1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <linux/nvme-rdma.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 38 39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 /* 46 * We handle AEN commands ourselves and don't even let the 47 * block layer know about them. 48 */ 49 #define NVME_RDMA_NR_AEN_COMMANDS 1 50 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 51 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 52 53 struct nvme_rdma_device { 54 struct ib_device *dev; 55 struct ib_pd *pd; 56 struct kref ref; 57 struct list_head entry; 58 }; 59 60 struct nvme_rdma_qe { 61 struct ib_cqe cqe; 62 void *data; 63 u64 dma; 64 }; 65 66 struct nvme_rdma_queue; 67 struct nvme_rdma_request { 68 struct nvme_request req; 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_CONNECTED = (1 << 0), 84 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 85 NVME_RDMA_Q_DELETING = (1 << 2), 86 NVME_RDMA_Q_LIVE = (1 << 3), 87 }; 88 89 struct nvme_rdma_queue { 90 struct nvme_rdma_qe *rsp_ring; 91 u8 sig_count; 92 int queue_size; 93 size_t cmnd_capsule_len; 94 struct nvme_rdma_ctrl *ctrl; 95 struct nvme_rdma_device *device; 96 struct ib_cq *ib_cq; 97 struct ib_qp *qp; 98 99 unsigned long flags; 100 struct rdma_cm_id *cm_id; 101 int cm_error; 102 struct completion cm_done; 103 }; 104 105 struct nvme_rdma_ctrl { 106 /* read and written in the hot path */ 107 spinlock_t lock; 108 109 /* read only in the hot path */ 110 struct nvme_rdma_queue *queues; 111 u32 queue_count; 112 113 /* other member variables */ 114 struct blk_mq_tag_set tag_set; 115 struct work_struct delete_work; 116 struct work_struct reset_work; 117 struct work_struct err_work; 118 119 struct nvme_rdma_qe async_event_sqe; 120 121 int reconnect_delay; 122 struct delayed_work reconnect_work; 123 124 struct list_head list; 125 126 struct blk_mq_tag_set admin_tag_set; 127 struct nvme_rdma_device *device; 128 129 u64 cap; 130 u32 max_fr_pages; 131 132 union { 133 struct sockaddr addr; 134 struct sockaddr_in addr_in; 135 }; 136 union { 137 struct sockaddr src_addr; 138 struct sockaddr_in src_addr_in; 139 }; 140 141 struct nvme_ctrl ctrl; 142 }; 143 144 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 145 { 146 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 147 } 148 149 static LIST_HEAD(device_list); 150 static DEFINE_MUTEX(device_list_mutex); 151 152 static LIST_HEAD(nvme_rdma_ctrl_list); 153 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 154 155 static struct workqueue_struct *nvme_rdma_wq; 156 157 /* 158 * Disabling this option makes small I/O goes faster, but is fundamentally 159 * unsafe. With it turned off we will have to register a global rkey that 160 * allows read and write access to all physical memory. 161 */ 162 static bool register_always = true; 163 module_param(register_always, bool, 0444); 164 MODULE_PARM_DESC(register_always, 165 "Use memory registration even for contiguous memory regions"); 166 167 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 168 struct rdma_cm_event *event); 169 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 170 171 /* XXX: really should move to a generic header sooner or later.. */ 172 static inline void put_unaligned_le24(u32 val, u8 *p) 173 { 174 *p++ = val; 175 *p++ = val >> 8; 176 *p++ = val >> 16; 177 } 178 179 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 180 { 181 return queue - queue->ctrl->queues; 182 } 183 184 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 185 { 186 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 187 } 188 189 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 190 size_t capsule_size, enum dma_data_direction dir) 191 { 192 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 193 kfree(qe->data); 194 } 195 196 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 197 size_t capsule_size, enum dma_data_direction dir) 198 { 199 qe->data = kzalloc(capsule_size, GFP_KERNEL); 200 if (!qe->data) 201 return -ENOMEM; 202 203 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 204 if (ib_dma_mapping_error(ibdev, qe->dma)) { 205 kfree(qe->data); 206 return -ENOMEM; 207 } 208 209 return 0; 210 } 211 212 static void nvme_rdma_free_ring(struct ib_device *ibdev, 213 struct nvme_rdma_qe *ring, size_t ib_queue_size, 214 size_t capsule_size, enum dma_data_direction dir) 215 { 216 int i; 217 218 for (i = 0; i < ib_queue_size; i++) 219 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 220 kfree(ring); 221 } 222 223 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 224 size_t ib_queue_size, size_t capsule_size, 225 enum dma_data_direction dir) 226 { 227 struct nvme_rdma_qe *ring; 228 int i; 229 230 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 231 if (!ring) 232 return NULL; 233 234 for (i = 0; i < ib_queue_size; i++) { 235 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 236 goto out_free_ring; 237 } 238 239 return ring; 240 241 out_free_ring: 242 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 243 return NULL; 244 } 245 246 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 247 { 248 pr_debug("QP event %s (%d)\n", 249 ib_event_msg(event->event), event->event); 250 251 } 252 253 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 254 { 255 wait_for_completion_interruptible_timeout(&queue->cm_done, 256 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 257 return queue->cm_error; 258 } 259 260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 261 { 262 struct nvme_rdma_device *dev = queue->device; 263 struct ib_qp_init_attr init_attr; 264 int ret; 265 266 memset(&init_attr, 0, sizeof(init_attr)); 267 init_attr.event_handler = nvme_rdma_qp_event; 268 /* +1 for drain */ 269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 270 /* +1 for drain */ 271 init_attr.cap.max_recv_wr = queue->queue_size + 1; 272 init_attr.cap.max_recv_sge = 1; 273 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 275 init_attr.qp_type = IB_QPT_RC; 276 init_attr.send_cq = queue->ib_cq; 277 init_attr.recv_cq = queue->ib_cq; 278 279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 280 281 queue->qp = queue->cm_id->qp; 282 return ret; 283 } 284 285 static int nvme_rdma_reinit_request(void *data, struct request *rq) 286 { 287 struct nvme_rdma_ctrl *ctrl = data; 288 struct nvme_rdma_device *dev = ctrl->device; 289 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 290 int ret = 0; 291 292 if (!req->mr->need_inval) 293 goto out; 294 295 ib_dereg_mr(req->mr); 296 297 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 298 ctrl->max_fr_pages); 299 if (IS_ERR(req->mr)) { 300 ret = PTR_ERR(req->mr); 301 req->mr = NULL; 302 goto out; 303 } 304 305 req->mr->need_inval = false; 306 307 out: 308 return ret; 309 } 310 311 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 312 struct request *rq, unsigned int queue_idx) 313 { 314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 315 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 316 struct nvme_rdma_device *dev = queue->device; 317 318 if (req->mr) 319 ib_dereg_mr(req->mr); 320 321 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 322 DMA_TO_DEVICE); 323 } 324 325 static void nvme_rdma_exit_request(void *data, struct request *rq, 326 unsigned int hctx_idx, unsigned int rq_idx) 327 { 328 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 329 } 330 331 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 332 unsigned int hctx_idx, unsigned int rq_idx) 333 { 334 return __nvme_rdma_exit_request(data, rq, 0); 335 } 336 337 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 338 struct request *rq, unsigned int queue_idx) 339 { 340 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 341 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 342 struct nvme_rdma_device *dev = queue->device; 343 struct ib_device *ibdev = dev->dev; 344 int ret; 345 346 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 347 DMA_TO_DEVICE); 348 if (ret) 349 return ret; 350 351 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 352 ctrl->max_fr_pages); 353 if (IS_ERR(req->mr)) { 354 ret = PTR_ERR(req->mr); 355 goto out_free_qe; 356 } 357 358 req->queue = queue; 359 360 return 0; 361 362 out_free_qe: 363 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 364 DMA_TO_DEVICE); 365 return -ENOMEM; 366 } 367 368 static int nvme_rdma_init_request(void *data, struct request *rq, 369 unsigned int hctx_idx, unsigned int rq_idx, 370 unsigned int numa_node) 371 { 372 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 373 } 374 375 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 376 unsigned int hctx_idx, unsigned int rq_idx, 377 unsigned int numa_node) 378 { 379 return __nvme_rdma_init_request(data, rq, 0); 380 } 381 382 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 383 unsigned int hctx_idx) 384 { 385 struct nvme_rdma_ctrl *ctrl = data; 386 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 387 388 BUG_ON(hctx_idx >= ctrl->queue_count); 389 390 hctx->driver_data = queue; 391 return 0; 392 } 393 394 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 395 unsigned int hctx_idx) 396 { 397 struct nvme_rdma_ctrl *ctrl = data; 398 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 399 400 BUG_ON(hctx_idx != 0); 401 402 hctx->driver_data = queue; 403 return 0; 404 } 405 406 static void nvme_rdma_free_dev(struct kref *ref) 407 { 408 struct nvme_rdma_device *ndev = 409 container_of(ref, struct nvme_rdma_device, ref); 410 411 mutex_lock(&device_list_mutex); 412 list_del(&ndev->entry); 413 mutex_unlock(&device_list_mutex); 414 415 ib_dealloc_pd(ndev->pd); 416 kfree(ndev); 417 } 418 419 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 420 { 421 kref_put(&dev->ref, nvme_rdma_free_dev); 422 } 423 424 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 425 { 426 return kref_get_unless_zero(&dev->ref); 427 } 428 429 static struct nvme_rdma_device * 430 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 431 { 432 struct nvme_rdma_device *ndev; 433 434 mutex_lock(&device_list_mutex); 435 list_for_each_entry(ndev, &device_list, entry) { 436 if (ndev->dev->node_guid == cm_id->device->node_guid && 437 nvme_rdma_dev_get(ndev)) 438 goto out_unlock; 439 } 440 441 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 442 if (!ndev) 443 goto out_err; 444 445 ndev->dev = cm_id->device; 446 kref_init(&ndev->ref); 447 448 ndev->pd = ib_alloc_pd(ndev->dev, 449 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 450 if (IS_ERR(ndev->pd)) 451 goto out_free_dev; 452 453 if (!(ndev->dev->attrs.device_cap_flags & 454 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 455 dev_err(&ndev->dev->dev, 456 "Memory registrations not supported.\n"); 457 goto out_free_pd; 458 } 459 460 list_add(&ndev->entry, &device_list); 461 out_unlock: 462 mutex_unlock(&device_list_mutex); 463 return ndev; 464 465 out_free_pd: 466 ib_dealloc_pd(ndev->pd); 467 out_free_dev: 468 kfree(ndev); 469 out_err: 470 mutex_unlock(&device_list_mutex); 471 return NULL; 472 } 473 474 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 475 { 476 struct nvme_rdma_device *dev; 477 struct ib_device *ibdev; 478 479 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 480 return; 481 482 dev = queue->device; 483 ibdev = dev->dev; 484 rdma_destroy_qp(queue->cm_id); 485 ib_free_cq(queue->ib_cq); 486 487 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 488 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 489 490 nvme_rdma_dev_put(dev); 491 } 492 493 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 494 struct nvme_rdma_device *dev) 495 { 496 struct ib_device *ibdev = dev->dev; 497 const int send_wr_factor = 3; /* MR, SEND, INV */ 498 const int cq_factor = send_wr_factor + 1; /* + RECV */ 499 int comp_vector, idx = nvme_rdma_queue_idx(queue); 500 501 int ret; 502 503 queue->device = dev; 504 505 /* 506 * The admin queue is barely used once the controller is live, so don't 507 * bother to spread it out. 508 */ 509 if (idx == 0) 510 comp_vector = 0; 511 else 512 comp_vector = idx % ibdev->num_comp_vectors; 513 514 515 /* +1 for ib_stop_cq */ 516 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 517 cq_factor * queue->queue_size + 1, comp_vector, 518 IB_POLL_SOFTIRQ); 519 if (IS_ERR(queue->ib_cq)) { 520 ret = PTR_ERR(queue->ib_cq); 521 goto out; 522 } 523 524 ret = nvme_rdma_create_qp(queue, send_wr_factor); 525 if (ret) 526 goto out_destroy_ib_cq; 527 528 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 529 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 530 if (!queue->rsp_ring) { 531 ret = -ENOMEM; 532 goto out_destroy_qp; 533 } 534 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 535 536 return 0; 537 538 out_destroy_qp: 539 ib_destroy_qp(queue->qp); 540 out_destroy_ib_cq: 541 ib_free_cq(queue->ib_cq); 542 out: 543 return ret; 544 } 545 546 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 547 int idx, size_t queue_size) 548 { 549 struct nvme_rdma_queue *queue; 550 struct sockaddr *src_addr = NULL; 551 int ret; 552 553 queue = &ctrl->queues[idx]; 554 queue->ctrl = ctrl; 555 init_completion(&queue->cm_done); 556 557 if (idx > 0) 558 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 559 else 560 queue->cmnd_capsule_len = sizeof(struct nvme_command); 561 562 queue->queue_size = queue_size; 563 564 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 565 RDMA_PS_TCP, IB_QPT_RC); 566 if (IS_ERR(queue->cm_id)) { 567 dev_info(ctrl->ctrl.device, 568 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 569 return PTR_ERR(queue->cm_id); 570 } 571 572 queue->cm_error = -ETIMEDOUT; 573 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 574 src_addr = &ctrl->src_addr; 575 576 ret = rdma_resolve_addr(queue->cm_id, src_addr, &ctrl->addr, 577 NVME_RDMA_CONNECT_TIMEOUT_MS); 578 if (ret) { 579 dev_info(ctrl->ctrl.device, 580 "rdma_resolve_addr failed (%d).\n", ret); 581 goto out_destroy_cm_id; 582 } 583 584 ret = nvme_rdma_wait_for_cm(queue); 585 if (ret) { 586 dev_info(ctrl->ctrl.device, 587 "rdma_resolve_addr wait failed (%d).\n", ret); 588 goto out_destroy_cm_id; 589 } 590 591 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 592 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 593 594 return 0; 595 596 out_destroy_cm_id: 597 nvme_rdma_destroy_queue_ib(queue); 598 rdma_destroy_id(queue->cm_id); 599 return ret; 600 } 601 602 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 603 { 604 rdma_disconnect(queue->cm_id); 605 ib_drain_qp(queue->qp); 606 } 607 608 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 609 { 610 nvme_rdma_destroy_queue_ib(queue); 611 rdma_destroy_id(queue->cm_id); 612 } 613 614 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 615 { 616 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 617 return; 618 nvme_rdma_stop_queue(queue); 619 nvme_rdma_free_queue(queue); 620 } 621 622 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 623 { 624 int i; 625 626 for (i = 1; i < ctrl->queue_count; i++) 627 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 628 } 629 630 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 631 { 632 int i, ret = 0; 633 634 for (i = 1; i < ctrl->queue_count; i++) { 635 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 636 if (ret) { 637 dev_info(ctrl->ctrl.device, 638 "failed to connect i/o queue: %d\n", ret); 639 goto out_free_queues; 640 } 641 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 642 } 643 644 return 0; 645 646 out_free_queues: 647 nvme_rdma_free_io_queues(ctrl); 648 return ret; 649 } 650 651 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 652 { 653 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 654 unsigned int nr_io_queues; 655 int i, ret; 656 657 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 658 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 659 if (ret) 660 return ret; 661 662 ctrl->queue_count = nr_io_queues + 1; 663 if (ctrl->queue_count < 2) 664 return 0; 665 666 dev_info(ctrl->ctrl.device, 667 "creating %d I/O queues.\n", nr_io_queues); 668 669 for (i = 1; i < ctrl->queue_count; i++) { 670 ret = nvme_rdma_init_queue(ctrl, i, 671 ctrl->ctrl.opts->queue_size); 672 if (ret) { 673 dev_info(ctrl->ctrl.device, 674 "failed to initialize i/o queue: %d\n", ret); 675 goto out_free_queues; 676 } 677 } 678 679 return 0; 680 681 out_free_queues: 682 for (i--; i >= 1; i--) 683 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 684 685 return ret; 686 } 687 688 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 689 { 690 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 691 sizeof(struct nvme_command), DMA_TO_DEVICE); 692 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 693 blk_cleanup_queue(ctrl->ctrl.admin_q); 694 blk_mq_free_tag_set(&ctrl->admin_tag_set); 695 nvme_rdma_dev_put(ctrl->device); 696 } 697 698 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 699 { 700 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 701 702 if (list_empty(&ctrl->list)) 703 goto free_ctrl; 704 705 mutex_lock(&nvme_rdma_ctrl_mutex); 706 list_del(&ctrl->list); 707 mutex_unlock(&nvme_rdma_ctrl_mutex); 708 709 kfree(ctrl->queues); 710 nvmf_free_options(nctrl->opts); 711 free_ctrl: 712 kfree(ctrl); 713 } 714 715 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 716 { 717 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 718 struct nvme_rdma_ctrl, reconnect_work); 719 bool changed; 720 int ret; 721 722 if (ctrl->queue_count > 1) { 723 nvme_rdma_free_io_queues(ctrl); 724 725 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 726 if (ret) 727 goto requeue; 728 } 729 730 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 731 732 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 733 if (ret) 734 goto requeue; 735 736 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 737 if (ret) 738 goto requeue; 739 740 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 741 742 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 743 if (ret) 744 goto stop_admin_q; 745 746 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 747 748 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 749 if (ret) 750 goto stop_admin_q; 751 752 nvme_start_keep_alive(&ctrl->ctrl); 753 754 if (ctrl->queue_count > 1) { 755 ret = nvme_rdma_init_io_queues(ctrl); 756 if (ret) 757 goto stop_admin_q; 758 759 ret = nvme_rdma_connect_io_queues(ctrl); 760 if (ret) 761 goto stop_admin_q; 762 } 763 764 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 765 WARN_ON_ONCE(!changed); 766 767 if (ctrl->queue_count > 1) { 768 nvme_start_queues(&ctrl->ctrl); 769 nvme_queue_scan(&ctrl->ctrl); 770 nvme_queue_async_events(&ctrl->ctrl); 771 } 772 773 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 774 775 return; 776 777 stop_admin_q: 778 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 779 requeue: 780 /* Make sure we are not resetting/deleting */ 781 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 782 dev_info(ctrl->ctrl.device, 783 "Failed reconnect attempt, requeueing...\n"); 784 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 785 ctrl->reconnect_delay * HZ); 786 } 787 } 788 789 static void nvme_rdma_error_recovery_work(struct work_struct *work) 790 { 791 struct nvme_rdma_ctrl *ctrl = container_of(work, 792 struct nvme_rdma_ctrl, err_work); 793 int i; 794 795 nvme_stop_keep_alive(&ctrl->ctrl); 796 797 for (i = 0; i < ctrl->queue_count; i++) { 798 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 799 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 800 } 801 802 if (ctrl->queue_count > 1) 803 nvme_stop_queues(&ctrl->ctrl); 804 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 805 806 /* We must take care of fastfail/requeue all our inflight requests */ 807 if (ctrl->queue_count > 1) 808 blk_mq_tagset_busy_iter(&ctrl->tag_set, 809 nvme_cancel_request, &ctrl->ctrl); 810 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 811 nvme_cancel_request, &ctrl->ctrl); 812 813 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 814 ctrl->reconnect_delay); 815 816 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 817 ctrl->reconnect_delay * HZ); 818 } 819 820 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 821 { 822 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 823 return; 824 825 queue_work(nvme_rdma_wq, &ctrl->err_work); 826 } 827 828 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 829 const char *op) 830 { 831 struct nvme_rdma_queue *queue = cq->cq_context; 832 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 833 834 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 835 dev_info(ctrl->ctrl.device, 836 "%s for CQE 0x%p failed with status %s (%d)\n", 837 op, wc->wr_cqe, 838 ib_wc_status_msg(wc->status), wc->status); 839 nvme_rdma_error_recovery(ctrl); 840 } 841 842 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 843 { 844 if (unlikely(wc->status != IB_WC_SUCCESS)) 845 nvme_rdma_wr_error(cq, wc, "MEMREG"); 846 } 847 848 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 849 { 850 if (unlikely(wc->status != IB_WC_SUCCESS)) 851 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 852 } 853 854 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 855 struct nvme_rdma_request *req) 856 { 857 struct ib_send_wr *bad_wr; 858 struct ib_send_wr wr = { 859 .opcode = IB_WR_LOCAL_INV, 860 .next = NULL, 861 .num_sge = 0, 862 .send_flags = 0, 863 .ex.invalidate_rkey = req->mr->rkey, 864 }; 865 866 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 867 wr.wr_cqe = &req->reg_cqe; 868 869 return ib_post_send(queue->qp, &wr, &bad_wr); 870 } 871 872 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 873 struct request *rq) 874 { 875 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 876 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 877 struct nvme_rdma_device *dev = queue->device; 878 struct ib_device *ibdev = dev->dev; 879 int res; 880 881 if (!blk_rq_bytes(rq)) 882 return; 883 884 if (req->mr->need_inval) { 885 res = nvme_rdma_inv_rkey(queue, req); 886 if (res < 0) { 887 dev_err(ctrl->ctrl.device, 888 "Queueing INV WR for rkey %#x failed (%d)\n", 889 req->mr->rkey, res); 890 nvme_rdma_error_recovery(queue->ctrl); 891 } 892 } 893 894 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 895 req->nents, rq_data_dir(rq) == 896 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 897 898 nvme_cleanup_cmd(rq); 899 sg_free_table_chained(&req->sg_table, true); 900 } 901 902 static int nvme_rdma_set_sg_null(struct nvme_command *c) 903 { 904 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 905 906 sg->addr = 0; 907 put_unaligned_le24(0, sg->length); 908 put_unaligned_le32(0, sg->key); 909 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 910 return 0; 911 } 912 913 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 914 struct nvme_rdma_request *req, struct nvme_command *c) 915 { 916 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 917 918 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 919 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 920 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 921 922 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 923 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 924 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 925 926 req->inline_data = true; 927 req->num_sge++; 928 return 0; 929 } 930 931 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 932 struct nvme_rdma_request *req, struct nvme_command *c) 933 { 934 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 935 936 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 937 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 938 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 939 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 940 return 0; 941 } 942 943 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 944 struct nvme_rdma_request *req, struct nvme_command *c, 945 int count) 946 { 947 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 948 int nr; 949 950 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 951 if (nr < count) { 952 if (nr < 0) 953 return nr; 954 return -EINVAL; 955 } 956 957 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 958 959 req->reg_cqe.done = nvme_rdma_memreg_done; 960 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 961 req->reg_wr.wr.opcode = IB_WR_REG_MR; 962 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 963 req->reg_wr.wr.num_sge = 0; 964 req->reg_wr.mr = req->mr; 965 req->reg_wr.key = req->mr->rkey; 966 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 967 IB_ACCESS_REMOTE_READ | 968 IB_ACCESS_REMOTE_WRITE; 969 970 req->mr->need_inval = true; 971 972 sg->addr = cpu_to_le64(req->mr->iova); 973 put_unaligned_le24(req->mr->length, sg->length); 974 put_unaligned_le32(req->mr->rkey, sg->key); 975 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 976 NVME_SGL_FMT_INVALIDATE; 977 978 return 0; 979 } 980 981 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 982 struct request *rq, struct nvme_command *c) 983 { 984 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 985 struct nvme_rdma_device *dev = queue->device; 986 struct ib_device *ibdev = dev->dev; 987 int count, ret; 988 989 req->num_sge = 1; 990 req->inline_data = false; 991 req->mr->need_inval = false; 992 993 c->common.flags |= NVME_CMD_SGL_METABUF; 994 995 if (!blk_rq_bytes(rq)) 996 return nvme_rdma_set_sg_null(c); 997 998 req->sg_table.sgl = req->first_sgl; 999 ret = sg_alloc_table_chained(&req->sg_table, 1000 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1001 if (ret) 1002 return -ENOMEM; 1003 1004 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1005 1006 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1007 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1008 if (unlikely(count <= 0)) { 1009 sg_free_table_chained(&req->sg_table, true); 1010 return -EIO; 1011 } 1012 1013 if (count == 1) { 1014 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1015 blk_rq_payload_bytes(rq) <= 1016 nvme_rdma_inline_data_size(queue)) 1017 return nvme_rdma_map_sg_inline(queue, req, c); 1018 1019 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1020 return nvme_rdma_map_sg_single(queue, req, c); 1021 } 1022 1023 return nvme_rdma_map_sg_fr(queue, req, c, count); 1024 } 1025 1026 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1027 { 1028 if (unlikely(wc->status != IB_WC_SUCCESS)) 1029 nvme_rdma_wr_error(cq, wc, "SEND"); 1030 } 1031 1032 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1033 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1034 struct ib_send_wr *first, bool flush) 1035 { 1036 struct ib_send_wr wr, *bad_wr; 1037 int ret; 1038 1039 sge->addr = qe->dma; 1040 sge->length = sizeof(struct nvme_command), 1041 sge->lkey = queue->device->pd->local_dma_lkey; 1042 1043 qe->cqe.done = nvme_rdma_send_done; 1044 1045 wr.next = NULL; 1046 wr.wr_cqe = &qe->cqe; 1047 wr.sg_list = sge; 1048 wr.num_sge = num_sge; 1049 wr.opcode = IB_WR_SEND; 1050 wr.send_flags = 0; 1051 1052 /* 1053 * Unsignalled send completions are another giant desaster in the 1054 * IB Verbs spec: If we don't regularly post signalled sends 1055 * the send queue will fill up and only a QP reset will rescue us. 1056 * Would have been way to obvious to handle this in hardware or 1057 * at least the RDMA stack.. 1058 * 1059 * This messy and racy code sniplet is copy and pasted from the iSER 1060 * initiator, and the magic '32' comes from there as well. 1061 * 1062 * Always signal the flushes. The magic request used for the flush 1063 * sequencer is not allocated in our driver's tagset and it's 1064 * triggered to be freed by blk_cleanup_queue(). So we need to 1065 * always mark it as signaled to ensure that the "wr_cqe", which is 1066 * embedded in request's payload, is not freed when __ib_process_cq() 1067 * calls wr_cqe->done(). 1068 */ 1069 if ((++queue->sig_count % 32) == 0 || flush) 1070 wr.send_flags |= IB_SEND_SIGNALED; 1071 1072 if (first) 1073 first->next = ≀ 1074 else 1075 first = ≀ 1076 1077 ret = ib_post_send(queue->qp, first, &bad_wr); 1078 if (ret) { 1079 dev_err(queue->ctrl->ctrl.device, 1080 "%s failed with error code %d\n", __func__, ret); 1081 } 1082 return ret; 1083 } 1084 1085 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1086 struct nvme_rdma_qe *qe) 1087 { 1088 struct ib_recv_wr wr, *bad_wr; 1089 struct ib_sge list; 1090 int ret; 1091 1092 list.addr = qe->dma; 1093 list.length = sizeof(struct nvme_completion); 1094 list.lkey = queue->device->pd->local_dma_lkey; 1095 1096 qe->cqe.done = nvme_rdma_recv_done; 1097 1098 wr.next = NULL; 1099 wr.wr_cqe = &qe->cqe; 1100 wr.sg_list = &list; 1101 wr.num_sge = 1; 1102 1103 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1104 if (ret) { 1105 dev_err(queue->ctrl->ctrl.device, 1106 "%s failed with error code %d\n", __func__, ret); 1107 } 1108 return ret; 1109 } 1110 1111 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1112 { 1113 u32 queue_idx = nvme_rdma_queue_idx(queue); 1114 1115 if (queue_idx == 0) 1116 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1117 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1118 } 1119 1120 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1121 { 1122 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1123 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1124 struct ib_device *dev = queue->device->dev; 1125 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1126 struct nvme_command *cmd = sqe->data; 1127 struct ib_sge sge; 1128 int ret; 1129 1130 if (WARN_ON_ONCE(aer_idx != 0)) 1131 return; 1132 1133 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1134 1135 memset(cmd, 0, sizeof(*cmd)); 1136 cmd->common.opcode = nvme_admin_async_event; 1137 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1138 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1139 nvme_rdma_set_sg_null(cmd); 1140 1141 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1142 DMA_TO_DEVICE); 1143 1144 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1145 WARN_ON_ONCE(ret); 1146 } 1147 1148 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1149 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1150 { 1151 struct request *rq; 1152 struct nvme_rdma_request *req; 1153 int ret = 0; 1154 1155 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1156 if (!rq) { 1157 dev_err(queue->ctrl->ctrl.device, 1158 "tag 0x%x on QP %#x not found\n", 1159 cqe->command_id, queue->qp->qp_num); 1160 nvme_rdma_error_recovery(queue->ctrl); 1161 return ret; 1162 } 1163 req = blk_mq_rq_to_pdu(rq); 1164 1165 if (rq->tag == tag) 1166 ret = 1; 1167 1168 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1169 wc->ex.invalidate_rkey == req->mr->rkey) 1170 req->mr->need_inval = false; 1171 1172 req->req.result = cqe->result; 1173 blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1); 1174 return ret; 1175 } 1176 1177 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1178 { 1179 struct nvme_rdma_qe *qe = 1180 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1181 struct nvme_rdma_queue *queue = cq->cq_context; 1182 struct ib_device *ibdev = queue->device->dev; 1183 struct nvme_completion *cqe = qe->data; 1184 const size_t len = sizeof(struct nvme_completion); 1185 int ret = 0; 1186 1187 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1188 nvme_rdma_wr_error(cq, wc, "RECV"); 1189 return 0; 1190 } 1191 1192 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1193 /* 1194 * AEN requests are special as they don't time out and can 1195 * survive any kind of queue freeze and often don't respond to 1196 * aborts. We don't even bother to allocate a struct request 1197 * for them but rather special case them here. 1198 */ 1199 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1200 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1201 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1202 &cqe->result); 1203 else 1204 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1205 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1206 1207 nvme_rdma_post_recv(queue, qe); 1208 return ret; 1209 } 1210 1211 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1212 { 1213 __nvme_rdma_recv_done(cq, wc, -1); 1214 } 1215 1216 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1217 { 1218 int ret, i; 1219 1220 for (i = 0; i < queue->queue_size; i++) { 1221 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1222 if (ret) 1223 goto out_destroy_queue_ib; 1224 } 1225 1226 return 0; 1227 1228 out_destroy_queue_ib: 1229 nvme_rdma_destroy_queue_ib(queue); 1230 return ret; 1231 } 1232 1233 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1234 struct rdma_cm_event *ev) 1235 { 1236 struct rdma_cm_id *cm_id = queue->cm_id; 1237 int status = ev->status; 1238 const char *rej_msg; 1239 const struct nvme_rdma_cm_rej *rej_data; 1240 u8 rej_data_len; 1241 1242 rej_msg = rdma_reject_msg(cm_id, status); 1243 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1244 1245 if (rej_data && rej_data_len >= sizeof(u16)) { 1246 u16 sts = le16_to_cpu(rej_data->sts); 1247 1248 dev_err(queue->ctrl->ctrl.device, 1249 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1250 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1251 } else { 1252 dev_err(queue->ctrl->ctrl.device, 1253 "Connect rejected: status %d (%s).\n", status, rej_msg); 1254 } 1255 1256 return -ECONNRESET; 1257 } 1258 1259 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1260 { 1261 struct nvme_rdma_device *dev; 1262 int ret; 1263 1264 dev = nvme_rdma_find_get_device(queue->cm_id); 1265 if (!dev) { 1266 dev_err(queue->cm_id->device->dev.parent, 1267 "no client data found!\n"); 1268 return -ECONNREFUSED; 1269 } 1270 1271 ret = nvme_rdma_create_queue_ib(queue, dev); 1272 if (ret) { 1273 nvme_rdma_dev_put(dev); 1274 goto out; 1275 } 1276 1277 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1278 if (ret) { 1279 dev_err(queue->ctrl->ctrl.device, 1280 "rdma_resolve_route failed (%d).\n", 1281 queue->cm_error); 1282 goto out_destroy_queue; 1283 } 1284 1285 return 0; 1286 1287 out_destroy_queue: 1288 nvme_rdma_destroy_queue_ib(queue); 1289 out: 1290 return ret; 1291 } 1292 1293 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1294 { 1295 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1296 struct rdma_conn_param param = { }; 1297 struct nvme_rdma_cm_req priv = { }; 1298 int ret; 1299 1300 param.qp_num = queue->qp->qp_num; 1301 param.flow_control = 1; 1302 1303 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1304 /* maximum retry count */ 1305 param.retry_count = 7; 1306 param.rnr_retry_count = 7; 1307 param.private_data = &priv; 1308 param.private_data_len = sizeof(priv); 1309 1310 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1311 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1312 /* 1313 * set the admin queue depth to the minimum size 1314 * specified by the Fabrics standard. 1315 */ 1316 if (priv.qid == 0) { 1317 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1318 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1319 } else { 1320 /* 1321 * current interpretation of the fabrics spec 1322 * is at minimum you make hrqsize sqsize+1, or a 1323 * 1's based representation of sqsize. 1324 */ 1325 priv.hrqsize = cpu_to_le16(queue->queue_size); 1326 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1327 } 1328 1329 ret = rdma_connect(queue->cm_id, ¶m); 1330 if (ret) { 1331 dev_err(ctrl->ctrl.device, 1332 "rdma_connect failed (%d).\n", ret); 1333 goto out_destroy_queue_ib; 1334 } 1335 1336 return 0; 1337 1338 out_destroy_queue_ib: 1339 nvme_rdma_destroy_queue_ib(queue); 1340 return ret; 1341 } 1342 1343 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1344 struct rdma_cm_event *ev) 1345 { 1346 struct nvme_rdma_queue *queue = cm_id->context; 1347 int cm_error = 0; 1348 1349 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1350 rdma_event_msg(ev->event), ev->event, 1351 ev->status, cm_id); 1352 1353 switch (ev->event) { 1354 case RDMA_CM_EVENT_ADDR_RESOLVED: 1355 cm_error = nvme_rdma_addr_resolved(queue); 1356 break; 1357 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1358 cm_error = nvme_rdma_route_resolved(queue); 1359 break; 1360 case RDMA_CM_EVENT_ESTABLISHED: 1361 queue->cm_error = nvme_rdma_conn_established(queue); 1362 /* complete cm_done regardless of success/failure */ 1363 complete(&queue->cm_done); 1364 return 0; 1365 case RDMA_CM_EVENT_REJECTED: 1366 cm_error = nvme_rdma_conn_rejected(queue, ev); 1367 break; 1368 case RDMA_CM_EVENT_ADDR_ERROR: 1369 case RDMA_CM_EVENT_ROUTE_ERROR: 1370 case RDMA_CM_EVENT_CONNECT_ERROR: 1371 case RDMA_CM_EVENT_UNREACHABLE: 1372 dev_dbg(queue->ctrl->ctrl.device, 1373 "CM error event %d\n", ev->event); 1374 cm_error = -ECONNRESET; 1375 break; 1376 case RDMA_CM_EVENT_DISCONNECTED: 1377 case RDMA_CM_EVENT_ADDR_CHANGE: 1378 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1379 dev_dbg(queue->ctrl->ctrl.device, 1380 "disconnect received - connection closed\n"); 1381 nvme_rdma_error_recovery(queue->ctrl); 1382 break; 1383 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1384 /* device removal is handled via the ib_client API */ 1385 break; 1386 default: 1387 dev_err(queue->ctrl->ctrl.device, 1388 "Unexpected RDMA CM event (%d)\n", ev->event); 1389 nvme_rdma_error_recovery(queue->ctrl); 1390 break; 1391 } 1392 1393 if (cm_error) { 1394 queue->cm_error = cm_error; 1395 complete(&queue->cm_done); 1396 } 1397 1398 return 0; 1399 } 1400 1401 static enum blk_eh_timer_return 1402 nvme_rdma_timeout(struct request *rq, bool reserved) 1403 { 1404 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1405 1406 /* queue error recovery */ 1407 nvme_rdma_error_recovery(req->queue->ctrl); 1408 1409 /* fail with DNR on cmd timeout */ 1410 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1411 1412 return BLK_EH_HANDLED; 1413 } 1414 1415 /* 1416 * We cannot accept any other command until the Connect command has completed. 1417 */ 1418 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, 1419 struct request *rq) 1420 { 1421 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1422 struct nvme_command *cmd = nvme_req(rq)->cmd; 1423 1424 if (!blk_rq_is_passthrough(rq) || 1425 cmd->common.opcode != nvme_fabrics_command || 1426 cmd->fabrics.fctype != nvme_fabrics_type_connect) 1427 return false; 1428 } 1429 1430 return true; 1431 } 1432 1433 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1434 const struct blk_mq_queue_data *bd) 1435 { 1436 struct nvme_ns *ns = hctx->queue->queuedata; 1437 struct nvme_rdma_queue *queue = hctx->driver_data; 1438 struct request *rq = bd->rq; 1439 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1440 struct nvme_rdma_qe *sqe = &req->sqe; 1441 struct nvme_command *c = sqe->data; 1442 bool flush = false; 1443 struct ib_device *dev; 1444 int ret; 1445 1446 WARN_ON_ONCE(rq->tag < 0); 1447 1448 if (!nvme_rdma_queue_is_ready(queue, rq)) 1449 return BLK_MQ_RQ_QUEUE_BUSY; 1450 1451 dev = queue->device->dev; 1452 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1453 sizeof(struct nvme_command), DMA_TO_DEVICE); 1454 1455 ret = nvme_setup_cmd(ns, rq, c); 1456 if (ret != BLK_MQ_RQ_QUEUE_OK) 1457 return ret; 1458 1459 blk_mq_start_request(rq); 1460 1461 ret = nvme_rdma_map_data(queue, rq, c); 1462 if (ret < 0) { 1463 dev_err(queue->ctrl->ctrl.device, 1464 "Failed to map data (%d)\n", ret); 1465 nvme_cleanup_cmd(rq); 1466 goto err; 1467 } 1468 1469 ib_dma_sync_single_for_device(dev, sqe->dma, 1470 sizeof(struct nvme_command), DMA_TO_DEVICE); 1471 1472 if (req_op(rq) == REQ_OP_FLUSH) 1473 flush = true; 1474 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1475 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1476 if (ret) { 1477 nvme_rdma_unmap_data(queue, rq); 1478 goto err; 1479 } 1480 1481 return BLK_MQ_RQ_QUEUE_OK; 1482 err: 1483 return (ret == -ENOMEM || ret == -EAGAIN) ? 1484 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1485 } 1486 1487 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1488 { 1489 struct nvme_rdma_queue *queue = hctx->driver_data; 1490 struct ib_cq *cq = queue->ib_cq; 1491 struct ib_wc wc; 1492 int found = 0; 1493 1494 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1495 while (ib_poll_cq(cq, 1, &wc) > 0) { 1496 struct ib_cqe *cqe = wc.wr_cqe; 1497 1498 if (cqe) { 1499 if (cqe->done == nvme_rdma_recv_done) 1500 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1501 else 1502 cqe->done(cq, &wc); 1503 } 1504 } 1505 1506 return found; 1507 } 1508 1509 static void nvme_rdma_complete_rq(struct request *rq) 1510 { 1511 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1512 struct nvme_rdma_queue *queue = req->queue; 1513 int error = 0; 1514 1515 nvme_rdma_unmap_data(queue, rq); 1516 1517 if (unlikely(rq->errors)) { 1518 if (nvme_req_needs_retry(rq, rq->errors)) { 1519 nvme_requeue_req(rq); 1520 return; 1521 } 1522 1523 if (blk_rq_is_passthrough(rq)) 1524 error = rq->errors; 1525 else 1526 error = nvme_error_status(rq->errors); 1527 } 1528 1529 blk_mq_end_request(rq, error); 1530 } 1531 1532 static struct blk_mq_ops nvme_rdma_mq_ops = { 1533 .queue_rq = nvme_rdma_queue_rq, 1534 .complete = nvme_rdma_complete_rq, 1535 .init_request = nvme_rdma_init_request, 1536 .exit_request = nvme_rdma_exit_request, 1537 .reinit_request = nvme_rdma_reinit_request, 1538 .init_hctx = nvme_rdma_init_hctx, 1539 .poll = nvme_rdma_poll, 1540 .timeout = nvme_rdma_timeout, 1541 }; 1542 1543 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1544 .queue_rq = nvme_rdma_queue_rq, 1545 .complete = nvme_rdma_complete_rq, 1546 .init_request = nvme_rdma_init_admin_request, 1547 .exit_request = nvme_rdma_exit_admin_request, 1548 .reinit_request = nvme_rdma_reinit_request, 1549 .init_hctx = nvme_rdma_init_admin_hctx, 1550 .timeout = nvme_rdma_timeout, 1551 }; 1552 1553 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1554 { 1555 int error; 1556 1557 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1558 if (error) 1559 return error; 1560 1561 ctrl->device = ctrl->queues[0].device; 1562 1563 /* 1564 * We need a reference on the device as long as the tag_set is alive, 1565 * as the MRs in the request structures need a valid ib_device. 1566 */ 1567 error = -EINVAL; 1568 if (!nvme_rdma_dev_get(ctrl->device)) 1569 goto out_free_queue; 1570 1571 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1572 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1573 1574 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1575 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1576 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1577 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1578 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1579 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1580 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1581 ctrl->admin_tag_set.driver_data = ctrl; 1582 ctrl->admin_tag_set.nr_hw_queues = 1; 1583 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1584 1585 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1586 if (error) 1587 goto out_put_dev; 1588 1589 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1590 if (IS_ERR(ctrl->ctrl.admin_q)) { 1591 error = PTR_ERR(ctrl->ctrl.admin_q); 1592 goto out_free_tagset; 1593 } 1594 1595 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1596 if (error) 1597 goto out_cleanup_queue; 1598 1599 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1600 1601 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1602 if (error) { 1603 dev_err(ctrl->ctrl.device, 1604 "prop_get NVME_REG_CAP failed\n"); 1605 goto out_cleanup_queue; 1606 } 1607 1608 ctrl->ctrl.sqsize = 1609 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1610 1611 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1612 if (error) 1613 goto out_cleanup_queue; 1614 1615 ctrl->ctrl.max_hw_sectors = 1616 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1617 1618 error = nvme_init_identify(&ctrl->ctrl); 1619 if (error) 1620 goto out_cleanup_queue; 1621 1622 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1623 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1624 DMA_TO_DEVICE); 1625 if (error) 1626 goto out_cleanup_queue; 1627 1628 nvme_start_keep_alive(&ctrl->ctrl); 1629 1630 return 0; 1631 1632 out_cleanup_queue: 1633 blk_cleanup_queue(ctrl->ctrl.admin_q); 1634 out_free_tagset: 1635 /* disconnect and drain the queue before freeing the tagset */ 1636 nvme_rdma_stop_queue(&ctrl->queues[0]); 1637 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1638 out_put_dev: 1639 nvme_rdma_dev_put(ctrl->device); 1640 out_free_queue: 1641 nvme_rdma_free_queue(&ctrl->queues[0]); 1642 return error; 1643 } 1644 1645 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1646 { 1647 nvme_stop_keep_alive(&ctrl->ctrl); 1648 cancel_work_sync(&ctrl->err_work); 1649 cancel_delayed_work_sync(&ctrl->reconnect_work); 1650 1651 if (ctrl->queue_count > 1) { 1652 nvme_stop_queues(&ctrl->ctrl); 1653 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1654 nvme_cancel_request, &ctrl->ctrl); 1655 nvme_rdma_free_io_queues(ctrl); 1656 } 1657 1658 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1659 nvme_shutdown_ctrl(&ctrl->ctrl); 1660 1661 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1662 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1663 nvme_cancel_request, &ctrl->ctrl); 1664 nvme_rdma_destroy_admin_queue(ctrl); 1665 } 1666 1667 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1668 { 1669 nvme_uninit_ctrl(&ctrl->ctrl); 1670 if (shutdown) 1671 nvme_rdma_shutdown_ctrl(ctrl); 1672 1673 if (ctrl->ctrl.tagset) { 1674 blk_cleanup_queue(ctrl->ctrl.connect_q); 1675 blk_mq_free_tag_set(&ctrl->tag_set); 1676 nvme_rdma_dev_put(ctrl->device); 1677 } 1678 1679 nvme_put_ctrl(&ctrl->ctrl); 1680 } 1681 1682 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1683 { 1684 struct nvme_rdma_ctrl *ctrl = container_of(work, 1685 struct nvme_rdma_ctrl, delete_work); 1686 1687 __nvme_rdma_remove_ctrl(ctrl, true); 1688 } 1689 1690 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1691 { 1692 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1693 return -EBUSY; 1694 1695 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1696 return -EBUSY; 1697 1698 return 0; 1699 } 1700 1701 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1702 { 1703 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1704 int ret = 0; 1705 1706 /* 1707 * Keep a reference until all work is flushed since 1708 * __nvme_rdma_del_ctrl can free the ctrl mem 1709 */ 1710 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1711 return -EBUSY; 1712 ret = __nvme_rdma_del_ctrl(ctrl); 1713 if (!ret) 1714 flush_work(&ctrl->delete_work); 1715 nvme_put_ctrl(&ctrl->ctrl); 1716 return ret; 1717 } 1718 1719 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1720 { 1721 struct nvme_rdma_ctrl *ctrl = container_of(work, 1722 struct nvme_rdma_ctrl, delete_work); 1723 1724 __nvme_rdma_remove_ctrl(ctrl, false); 1725 } 1726 1727 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1728 { 1729 struct nvme_rdma_ctrl *ctrl = container_of(work, 1730 struct nvme_rdma_ctrl, reset_work); 1731 int ret; 1732 bool changed; 1733 1734 nvme_rdma_shutdown_ctrl(ctrl); 1735 1736 ret = nvme_rdma_configure_admin_queue(ctrl); 1737 if (ret) { 1738 /* ctrl is already shutdown, just remove the ctrl */ 1739 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1740 goto del_dead_ctrl; 1741 } 1742 1743 if (ctrl->queue_count > 1) { 1744 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1745 if (ret) 1746 goto del_dead_ctrl; 1747 1748 ret = nvme_rdma_init_io_queues(ctrl); 1749 if (ret) 1750 goto del_dead_ctrl; 1751 1752 ret = nvme_rdma_connect_io_queues(ctrl); 1753 if (ret) 1754 goto del_dead_ctrl; 1755 } 1756 1757 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1758 WARN_ON_ONCE(!changed); 1759 1760 if (ctrl->queue_count > 1) { 1761 nvme_start_queues(&ctrl->ctrl); 1762 nvme_queue_scan(&ctrl->ctrl); 1763 nvme_queue_async_events(&ctrl->ctrl); 1764 } 1765 1766 return; 1767 1768 del_dead_ctrl: 1769 /* Deleting this dead controller... */ 1770 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1771 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1772 } 1773 1774 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1775 { 1776 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1777 1778 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1779 return -EBUSY; 1780 1781 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1782 return -EBUSY; 1783 1784 flush_work(&ctrl->reset_work); 1785 1786 return 0; 1787 } 1788 1789 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1790 .name = "rdma", 1791 .module = THIS_MODULE, 1792 .is_fabrics = true, 1793 .reg_read32 = nvmf_reg_read32, 1794 .reg_read64 = nvmf_reg_read64, 1795 .reg_write32 = nvmf_reg_write32, 1796 .reset_ctrl = nvme_rdma_reset_ctrl, 1797 .free_ctrl = nvme_rdma_free_ctrl, 1798 .submit_async_event = nvme_rdma_submit_async_event, 1799 .delete_ctrl = nvme_rdma_del_ctrl, 1800 .get_subsysnqn = nvmf_get_subsysnqn, 1801 .get_address = nvmf_get_address, 1802 }; 1803 1804 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1805 { 1806 int ret; 1807 1808 ret = nvme_rdma_init_io_queues(ctrl); 1809 if (ret) 1810 return ret; 1811 1812 /* 1813 * We need a reference on the device as long as the tag_set is alive, 1814 * as the MRs in the request structures need a valid ib_device. 1815 */ 1816 ret = -EINVAL; 1817 if (!nvme_rdma_dev_get(ctrl->device)) 1818 goto out_free_io_queues; 1819 1820 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1821 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1822 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1823 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1824 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1825 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1826 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1827 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1828 ctrl->tag_set.driver_data = ctrl; 1829 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1830 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1831 1832 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1833 if (ret) 1834 goto out_put_dev; 1835 ctrl->ctrl.tagset = &ctrl->tag_set; 1836 1837 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1838 if (IS_ERR(ctrl->ctrl.connect_q)) { 1839 ret = PTR_ERR(ctrl->ctrl.connect_q); 1840 goto out_free_tag_set; 1841 } 1842 1843 ret = nvme_rdma_connect_io_queues(ctrl); 1844 if (ret) 1845 goto out_cleanup_connect_q; 1846 1847 return 0; 1848 1849 out_cleanup_connect_q: 1850 blk_cleanup_queue(ctrl->ctrl.connect_q); 1851 out_free_tag_set: 1852 blk_mq_free_tag_set(&ctrl->tag_set); 1853 out_put_dev: 1854 nvme_rdma_dev_put(ctrl->device); 1855 out_free_io_queues: 1856 nvme_rdma_free_io_queues(ctrl); 1857 return ret; 1858 } 1859 1860 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1861 { 1862 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1863 size_t buflen = strlen(p); 1864 1865 /* XXX: handle IPv6 addresses */ 1866 1867 if (buflen > INET_ADDRSTRLEN) 1868 return -EINVAL; 1869 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1870 return -EINVAL; 1871 in_addr->sin_family = AF_INET; 1872 return 0; 1873 } 1874 1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1876 struct nvmf_ctrl_options *opts) 1877 { 1878 struct nvme_rdma_ctrl *ctrl; 1879 int ret; 1880 bool changed; 1881 1882 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1883 if (!ctrl) 1884 return ERR_PTR(-ENOMEM); 1885 ctrl->ctrl.opts = opts; 1886 INIT_LIST_HEAD(&ctrl->list); 1887 1888 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1889 if (ret) { 1890 pr_err("malformed IP address passed: %s\n", opts->traddr); 1891 goto out_free_ctrl; 1892 } 1893 1894 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1895 ret = nvme_rdma_parse_ipaddr(&ctrl->src_addr_in, 1896 opts->host_traddr); 1897 if (ret) { 1898 pr_err("malformed src IP address passed: %s\n", 1899 opts->host_traddr); 1900 goto out_free_ctrl; 1901 } 1902 } 1903 1904 if (opts->mask & NVMF_OPT_TRSVCID) { 1905 u16 port; 1906 1907 ret = kstrtou16(opts->trsvcid, 0, &port); 1908 if (ret) 1909 goto out_free_ctrl; 1910 1911 ctrl->addr_in.sin_port = cpu_to_be16(port); 1912 } else { 1913 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1914 } 1915 1916 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1917 0 /* no quirks, we're perfect! */); 1918 if (ret) 1919 goto out_free_ctrl; 1920 1921 ctrl->reconnect_delay = opts->reconnect_delay; 1922 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1923 nvme_rdma_reconnect_ctrl_work); 1924 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1925 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1926 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1927 spin_lock_init(&ctrl->lock); 1928 1929 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1930 ctrl->ctrl.sqsize = opts->queue_size - 1; 1931 ctrl->ctrl.kato = opts->kato; 1932 1933 ret = -ENOMEM; 1934 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1935 GFP_KERNEL); 1936 if (!ctrl->queues) 1937 goto out_uninit_ctrl; 1938 1939 ret = nvme_rdma_configure_admin_queue(ctrl); 1940 if (ret) 1941 goto out_kfree_queues; 1942 1943 /* sanity check icdoff */ 1944 if (ctrl->ctrl.icdoff) { 1945 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1946 goto out_remove_admin_queue; 1947 } 1948 1949 /* sanity check keyed sgls */ 1950 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1951 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1952 goto out_remove_admin_queue; 1953 } 1954 1955 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1956 /* warn if maxcmd is lower than queue_size */ 1957 dev_warn(ctrl->ctrl.device, 1958 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1959 opts->queue_size, ctrl->ctrl.maxcmd); 1960 opts->queue_size = ctrl->ctrl.maxcmd; 1961 } 1962 1963 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1964 /* warn if sqsize is lower than queue_size */ 1965 dev_warn(ctrl->ctrl.device, 1966 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1967 opts->queue_size, ctrl->ctrl.sqsize + 1); 1968 opts->queue_size = ctrl->ctrl.sqsize + 1; 1969 } 1970 1971 if (opts->nr_io_queues) { 1972 ret = nvme_rdma_create_io_queues(ctrl); 1973 if (ret) 1974 goto out_remove_admin_queue; 1975 } 1976 1977 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1978 WARN_ON_ONCE(!changed); 1979 1980 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1981 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1982 1983 kref_get(&ctrl->ctrl.kref); 1984 1985 mutex_lock(&nvme_rdma_ctrl_mutex); 1986 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1987 mutex_unlock(&nvme_rdma_ctrl_mutex); 1988 1989 if (opts->nr_io_queues) { 1990 nvme_queue_scan(&ctrl->ctrl); 1991 nvme_queue_async_events(&ctrl->ctrl); 1992 } 1993 1994 return &ctrl->ctrl; 1995 1996 out_remove_admin_queue: 1997 nvme_stop_keep_alive(&ctrl->ctrl); 1998 nvme_rdma_destroy_admin_queue(ctrl); 1999 out_kfree_queues: 2000 kfree(ctrl->queues); 2001 out_uninit_ctrl: 2002 nvme_uninit_ctrl(&ctrl->ctrl); 2003 nvme_put_ctrl(&ctrl->ctrl); 2004 if (ret > 0) 2005 ret = -EIO; 2006 return ERR_PTR(ret); 2007 out_free_ctrl: 2008 kfree(ctrl); 2009 return ERR_PTR(ret); 2010 } 2011 2012 static struct nvmf_transport_ops nvme_rdma_transport = { 2013 .name = "rdma", 2014 .required_opts = NVMF_OPT_TRADDR, 2015 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2016 NVMF_OPT_HOST_TRADDR, 2017 .create_ctrl = nvme_rdma_create_ctrl, 2018 }; 2019 2020 static void nvme_rdma_add_one(struct ib_device *ib_device) 2021 { 2022 } 2023 2024 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2025 { 2026 struct nvme_rdma_ctrl *ctrl; 2027 2028 /* Delete all controllers using this device */ 2029 mutex_lock(&nvme_rdma_ctrl_mutex); 2030 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2031 if (ctrl->device->dev != ib_device) 2032 continue; 2033 dev_info(ctrl->ctrl.device, 2034 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2035 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2036 __nvme_rdma_del_ctrl(ctrl); 2037 } 2038 mutex_unlock(&nvme_rdma_ctrl_mutex); 2039 2040 flush_workqueue(nvme_rdma_wq); 2041 } 2042 2043 static struct ib_client nvme_rdma_ib_client = { 2044 .name = "nvme_rdma", 2045 .add = nvme_rdma_add_one, 2046 .remove = nvme_rdma_remove_one 2047 }; 2048 2049 static int __init nvme_rdma_init_module(void) 2050 { 2051 int ret; 2052 2053 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2054 if (!nvme_rdma_wq) 2055 return -ENOMEM; 2056 2057 ret = ib_register_client(&nvme_rdma_ib_client); 2058 if (ret) { 2059 destroy_workqueue(nvme_rdma_wq); 2060 return ret; 2061 } 2062 2063 return nvmf_register_transport(&nvme_rdma_transport); 2064 } 2065 2066 static void __exit nvme_rdma_cleanup_module(void) 2067 { 2068 nvmf_unregister_transport(&nvme_rdma_transport); 2069 ib_unregister_client(&nvme_rdma_ib_client); 2070 destroy_workqueue(nvme_rdma_wq); 2071 } 2072 2073 module_init(nvme_rdma_init_module); 2074 module_exit(nvme_rdma_cleanup_module); 2075 2076 MODULE_LICENSE("GPL v2"); 2077