1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 }; 51 52 struct nvme_rdma_qe { 53 struct ib_cqe cqe; 54 void *data; 55 u64 dma; 56 }; 57 58 struct nvme_rdma_queue; 59 struct nvme_rdma_request { 60 struct nvme_request req; 61 struct ib_mr *mr; 62 struct nvme_rdma_qe sqe; 63 union nvme_result result; 64 __le16 status; 65 refcount_t ref; 66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 67 u32 num_sge; 68 int nents; 69 struct ib_reg_wr reg_wr; 70 struct ib_cqe reg_cqe; 71 struct nvme_rdma_queue *queue; 72 struct sg_table sg_table; 73 struct scatterlist first_sgl[]; 74 }; 75 76 enum nvme_rdma_queue_flags { 77 NVME_RDMA_Q_ALLOCATED = 0, 78 NVME_RDMA_Q_LIVE = 1, 79 NVME_RDMA_Q_TR_READY = 2, 80 }; 81 82 struct nvme_rdma_queue { 83 struct nvme_rdma_qe *rsp_ring; 84 int queue_size; 85 size_t cmnd_capsule_len; 86 struct nvme_rdma_ctrl *ctrl; 87 struct nvme_rdma_device *device; 88 struct ib_cq *ib_cq; 89 struct ib_qp *qp; 90 91 unsigned long flags; 92 struct rdma_cm_id *cm_id; 93 int cm_error; 94 struct completion cm_done; 95 }; 96 97 struct nvme_rdma_ctrl { 98 /* read only in the hot path */ 99 struct nvme_rdma_queue *queues; 100 101 /* other member variables */ 102 struct blk_mq_tag_set tag_set; 103 struct work_struct err_work; 104 105 struct nvme_rdma_qe async_event_sqe; 106 107 struct delayed_work reconnect_work; 108 109 struct list_head list; 110 111 struct blk_mq_tag_set admin_tag_set; 112 struct nvme_rdma_device *device; 113 114 u32 max_fr_pages; 115 116 struct sockaddr_storage addr; 117 struct sockaddr_storage src_addr; 118 119 struct nvme_ctrl ctrl; 120 }; 121 122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 123 { 124 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 125 } 126 127 static LIST_HEAD(device_list); 128 static DEFINE_MUTEX(device_list_mutex); 129 130 static LIST_HEAD(nvme_rdma_ctrl_list); 131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 132 133 /* 134 * Disabling this option makes small I/O goes faster, but is fundamentally 135 * unsafe. With it turned off we will have to register a global rkey that 136 * allows read and write access to all physical memory. 137 */ 138 static bool register_always = true; 139 module_param(register_always, bool, 0444); 140 MODULE_PARM_DESC(register_always, 141 "Use memory registration even for contiguous memory regions"); 142 143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 144 struct rdma_cm_event *event); 145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 146 147 static const struct blk_mq_ops nvme_rdma_mq_ops; 148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 149 150 /* XXX: really should move to a generic header sooner or later.. */ 151 static inline void put_unaligned_le24(u32 val, u8 *p) 152 { 153 *p++ = val; 154 *p++ = val >> 8; 155 *p++ = val >> 16; 156 } 157 158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 159 { 160 return queue - queue->ctrl->queues; 161 } 162 163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 164 { 165 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 166 } 167 168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 169 size_t capsule_size, enum dma_data_direction dir) 170 { 171 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 172 kfree(qe->data); 173 } 174 175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 176 size_t capsule_size, enum dma_data_direction dir) 177 { 178 qe->data = kzalloc(capsule_size, GFP_KERNEL); 179 if (!qe->data) 180 return -ENOMEM; 181 182 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 183 if (ib_dma_mapping_error(ibdev, qe->dma)) { 184 kfree(qe->data); 185 return -ENOMEM; 186 } 187 188 return 0; 189 } 190 191 static void nvme_rdma_free_ring(struct ib_device *ibdev, 192 struct nvme_rdma_qe *ring, size_t ib_queue_size, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 int i; 196 197 for (i = 0; i < ib_queue_size; i++) 198 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 199 kfree(ring); 200 } 201 202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 203 size_t ib_queue_size, size_t capsule_size, 204 enum dma_data_direction dir) 205 { 206 struct nvme_rdma_qe *ring; 207 int i; 208 209 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 210 if (!ring) 211 return NULL; 212 213 for (i = 0; i < ib_queue_size; i++) { 214 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 215 goto out_free_ring; 216 } 217 218 return ring; 219 220 out_free_ring: 221 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 222 return NULL; 223 } 224 225 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 226 { 227 pr_debug("QP event %s (%d)\n", 228 ib_event_msg(event->event), event->event); 229 230 } 231 232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 233 { 234 wait_for_completion_interruptible_timeout(&queue->cm_done, 235 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 236 return queue->cm_error; 237 } 238 239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 240 { 241 struct nvme_rdma_device *dev = queue->device; 242 struct ib_qp_init_attr init_attr; 243 int ret; 244 245 memset(&init_attr, 0, sizeof(init_attr)); 246 init_attr.event_handler = nvme_rdma_qp_event; 247 /* +1 for drain */ 248 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 249 /* +1 for drain */ 250 init_attr.cap.max_recv_wr = queue->queue_size + 1; 251 init_attr.cap.max_recv_sge = 1; 252 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 253 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 254 init_attr.qp_type = IB_QPT_RC; 255 init_attr.send_cq = queue->ib_cq; 256 init_attr.recv_cq = queue->ib_cq; 257 258 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 259 260 queue->qp = queue->cm_id->qp; 261 return ret; 262 } 263 264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 265 struct request *rq, unsigned int hctx_idx) 266 { 267 struct nvme_rdma_ctrl *ctrl = set->driver_data; 268 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 269 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 270 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 271 struct nvme_rdma_device *dev = queue->device; 272 273 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 274 DMA_TO_DEVICE); 275 } 276 277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 278 struct request *rq, unsigned int hctx_idx, 279 unsigned int numa_node) 280 { 281 struct nvme_rdma_ctrl *ctrl = set->driver_data; 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 284 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 285 struct nvme_rdma_device *dev = queue->device; 286 struct ib_device *ibdev = dev->dev; 287 int ret; 288 289 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 290 DMA_TO_DEVICE); 291 if (ret) 292 return ret; 293 294 req->queue = queue; 295 296 return 0; 297 } 298 299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 300 unsigned int hctx_idx) 301 { 302 struct nvme_rdma_ctrl *ctrl = data; 303 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 304 305 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 306 307 hctx->driver_data = queue; 308 return 0; 309 } 310 311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 312 unsigned int hctx_idx) 313 { 314 struct nvme_rdma_ctrl *ctrl = data; 315 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 316 317 BUG_ON(hctx_idx != 0); 318 319 hctx->driver_data = queue; 320 return 0; 321 } 322 323 static void nvme_rdma_free_dev(struct kref *ref) 324 { 325 struct nvme_rdma_device *ndev = 326 container_of(ref, struct nvme_rdma_device, ref); 327 328 mutex_lock(&device_list_mutex); 329 list_del(&ndev->entry); 330 mutex_unlock(&device_list_mutex); 331 332 ib_dealloc_pd(ndev->pd); 333 kfree(ndev); 334 } 335 336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 337 { 338 kref_put(&dev->ref, nvme_rdma_free_dev); 339 } 340 341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 342 { 343 return kref_get_unless_zero(&dev->ref); 344 } 345 346 static struct nvme_rdma_device * 347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 348 { 349 struct nvme_rdma_device *ndev; 350 351 mutex_lock(&device_list_mutex); 352 list_for_each_entry(ndev, &device_list, entry) { 353 if (ndev->dev->node_guid == cm_id->device->node_guid && 354 nvme_rdma_dev_get(ndev)) 355 goto out_unlock; 356 } 357 358 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 359 if (!ndev) 360 goto out_err; 361 362 ndev->dev = cm_id->device; 363 kref_init(&ndev->ref); 364 365 ndev->pd = ib_alloc_pd(ndev->dev, 366 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 367 if (IS_ERR(ndev->pd)) 368 goto out_free_dev; 369 370 if (!(ndev->dev->attrs.device_cap_flags & 371 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 372 dev_err(&ndev->dev->dev, 373 "Memory registrations not supported.\n"); 374 goto out_free_pd; 375 } 376 377 list_add(&ndev->entry, &device_list); 378 out_unlock: 379 mutex_unlock(&device_list_mutex); 380 return ndev; 381 382 out_free_pd: 383 ib_dealloc_pd(ndev->pd); 384 out_free_dev: 385 kfree(ndev); 386 out_err: 387 mutex_unlock(&device_list_mutex); 388 return NULL; 389 } 390 391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 392 { 393 struct nvme_rdma_device *dev; 394 struct ib_device *ibdev; 395 396 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 397 return; 398 399 dev = queue->device; 400 ibdev = dev->dev; 401 402 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 403 404 /* 405 * The cm_id object might have been destroyed during RDMA connection 406 * establishment error flow to avoid getting other cma events, thus 407 * the destruction of the QP shouldn't use rdma_cm API. 408 */ 409 ib_destroy_qp(queue->qp); 410 ib_free_cq(queue->ib_cq); 411 412 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 413 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 414 415 nvme_rdma_dev_put(dev); 416 } 417 418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 419 { 420 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 421 ibdev->attrs.max_fast_reg_page_list_len); 422 } 423 424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 425 { 426 struct ib_device *ibdev; 427 const int send_wr_factor = 3; /* MR, SEND, INV */ 428 const int cq_factor = send_wr_factor + 1; /* + RECV */ 429 int comp_vector, idx = nvme_rdma_queue_idx(queue); 430 int ret; 431 432 queue->device = nvme_rdma_find_get_device(queue->cm_id); 433 if (!queue->device) { 434 dev_err(queue->cm_id->device->dev.parent, 435 "no client data found!\n"); 436 return -ECONNREFUSED; 437 } 438 ibdev = queue->device->dev; 439 440 /* 441 * Spread I/O queues completion vectors according their queue index. 442 * Admin queues can always go on completion vector 0. 443 */ 444 comp_vector = idx == 0 ? idx : idx - 1; 445 446 /* +1 for ib_stop_cq */ 447 queue->ib_cq = ib_alloc_cq(ibdev, queue, 448 cq_factor * queue->queue_size + 1, 449 comp_vector, IB_POLL_SOFTIRQ); 450 if (IS_ERR(queue->ib_cq)) { 451 ret = PTR_ERR(queue->ib_cq); 452 goto out_put_dev; 453 } 454 455 ret = nvme_rdma_create_qp(queue, send_wr_factor); 456 if (ret) 457 goto out_destroy_ib_cq; 458 459 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 460 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 461 if (!queue->rsp_ring) { 462 ret = -ENOMEM; 463 goto out_destroy_qp; 464 } 465 466 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 467 queue->queue_size, 468 IB_MR_TYPE_MEM_REG, 469 nvme_rdma_get_max_fr_pages(ibdev)); 470 if (ret) { 471 dev_err(queue->ctrl->ctrl.device, 472 "failed to initialize MR pool sized %d for QID %d\n", 473 queue->queue_size, idx); 474 goto out_destroy_ring; 475 } 476 477 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 478 479 return 0; 480 481 out_destroy_ring: 482 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 483 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 484 out_destroy_qp: 485 rdma_destroy_qp(queue->cm_id); 486 out_destroy_ib_cq: 487 ib_free_cq(queue->ib_cq); 488 out_put_dev: 489 nvme_rdma_dev_put(queue->device); 490 return ret; 491 } 492 493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 494 int idx, size_t queue_size) 495 { 496 struct nvme_rdma_queue *queue; 497 struct sockaddr *src_addr = NULL; 498 int ret; 499 500 queue = &ctrl->queues[idx]; 501 queue->ctrl = ctrl; 502 init_completion(&queue->cm_done); 503 504 if (idx > 0) 505 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 506 else 507 queue->cmnd_capsule_len = sizeof(struct nvme_command); 508 509 queue->queue_size = queue_size; 510 511 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 512 RDMA_PS_TCP, IB_QPT_RC); 513 if (IS_ERR(queue->cm_id)) { 514 dev_info(ctrl->ctrl.device, 515 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 516 return PTR_ERR(queue->cm_id); 517 } 518 519 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 520 src_addr = (struct sockaddr *)&ctrl->src_addr; 521 522 queue->cm_error = -ETIMEDOUT; 523 ret = rdma_resolve_addr(queue->cm_id, src_addr, 524 (struct sockaddr *)&ctrl->addr, 525 NVME_RDMA_CONNECT_TIMEOUT_MS); 526 if (ret) { 527 dev_info(ctrl->ctrl.device, 528 "rdma_resolve_addr failed (%d).\n", ret); 529 goto out_destroy_cm_id; 530 } 531 532 ret = nvme_rdma_wait_for_cm(queue); 533 if (ret) { 534 dev_info(ctrl->ctrl.device, 535 "rdma connection establishment failed (%d)\n", ret); 536 goto out_destroy_cm_id; 537 } 538 539 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 540 541 return 0; 542 543 out_destroy_cm_id: 544 rdma_destroy_id(queue->cm_id); 545 nvme_rdma_destroy_queue_ib(queue); 546 return ret; 547 } 548 549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 550 { 551 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 552 return; 553 554 rdma_disconnect(queue->cm_id); 555 ib_drain_qp(queue->qp); 556 } 557 558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 559 { 560 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 561 return; 562 563 if (nvme_rdma_queue_idx(queue) == 0) { 564 nvme_rdma_free_qe(queue->device->dev, 565 &queue->ctrl->async_event_sqe, 566 sizeof(struct nvme_command), DMA_TO_DEVICE); 567 } 568 569 nvme_rdma_destroy_queue_ib(queue); 570 rdma_destroy_id(queue->cm_id); 571 } 572 573 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 574 { 575 int i; 576 577 for (i = 1; i < ctrl->ctrl.queue_count; i++) 578 nvme_rdma_free_queue(&ctrl->queues[i]); 579 } 580 581 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 582 { 583 int i; 584 585 for (i = 1; i < ctrl->ctrl.queue_count; i++) 586 nvme_rdma_stop_queue(&ctrl->queues[i]); 587 } 588 589 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 590 { 591 int ret; 592 593 if (idx) 594 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 595 else 596 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 597 598 if (!ret) 599 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 600 else 601 dev_info(ctrl->ctrl.device, 602 "failed to connect queue: %d ret=%d\n", idx, ret); 603 return ret; 604 } 605 606 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 607 { 608 int i, ret = 0; 609 610 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 611 ret = nvme_rdma_start_queue(ctrl, i); 612 if (ret) 613 goto out_stop_queues; 614 } 615 616 return 0; 617 618 out_stop_queues: 619 for (i--; i >= 1; i--) 620 nvme_rdma_stop_queue(&ctrl->queues[i]); 621 return ret; 622 } 623 624 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 627 struct ib_device *ibdev = ctrl->device->dev; 628 unsigned int nr_io_queues; 629 int i, ret; 630 631 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 632 633 /* 634 * we map queues according to the device irq vectors for 635 * optimal locality so we don't need more queues than 636 * completion vectors. 637 */ 638 nr_io_queues = min_t(unsigned int, nr_io_queues, 639 ibdev->num_comp_vectors); 640 641 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 642 if (ret) 643 return ret; 644 645 ctrl->ctrl.queue_count = nr_io_queues + 1; 646 if (ctrl->ctrl.queue_count < 2) 647 return 0; 648 649 dev_info(ctrl->ctrl.device, 650 "creating %d I/O queues.\n", nr_io_queues); 651 652 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 653 ret = nvme_rdma_alloc_queue(ctrl, i, 654 ctrl->ctrl.sqsize + 1); 655 if (ret) 656 goto out_free_queues; 657 } 658 659 return 0; 660 661 out_free_queues: 662 for (i--; i >= 1; i--) 663 nvme_rdma_free_queue(&ctrl->queues[i]); 664 665 return ret; 666 } 667 668 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 669 struct blk_mq_tag_set *set) 670 { 671 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 672 673 blk_mq_free_tag_set(set); 674 nvme_rdma_dev_put(ctrl->device); 675 } 676 677 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 678 bool admin) 679 { 680 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 681 struct blk_mq_tag_set *set; 682 int ret; 683 684 if (admin) { 685 set = &ctrl->admin_tag_set; 686 memset(set, 0, sizeof(*set)); 687 set->ops = &nvme_rdma_admin_mq_ops; 688 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 689 set->reserved_tags = 2; /* connect + keep-alive */ 690 set->numa_node = NUMA_NO_NODE; 691 set->cmd_size = sizeof(struct nvme_rdma_request) + 692 SG_CHUNK_SIZE * sizeof(struct scatterlist); 693 set->driver_data = ctrl; 694 set->nr_hw_queues = 1; 695 set->timeout = ADMIN_TIMEOUT; 696 set->flags = BLK_MQ_F_NO_SCHED; 697 } else { 698 set = &ctrl->tag_set; 699 memset(set, 0, sizeof(*set)); 700 set->ops = &nvme_rdma_mq_ops; 701 set->queue_depth = nctrl->opts->queue_size; 702 set->reserved_tags = 1; /* fabric connect */ 703 set->numa_node = NUMA_NO_NODE; 704 set->flags = BLK_MQ_F_SHOULD_MERGE; 705 set->cmd_size = sizeof(struct nvme_rdma_request) + 706 SG_CHUNK_SIZE * sizeof(struct scatterlist); 707 set->driver_data = ctrl; 708 set->nr_hw_queues = nctrl->queue_count - 1; 709 set->timeout = NVME_IO_TIMEOUT; 710 } 711 712 ret = blk_mq_alloc_tag_set(set); 713 if (ret) 714 goto out; 715 716 /* 717 * We need a reference on the device as long as the tag_set is alive, 718 * as the MRs in the request structures need a valid ib_device. 719 */ 720 ret = nvme_rdma_dev_get(ctrl->device); 721 if (!ret) { 722 ret = -EINVAL; 723 goto out_free_tagset; 724 } 725 726 return set; 727 728 out_free_tagset: 729 blk_mq_free_tag_set(set); 730 out: 731 return ERR_PTR(ret); 732 } 733 734 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 735 bool remove) 736 { 737 nvme_rdma_stop_queue(&ctrl->queues[0]); 738 if (remove) { 739 blk_cleanup_queue(ctrl->ctrl.admin_q); 740 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 741 } 742 nvme_rdma_free_queue(&ctrl->queues[0]); 743 } 744 745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 746 bool new) 747 { 748 int error; 749 750 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 751 if (error) 752 return error; 753 754 ctrl->device = ctrl->queues[0].device; 755 756 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 757 758 if (new) { 759 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 760 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 761 error = PTR_ERR(ctrl->ctrl.admin_tagset); 762 goto out_free_queue; 763 } 764 765 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 766 if (IS_ERR(ctrl->ctrl.admin_q)) { 767 error = PTR_ERR(ctrl->ctrl.admin_q); 768 goto out_free_tagset; 769 } 770 } 771 772 error = nvme_rdma_start_queue(ctrl, 0); 773 if (error) 774 goto out_cleanup_queue; 775 776 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 777 &ctrl->ctrl.cap); 778 if (error) { 779 dev_err(ctrl->ctrl.device, 780 "prop_get NVME_REG_CAP failed\n"); 781 goto out_stop_queue; 782 } 783 784 ctrl->ctrl.sqsize = 785 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 786 787 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 788 if (error) 789 goto out_stop_queue; 790 791 ctrl->ctrl.max_hw_sectors = 792 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 793 794 error = nvme_init_identify(&ctrl->ctrl); 795 if (error) 796 goto out_stop_queue; 797 798 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 799 &ctrl->async_event_sqe, sizeof(struct nvme_command), 800 DMA_TO_DEVICE); 801 if (error) 802 goto out_stop_queue; 803 804 return 0; 805 806 out_stop_queue: 807 nvme_rdma_stop_queue(&ctrl->queues[0]); 808 out_cleanup_queue: 809 if (new) 810 blk_cleanup_queue(ctrl->ctrl.admin_q); 811 out_free_tagset: 812 if (new) 813 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 814 out_free_queue: 815 nvme_rdma_free_queue(&ctrl->queues[0]); 816 return error; 817 } 818 819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 820 bool remove) 821 { 822 nvme_rdma_stop_io_queues(ctrl); 823 if (remove) { 824 blk_cleanup_queue(ctrl->ctrl.connect_q); 825 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 826 } 827 nvme_rdma_free_io_queues(ctrl); 828 } 829 830 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 831 { 832 int ret; 833 834 ret = nvme_rdma_alloc_io_queues(ctrl); 835 if (ret) 836 return ret; 837 838 if (new) { 839 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 840 if (IS_ERR(ctrl->ctrl.tagset)) { 841 ret = PTR_ERR(ctrl->ctrl.tagset); 842 goto out_free_io_queues; 843 } 844 845 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 846 if (IS_ERR(ctrl->ctrl.connect_q)) { 847 ret = PTR_ERR(ctrl->ctrl.connect_q); 848 goto out_free_tag_set; 849 } 850 } else { 851 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 852 ctrl->ctrl.queue_count - 1); 853 } 854 855 ret = nvme_rdma_start_io_queues(ctrl); 856 if (ret) 857 goto out_cleanup_connect_q; 858 859 return 0; 860 861 out_cleanup_connect_q: 862 if (new) 863 blk_cleanup_queue(ctrl->ctrl.connect_q); 864 out_free_tag_set: 865 if (new) 866 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 867 out_free_io_queues: 868 nvme_rdma_free_io_queues(ctrl); 869 return ret; 870 } 871 872 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 873 { 874 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 875 876 cancel_work_sync(&ctrl->err_work); 877 cancel_delayed_work_sync(&ctrl->reconnect_work); 878 } 879 880 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 881 { 882 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 883 884 if (list_empty(&ctrl->list)) 885 goto free_ctrl; 886 887 mutex_lock(&nvme_rdma_ctrl_mutex); 888 list_del(&ctrl->list); 889 mutex_unlock(&nvme_rdma_ctrl_mutex); 890 891 kfree(ctrl->queues); 892 nvmf_free_options(nctrl->opts); 893 free_ctrl: 894 kfree(ctrl); 895 } 896 897 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 898 { 899 /* If we are resetting/deleting then do nothing */ 900 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 901 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 902 ctrl->ctrl.state == NVME_CTRL_LIVE); 903 return; 904 } 905 906 if (nvmf_should_reconnect(&ctrl->ctrl)) { 907 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 908 ctrl->ctrl.opts->reconnect_delay); 909 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 910 ctrl->ctrl.opts->reconnect_delay * HZ); 911 } else { 912 nvme_delete_ctrl(&ctrl->ctrl); 913 } 914 } 915 916 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 917 { 918 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 919 struct nvme_rdma_ctrl, reconnect_work); 920 bool changed; 921 int ret; 922 923 ++ctrl->ctrl.nr_reconnects; 924 925 ret = nvme_rdma_configure_admin_queue(ctrl, false); 926 if (ret) 927 goto requeue; 928 929 if (ctrl->ctrl.queue_count > 1) { 930 ret = nvme_rdma_configure_io_queues(ctrl, false); 931 if (ret) 932 goto destroy_admin; 933 } 934 935 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 936 if (!changed) { 937 /* state change failure is ok if we're in DELETING state */ 938 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 939 return; 940 } 941 942 nvme_start_ctrl(&ctrl->ctrl); 943 944 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 945 ctrl->ctrl.nr_reconnects); 946 947 ctrl->ctrl.nr_reconnects = 0; 948 949 return; 950 951 destroy_admin: 952 nvme_rdma_destroy_admin_queue(ctrl, false); 953 requeue: 954 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 955 ctrl->ctrl.nr_reconnects); 956 nvme_rdma_reconnect_or_remove(ctrl); 957 } 958 959 static void nvme_rdma_error_recovery_work(struct work_struct *work) 960 { 961 struct nvme_rdma_ctrl *ctrl = container_of(work, 962 struct nvme_rdma_ctrl, err_work); 963 964 nvme_stop_keep_alive(&ctrl->ctrl); 965 966 if (ctrl->ctrl.queue_count > 1) { 967 nvme_stop_queues(&ctrl->ctrl); 968 blk_mq_tagset_busy_iter(&ctrl->tag_set, 969 nvme_cancel_request, &ctrl->ctrl); 970 nvme_rdma_destroy_io_queues(ctrl, false); 971 } 972 973 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 974 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 975 nvme_cancel_request, &ctrl->ctrl); 976 nvme_rdma_destroy_admin_queue(ctrl, false); 977 978 /* 979 * queues are not a live anymore, so restart the queues to fail fast 980 * new IO 981 */ 982 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 983 nvme_start_queues(&ctrl->ctrl); 984 985 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 986 /* state change failure is ok if we're in DELETING state */ 987 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 988 return; 989 } 990 991 nvme_rdma_reconnect_or_remove(ctrl); 992 } 993 994 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 995 { 996 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 997 return; 998 999 queue_work(nvme_wq, &ctrl->err_work); 1000 } 1001 1002 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1003 const char *op) 1004 { 1005 struct nvme_rdma_queue *queue = cq->cq_context; 1006 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1007 1008 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1009 dev_info(ctrl->ctrl.device, 1010 "%s for CQE 0x%p failed with status %s (%d)\n", 1011 op, wc->wr_cqe, 1012 ib_wc_status_msg(wc->status), wc->status); 1013 nvme_rdma_error_recovery(ctrl); 1014 } 1015 1016 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1017 { 1018 if (unlikely(wc->status != IB_WC_SUCCESS)) 1019 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1020 } 1021 1022 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1023 { 1024 struct nvme_rdma_request *req = 1025 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1026 struct request *rq = blk_mq_rq_from_pdu(req); 1027 1028 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1029 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1030 return; 1031 } 1032 1033 if (refcount_dec_and_test(&req->ref)) 1034 nvme_end_request(rq, req->status, req->result); 1035 1036 } 1037 1038 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1039 struct nvme_rdma_request *req) 1040 { 1041 struct ib_send_wr *bad_wr; 1042 struct ib_send_wr wr = { 1043 .opcode = IB_WR_LOCAL_INV, 1044 .next = NULL, 1045 .num_sge = 0, 1046 .send_flags = IB_SEND_SIGNALED, 1047 .ex.invalidate_rkey = req->mr->rkey, 1048 }; 1049 1050 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1051 wr.wr_cqe = &req->reg_cqe; 1052 1053 return ib_post_send(queue->qp, &wr, &bad_wr); 1054 } 1055 1056 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1057 struct request *rq) 1058 { 1059 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1060 struct nvme_rdma_device *dev = queue->device; 1061 struct ib_device *ibdev = dev->dev; 1062 1063 if (!blk_rq_payload_bytes(rq)) 1064 return; 1065 1066 if (req->mr) { 1067 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1068 req->mr = NULL; 1069 } 1070 1071 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1072 req->nents, rq_data_dir(rq) == 1073 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1074 1075 nvme_cleanup_cmd(rq); 1076 sg_free_table_chained(&req->sg_table, true); 1077 } 1078 1079 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1080 { 1081 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1082 1083 sg->addr = 0; 1084 put_unaligned_le24(0, sg->length); 1085 put_unaligned_le32(0, sg->key); 1086 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1087 return 0; 1088 } 1089 1090 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1091 struct nvme_rdma_request *req, struct nvme_command *c) 1092 { 1093 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1094 1095 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1096 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1097 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1098 1099 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1100 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1101 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1102 1103 req->num_sge++; 1104 return 0; 1105 } 1106 1107 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1108 struct nvme_rdma_request *req, struct nvme_command *c) 1109 { 1110 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1111 1112 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1113 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1114 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1115 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1116 return 0; 1117 } 1118 1119 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1120 struct nvme_rdma_request *req, struct nvme_command *c, 1121 int count) 1122 { 1123 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1124 int nr; 1125 1126 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1127 if (WARN_ON_ONCE(!req->mr)) 1128 return -EAGAIN; 1129 1130 /* 1131 * Align the MR to a 4K page size to match the ctrl page size and 1132 * the block virtual boundary. 1133 */ 1134 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1135 if (unlikely(nr < count)) { 1136 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1137 req->mr = NULL; 1138 if (nr < 0) 1139 return nr; 1140 return -EINVAL; 1141 } 1142 1143 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1144 1145 req->reg_cqe.done = nvme_rdma_memreg_done; 1146 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1147 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1148 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1149 req->reg_wr.wr.num_sge = 0; 1150 req->reg_wr.mr = req->mr; 1151 req->reg_wr.key = req->mr->rkey; 1152 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1153 IB_ACCESS_REMOTE_READ | 1154 IB_ACCESS_REMOTE_WRITE; 1155 1156 sg->addr = cpu_to_le64(req->mr->iova); 1157 put_unaligned_le24(req->mr->length, sg->length); 1158 put_unaligned_le32(req->mr->rkey, sg->key); 1159 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1160 NVME_SGL_FMT_INVALIDATE; 1161 1162 return 0; 1163 } 1164 1165 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1166 struct request *rq, struct nvme_command *c) 1167 { 1168 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1169 struct nvme_rdma_device *dev = queue->device; 1170 struct ib_device *ibdev = dev->dev; 1171 int count, ret; 1172 1173 req->num_sge = 1; 1174 refcount_set(&req->ref, 2); /* send and recv completions */ 1175 1176 c->common.flags |= NVME_CMD_SGL_METABUF; 1177 1178 if (!blk_rq_payload_bytes(rq)) 1179 return nvme_rdma_set_sg_null(c); 1180 1181 req->sg_table.sgl = req->first_sgl; 1182 ret = sg_alloc_table_chained(&req->sg_table, 1183 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1184 if (ret) 1185 return -ENOMEM; 1186 1187 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1188 1189 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1190 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1191 if (unlikely(count <= 0)) { 1192 ret = -EIO; 1193 goto out_free_table; 1194 } 1195 1196 if (count == 1) { 1197 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1198 blk_rq_payload_bytes(rq) <= 1199 nvme_rdma_inline_data_size(queue)) { 1200 ret = nvme_rdma_map_sg_inline(queue, req, c); 1201 goto out; 1202 } 1203 1204 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1205 ret = nvme_rdma_map_sg_single(queue, req, c); 1206 goto out; 1207 } 1208 } 1209 1210 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1211 out: 1212 if (unlikely(ret)) 1213 goto out_unmap_sg; 1214 1215 return 0; 1216 1217 out_unmap_sg: 1218 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1219 req->nents, rq_data_dir(rq) == 1220 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1221 out_free_table: 1222 sg_free_table_chained(&req->sg_table, true); 1223 return ret; 1224 } 1225 1226 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1227 { 1228 struct nvme_rdma_qe *qe = 1229 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1230 struct nvme_rdma_request *req = 1231 container_of(qe, struct nvme_rdma_request, sqe); 1232 struct request *rq = blk_mq_rq_from_pdu(req); 1233 1234 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1235 nvme_rdma_wr_error(cq, wc, "SEND"); 1236 return; 1237 } 1238 1239 if (refcount_dec_and_test(&req->ref)) 1240 nvme_end_request(rq, req->status, req->result); 1241 } 1242 1243 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1244 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1245 struct ib_send_wr *first) 1246 { 1247 struct ib_send_wr wr, *bad_wr; 1248 int ret; 1249 1250 sge->addr = qe->dma; 1251 sge->length = sizeof(struct nvme_command), 1252 sge->lkey = queue->device->pd->local_dma_lkey; 1253 1254 wr.next = NULL; 1255 wr.wr_cqe = &qe->cqe; 1256 wr.sg_list = sge; 1257 wr.num_sge = num_sge; 1258 wr.opcode = IB_WR_SEND; 1259 wr.send_flags = IB_SEND_SIGNALED; 1260 1261 if (first) 1262 first->next = ≀ 1263 else 1264 first = ≀ 1265 1266 ret = ib_post_send(queue->qp, first, &bad_wr); 1267 if (unlikely(ret)) { 1268 dev_err(queue->ctrl->ctrl.device, 1269 "%s failed with error code %d\n", __func__, ret); 1270 } 1271 return ret; 1272 } 1273 1274 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1275 struct nvme_rdma_qe *qe) 1276 { 1277 struct ib_recv_wr wr, *bad_wr; 1278 struct ib_sge list; 1279 int ret; 1280 1281 list.addr = qe->dma; 1282 list.length = sizeof(struct nvme_completion); 1283 list.lkey = queue->device->pd->local_dma_lkey; 1284 1285 qe->cqe.done = nvme_rdma_recv_done; 1286 1287 wr.next = NULL; 1288 wr.wr_cqe = &qe->cqe; 1289 wr.sg_list = &list; 1290 wr.num_sge = 1; 1291 1292 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1293 if (unlikely(ret)) { 1294 dev_err(queue->ctrl->ctrl.device, 1295 "%s failed with error code %d\n", __func__, ret); 1296 } 1297 return ret; 1298 } 1299 1300 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1301 { 1302 u32 queue_idx = nvme_rdma_queue_idx(queue); 1303 1304 if (queue_idx == 0) 1305 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1306 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1307 } 1308 1309 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1310 { 1311 if (unlikely(wc->status != IB_WC_SUCCESS)) 1312 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1313 } 1314 1315 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1316 { 1317 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1318 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1319 struct ib_device *dev = queue->device->dev; 1320 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1321 struct nvme_command *cmd = sqe->data; 1322 struct ib_sge sge; 1323 int ret; 1324 1325 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1326 1327 memset(cmd, 0, sizeof(*cmd)); 1328 cmd->common.opcode = nvme_admin_async_event; 1329 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1330 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1331 nvme_rdma_set_sg_null(cmd); 1332 1333 sqe->cqe.done = nvme_rdma_async_done; 1334 1335 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1336 DMA_TO_DEVICE); 1337 1338 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1339 WARN_ON_ONCE(ret); 1340 } 1341 1342 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1343 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1344 { 1345 struct request *rq; 1346 struct nvme_rdma_request *req; 1347 int ret = 0; 1348 1349 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1350 if (!rq) { 1351 dev_err(queue->ctrl->ctrl.device, 1352 "tag 0x%x on QP %#x not found\n", 1353 cqe->command_id, queue->qp->qp_num); 1354 nvme_rdma_error_recovery(queue->ctrl); 1355 return ret; 1356 } 1357 req = blk_mq_rq_to_pdu(rq); 1358 1359 req->status = cqe->status; 1360 req->result = cqe->result; 1361 1362 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1363 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1364 dev_err(queue->ctrl->ctrl.device, 1365 "Bogus remote invalidation for rkey %#x\n", 1366 req->mr->rkey); 1367 nvme_rdma_error_recovery(queue->ctrl); 1368 } 1369 } else if (req->mr) { 1370 ret = nvme_rdma_inv_rkey(queue, req); 1371 if (unlikely(ret < 0)) { 1372 dev_err(queue->ctrl->ctrl.device, 1373 "Queueing INV WR for rkey %#x failed (%d)\n", 1374 req->mr->rkey, ret); 1375 nvme_rdma_error_recovery(queue->ctrl); 1376 } 1377 /* the local invalidation completion will end the request */ 1378 return 0; 1379 } 1380 1381 if (refcount_dec_and_test(&req->ref)) { 1382 if (rq->tag == tag) 1383 ret = 1; 1384 nvme_end_request(rq, req->status, req->result); 1385 } 1386 1387 return ret; 1388 } 1389 1390 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1391 { 1392 struct nvme_rdma_qe *qe = 1393 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1394 struct nvme_rdma_queue *queue = cq->cq_context; 1395 struct ib_device *ibdev = queue->device->dev; 1396 struct nvme_completion *cqe = qe->data; 1397 const size_t len = sizeof(struct nvme_completion); 1398 int ret = 0; 1399 1400 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1401 nvme_rdma_wr_error(cq, wc, "RECV"); 1402 return 0; 1403 } 1404 1405 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1406 /* 1407 * AEN requests are special as they don't time out and can 1408 * survive any kind of queue freeze and often don't respond to 1409 * aborts. We don't even bother to allocate a struct request 1410 * for them but rather special case them here. 1411 */ 1412 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1413 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1414 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1415 &cqe->result); 1416 else 1417 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1418 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1419 1420 nvme_rdma_post_recv(queue, qe); 1421 return ret; 1422 } 1423 1424 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1425 { 1426 __nvme_rdma_recv_done(cq, wc, -1); 1427 } 1428 1429 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1430 { 1431 int ret, i; 1432 1433 for (i = 0; i < queue->queue_size; i++) { 1434 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1435 if (ret) 1436 goto out_destroy_queue_ib; 1437 } 1438 1439 return 0; 1440 1441 out_destroy_queue_ib: 1442 nvme_rdma_destroy_queue_ib(queue); 1443 return ret; 1444 } 1445 1446 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1447 struct rdma_cm_event *ev) 1448 { 1449 struct rdma_cm_id *cm_id = queue->cm_id; 1450 int status = ev->status; 1451 const char *rej_msg; 1452 const struct nvme_rdma_cm_rej *rej_data; 1453 u8 rej_data_len; 1454 1455 rej_msg = rdma_reject_msg(cm_id, status); 1456 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1457 1458 if (rej_data && rej_data_len >= sizeof(u16)) { 1459 u16 sts = le16_to_cpu(rej_data->sts); 1460 1461 dev_err(queue->ctrl->ctrl.device, 1462 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1463 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1464 } else { 1465 dev_err(queue->ctrl->ctrl.device, 1466 "Connect rejected: status %d (%s).\n", status, rej_msg); 1467 } 1468 1469 return -ECONNRESET; 1470 } 1471 1472 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1473 { 1474 int ret; 1475 1476 ret = nvme_rdma_create_queue_ib(queue); 1477 if (ret) 1478 return ret; 1479 1480 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1481 if (ret) { 1482 dev_err(queue->ctrl->ctrl.device, 1483 "rdma_resolve_route failed (%d).\n", 1484 queue->cm_error); 1485 goto out_destroy_queue; 1486 } 1487 1488 return 0; 1489 1490 out_destroy_queue: 1491 nvme_rdma_destroy_queue_ib(queue); 1492 return ret; 1493 } 1494 1495 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1496 { 1497 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1498 struct rdma_conn_param param = { }; 1499 struct nvme_rdma_cm_req priv = { }; 1500 int ret; 1501 1502 param.qp_num = queue->qp->qp_num; 1503 param.flow_control = 1; 1504 1505 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1506 /* maximum retry count */ 1507 param.retry_count = 7; 1508 param.rnr_retry_count = 7; 1509 param.private_data = &priv; 1510 param.private_data_len = sizeof(priv); 1511 1512 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1513 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1514 /* 1515 * set the admin queue depth to the minimum size 1516 * specified by the Fabrics standard. 1517 */ 1518 if (priv.qid == 0) { 1519 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1520 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1521 } else { 1522 /* 1523 * current interpretation of the fabrics spec 1524 * is at minimum you make hrqsize sqsize+1, or a 1525 * 1's based representation of sqsize. 1526 */ 1527 priv.hrqsize = cpu_to_le16(queue->queue_size); 1528 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1529 } 1530 1531 ret = rdma_connect(queue->cm_id, ¶m); 1532 if (ret) { 1533 dev_err(ctrl->ctrl.device, 1534 "rdma_connect failed (%d).\n", ret); 1535 goto out_destroy_queue_ib; 1536 } 1537 1538 return 0; 1539 1540 out_destroy_queue_ib: 1541 nvme_rdma_destroy_queue_ib(queue); 1542 return ret; 1543 } 1544 1545 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1546 struct rdma_cm_event *ev) 1547 { 1548 struct nvme_rdma_queue *queue = cm_id->context; 1549 int cm_error = 0; 1550 1551 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1552 rdma_event_msg(ev->event), ev->event, 1553 ev->status, cm_id); 1554 1555 switch (ev->event) { 1556 case RDMA_CM_EVENT_ADDR_RESOLVED: 1557 cm_error = nvme_rdma_addr_resolved(queue); 1558 break; 1559 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1560 cm_error = nvme_rdma_route_resolved(queue); 1561 break; 1562 case RDMA_CM_EVENT_ESTABLISHED: 1563 queue->cm_error = nvme_rdma_conn_established(queue); 1564 /* complete cm_done regardless of success/failure */ 1565 complete(&queue->cm_done); 1566 return 0; 1567 case RDMA_CM_EVENT_REJECTED: 1568 nvme_rdma_destroy_queue_ib(queue); 1569 cm_error = nvme_rdma_conn_rejected(queue, ev); 1570 break; 1571 case RDMA_CM_EVENT_ROUTE_ERROR: 1572 case RDMA_CM_EVENT_CONNECT_ERROR: 1573 case RDMA_CM_EVENT_UNREACHABLE: 1574 nvme_rdma_destroy_queue_ib(queue); 1575 case RDMA_CM_EVENT_ADDR_ERROR: 1576 dev_dbg(queue->ctrl->ctrl.device, 1577 "CM error event %d\n", ev->event); 1578 cm_error = -ECONNRESET; 1579 break; 1580 case RDMA_CM_EVENT_DISCONNECTED: 1581 case RDMA_CM_EVENT_ADDR_CHANGE: 1582 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1583 dev_dbg(queue->ctrl->ctrl.device, 1584 "disconnect received - connection closed\n"); 1585 nvme_rdma_error_recovery(queue->ctrl); 1586 break; 1587 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1588 /* device removal is handled via the ib_client API */ 1589 break; 1590 default: 1591 dev_err(queue->ctrl->ctrl.device, 1592 "Unexpected RDMA CM event (%d)\n", ev->event); 1593 nvme_rdma_error_recovery(queue->ctrl); 1594 break; 1595 } 1596 1597 if (cm_error) { 1598 queue->cm_error = cm_error; 1599 complete(&queue->cm_done); 1600 } 1601 1602 return 0; 1603 } 1604 1605 static enum blk_eh_timer_return 1606 nvme_rdma_timeout(struct request *rq, bool reserved) 1607 { 1608 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1609 1610 dev_warn(req->queue->ctrl->ctrl.device, 1611 "I/O %d QID %d timeout, reset controller\n", 1612 rq->tag, nvme_rdma_queue_idx(req->queue)); 1613 1614 /* queue error recovery */ 1615 nvme_rdma_error_recovery(req->queue->ctrl); 1616 1617 /* fail with DNR on cmd timeout */ 1618 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1619 1620 return BLK_EH_DONE; 1621 } 1622 1623 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1624 const struct blk_mq_queue_data *bd) 1625 { 1626 struct nvme_ns *ns = hctx->queue->queuedata; 1627 struct nvme_rdma_queue *queue = hctx->driver_data; 1628 struct request *rq = bd->rq; 1629 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1630 struct nvme_rdma_qe *sqe = &req->sqe; 1631 struct nvme_command *c = sqe->data; 1632 struct ib_device *dev; 1633 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1634 blk_status_t ret; 1635 int err; 1636 1637 WARN_ON_ONCE(rq->tag < 0); 1638 1639 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1640 return nvmf_fail_nonready_command(rq); 1641 1642 dev = queue->device->dev; 1643 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1644 sizeof(struct nvme_command), DMA_TO_DEVICE); 1645 1646 ret = nvme_setup_cmd(ns, rq, c); 1647 if (ret) 1648 return ret; 1649 1650 blk_mq_start_request(rq); 1651 1652 err = nvme_rdma_map_data(queue, rq, c); 1653 if (unlikely(err < 0)) { 1654 dev_err(queue->ctrl->ctrl.device, 1655 "Failed to map data (%d)\n", err); 1656 nvme_cleanup_cmd(rq); 1657 goto err; 1658 } 1659 1660 sqe->cqe.done = nvme_rdma_send_done; 1661 1662 ib_dma_sync_single_for_device(dev, sqe->dma, 1663 sizeof(struct nvme_command), DMA_TO_DEVICE); 1664 1665 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1666 req->mr ? &req->reg_wr.wr : NULL); 1667 if (unlikely(err)) { 1668 nvme_rdma_unmap_data(queue, rq); 1669 goto err; 1670 } 1671 1672 return BLK_STS_OK; 1673 err: 1674 if (err == -ENOMEM || err == -EAGAIN) 1675 return BLK_STS_RESOURCE; 1676 return BLK_STS_IOERR; 1677 } 1678 1679 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1680 { 1681 struct nvme_rdma_queue *queue = hctx->driver_data; 1682 struct ib_cq *cq = queue->ib_cq; 1683 struct ib_wc wc; 1684 int found = 0; 1685 1686 while (ib_poll_cq(cq, 1, &wc) > 0) { 1687 struct ib_cqe *cqe = wc.wr_cqe; 1688 1689 if (cqe) { 1690 if (cqe->done == nvme_rdma_recv_done) 1691 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1692 else 1693 cqe->done(cq, &wc); 1694 } 1695 } 1696 1697 return found; 1698 } 1699 1700 static void nvme_rdma_complete_rq(struct request *rq) 1701 { 1702 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1703 1704 nvme_rdma_unmap_data(req->queue, rq); 1705 nvme_complete_rq(rq); 1706 } 1707 1708 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1709 { 1710 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1711 1712 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1713 } 1714 1715 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1716 .queue_rq = nvme_rdma_queue_rq, 1717 .complete = nvme_rdma_complete_rq, 1718 .init_request = nvme_rdma_init_request, 1719 .exit_request = nvme_rdma_exit_request, 1720 .init_hctx = nvme_rdma_init_hctx, 1721 .poll = nvme_rdma_poll, 1722 .timeout = nvme_rdma_timeout, 1723 .map_queues = nvme_rdma_map_queues, 1724 }; 1725 1726 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1727 .queue_rq = nvme_rdma_queue_rq, 1728 .complete = nvme_rdma_complete_rq, 1729 .init_request = nvme_rdma_init_request, 1730 .exit_request = nvme_rdma_exit_request, 1731 .init_hctx = nvme_rdma_init_admin_hctx, 1732 .timeout = nvme_rdma_timeout, 1733 }; 1734 1735 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1736 { 1737 if (ctrl->ctrl.queue_count > 1) { 1738 nvme_stop_queues(&ctrl->ctrl); 1739 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1740 nvme_cancel_request, &ctrl->ctrl); 1741 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1742 } 1743 1744 if (shutdown) 1745 nvme_shutdown_ctrl(&ctrl->ctrl); 1746 else 1747 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1748 1749 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1750 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1751 nvme_cancel_request, &ctrl->ctrl); 1752 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1753 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1754 } 1755 1756 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1757 { 1758 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1759 } 1760 1761 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1762 { 1763 struct nvme_rdma_ctrl *ctrl = 1764 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1765 int ret; 1766 bool changed; 1767 1768 nvme_stop_ctrl(&ctrl->ctrl); 1769 nvme_rdma_shutdown_ctrl(ctrl, false); 1770 1771 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1772 /* state change failure should never happen */ 1773 WARN_ON_ONCE(1); 1774 return; 1775 } 1776 1777 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1778 if (ret) 1779 goto out_fail; 1780 1781 if (ctrl->ctrl.queue_count > 1) { 1782 ret = nvme_rdma_configure_io_queues(ctrl, false); 1783 if (ret) 1784 goto out_fail; 1785 } 1786 1787 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1788 if (!changed) { 1789 /* state change failure is ok if we're in DELETING state */ 1790 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1791 return; 1792 } 1793 1794 nvme_start_ctrl(&ctrl->ctrl); 1795 1796 return; 1797 1798 out_fail: 1799 ++ctrl->ctrl.nr_reconnects; 1800 nvme_rdma_reconnect_or_remove(ctrl); 1801 } 1802 1803 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1804 .name = "rdma", 1805 .module = THIS_MODULE, 1806 .flags = NVME_F_FABRICS, 1807 .reg_read32 = nvmf_reg_read32, 1808 .reg_read64 = nvmf_reg_read64, 1809 .reg_write32 = nvmf_reg_write32, 1810 .free_ctrl = nvme_rdma_free_ctrl, 1811 .submit_async_event = nvme_rdma_submit_async_event, 1812 .delete_ctrl = nvme_rdma_delete_ctrl, 1813 .get_address = nvmf_get_address, 1814 .stop_ctrl = nvme_rdma_stop_ctrl, 1815 }; 1816 1817 static inline bool 1818 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1819 struct nvmf_ctrl_options *opts) 1820 { 1821 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1822 1823 1824 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1825 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1826 return false; 1827 1828 if (opts->mask & NVMF_OPT_TRSVCID && 1829 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1830 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1831 return false; 1832 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1833 if (strcmp(opts->trsvcid, stdport)) 1834 return false; 1835 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1836 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1837 return false; 1838 } 1839 /* else, it's a match as both have stdport. Fall to next checks */ 1840 1841 /* 1842 * checking the local address is rough. In most cases, one 1843 * is not specified and the host port is selected by the stack. 1844 * 1845 * Assume no match if: 1846 * local address is specified and address is not the same 1847 * local address is not specified but remote is, or vice versa 1848 * (admin using specific host_traddr when it matters). 1849 */ 1850 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1851 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1852 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1853 return false; 1854 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1855 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1856 return false; 1857 /* 1858 * if neither controller had an host port specified, assume it's 1859 * a match as everything else matched. 1860 */ 1861 1862 return true; 1863 } 1864 1865 /* 1866 * Fails a connection request if it matches an existing controller 1867 * (association) with the same tuple: 1868 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1869 * 1870 * if local address is not specified in the request, it will match an 1871 * existing controller with all the other parameters the same and no 1872 * local port address specified as well. 1873 * 1874 * The ports don't need to be compared as they are intrinsically 1875 * already matched by the port pointers supplied. 1876 */ 1877 static bool 1878 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1879 { 1880 struct nvme_rdma_ctrl *ctrl; 1881 bool found = false; 1882 1883 mutex_lock(&nvme_rdma_ctrl_mutex); 1884 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1885 found = __nvme_rdma_options_match(ctrl, opts); 1886 if (found) 1887 break; 1888 } 1889 mutex_unlock(&nvme_rdma_ctrl_mutex); 1890 1891 return found; 1892 } 1893 1894 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1895 struct nvmf_ctrl_options *opts) 1896 { 1897 struct nvme_rdma_ctrl *ctrl; 1898 int ret; 1899 bool changed; 1900 char *port; 1901 1902 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1903 if (!ctrl) 1904 return ERR_PTR(-ENOMEM); 1905 ctrl->ctrl.opts = opts; 1906 INIT_LIST_HEAD(&ctrl->list); 1907 1908 if (opts->mask & NVMF_OPT_TRSVCID) 1909 port = opts->trsvcid; 1910 else 1911 port = __stringify(NVME_RDMA_IP_PORT); 1912 1913 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1914 opts->traddr, port, &ctrl->addr); 1915 if (ret) { 1916 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1917 goto out_free_ctrl; 1918 } 1919 1920 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1921 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1922 opts->host_traddr, NULL, &ctrl->src_addr); 1923 if (ret) { 1924 pr_err("malformed src address passed: %s\n", 1925 opts->host_traddr); 1926 goto out_free_ctrl; 1927 } 1928 } 1929 1930 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1931 ret = -EALREADY; 1932 goto out_free_ctrl; 1933 } 1934 1935 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1936 0 /* no quirks, we're perfect! */); 1937 if (ret) 1938 goto out_free_ctrl; 1939 1940 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1941 nvme_rdma_reconnect_ctrl_work); 1942 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1943 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1944 1945 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1946 ctrl->ctrl.sqsize = opts->queue_size - 1; 1947 ctrl->ctrl.kato = opts->kato; 1948 1949 ret = -ENOMEM; 1950 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1951 GFP_KERNEL); 1952 if (!ctrl->queues) 1953 goto out_uninit_ctrl; 1954 1955 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1956 WARN_ON_ONCE(!changed); 1957 1958 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1959 if (ret) 1960 goto out_kfree_queues; 1961 1962 /* sanity check icdoff */ 1963 if (ctrl->ctrl.icdoff) { 1964 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1965 ret = -EINVAL; 1966 goto out_remove_admin_queue; 1967 } 1968 1969 /* sanity check keyed sgls */ 1970 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1971 dev_err(ctrl->ctrl.device, 1972 "Mandatory keyed sgls are not supported!\n"); 1973 ret = -EINVAL; 1974 goto out_remove_admin_queue; 1975 } 1976 1977 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1978 /* warn if maxcmd is lower than queue_size */ 1979 dev_warn(ctrl->ctrl.device, 1980 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1981 opts->queue_size, ctrl->ctrl.maxcmd); 1982 opts->queue_size = ctrl->ctrl.maxcmd; 1983 } 1984 1985 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1986 /* warn if sqsize is lower than queue_size */ 1987 dev_warn(ctrl->ctrl.device, 1988 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1989 opts->queue_size, ctrl->ctrl.sqsize + 1); 1990 opts->queue_size = ctrl->ctrl.sqsize + 1; 1991 } 1992 1993 if (opts->nr_io_queues) { 1994 ret = nvme_rdma_configure_io_queues(ctrl, true); 1995 if (ret) 1996 goto out_remove_admin_queue; 1997 } 1998 1999 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2000 WARN_ON_ONCE(!changed); 2001 2002 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2003 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2004 2005 nvme_get_ctrl(&ctrl->ctrl); 2006 2007 mutex_lock(&nvme_rdma_ctrl_mutex); 2008 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2009 mutex_unlock(&nvme_rdma_ctrl_mutex); 2010 2011 nvme_start_ctrl(&ctrl->ctrl); 2012 2013 return &ctrl->ctrl; 2014 2015 out_remove_admin_queue: 2016 nvme_rdma_destroy_admin_queue(ctrl, true); 2017 out_kfree_queues: 2018 kfree(ctrl->queues); 2019 out_uninit_ctrl: 2020 nvme_uninit_ctrl(&ctrl->ctrl); 2021 nvme_put_ctrl(&ctrl->ctrl); 2022 if (ret > 0) 2023 ret = -EIO; 2024 return ERR_PTR(ret); 2025 out_free_ctrl: 2026 kfree(ctrl); 2027 return ERR_PTR(ret); 2028 } 2029 2030 static struct nvmf_transport_ops nvme_rdma_transport = { 2031 .name = "rdma", 2032 .module = THIS_MODULE, 2033 .required_opts = NVMF_OPT_TRADDR, 2034 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2035 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2036 .create_ctrl = nvme_rdma_create_ctrl, 2037 }; 2038 2039 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2040 { 2041 struct nvme_rdma_ctrl *ctrl; 2042 struct nvme_rdma_device *ndev; 2043 bool found = false; 2044 2045 mutex_lock(&device_list_mutex); 2046 list_for_each_entry(ndev, &device_list, entry) { 2047 if (ndev->dev == ib_device) { 2048 found = true; 2049 break; 2050 } 2051 } 2052 mutex_unlock(&device_list_mutex); 2053 2054 if (!found) 2055 return; 2056 2057 /* Delete all controllers using this device */ 2058 mutex_lock(&nvme_rdma_ctrl_mutex); 2059 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2060 if (ctrl->device->dev != ib_device) 2061 continue; 2062 nvme_delete_ctrl(&ctrl->ctrl); 2063 } 2064 mutex_unlock(&nvme_rdma_ctrl_mutex); 2065 2066 flush_workqueue(nvme_delete_wq); 2067 } 2068 2069 static struct ib_client nvme_rdma_ib_client = { 2070 .name = "nvme_rdma", 2071 .remove = nvme_rdma_remove_one 2072 }; 2073 2074 static int __init nvme_rdma_init_module(void) 2075 { 2076 int ret; 2077 2078 ret = ib_register_client(&nvme_rdma_ib_client); 2079 if (ret) 2080 return ret; 2081 2082 ret = nvmf_register_transport(&nvme_rdma_transport); 2083 if (ret) 2084 goto err_unreg_client; 2085 2086 return 0; 2087 2088 err_unreg_client: 2089 ib_unregister_client(&nvme_rdma_ib_client); 2090 return ret; 2091 } 2092 2093 static void __exit nvme_rdma_cleanup_module(void) 2094 { 2095 nvmf_unregister_transport(&nvme_rdma_transport); 2096 ib_unregister_client(&nvme_rdma_ib_client); 2097 } 2098 2099 module_init(nvme_rdma_init_module); 2100 module_exit(nvme_rdma_cleanup_module); 2101 2102 MODULE_LICENSE("GPL v2"); 2103