1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 }; 51 52 struct nvme_rdma_qe { 53 struct ib_cqe cqe; 54 void *data; 55 u64 dma; 56 }; 57 58 struct nvme_rdma_queue; 59 struct nvme_rdma_request { 60 struct nvme_request req; 61 struct ib_mr *mr; 62 struct nvme_rdma_qe sqe; 63 union nvme_result result; 64 __le16 status; 65 refcount_t ref; 66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 67 u32 num_sge; 68 int nents; 69 struct ib_reg_wr reg_wr; 70 struct ib_cqe reg_cqe; 71 struct nvme_rdma_queue *queue; 72 struct sg_table sg_table; 73 struct scatterlist first_sgl[]; 74 }; 75 76 enum nvme_rdma_queue_flags { 77 NVME_RDMA_Q_ALLOCATED = 0, 78 NVME_RDMA_Q_LIVE = 1, 79 NVME_RDMA_Q_TR_READY = 2, 80 }; 81 82 struct nvme_rdma_queue { 83 struct nvme_rdma_qe *rsp_ring; 84 int queue_size; 85 size_t cmnd_capsule_len; 86 struct nvme_rdma_ctrl *ctrl; 87 struct nvme_rdma_device *device; 88 struct ib_cq *ib_cq; 89 struct ib_qp *qp; 90 91 unsigned long flags; 92 struct rdma_cm_id *cm_id; 93 int cm_error; 94 struct completion cm_done; 95 }; 96 97 struct nvme_rdma_ctrl { 98 /* read only in the hot path */ 99 struct nvme_rdma_queue *queues; 100 101 /* other member variables */ 102 struct blk_mq_tag_set tag_set; 103 struct work_struct err_work; 104 105 struct nvme_rdma_qe async_event_sqe; 106 107 struct delayed_work reconnect_work; 108 109 struct list_head list; 110 111 struct blk_mq_tag_set admin_tag_set; 112 struct nvme_rdma_device *device; 113 114 u32 max_fr_pages; 115 116 struct sockaddr_storage addr; 117 struct sockaddr_storage src_addr; 118 119 struct nvme_ctrl ctrl; 120 }; 121 122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 123 { 124 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 125 } 126 127 static LIST_HEAD(device_list); 128 static DEFINE_MUTEX(device_list_mutex); 129 130 static LIST_HEAD(nvme_rdma_ctrl_list); 131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 132 133 /* 134 * Disabling this option makes small I/O goes faster, but is fundamentally 135 * unsafe. With it turned off we will have to register a global rkey that 136 * allows read and write access to all physical memory. 137 */ 138 static bool register_always = true; 139 module_param(register_always, bool, 0444); 140 MODULE_PARM_DESC(register_always, 141 "Use memory registration even for contiguous memory regions"); 142 143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 144 struct rdma_cm_event *event); 145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 146 147 static const struct blk_mq_ops nvme_rdma_mq_ops; 148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 149 150 /* XXX: really should move to a generic header sooner or later.. */ 151 static inline void put_unaligned_le24(u32 val, u8 *p) 152 { 153 *p++ = val; 154 *p++ = val >> 8; 155 *p++ = val >> 16; 156 } 157 158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 159 { 160 return queue - queue->ctrl->queues; 161 } 162 163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 164 { 165 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 166 } 167 168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 169 size_t capsule_size, enum dma_data_direction dir) 170 { 171 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 172 kfree(qe->data); 173 } 174 175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 176 size_t capsule_size, enum dma_data_direction dir) 177 { 178 qe->data = kzalloc(capsule_size, GFP_KERNEL); 179 if (!qe->data) 180 return -ENOMEM; 181 182 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 183 if (ib_dma_mapping_error(ibdev, qe->dma)) { 184 kfree(qe->data); 185 return -ENOMEM; 186 } 187 188 return 0; 189 } 190 191 static void nvme_rdma_free_ring(struct ib_device *ibdev, 192 struct nvme_rdma_qe *ring, size_t ib_queue_size, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 int i; 196 197 for (i = 0; i < ib_queue_size; i++) 198 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 199 kfree(ring); 200 } 201 202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 203 size_t ib_queue_size, size_t capsule_size, 204 enum dma_data_direction dir) 205 { 206 struct nvme_rdma_qe *ring; 207 int i; 208 209 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 210 if (!ring) 211 return NULL; 212 213 for (i = 0; i < ib_queue_size; i++) { 214 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 215 goto out_free_ring; 216 } 217 218 return ring; 219 220 out_free_ring: 221 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 222 return NULL; 223 } 224 225 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 226 { 227 pr_debug("QP event %s (%d)\n", 228 ib_event_msg(event->event), event->event); 229 230 } 231 232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 233 { 234 wait_for_completion_interruptible_timeout(&queue->cm_done, 235 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 236 return queue->cm_error; 237 } 238 239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 240 { 241 struct nvme_rdma_device *dev = queue->device; 242 struct ib_qp_init_attr init_attr; 243 int ret; 244 245 memset(&init_attr, 0, sizeof(init_attr)); 246 init_attr.event_handler = nvme_rdma_qp_event; 247 /* +1 for drain */ 248 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 249 /* +1 for drain */ 250 init_attr.cap.max_recv_wr = queue->queue_size + 1; 251 init_attr.cap.max_recv_sge = 1; 252 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 253 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 254 init_attr.qp_type = IB_QPT_RC; 255 init_attr.send_cq = queue->ib_cq; 256 init_attr.recv_cq = queue->ib_cq; 257 258 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 259 260 queue->qp = queue->cm_id->qp; 261 return ret; 262 } 263 264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 265 struct request *rq, unsigned int hctx_idx) 266 { 267 struct nvme_rdma_ctrl *ctrl = set->driver_data; 268 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 269 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 270 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 271 struct nvme_rdma_device *dev = queue->device; 272 273 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 274 DMA_TO_DEVICE); 275 } 276 277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 278 struct request *rq, unsigned int hctx_idx, 279 unsigned int numa_node) 280 { 281 struct nvme_rdma_ctrl *ctrl = set->driver_data; 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 284 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 285 struct nvme_rdma_device *dev = queue->device; 286 struct ib_device *ibdev = dev->dev; 287 int ret; 288 289 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 290 DMA_TO_DEVICE); 291 if (ret) 292 return ret; 293 294 req->queue = queue; 295 296 return 0; 297 } 298 299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 300 unsigned int hctx_idx) 301 { 302 struct nvme_rdma_ctrl *ctrl = data; 303 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 304 305 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 306 307 hctx->driver_data = queue; 308 return 0; 309 } 310 311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 312 unsigned int hctx_idx) 313 { 314 struct nvme_rdma_ctrl *ctrl = data; 315 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 316 317 BUG_ON(hctx_idx != 0); 318 319 hctx->driver_data = queue; 320 return 0; 321 } 322 323 static void nvme_rdma_free_dev(struct kref *ref) 324 { 325 struct nvme_rdma_device *ndev = 326 container_of(ref, struct nvme_rdma_device, ref); 327 328 mutex_lock(&device_list_mutex); 329 list_del(&ndev->entry); 330 mutex_unlock(&device_list_mutex); 331 332 ib_dealloc_pd(ndev->pd); 333 kfree(ndev); 334 } 335 336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 337 { 338 kref_put(&dev->ref, nvme_rdma_free_dev); 339 } 340 341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 342 { 343 return kref_get_unless_zero(&dev->ref); 344 } 345 346 static struct nvme_rdma_device * 347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 348 { 349 struct nvme_rdma_device *ndev; 350 351 mutex_lock(&device_list_mutex); 352 list_for_each_entry(ndev, &device_list, entry) { 353 if (ndev->dev->node_guid == cm_id->device->node_guid && 354 nvme_rdma_dev_get(ndev)) 355 goto out_unlock; 356 } 357 358 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 359 if (!ndev) 360 goto out_err; 361 362 ndev->dev = cm_id->device; 363 kref_init(&ndev->ref); 364 365 ndev->pd = ib_alloc_pd(ndev->dev, 366 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 367 if (IS_ERR(ndev->pd)) 368 goto out_free_dev; 369 370 if (!(ndev->dev->attrs.device_cap_flags & 371 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 372 dev_err(&ndev->dev->dev, 373 "Memory registrations not supported.\n"); 374 goto out_free_pd; 375 } 376 377 list_add(&ndev->entry, &device_list); 378 out_unlock: 379 mutex_unlock(&device_list_mutex); 380 return ndev; 381 382 out_free_pd: 383 ib_dealloc_pd(ndev->pd); 384 out_free_dev: 385 kfree(ndev); 386 out_err: 387 mutex_unlock(&device_list_mutex); 388 return NULL; 389 } 390 391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 392 { 393 struct nvme_rdma_device *dev; 394 struct ib_device *ibdev; 395 396 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 397 return; 398 399 dev = queue->device; 400 ibdev = dev->dev; 401 402 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 403 404 /* 405 * The cm_id object might have been destroyed during RDMA connection 406 * establishment error flow to avoid getting other cma events, thus 407 * the destruction of the QP shouldn't use rdma_cm API. 408 */ 409 ib_destroy_qp(queue->qp); 410 ib_free_cq(queue->ib_cq); 411 412 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 413 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 414 415 nvme_rdma_dev_put(dev); 416 } 417 418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 419 { 420 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 421 ibdev->attrs.max_fast_reg_page_list_len); 422 } 423 424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 425 { 426 struct ib_device *ibdev; 427 const int send_wr_factor = 3; /* MR, SEND, INV */ 428 const int cq_factor = send_wr_factor + 1; /* + RECV */ 429 int comp_vector, idx = nvme_rdma_queue_idx(queue); 430 int ret; 431 432 queue->device = nvme_rdma_find_get_device(queue->cm_id); 433 if (!queue->device) { 434 dev_err(queue->cm_id->device->dev.parent, 435 "no client data found!\n"); 436 return -ECONNREFUSED; 437 } 438 ibdev = queue->device->dev; 439 440 /* 441 * Spread I/O queues completion vectors according their queue index. 442 * Admin queues can always go on completion vector 0. 443 */ 444 comp_vector = idx == 0 ? idx : idx - 1; 445 446 /* +1 for ib_stop_cq */ 447 queue->ib_cq = ib_alloc_cq(ibdev, queue, 448 cq_factor * queue->queue_size + 1, 449 comp_vector, IB_POLL_SOFTIRQ); 450 if (IS_ERR(queue->ib_cq)) { 451 ret = PTR_ERR(queue->ib_cq); 452 goto out_put_dev; 453 } 454 455 ret = nvme_rdma_create_qp(queue, send_wr_factor); 456 if (ret) 457 goto out_destroy_ib_cq; 458 459 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 460 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 461 if (!queue->rsp_ring) { 462 ret = -ENOMEM; 463 goto out_destroy_qp; 464 } 465 466 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 467 queue->queue_size, 468 IB_MR_TYPE_MEM_REG, 469 nvme_rdma_get_max_fr_pages(ibdev)); 470 if (ret) { 471 dev_err(queue->ctrl->ctrl.device, 472 "failed to initialize MR pool sized %d for QID %d\n", 473 queue->queue_size, idx); 474 goto out_destroy_ring; 475 } 476 477 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 478 479 return 0; 480 481 out_destroy_ring: 482 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 483 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 484 out_destroy_qp: 485 rdma_destroy_qp(queue->cm_id); 486 out_destroy_ib_cq: 487 ib_free_cq(queue->ib_cq); 488 out_put_dev: 489 nvme_rdma_dev_put(queue->device); 490 return ret; 491 } 492 493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 494 int idx, size_t queue_size) 495 { 496 struct nvme_rdma_queue *queue; 497 struct sockaddr *src_addr = NULL; 498 int ret; 499 500 queue = &ctrl->queues[idx]; 501 queue->ctrl = ctrl; 502 init_completion(&queue->cm_done); 503 504 if (idx > 0) 505 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 506 else 507 queue->cmnd_capsule_len = sizeof(struct nvme_command); 508 509 queue->queue_size = queue_size; 510 511 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 512 RDMA_PS_TCP, IB_QPT_RC); 513 if (IS_ERR(queue->cm_id)) { 514 dev_info(ctrl->ctrl.device, 515 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 516 return PTR_ERR(queue->cm_id); 517 } 518 519 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 520 src_addr = (struct sockaddr *)&ctrl->src_addr; 521 522 queue->cm_error = -ETIMEDOUT; 523 ret = rdma_resolve_addr(queue->cm_id, src_addr, 524 (struct sockaddr *)&ctrl->addr, 525 NVME_RDMA_CONNECT_TIMEOUT_MS); 526 if (ret) { 527 dev_info(ctrl->ctrl.device, 528 "rdma_resolve_addr failed (%d).\n", ret); 529 goto out_destroy_cm_id; 530 } 531 532 ret = nvme_rdma_wait_for_cm(queue); 533 if (ret) { 534 dev_info(ctrl->ctrl.device, 535 "rdma connection establishment failed (%d)\n", ret); 536 goto out_destroy_cm_id; 537 } 538 539 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 540 541 return 0; 542 543 out_destroy_cm_id: 544 rdma_destroy_id(queue->cm_id); 545 nvme_rdma_destroy_queue_ib(queue); 546 return ret; 547 } 548 549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 550 { 551 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 552 return; 553 554 rdma_disconnect(queue->cm_id); 555 ib_drain_qp(queue->qp); 556 } 557 558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 559 { 560 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 561 return; 562 563 if (nvme_rdma_queue_idx(queue) == 0) { 564 nvme_rdma_free_qe(queue->device->dev, 565 &queue->ctrl->async_event_sqe, 566 sizeof(struct nvme_command), DMA_TO_DEVICE); 567 } 568 569 nvme_rdma_destroy_queue_ib(queue); 570 rdma_destroy_id(queue->cm_id); 571 } 572 573 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 574 { 575 int i; 576 577 for (i = 1; i < ctrl->ctrl.queue_count; i++) 578 nvme_rdma_free_queue(&ctrl->queues[i]); 579 } 580 581 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 582 { 583 int i; 584 585 for (i = 1; i < ctrl->ctrl.queue_count; i++) 586 nvme_rdma_stop_queue(&ctrl->queues[i]); 587 } 588 589 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 590 { 591 int ret; 592 593 if (idx) 594 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 595 else 596 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 597 598 if (!ret) 599 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 600 else 601 dev_info(ctrl->ctrl.device, 602 "failed to connect queue: %d ret=%d\n", idx, ret); 603 return ret; 604 } 605 606 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 607 { 608 int i, ret = 0; 609 610 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 611 ret = nvme_rdma_start_queue(ctrl, i); 612 if (ret) 613 goto out_stop_queues; 614 } 615 616 return 0; 617 618 out_stop_queues: 619 for (i--; i >= 1; i--) 620 nvme_rdma_stop_queue(&ctrl->queues[i]); 621 return ret; 622 } 623 624 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 627 struct ib_device *ibdev = ctrl->device->dev; 628 unsigned int nr_io_queues; 629 int i, ret; 630 631 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 632 633 /* 634 * we map queues according to the device irq vectors for 635 * optimal locality so we don't need more queues than 636 * completion vectors. 637 */ 638 nr_io_queues = min_t(unsigned int, nr_io_queues, 639 ibdev->num_comp_vectors); 640 641 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 642 if (ret) 643 return ret; 644 645 ctrl->ctrl.queue_count = nr_io_queues + 1; 646 if (ctrl->ctrl.queue_count < 2) 647 return 0; 648 649 dev_info(ctrl->ctrl.device, 650 "creating %d I/O queues.\n", nr_io_queues); 651 652 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 653 ret = nvme_rdma_alloc_queue(ctrl, i, 654 ctrl->ctrl.sqsize + 1); 655 if (ret) 656 goto out_free_queues; 657 } 658 659 return 0; 660 661 out_free_queues: 662 for (i--; i >= 1; i--) 663 nvme_rdma_free_queue(&ctrl->queues[i]); 664 665 return ret; 666 } 667 668 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 669 struct blk_mq_tag_set *set) 670 { 671 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 672 673 blk_mq_free_tag_set(set); 674 nvme_rdma_dev_put(ctrl->device); 675 } 676 677 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 678 bool admin) 679 { 680 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 681 struct blk_mq_tag_set *set; 682 int ret; 683 684 if (admin) { 685 set = &ctrl->admin_tag_set; 686 memset(set, 0, sizeof(*set)); 687 set->ops = &nvme_rdma_admin_mq_ops; 688 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 689 set->reserved_tags = 2; /* connect + keep-alive */ 690 set->numa_node = NUMA_NO_NODE; 691 set->cmd_size = sizeof(struct nvme_rdma_request) + 692 SG_CHUNK_SIZE * sizeof(struct scatterlist); 693 set->driver_data = ctrl; 694 set->nr_hw_queues = 1; 695 set->timeout = ADMIN_TIMEOUT; 696 set->flags = BLK_MQ_F_NO_SCHED; 697 } else { 698 set = &ctrl->tag_set; 699 memset(set, 0, sizeof(*set)); 700 set->ops = &nvme_rdma_mq_ops; 701 set->queue_depth = nctrl->opts->queue_size; 702 set->reserved_tags = 1; /* fabric connect */ 703 set->numa_node = NUMA_NO_NODE; 704 set->flags = BLK_MQ_F_SHOULD_MERGE; 705 set->cmd_size = sizeof(struct nvme_rdma_request) + 706 SG_CHUNK_SIZE * sizeof(struct scatterlist); 707 set->driver_data = ctrl; 708 set->nr_hw_queues = nctrl->queue_count - 1; 709 set->timeout = NVME_IO_TIMEOUT; 710 } 711 712 ret = blk_mq_alloc_tag_set(set); 713 if (ret) 714 goto out; 715 716 /* 717 * We need a reference on the device as long as the tag_set is alive, 718 * as the MRs in the request structures need a valid ib_device. 719 */ 720 ret = nvme_rdma_dev_get(ctrl->device); 721 if (!ret) { 722 ret = -EINVAL; 723 goto out_free_tagset; 724 } 725 726 return set; 727 728 out_free_tagset: 729 blk_mq_free_tag_set(set); 730 out: 731 return ERR_PTR(ret); 732 } 733 734 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 735 bool remove) 736 { 737 nvme_rdma_stop_queue(&ctrl->queues[0]); 738 if (remove) { 739 blk_cleanup_queue(ctrl->ctrl.admin_q); 740 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 741 } 742 nvme_rdma_free_queue(&ctrl->queues[0]); 743 } 744 745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 746 bool new) 747 { 748 int error; 749 750 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 751 if (error) 752 return error; 753 754 ctrl->device = ctrl->queues[0].device; 755 756 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 757 758 if (new) { 759 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 760 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 761 error = PTR_ERR(ctrl->ctrl.admin_tagset); 762 goto out_free_queue; 763 } 764 765 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 766 if (IS_ERR(ctrl->ctrl.admin_q)) { 767 error = PTR_ERR(ctrl->ctrl.admin_q); 768 goto out_free_tagset; 769 } 770 } 771 772 error = nvme_rdma_start_queue(ctrl, 0); 773 if (error) 774 goto out_cleanup_queue; 775 776 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 777 &ctrl->ctrl.cap); 778 if (error) { 779 dev_err(ctrl->ctrl.device, 780 "prop_get NVME_REG_CAP failed\n"); 781 goto out_cleanup_queue; 782 } 783 784 ctrl->ctrl.sqsize = 785 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 786 787 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 788 if (error) 789 goto out_cleanup_queue; 790 791 ctrl->ctrl.max_hw_sectors = 792 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 793 794 error = nvme_init_identify(&ctrl->ctrl); 795 if (error) 796 goto out_cleanup_queue; 797 798 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 799 &ctrl->async_event_sqe, sizeof(struct nvme_command), 800 DMA_TO_DEVICE); 801 if (error) 802 goto out_cleanup_queue; 803 804 return 0; 805 806 out_cleanup_queue: 807 if (new) 808 blk_cleanup_queue(ctrl->ctrl.admin_q); 809 out_free_tagset: 810 if (new) 811 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 812 out_free_queue: 813 nvme_rdma_free_queue(&ctrl->queues[0]); 814 return error; 815 } 816 817 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 818 bool remove) 819 { 820 nvme_rdma_stop_io_queues(ctrl); 821 if (remove) { 822 blk_cleanup_queue(ctrl->ctrl.connect_q); 823 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 824 } 825 nvme_rdma_free_io_queues(ctrl); 826 } 827 828 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 829 { 830 int ret; 831 832 ret = nvme_rdma_alloc_io_queues(ctrl); 833 if (ret) 834 return ret; 835 836 if (new) { 837 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 838 if (IS_ERR(ctrl->ctrl.tagset)) { 839 ret = PTR_ERR(ctrl->ctrl.tagset); 840 goto out_free_io_queues; 841 } 842 843 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 844 if (IS_ERR(ctrl->ctrl.connect_q)) { 845 ret = PTR_ERR(ctrl->ctrl.connect_q); 846 goto out_free_tag_set; 847 } 848 } else { 849 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 850 ctrl->ctrl.queue_count - 1); 851 } 852 853 ret = nvme_rdma_start_io_queues(ctrl); 854 if (ret) 855 goto out_cleanup_connect_q; 856 857 return 0; 858 859 out_cleanup_connect_q: 860 if (new) 861 blk_cleanup_queue(ctrl->ctrl.connect_q); 862 out_free_tag_set: 863 if (new) 864 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 865 out_free_io_queues: 866 nvme_rdma_free_io_queues(ctrl); 867 return ret; 868 } 869 870 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 871 { 872 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 873 874 if (list_empty(&ctrl->list)) 875 goto free_ctrl; 876 877 mutex_lock(&nvme_rdma_ctrl_mutex); 878 list_del(&ctrl->list); 879 mutex_unlock(&nvme_rdma_ctrl_mutex); 880 881 kfree(ctrl->queues); 882 nvmf_free_options(nctrl->opts); 883 free_ctrl: 884 kfree(ctrl); 885 } 886 887 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 888 { 889 /* If we are resetting/deleting then do nothing */ 890 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 891 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 892 ctrl->ctrl.state == NVME_CTRL_LIVE); 893 return; 894 } 895 896 if (nvmf_should_reconnect(&ctrl->ctrl)) { 897 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 898 ctrl->ctrl.opts->reconnect_delay); 899 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 900 ctrl->ctrl.opts->reconnect_delay * HZ); 901 } else { 902 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 903 nvme_delete_ctrl(&ctrl->ctrl); 904 } 905 } 906 907 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 908 { 909 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 910 struct nvme_rdma_ctrl, reconnect_work); 911 bool changed; 912 int ret; 913 914 ++ctrl->ctrl.nr_reconnects; 915 916 ret = nvme_rdma_configure_admin_queue(ctrl, false); 917 if (ret) 918 goto requeue; 919 920 if (ctrl->ctrl.queue_count > 1) { 921 ret = nvme_rdma_configure_io_queues(ctrl, false); 922 if (ret) 923 goto destroy_admin; 924 } 925 926 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 927 if (!changed) { 928 /* state change failure is ok if we're in DELETING state */ 929 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 930 return; 931 } 932 933 nvme_start_ctrl(&ctrl->ctrl); 934 935 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 936 ctrl->ctrl.nr_reconnects); 937 938 ctrl->ctrl.nr_reconnects = 0; 939 940 return; 941 942 destroy_admin: 943 nvme_rdma_destroy_admin_queue(ctrl, false); 944 requeue: 945 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 946 ctrl->ctrl.nr_reconnects); 947 nvme_rdma_reconnect_or_remove(ctrl); 948 } 949 950 static void nvme_rdma_error_recovery_work(struct work_struct *work) 951 { 952 struct nvme_rdma_ctrl *ctrl = container_of(work, 953 struct nvme_rdma_ctrl, err_work); 954 955 nvme_stop_keep_alive(&ctrl->ctrl); 956 957 if (ctrl->ctrl.queue_count > 1) { 958 nvme_stop_queues(&ctrl->ctrl); 959 blk_mq_tagset_busy_iter(&ctrl->tag_set, 960 nvme_cancel_request, &ctrl->ctrl); 961 nvme_rdma_destroy_io_queues(ctrl, false); 962 } 963 964 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 965 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 966 nvme_cancel_request, &ctrl->ctrl); 967 nvme_rdma_destroy_admin_queue(ctrl, false); 968 969 /* 970 * queues are not a live anymore, so restart the queues to fail fast 971 * new IO 972 */ 973 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 974 nvme_start_queues(&ctrl->ctrl); 975 976 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 977 /* state change failure should never happen */ 978 WARN_ON_ONCE(1); 979 return; 980 } 981 982 nvme_rdma_reconnect_or_remove(ctrl); 983 } 984 985 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 986 { 987 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 988 return; 989 990 queue_work(nvme_wq, &ctrl->err_work); 991 } 992 993 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 994 const char *op) 995 { 996 struct nvme_rdma_queue *queue = cq->cq_context; 997 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 998 999 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1000 dev_info(ctrl->ctrl.device, 1001 "%s for CQE 0x%p failed with status %s (%d)\n", 1002 op, wc->wr_cqe, 1003 ib_wc_status_msg(wc->status), wc->status); 1004 nvme_rdma_error_recovery(ctrl); 1005 } 1006 1007 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1008 { 1009 if (unlikely(wc->status != IB_WC_SUCCESS)) 1010 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1011 } 1012 1013 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1014 { 1015 struct nvme_rdma_request *req = 1016 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1017 struct request *rq = blk_mq_rq_from_pdu(req); 1018 1019 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1020 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1021 return; 1022 } 1023 1024 if (refcount_dec_and_test(&req->ref)) 1025 nvme_end_request(rq, req->status, req->result); 1026 1027 } 1028 1029 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1030 struct nvme_rdma_request *req) 1031 { 1032 struct ib_send_wr *bad_wr; 1033 struct ib_send_wr wr = { 1034 .opcode = IB_WR_LOCAL_INV, 1035 .next = NULL, 1036 .num_sge = 0, 1037 .send_flags = IB_SEND_SIGNALED, 1038 .ex.invalidate_rkey = req->mr->rkey, 1039 }; 1040 1041 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1042 wr.wr_cqe = &req->reg_cqe; 1043 1044 return ib_post_send(queue->qp, &wr, &bad_wr); 1045 } 1046 1047 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1048 struct request *rq) 1049 { 1050 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1051 struct nvme_rdma_device *dev = queue->device; 1052 struct ib_device *ibdev = dev->dev; 1053 1054 if (!blk_rq_payload_bytes(rq)) 1055 return; 1056 1057 if (req->mr) { 1058 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1059 req->mr = NULL; 1060 } 1061 1062 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1063 req->nents, rq_data_dir(rq) == 1064 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1065 1066 nvme_cleanup_cmd(rq); 1067 sg_free_table_chained(&req->sg_table, true); 1068 } 1069 1070 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1071 { 1072 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1073 1074 sg->addr = 0; 1075 put_unaligned_le24(0, sg->length); 1076 put_unaligned_le32(0, sg->key); 1077 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1078 return 0; 1079 } 1080 1081 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1082 struct nvme_rdma_request *req, struct nvme_command *c) 1083 { 1084 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1085 1086 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1087 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1088 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1089 1090 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1091 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1092 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1093 1094 req->num_sge++; 1095 return 0; 1096 } 1097 1098 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1099 struct nvme_rdma_request *req, struct nvme_command *c) 1100 { 1101 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1102 1103 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1104 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1105 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1106 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1107 return 0; 1108 } 1109 1110 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1111 struct nvme_rdma_request *req, struct nvme_command *c, 1112 int count) 1113 { 1114 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1115 int nr; 1116 1117 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1118 if (WARN_ON_ONCE(!req->mr)) 1119 return -EAGAIN; 1120 1121 /* 1122 * Align the MR to a 4K page size to match the ctrl page size and 1123 * the block virtual boundary. 1124 */ 1125 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1126 if (unlikely(nr < count)) { 1127 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1128 req->mr = NULL; 1129 if (nr < 0) 1130 return nr; 1131 return -EINVAL; 1132 } 1133 1134 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1135 1136 req->reg_cqe.done = nvme_rdma_memreg_done; 1137 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1138 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1139 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1140 req->reg_wr.wr.num_sge = 0; 1141 req->reg_wr.mr = req->mr; 1142 req->reg_wr.key = req->mr->rkey; 1143 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1144 IB_ACCESS_REMOTE_READ | 1145 IB_ACCESS_REMOTE_WRITE; 1146 1147 sg->addr = cpu_to_le64(req->mr->iova); 1148 put_unaligned_le24(req->mr->length, sg->length); 1149 put_unaligned_le32(req->mr->rkey, sg->key); 1150 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1151 NVME_SGL_FMT_INVALIDATE; 1152 1153 return 0; 1154 } 1155 1156 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1157 struct request *rq, struct nvme_command *c) 1158 { 1159 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1160 struct nvme_rdma_device *dev = queue->device; 1161 struct ib_device *ibdev = dev->dev; 1162 int count, ret; 1163 1164 req->num_sge = 1; 1165 refcount_set(&req->ref, 2); /* send and recv completions */ 1166 1167 c->common.flags |= NVME_CMD_SGL_METABUF; 1168 1169 if (!blk_rq_payload_bytes(rq)) 1170 return nvme_rdma_set_sg_null(c); 1171 1172 req->sg_table.sgl = req->first_sgl; 1173 ret = sg_alloc_table_chained(&req->sg_table, 1174 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1175 if (ret) 1176 return -ENOMEM; 1177 1178 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1179 1180 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1181 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1182 if (unlikely(count <= 0)) { 1183 sg_free_table_chained(&req->sg_table, true); 1184 return -EIO; 1185 } 1186 1187 if (count == 1) { 1188 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1189 blk_rq_payload_bytes(rq) <= 1190 nvme_rdma_inline_data_size(queue)) 1191 return nvme_rdma_map_sg_inline(queue, req, c); 1192 1193 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1194 return nvme_rdma_map_sg_single(queue, req, c); 1195 } 1196 1197 return nvme_rdma_map_sg_fr(queue, req, c, count); 1198 } 1199 1200 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1201 { 1202 struct nvme_rdma_qe *qe = 1203 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1204 struct nvme_rdma_request *req = 1205 container_of(qe, struct nvme_rdma_request, sqe); 1206 struct request *rq = blk_mq_rq_from_pdu(req); 1207 1208 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1209 nvme_rdma_wr_error(cq, wc, "SEND"); 1210 return; 1211 } 1212 1213 if (refcount_dec_and_test(&req->ref)) 1214 nvme_end_request(rq, req->status, req->result); 1215 } 1216 1217 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1218 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1219 struct ib_send_wr *first) 1220 { 1221 struct ib_send_wr wr, *bad_wr; 1222 int ret; 1223 1224 sge->addr = qe->dma; 1225 sge->length = sizeof(struct nvme_command), 1226 sge->lkey = queue->device->pd->local_dma_lkey; 1227 1228 wr.next = NULL; 1229 wr.wr_cqe = &qe->cqe; 1230 wr.sg_list = sge; 1231 wr.num_sge = num_sge; 1232 wr.opcode = IB_WR_SEND; 1233 wr.send_flags = IB_SEND_SIGNALED; 1234 1235 if (first) 1236 first->next = ≀ 1237 else 1238 first = ≀ 1239 1240 ret = ib_post_send(queue->qp, first, &bad_wr); 1241 if (unlikely(ret)) { 1242 dev_err(queue->ctrl->ctrl.device, 1243 "%s failed with error code %d\n", __func__, ret); 1244 } 1245 return ret; 1246 } 1247 1248 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1249 struct nvme_rdma_qe *qe) 1250 { 1251 struct ib_recv_wr wr, *bad_wr; 1252 struct ib_sge list; 1253 int ret; 1254 1255 list.addr = qe->dma; 1256 list.length = sizeof(struct nvme_completion); 1257 list.lkey = queue->device->pd->local_dma_lkey; 1258 1259 qe->cqe.done = nvme_rdma_recv_done; 1260 1261 wr.next = NULL; 1262 wr.wr_cqe = &qe->cqe; 1263 wr.sg_list = &list; 1264 wr.num_sge = 1; 1265 1266 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1267 if (unlikely(ret)) { 1268 dev_err(queue->ctrl->ctrl.device, 1269 "%s failed with error code %d\n", __func__, ret); 1270 } 1271 return ret; 1272 } 1273 1274 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1275 { 1276 u32 queue_idx = nvme_rdma_queue_idx(queue); 1277 1278 if (queue_idx == 0) 1279 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1280 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1281 } 1282 1283 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1284 { 1285 if (unlikely(wc->status != IB_WC_SUCCESS)) 1286 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1287 } 1288 1289 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1290 { 1291 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1292 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1293 struct ib_device *dev = queue->device->dev; 1294 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1295 struct nvme_command *cmd = sqe->data; 1296 struct ib_sge sge; 1297 int ret; 1298 1299 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1300 1301 memset(cmd, 0, sizeof(*cmd)); 1302 cmd->common.opcode = nvme_admin_async_event; 1303 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1304 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1305 nvme_rdma_set_sg_null(cmd); 1306 1307 sqe->cqe.done = nvme_rdma_async_done; 1308 1309 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1310 DMA_TO_DEVICE); 1311 1312 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1313 WARN_ON_ONCE(ret); 1314 } 1315 1316 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1317 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1318 { 1319 struct request *rq; 1320 struct nvme_rdma_request *req; 1321 int ret = 0; 1322 1323 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1324 if (!rq) { 1325 dev_err(queue->ctrl->ctrl.device, 1326 "tag 0x%x on QP %#x not found\n", 1327 cqe->command_id, queue->qp->qp_num); 1328 nvme_rdma_error_recovery(queue->ctrl); 1329 return ret; 1330 } 1331 req = blk_mq_rq_to_pdu(rq); 1332 1333 req->status = cqe->status; 1334 req->result = cqe->result; 1335 1336 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1337 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1338 dev_err(queue->ctrl->ctrl.device, 1339 "Bogus remote invalidation for rkey %#x\n", 1340 req->mr->rkey); 1341 nvme_rdma_error_recovery(queue->ctrl); 1342 } 1343 } else if (req->mr) { 1344 ret = nvme_rdma_inv_rkey(queue, req); 1345 if (unlikely(ret < 0)) { 1346 dev_err(queue->ctrl->ctrl.device, 1347 "Queueing INV WR for rkey %#x failed (%d)\n", 1348 req->mr->rkey, ret); 1349 nvme_rdma_error_recovery(queue->ctrl); 1350 } 1351 /* the local invalidation completion will end the request */ 1352 return 0; 1353 } 1354 1355 if (refcount_dec_and_test(&req->ref)) { 1356 if (rq->tag == tag) 1357 ret = 1; 1358 nvme_end_request(rq, req->status, req->result); 1359 } 1360 1361 return ret; 1362 } 1363 1364 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1365 { 1366 struct nvme_rdma_qe *qe = 1367 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1368 struct nvme_rdma_queue *queue = cq->cq_context; 1369 struct ib_device *ibdev = queue->device->dev; 1370 struct nvme_completion *cqe = qe->data; 1371 const size_t len = sizeof(struct nvme_completion); 1372 int ret = 0; 1373 1374 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1375 nvme_rdma_wr_error(cq, wc, "RECV"); 1376 return 0; 1377 } 1378 1379 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1380 /* 1381 * AEN requests are special as they don't time out and can 1382 * survive any kind of queue freeze and often don't respond to 1383 * aborts. We don't even bother to allocate a struct request 1384 * for them but rather special case them here. 1385 */ 1386 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1387 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1388 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1389 &cqe->result); 1390 else 1391 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1392 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1393 1394 nvme_rdma_post_recv(queue, qe); 1395 return ret; 1396 } 1397 1398 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1399 { 1400 __nvme_rdma_recv_done(cq, wc, -1); 1401 } 1402 1403 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1404 { 1405 int ret, i; 1406 1407 for (i = 0; i < queue->queue_size; i++) { 1408 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1409 if (ret) 1410 goto out_destroy_queue_ib; 1411 } 1412 1413 return 0; 1414 1415 out_destroy_queue_ib: 1416 nvme_rdma_destroy_queue_ib(queue); 1417 return ret; 1418 } 1419 1420 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1421 struct rdma_cm_event *ev) 1422 { 1423 struct rdma_cm_id *cm_id = queue->cm_id; 1424 int status = ev->status; 1425 const char *rej_msg; 1426 const struct nvme_rdma_cm_rej *rej_data; 1427 u8 rej_data_len; 1428 1429 rej_msg = rdma_reject_msg(cm_id, status); 1430 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1431 1432 if (rej_data && rej_data_len >= sizeof(u16)) { 1433 u16 sts = le16_to_cpu(rej_data->sts); 1434 1435 dev_err(queue->ctrl->ctrl.device, 1436 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1437 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1438 } else { 1439 dev_err(queue->ctrl->ctrl.device, 1440 "Connect rejected: status %d (%s).\n", status, rej_msg); 1441 } 1442 1443 return -ECONNRESET; 1444 } 1445 1446 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1447 { 1448 int ret; 1449 1450 ret = nvme_rdma_create_queue_ib(queue); 1451 if (ret) 1452 return ret; 1453 1454 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1455 if (ret) { 1456 dev_err(queue->ctrl->ctrl.device, 1457 "rdma_resolve_route failed (%d).\n", 1458 queue->cm_error); 1459 goto out_destroy_queue; 1460 } 1461 1462 return 0; 1463 1464 out_destroy_queue: 1465 nvme_rdma_destroy_queue_ib(queue); 1466 return ret; 1467 } 1468 1469 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1470 { 1471 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1472 struct rdma_conn_param param = { }; 1473 struct nvme_rdma_cm_req priv = { }; 1474 int ret; 1475 1476 param.qp_num = queue->qp->qp_num; 1477 param.flow_control = 1; 1478 1479 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1480 /* maximum retry count */ 1481 param.retry_count = 7; 1482 param.rnr_retry_count = 7; 1483 param.private_data = &priv; 1484 param.private_data_len = sizeof(priv); 1485 1486 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1487 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1488 /* 1489 * set the admin queue depth to the minimum size 1490 * specified by the Fabrics standard. 1491 */ 1492 if (priv.qid == 0) { 1493 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1494 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1495 } else { 1496 /* 1497 * current interpretation of the fabrics spec 1498 * is at minimum you make hrqsize sqsize+1, or a 1499 * 1's based representation of sqsize. 1500 */ 1501 priv.hrqsize = cpu_to_le16(queue->queue_size); 1502 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1503 } 1504 1505 ret = rdma_connect(queue->cm_id, ¶m); 1506 if (ret) { 1507 dev_err(ctrl->ctrl.device, 1508 "rdma_connect failed (%d).\n", ret); 1509 goto out_destroy_queue_ib; 1510 } 1511 1512 return 0; 1513 1514 out_destroy_queue_ib: 1515 nvme_rdma_destroy_queue_ib(queue); 1516 return ret; 1517 } 1518 1519 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1520 struct rdma_cm_event *ev) 1521 { 1522 struct nvme_rdma_queue *queue = cm_id->context; 1523 int cm_error = 0; 1524 1525 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1526 rdma_event_msg(ev->event), ev->event, 1527 ev->status, cm_id); 1528 1529 switch (ev->event) { 1530 case RDMA_CM_EVENT_ADDR_RESOLVED: 1531 cm_error = nvme_rdma_addr_resolved(queue); 1532 break; 1533 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1534 cm_error = nvme_rdma_route_resolved(queue); 1535 break; 1536 case RDMA_CM_EVENT_ESTABLISHED: 1537 queue->cm_error = nvme_rdma_conn_established(queue); 1538 /* complete cm_done regardless of success/failure */ 1539 complete(&queue->cm_done); 1540 return 0; 1541 case RDMA_CM_EVENT_REJECTED: 1542 nvme_rdma_destroy_queue_ib(queue); 1543 cm_error = nvme_rdma_conn_rejected(queue, ev); 1544 break; 1545 case RDMA_CM_EVENT_ROUTE_ERROR: 1546 case RDMA_CM_EVENT_CONNECT_ERROR: 1547 case RDMA_CM_EVENT_UNREACHABLE: 1548 nvme_rdma_destroy_queue_ib(queue); 1549 case RDMA_CM_EVENT_ADDR_ERROR: 1550 dev_dbg(queue->ctrl->ctrl.device, 1551 "CM error event %d\n", ev->event); 1552 cm_error = -ECONNRESET; 1553 break; 1554 case RDMA_CM_EVENT_DISCONNECTED: 1555 case RDMA_CM_EVENT_ADDR_CHANGE: 1556 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1557 dev_dbg(queue->ctrl->ctrl.device, 1558 "disconnect received - connection closed\n"); 1559 nvme_rdma_error_recovery(queue->ctrl); 1560 break; 1561 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1562 /* device removal is handled via the ib_client API */ 1563 break; 1564 default: 1565 dev_err(queue->ctrl->ctrl.device, 1566 "Unexpected RDMA CM event (%d)\n", ev->event); 1567 nvme_rdma_error_recovery(queue->ctrl); 1568 break; 1569 } 1570 1571 if (cm_error) { 1572 queue->cm_error = cm_error; 1573 complete(&queue->cm_done); 1574 } 1575 1576 return 0; 1577 } 1578 1579 static enum blk_eh_timer_return 1580 nvme_rdma_timeout(struct request *rq, bool reserved) 1581 { 1582 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1583 1584 dev_warn(req->queue->ctrl->ctrl.device, 1585 "I/O %d QID %d timeout, reset controller\n", 1586 rq->tag, nvme_rdma_queue_idx(req->queue)); 1587 1588 /* queue error recovery */ 1589 nvme_rdma_error_recovery(req->queue->ctrl); 1590 1591 /* fail with DNR on cmd timeout */ 1592 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1593 1594 return BLK_EH_HANDLED; 1595 } 1596 1597 /* 1598 * We cannot accept any other command until the Connect command has completed. 1599 */ 1600 static inline blk_status_t 1601 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1602 { 1603 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) 1604 return nvmf_check_init_req(&queue->ctrl->ctrl, rq); 1605 return BLK_STS_OK; 1606 } 1607 1608 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1609 const struct blk_mq_queue_data *bd) 1610 { 1611 struct nvme_ns *ns = hctx->queue->queuedata; 1612 struct nvme_rdma_queue *queue = hctx->driver_data; 1613 struct request *rq = bd->rq; 1614 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1615 struct nvme_rdma_qe *sqe = &req->sqe; 1616 struct nvme_command *c = sqe->data; 1617 struct ib_device *dev; 1618 blk_status_t ret; 1619 int err; 1620 1621 WARN_ON_ONCE(rq->tag < 0); 1622 1623 ret = nvme_rdma_is_ready(queue, rq); 1624 if (unlikely(ret)) 1625 return ret; 1626 1627 dev = queue->device->dev; 1628 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1629 sizeof(struct nvme_command), DMA_TO_DEVICE); 1630 1631 ret = nvme_setup_cmd(ns, rq, c); 1632 if (ret) 1633 return ret; 1634 1635 blk_mq_start_request(rq); 1636 1637 err = nvme_rdma_map_data(queue, rq, c); 1638 if (unlikely(err < 0)) { 1639 dev_err(queue->ctrl->ctrl.device, 1640 "Failed to map data (%d)\n", err); 1641 nvme_cleanup_cmd(rq); 1642 goto err; 1643 } 1644 1645 sqe->cqe.done = nvme_rdma_send_done; 1646 1647 ib_dma_sync_single_for_device(dev, sqe->dma, 1648 sizeof(struct nvme_command), DMA_TO_DEVICE); 1649 1650 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1651 req->mr ? &req->reg_wr.wr : NULL); 1652 if (unlikely(err)) { 1653 nvme_rdma_unmap_data(queue, rq); 1654 goto err; 1655 } 1656 1657 return BLK_STS_OK; 1658 err: 1659 if (err == -ENOMEM || err == -EAGAIN) 1660 return BLK_STS_RESOURCE; 1661 return BLK_STS_IOERR; 1662 } 1663 1664 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1665 { 1666 struct nvme_rdma_queue *queue = hctx->driver_data; 1667 struct ib_cq *cq = queue->ib_cq; 1668 struct ib_wc wc; 1669 int found = 0; 1670 1671 while (ib_poll_cq(cq, 1, &wc) > 0) { 1672 struct ib_cqe *cqe = wc.wr_cqe; 1673 1674 if (cqe) { 1675 if (cqe->done == nvme_rdma_recv_done) 1676 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1677 else 1678 cqe->done(cq, &wc); 1679 } 1680 } 1681 1682 return found; 1683 } 1684 1685 static void nvme_rdma_complete_rq(struct request *rq) 1686 { 1687 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1688 1689 nvme_rdma_unmap_data(req->queue, rq); 1690 nvme_complete_rq(rq); 1691 } 1692 1693 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1694 { 1695 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1696 1697 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1698 } 1699 1700 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1701 .queue_rq = nvme_rdma_queue_rq, 1702 .complete = nvme_rdma_complete_rq, 1703 .init_request = nvme_rdma_init_request, 1704 .exit_request = nvme_rdma_exit_request, 1705 .init_hctx = nvme_rdma_init_hctx, 1706 .poll = nvme_rdma_poll, 1707 .timeout = nvme_rdma_timeout, 1708 .map_queues = nvme_rdma_map_queues, 1709 }; 1710 1711 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1712 .queue_rq = nvme_rdma_queue_rq, 1713 .complete = nvme_rdma_complete_rq, 1714 .init_request = nvme_rdma_init_request, 1715 .exit_request = nvme_rdma_exit_request, 1716 .init_hctx = nvme_rdma_init_admin_hctx, 1717 .timeout = nvme_rdma_timeout, 1718 }; 1719 1720 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1721 { 1722 cancel_work_sync(&ctrl->err_work); 1723 cancel_delayed_work_sync(&ctrl->reconnect_work); 1724 1725 if (ctrl->ctrl.queue_count > 1) { 1726 nvme_stop_queues(&ctrl->ctrl); 1727 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1728 nvme_cancel_request, &ctrl->ctrl); 1729 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1730 } 1731 1732 if (shutdown) 1733 nvme_shutdown_ctrl(&ctrl->ctrl); 1734 else 1735 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1736 1737 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1738 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1739 nvme_cancel_request, &ctrl->ctrl); 1740 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1741 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1742 } 1743 1744 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1745 { 1746 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1747 } 1748 1749 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1750 { 1751 struct nvme_rdma_ctrl *ctrl = 1752 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1753 int ret; 1754 bool changed; 1755 1756 nvme_stop_ctrl(&ctrl->ctrl); 1757 nvme_rdma_shutdown_ctrl(ctrl, false); 1758 1759 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1760 /* state change failure should never happen */ 1761 WARN_ON_ONCE(1); 1762 return; 1763 } 1764 1765 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1766 if (ret) 1767 goto out_fail; 1768 1769 if (ctrl->ctrl.queue_count > 1) { 1770 ret = nvme_rdma_configure_io_queues(ctrl, false); 1771 if (ret) 1772 goto out_fail; 1773 } 1774 1775 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1776 if (!changed) { 1777 /* state change failure is ok if we're in DELETING state */ 1778 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1779 return; 1780 } 1781 1782 nvme_start_ctrl(&ctrl->ctrl); 1783 1784 return; 1785 1786 out_fail: 1787 ++ctrl->ctrl.nr_reconnects; 1788 nvme_rdma_reconnect_or_remove(ctrl); 1789 } 1790 1791 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1792 .name = "rdma", 1793 .module = THIS_MODULE, 1794 .flags = NVME_F_FABRICS, 1795 .reg_read32 = nvmf_reg_read32, 1796 .reg_read64 = nvmf_reg_read64, 1797 .reg_write32 = nvmf_reg_write32, 1798 .free_ctrl = nvme_rdma_free_ctrl, 1799 .submit_async_event = nvme_rdma_submit_async_event, 1800 .delete_ctrl = nvme_rdma_delete_ctrl, 1801 .get_address = nvmf_get_address, 1802 }; 1803 1804 static inline bool 1805 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1806 struct nvmf_ctrl_options *opts) 1807 { 1808 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1809 1810 1811 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1812 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1813 return false; 1814 1815 if (opts->mask & NVMF_OPT_TRSVCID && 1816 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1817 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1818 return false; 1819 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1820 if (strcmp(opts->trsvcid, stdport)) 1821 return false; 1822 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1823 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1824 return false; 1825 } 1826 /* else, it's a match as both have stdport. Fall to next checks */ 1827 1828 /* 1829 * checking the local address is rough. In most cases, one 1830 * is not specified and the host port is selected by the stack. 1831 * 1832 * Assume no match if: 1833 * local address is specified and address is not the same 1834 * local address is not specified but remote is, or vice versa 1835 * (admin using specific host_traddr when it matters). 1836 */ 1837 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1838 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1839 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1840 return false; 1841 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1842 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1843 return false; 1844 /* 1845 * if neither controller had an host port specified, assume it's 1846 * a match as everything else matched. 1847 */ 1848 1849 return true; 1850 } 1851 1852 /* 1853 * Fails a connection request if it matches an existing controller 1854 * (association) with the same tuple: 1855 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1856 * 1857 * if local address is not specified in the request, it will match an 1858 * existing controller with all the other parameters the same and no 1859 * local port address specified as well. 1860 * 1861 * The ports don't need to be compared as they are intrinsically 1862 * already matched by the port pointers supplied. 1863 */ 1864 static bool 1865 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1866 { 1867 struct nvme_rdma_ctrl *ctrl; 1868 bool found = false; 1869 1870 mutex_lock(&nvme_rdma_ctrl_mutex); 1871 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1872 found = __nvme_rdma_options_match(ctrl, opts); 1873 if (found) 1874 break; 1875 } 1876 mutex_unlock(&nvme_rdma_ctrl_mutex); 1877 1878 return found; 1879 } 1880 1881 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1882 struct nvmf_ctrl_options *opts) 1883 { 1884 struct nvme_rdma_ctrl *ctrl; 1885 int ret; 1886 bool changed; 1887 char *port; 1888 1889 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1890 if (!ctrl) 1891 return ERR_PTR(-ENOMEM); 1892 ctrl->ctrl.opts = opts; 1893 INIT_LIST_HEAD(&ctrl->list); 1894 1895 if (opts->mask & NVMF_OPT_TRSVCID) 1896 port = opts->trsvcid; 1897 else 1898 port = __stringify(NVME_RDMA_IP_PORT); 1899 1900 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1901 opts->traddr, port, &ctrl->addr); 1902 if (ret) { 1903 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1904 goto out_free_ctrl; 1905 } 1906 1907 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1908 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1909 opts->host_traddr, NULL, &ctrl->src_addr); 1910 if (ret) { 1911 pr_err("malformed src address passed: %s\n", 1912 opts->host_traddr); 1913 goto out_free_ctrl; 1914 } 1915 } 1916 1917 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1918 ret = -EALREADY; 1919 goto out_free_ctrl; 1920 } 1921 1922 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1923 0 /* no quirks, we're perfect! */); 1924 if (ret) 1925 goto out_free_ctrl; 1926 1927 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1928 nvme_rdma_reconnect_ctrl_work); 1929 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1930 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1931 1932 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1933 ctrl->ctrl.sqsize = opts->queue_size - 1; 1934 ctrl->ctrl.kato = opts->kato; 1935 1936 ret = -ENOMEM; 1937 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1938 GFP_KERNEL); 1939 if (!ctrl->queues) 1940 goto out_uninit_ctrl; 1941 1942 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1943 WARN_ON_ONCE(!changed); 1944 1945 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1946 if (ret) 1947 goto out_kfree_queues; 1948 1949 /* sanity check icdoff */ 1950 if (ctrl->ctrl.icdoff) { 1951 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1952 ret = -EINVAL; 1953 goto out_remove_admin_queue; 1954 } 1955 1956 /* sanity check keyed sgls */ 1957 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1958 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1959 ret = -EINVAL; 1960 goto out_remove_admin_queue; 1961 } 1962 1963 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1964 /* warn if maxcmd is lower than queue_size */ 1965 dev_warn(ctrl->ctrl.device, 1966 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1967 opts->queue_size, ctrl->ctrl.maxcmd); 1968 opts->queue_size = ctrl->ctrl.maxcmd; 1969 } 1970 1971 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1972 /* warn if sqsize is lower than queue_size */ 1973 dev_warn(ctrl->ctrl.device, 1974 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1975 opts->queue_size, ctrl->ctrl.sqsize + 1); 1976 opts->queue_size = ctrl->ctrl.sqsize + 1; 1977 } 1978 1979 if (opts->nr_io_queues) { 1980 ret = nvme_rdma_configure_io_queues(ctrl, true); 1981 if (ret) 1982 goto out_remove_admin_queue; 1983 } 1984 1985 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1986 WARN_ON_ONCE(!changed); 1987 1988 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1989 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1990 1991 nvme_get_ctrl(&ctrl->ctrl); 1992 1993 mutex_lock(&nvme_rdma_ctrl_mutex); 1994 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1995 mutex_unlock(&nvme_rdma_ctrl_mutex); 1996 1997 nvme_start_ctrl(&ctrl->ctrl); 1998 1999 return &ctrl->ctrl; 2000 2001 out_remove_admin_queue: 2002 nvme_rdma_destroy_admin_queue(ctrl, true); 2003 out_kfree_queues: 2004 kfree(ctrl->queues); 2005 out_uninit_ctrl: 2006 nvme_uninit_ctrl(&ctrl->ctrl); 2007 nvme_put_ctrl(&ctrl->ctrl); 2008 if (ret > 0) 2009 ret = -EIO; 2010 return ERR_PTR(ret); 2011 out_free_ctrl: 2012 kfree(ctrl); 2013 return ERR_PTR(ret); 2014 } 2015 2016 static struct nvmf_transport_ops nvme_rdma_transport = { 2017 .name = "rdma", 2018 .module = THIS_MODULE, 2019 .required_opts = NVMF_OPT_TRADDR, 2020 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2021 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2022 .create_ctrl = nvme_rdma_create_ctrl, 2023 }; 2024 2025 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2026 { 2027 struct nvme_rdma_ctrl *ctrl; 2028 2029 /* Delete all controllers using this device */ 2030 mutex_lock(&nvme_rdma_ctrl_mutex); 2031 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2032 if (ctrl->device->dev != ib_device) 2033 continue; 2034 dev_info(ctrl->ctrl.device, 2035 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2036 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2037 nvme_delete_ctrl(&ctrl->ctrl); 2038 } 2039 mutex_unlock(&nvme_rdma_ctrl_mutex); 2040 2041 flush_workqueue(nvme_delete_wq); 2042 } 2043 2044 static struct ib_client nvme_rdma_ib_client = { 2045 .name = "nvme_rdma", 2046 .remove = nvme_rdma_remove_one 2047 }; 2048 2049 static int __init nvme_rdma_init_module(void) 2050 { 2051 int ret; 2052 2053 ret = ib_register_client(&nvme_rdma_ib_client); 2054 if (ret) 2055 return ret; 2056 2057 ret = nvmf_register_transport(&nvme_rdma_transport); 2058 if (ret) 2059 goto err_unreg_client; 2060 2061 return 0; 2062 2063 err_unreg_client: 2064 ib_unregister_client(&nvme_rdma_ib_client); 2065 return ret; 2066 } 2067 2068 static void __exit nvme_rdma_cleanup_module(void) 2069 { 2070 nvmf_unregister_transport(&nvme_rdma_transport); 2071 ib_unregister_client(&nvme_rdma_ib_client); 2072 } 2073 2074 module_init(nvme_rdma_init_module); 2075 module_exit(nvme_rdma_cleanup_module); 2076 2077 MODULE_LICENSE("GPL v2"); 2078