 } 2641 2642 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2643 if (ret) 2644 goto out_uninit_ctrl; 2645 2646 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2647 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2648 2649 mutex_lock(&nvme_tcp_ctrl_mutex); 2650 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2651 mutex_unlock(&nvme_tcp_ctrl_mutex); 2652 2653 return &ctrl->ctrl; 2654 2655 out_uninit_ctrl: 2656 nvme_uninit_ctrl(&ctrl->ctrl); 2657 nvme_put_ctrl(&ctrl->ctrl); 2658 if (ret > 0) 2659 ret = -EIO; 2660 return ERR_PTR(ret); 2661 out_kfree_queues: 2662 kfree(ctrl->queues); 2663 out_free_ctrl: 2664 kfree(ctrl); 2665 return ERR_PTR(ret); 2666 } 2667 2668 static struct nvmf_transport_ops nvme_tcp_transport = { 2669 .name = "tcp", 2670 .module = THIS_MODULE, 2671 .required_opts = NVMF_OPT_TRADDR, 2672 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2673 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2674 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2675 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2676 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2677 .create_ctrl = nvme_tcp_create_ctrl, 2678 }; 2679 2680 static int __init nvme_tcp_init_module(void) 2681 { 2682 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2683 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2684 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2685 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2686 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2687 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2688 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2689 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2690 2691 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2692 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2693 if (!nvme_tcp_wq) 2694 return -ENOMEM; 2695 2696 nvmf_register_transport(&nvme_tcp_transport); 2697 return 0; 2698 } 2699 2700 static void __exit nvme_tcp_cleanup_module(void) 2701 { 2702 struct nvme_tcp_ctrl *ctrl; 2703 2704 nvmf_unregister_transport(&nvme_tcp_transport); 2705 2706 mutex_lock(&nvme_tcp_ctrl_mutex); 2707 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2708 nvme_delete_ctrl(&ctrl->ctrl); 2709 mutex_unlock(&nvme_tcp_ctrl_mutex); 2710 flush_workqueue(nvme_delete_wq); 2711 2712 destroy_workqueue(nvme_tcp_wq); 2713 } 2714 2715 module_init(nvme_tcp_init_module); 2716 module_exit(nvme_tcp_cleanup_module); 2717 2718 MODULE_LICENSE("GPL v2"); 2719