xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision f7c35abe)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32 
33 #include "nvme.h"
34 #include "fabrics.h"
35 
36 
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS	1000		/* 1 second */
38 
39 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51 	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52 
53 struct nvme_rdma_device {
54 	struct ib_device       *dev;
55 	struct ib_pd	       *pd;
56 	struct kref		ref;
57 	struct list_head	entry;
58 };
59 
60 struct nvme_rdma_qe {
61 	struct ib_cqe		cqe;
62 	void			*data;
63 	u64			dma;
64 };
65 
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68 	struct nvme_request	req;
69 	struct ib_mr		*mr;
70 	struct nvme_rdma_qe	sqe;
71 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72 	u32			num_sge;
73 	int			nents;
74 	bool			inline_data;
75 	struct ib_reg_wr	reg_wr;
76 	struct ib_cqe		reg_cqe;
77 	struct nvme_rdma_queue  *queue;
78 	struct sg_table		sg_table;
79 	struct scatterlist	first_sgl[];
80 };
81 
82 enum nvme_rdma_queue_flags {
83 	NVME_RDMA_Q_CONNECTED = (1 << 0),
84 	NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85 	NVME_RDMA_Q_DELETING = (1 << 2),
86 	NVME_RDMA_Q_LIVE = (1 << 3),
87 };
88 
89 struct nvme_rdma_queue {
90 	struct nvme_rdma_qe	*rsp_ring;
91 	u8			sig_count;
92 	int			queue_size;
93 	size_t			cmnd_capsule_len;
94 	struct nvme_rdma_ctrl	*ctrl;
95 	struct nvme_rdma_device	*device;
96 	struct ib_cq		*ib_cq;
97 	struct ib_qp		*qp;
98 
99 	unsigned long		flags;
100 	struct rdma_cm_id	*cm_id;
101 	int			cm_error;
102 	struct completion	cm_done;
103 };
104 
105 struct nvme_rdma_ctrl {
106 	/* read and written in the hot path */
107 	spinlock_t		lock;
108 
109 	/* read only in the hot path */
110 	struct nvme_rdma_queue	*queues;
111 	u32			queue_count;
112 
113 	/* other member variables */
114 	struct blk_mq_tag_set	tag_set;
115 	struct work_struct	delete_work;
116 	struct work_struct	reset_work;
117 	struct work_struct	err_work;
118 
119 	struct nvme_rdma_qe	async_event_sqe;
120 
121 	int			reconnect_delay;
122 	struct delayed_work	reconnect_work;
123 
124 	struct list_head	list;
125 
126 	struct blk_mq_tag_set	admin_tag_set;
127 	struct nvme_rdma_device	*device;
128 
129 	u64			cap;
130 	u32			max_fr_pages;
131 
132 	union {
133 		struct sockaddr addr;
134 		struct sockaddr_in addr_in;
135 	};
136 	union {
137 		struct sockaddr src_addr;
138 		struct sockaddr_in src_addr_in;
139 	};
140 
141 	struct nvme_ctrl	ctrl;
142 };
143 
144 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
145 {
146 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
147 }
148 
149 static LIST_HEAD(device_list);
150 static DEFINE_MUTEX(device_list_mutex);
151 
152 static LIST_HEAD(nvme_rdma_ctrl_list);
153 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
154 
155 static struct workqueue_struct *nvme_rdma_wq;
156 
157 /*
158  * Disabling this option makes small I/O goes faster, but is fundamentally
159  * unsafe.  With it turned off we will have to register a global rkey that
160  * allows read and write access to all physical memory.
161  */
162 static bool register_always = true;
163 module_param(register_always, bool, 0444);
164 MODULE_PARM_DESC(register_always,
165 	 "Use memory registration even for contiguous memory regions");
166 
167 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
168 		struct rdma_cm_event *event);
169 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
170 
171 /* XXX: really should move to a generic header sooner or later.. */
172 static inline void put_unaligned_le24(u32 val, u8 *p)
173 {
174 	*p++ = val;
175 	*p++ = val >> 8;
176 	*p++ = val >> 16;
177 }
178 
179 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
180 {
181 	return queue - queue->ctrl->queues;
182 }
183 
184 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
185 {
186 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
187 }
188 
189 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
190 		size_t capsule_size, enum dma_data_direction dir)
191 {
192 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
193 	kfree(qe->data);
194 }
195 
196 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
197 		size_t capsule_size, enum dma_data_direction dir)
198 {
199 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
200 	if (!qe->data)
201 		return -ENOMEM;
202 
203 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
204 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
205 		kfree(qe->data);
206 		return -ENOMEM;
207 	}
208 
209 	return 0;
210 }
211 
212 static void nvme_rdma_free_ring(struct ib_device *ibdev,
213 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
214 		size_t capsule_size, enum dma_data_direction dir)
215 {
216 	int i;
217 
218 	for (i = 0; i < ib_queue_size; i++)
219 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
220 	kfree(ring);
221 }
222 
223 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
224 		size_t ib_queue_size, size_t capsule_size,
225 		enum dma_data_direction dir)
226 {
227 	struct nvme_rdma_qe *ring;
228 	int i;
229 
230 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
231 	if (!ring)
232 		return NULL;
233 
234 	for (i = 0; i < ib_queue_size; i++) {
235 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
236 			goto out_free_ring;
237 	}
238 
239 	return ring;
240 
241 out_free_ring:
242 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
243 	return NULL;
244 }
245 
246 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
247 {
248 	pr_debug("QP event %s (%d)\n",
249 		 ib_event_msg(event->event), event->event);
250 
251 }
252 
253 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
254 {
255 	wait_for_completion_interruptible_timeout(&queue->cm_done,
256 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
257 	return queue->cm_error;
258 }
259 
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 
279 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280 
281 	queue->qp = queue->cm_id->qp;
282 	return ret;
283 }
284 
285 static int nvme_rdma_reinit_request(void *data, struct request *rq)
286 {
287 	struct nvme_rdma_ctrl *ctrl = data;
288 	struct nvme_rdma_device *dev = ctrl->device;
289 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 	int ret = 0;
291 
292 	if (!req->mr->need_inval)
293 		goto out;
294 
295 	ib_dereg_mr(req->mr);
296 
297 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
298 			ctrl->max_fr_pages);
299 	if (IS_ERR(req->mr)) {
300 		ret = PTR_ERR(req->mr);
301 		req->mr = NULL;
302 		goto out;
303 	}
304 
305 	req->mr->need_inval = false;
306 
307 out:
308 	return ret;
309 }
310 
311 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
312 		struct request *rq, unsigned int queue_idx)
313 {
314 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
315 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
316 	struct nvme_rdma_device *dev = queue->device;
317 
318 	if (req->mr)
319 		ib_dereg_mr(req->mr);
320 
321 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
322 			DMA_TO_DEVICE);
323 }
324 
325 static void nvme_rdma_exit_request(void *data, struct request *rq,
326 				unsigned int hctx_idx, unsigned int rq_idx)
327 {
328 	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
329 }
330 
331 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
332 				unsigned int hctx_idx, unsigned int rq_idx)
333 {
334 	return __nvme_rdma_exit_request(data, rq, 0);
335 }
336 
337 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
338 		struct request *rq, unsigned int queue_idx)
339 {
340 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
341 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
342 	struct nvme_rdma_device *dev = queue->device;
343 	struct ib_device *ibdev = dev->dev;
344 	int ret;
345 
346 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
347 			DMA_TO_DEVICE);
348 	if (ret)
349 		return ret;
350 
351 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
352 			ctrl->max_fr_pages);
353 	if (IS_ERR(req->mr)) {
354 		ret = PTR_ERR(req->mr);
355 		goto out_free_qe;
356 	}
357 
358 	req->queue = queue;
359 
360 	return 0;
361 
362 out_free_qe:
363 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
364 			DMA_TO_DEVICE);
365 	return -ENOMEM;
366 }
367 
368 static int nvme_rdma_init_request(void *data, struct request *rq,
369 				unsigned int hctx_idx, unsigned int rq_idx,
370 				unsigned int numa_node)
371 {
372 	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
373 }
374 
375 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
376 				unsigned int hctx_idx, unsigned int rq_idx,
377 				unsigned int numa_node)
378 {
379 	return __nvme_rdma_init_request(data, rq, 0);
380 }
381 
382 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
383 		unsigned int hctx_idx)
384 {
385 	struct nvme_rdma_ctrl *ctrl = data;
386 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
387 
388 	BUG_ON(hctx_idx >= ctrl->queue_count);
389 
390 	hctx->driver_data = queue;
391 	return 0;
392 }
393 
394 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
395 		unsigned int hctx_idx)
396 {
397 	struct nvme_rdma_ctrl *ctrl = data;
398 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
399 
400 	BUG_ON(hctx_idx != 0);
401 
402 	hctx->driver_data = queue;
403 	return 0;
404 }
405 
406 static void nvme_rdma_free_dev(struct kref *ref)
407 {
408 	struct nvme_rdma_device *ndev =
409 		container_of(ref, struct nvme_rdma_device, ref);
410 
411 	mutex_lock(&device_list_mutex);
412 	list_del(&ndev->entry);
413 	mutex_unlock(&device_list_mutex);
414 
415 	ib_dealloc_pd(ndev->pd);
416 	kfree(ndev);
417 }
418 
419 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
420 {
421 	kref_put(&dev->ref, nvme_rdma_free_dev);
422 }
423 
424 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
425 {
426 	return kref_get_unless_zero(&dev->ref);
427 }
428 
429 static struct nvme_rdma_device *
430 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
431 {
432 	struct nvme_rdma_device *ndev;
433 
434 	mutex_lock(&device_list_mutex);
435 	list_for_each_entry(ndev, &device_list, entry) {
436 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
437 		    nvme_rdma_dev_get(ndev))
438 			goto out_unlock;
439 	}
440 
441 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
442 	if (!ndev)
443 		goto out_err;
444 
445 	ndev->dev = cm_id->device;
446 	kref_init(&ndev->ref);
447 
448 	ndev->pd = ib_alloc_pd(ndev->dev,
449 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
450 	if (IS_ERR(ndev->pd))
451 		goto out_free_dev;
452 
453 	if (!(ndev->dev->attrs.device_cap_flags &
454 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
455 		dev_err(&ndev->dev->dev,
456 			"Memory registrations not supported.\n");
457 		goto out_free_pd;
458 	}
459 
460 	list_add(&ndev->entry, &device_list);
461 out_unlock:
462 	mutex_unlock(&device_list_mutex);
463 	return ndev;
464 
465 out_free_pd:
466 	ib_dealloc_pd(ndev->pd);
467 out_free_dev:
468 	kfree(ndev);
469 out_err:
470 	mutex_unlock(&device_list_mutex);
471 	return NULL;
472 }
473 
474 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
475 {
476 	struct nvme_rdma_device *dev;
477 	struct ib_device *ibdev;
478 
479 	if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
480 		return;
481 
482 	dev = queue->device;
483 	ibdev = dev->dev;
484 	rdma_destroy_qp(queue->cm_id);
485 	ib_free_cq(queue->ib_cq);
486 
487 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
488 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
489 
490 	nvme_rdma_dev_put(dev);
491 }
492 
493 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
494 		struct nvme_rdma_device *dev)
495 {
496 	struct ib_device *ibdev = dev->dev;
497 	const int send_wr_factor = 3;			/* MR, SEND, INV */
498 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
499 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
500 
501 	int ret;
502 
503 	queue->device = dev;
504 
505 	/*
506 	 * The admin queue is barely used once the controller is live, so don't
507 	 * bother to spread it out.
508 	 */
509 	if (idx == 0)
510 		comp_vector = 0;
511 	else
512 		comp_vector = idx % ibdev->num_comp_vectors;
513 
514 
515 	/* +1 for ib_stop_cq */
516 	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
517 				cq_factor * queue->queue_size + 1, comp_vector,
518 				IB_POLL_SOFTIRQ);
519 	if (IS_ERR(queue->ib_cq)) {
520 		ret = PTR_ERR(queue->ib_cq);
521 		goto out;
522 	}
523 
524 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
525 	if (ret)
526 		goto out_destroy_ib_cq;
527 
528 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
529 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
530 	if (!queue->rsp_ring) {
531 		ret = -ENOMEM;
532 		goto out_destroy_qp;
533 	}
534 	set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
535 
536 	return 0;
537 
538 out_destroy_qp:
539 	ib_destroy_qp(queue->qp);
540 out_destroy_ib_cq:
541 	ib_free_cq(queue->ib_cq);
542 out:
543 	return ret;
544 }
545 
546 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
547 		int idx, size_t queue_size)
548 {
549 	struct nvme_rdma_queue *queue;
550 	struct sockaddr *src_addr = NULL;
551 	int ret;
552 
553 	queue = &ctrl->queues[idx];
554 	queue->ctrl = ctrl;
555 	init_completion(&queue->cm_done);
556 
557 	if (idx > 0)
558 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
559 	else
560 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
561 
562 	queue->queue_size = queue_size;
563 
564 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
565 			RDMA_PS_TCP, IB_QPT_RC);
566 	if (IS_ERR(queue->cm_id)) {
567 		dev_info(ctrl->ctrl.device,
568 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
569 		return PTR_ERR(queue->cm_id);
570 	}
571 
572 	queue->cm_error = -ETIMEDOUT;
573 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
574 		src_addr = &ctrl->src_addr;
575 
576 	ret = rdma_resolve_addr(queue->cm_id, src_addr, &ctrl->addr,
577 			NVME_RDMA_CONNECT_TIMEOUT_MS);
578 	if (ret) {
579 		dev_info(ctrl->ctrl.device,
580 			"rdma_resolve_addr failed (%d).\n", ret);
581 		goto out_destroy_cm_id;
582 	}
583 
584 	ret = nvme_rdma_wait_for_cm(queue);
585 	if (ret) {
586 		dev_info(ctrl->ctrl.device,
587 			"rdma_resolve_addr wait failed (%d).\n", ret);
588 		goto out_destroy_cm_id;
589 	}
590 
591 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
592 	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
593 
594 	return 0;
595 
596 out_destroy_cm_id:
597 	nvme_rdma_destroy_queue_ib(queue);
598 	rdma_destroy_id(queue->cm_id);
599 	return ret;
600 }
601 
602 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
603 {
604 	rdma_disconnect(queue->cm_id);
605 	ib_drain_qp(queue->qp);
606 }
607 
608 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
609 {
610 	nvme_rdma_destroy_queue_ib(queue);
611 	rdma_destroy_id(queue->cm_id);
612 }
613 
614 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
615 {
616 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
617 		return;
618 	nvme_rdma_stop_queue(queue);
619 	nvme_rdma_free_queue(queue);
620 }
621 
622 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624 	int i;
625 
626 	for (i = 1; i < ctrl->queue_count; i++)
627 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
628 }
629 
630 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632 	int i, ret = 0;
633 
634 	for (i = 1; i < ctrl->queue_count; i++) {
635 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
636 		if (ret) {
637 			dev_info(ctrl->ctrl.device,
638 				"failed to connect i/o queue: %d\n", ret);
639 			goto out_free_queues;
640 		}
641 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
642 	}
643 
644 	return 0;
645 
646 out_free_queues:
647 	nvme_rdma_free_io_queues(ctrl);
648 	return ret;
649 }
650 
651 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
652 {
653 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
654 	unsigned int nr_io_queues;
655 	int i, ret;
656 
657 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
658 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
659 	if (ret)
660 		return ret;
661 
662 	ctrl->queue_count = nr_io_queues + 1;
663 	if (ctrl->queue_count < 2)
664 		return 0;
665 
666 	dev_info(ctrl->ctrl.device,
667 		"creating %d I/O queues.\n", nr_io_queues);
668 
669 	for (i = 1; i < ctrl->queue_count; i++) {
670 		ret = nvme_rdma_init_queue(ctrl, i,
671 					   ctrl->ctrl.opts->queue_size);
672 		if (ret) {
673 			dev_info(ctrl->ctrl.device,
674 				"failed to initialize i/o queue: %d\n", ret);
675 			goto out_free_queues;
676 		}
677 	}
678 
679 	return 0;
680 
681 out_free_queues:
682 	for (i--; i >= 1; i--)
683 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
684 
685 	return ret;
686 }
687 
688 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
689 {
690 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
691 			sizeof(struct nvme_command), DMA_TO_DEVICE);
692 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
693 	blk_cleanup_queue(ctrl->ctrl.admin_q);
694 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
695 	nvme_rdma_dev_put(ctrl->device);
696 }
697 
698 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
699 {
700 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
701 
702 	if (list_empty(&ctrl->list))
703 		goto free_ctrl;
704 
705 	mutex_lock(&nvme_rdma_ctrl_mutex);
706 	list_del(&ctrl->list);
707 	mutex_unlock(&nvme_rdma_ctrl_mutex);
708 
709 	kfree(ctrl->queues);
710 	nvmf_free_options(nctrl->opts);
711 free_ctrl:
712 	kfree(ctrl);
713 }
714 
715 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
716 {
717 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
718 			struct nvme_rdma_ctrl, reconnect_work);
719 	bool changed;
720 	int ret;
721 
722 	if (ctrl->queue_count > 1) {
723 		nvme_rdma_free_io_queues(ctrl);
724 
725 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
726 		if (ret)
727 			goto requeue;
728 	}
729 
730 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
731 
732 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
733 	if (ret)
734 		goto requeue;
735 
736 	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
737 	if (ret)
738 		goto requeue;
739 
740 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
741 
742 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
743 	if (ret)
744 		goto stop_admin_q;
745 
746 	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
747 
748 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
749 	if (ret)
750 		goto stop_admin_q;
751 
752 	nvme_start_keep_alive(&ctrl->ctrl);
753 
754 	if (ctrl->queue_count > 1) {
755 		ret = nvme_rdma_init_io_queues(ctrl);
756 		if (ret)
757 			goto stop_admin_q;
758 
759 		ret = nvme_rdma_connect_io_queues(ctrl);
760 		if (ret)
761 			goto stop_admin_q;
762 	}
763 
764 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
765 	WARN_ON_ONCE(!changed);
766 
767 	if (ctrl->queue_count > 1) {
768 		nvme_start_queues(&ctrl->ctrl);
769 		nvme_queue_scan(&ctrl->ctrl);
770 		nvme_queue_async_events(&ctrl->ctrl);
771 	}
772 
773 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
774 
775 	return;
776 
777 stop_admin_q:
778 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
779 requeue:
780 	/* Make sure we are not resetting/deleting */
781 	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
782 		dev_info(ctrl->ctrl.device,
783 			"Failed reconnect attempt, requeueing...\n");
784 		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
785 					ctrl->reconnect_delay * HZ);
786 	}
787 }
788 
789 static void nvme_rdma_error_recovery_work(struct work_struct *work)
790 {
791 	struct nvme_rdma_ctrl *ctrl = container_of(work,
792 			struct nvme_rdma_ctrl, err_work);
793 	int i;
794 
795 	nvme_stop_keep_alive(&ctrl->ctrl);
796 
797 	for (i = 0; i < ctrl->queue_count; i++) {
798 		clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
799 		clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
800 	}
801 
802 	if (ctrl->queue_count > 1)
803 		nvme_stop_queues(&ctrl->ctrl);
804 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
805 
806 	/* We must take care of fastfail/requeue all our inflight requests */
807 	if (ctrl->queue_count > 1)
808 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
809 					nvme_cancel_request, &ctrl->ctrl);
810 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
811 				nvme_cancel_request, &ctrl->ctrl);
812 
813 	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
814 		ctrl->reconnect_delay);
815 
816 	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
817 				ctrl->reconnect_delay * HZ);
818 }
819 
820 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
821 {
822 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
823 		return;
824 
825 	queue_work(nvme_rdma_wq, &ctrl->err_work);
826 }
827 
828 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
829 		const char *op)
830 {
831 	struct nvme_rdma_queue *queue = cq->cq_context;
832 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
833 
834 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
835 		dev_info(ctrl->ctrl.device,
836 			     "%s for CQE 0x%p failed with status %s (%d)\n",
837 			     op, wc->wr_cqe,
838 			     ib_wc_status_msg(wc->status), wc->status);
839 	nvme_rdma_error_recovery(ctrl);
840 }
841 
842 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
843 {
844 	if (unlikely(wc->status != IB_WC_SUCCESS))
845 		nvme_rdma_wr_error(cq, wc, "MEMREG");
846 }
847 
848 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
849 {
850 	if (unlikely(wc->status != IB_WC_SUCCESS))
851 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
852 }
853 
854 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
855 		struct nvme_rdma_request *req)
856 {
857 	struct ib_send_wr *bad_wr;
858 	struct ib_send_wr wr = {
859 		.opcode		    = IB_WR_LOCAL_INV,
860 		.next		    = NULL,
861 		.num_sge	    = 0,
862 		.send_flags	    = 0,
863 		.ex.invalidate_rkey = req->mr->rkey,
864 	};
865 
866 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
867 	wr.wr_cqe = &req->reg_cqe;
868 
869 	return ib_post_send(queue->qp, &wr, &bad_wr);
870 }
871 
872 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
873 		struct request *rq)
874 {
875 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
876 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
877 	struct nvme_rdma_device *dev = queue->device;
878 	struct ib_device *ibdev = dev->dev;
879 	int res;
880 
881 	if (!blk_rq_bytes(rq))
882 		return;
883 
884 	if (req->mr->need_inval) {
885 		res = nvme_rdma_inv_rkey(queue, req);
886 		if (res < 0) {
887 			dev_err(ctrl->ctrl.device,
888 				"Queueing INV WR for rkey %#x failed (%d)\n",
889 				req->mr->rkey, res);
890 			nvme_rdma_error_recovery(queue->ctrl);
891 		}
892 	}
893 
894 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
895 			req->nents, rq_data_dir(rq) ==
896 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
897 
898 	nvme_cleanup_cmd(rq);
899 	sg_free_table_chained(&req->sg_table, true);
900 }
901 
902 static int nvme_rdma_set_sg_null(struct nvme_command *c)
903 {
904 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
905 
906 	sg->addr = 0;
907 	put_unaligned_le24(0, sg->length);
908 	put_unaligned_le32(0, sg->key);
909 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
910 	return 0;
911 }
912 
913 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
914 		struct nvme_rdma_request *req, struct nvme_command *c)
915 {
916 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
917 
918 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
919 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
920 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
921 
922 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
923 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
924 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
925 
926 	req->inline_data = true;
927 	req->num_sge++;
928 	return 0;
929 }
930 
931 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
932 		struct nvme_rdma_request *req, struct nvme_command *c)
933 {
934 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
935 
936 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
937 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
938 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
939 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
940 	return 0;
941 }
942 
943 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
944 		struct nvme_rdma_request *req, struct nvme_command *c,
945 		int count)
946 {
947 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
948 	int nr;
949 
950 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
951 	if (nr < count) {
952 		if (nr < 0)
953 			return nr;
954 		return -EINVAL;
955 	}
956 
957 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
958 
959 	req->reg_cqe.done = nvme_rdma_memreg_done;
960 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
961 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
962 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
963 	req->reg_wr.wr.num_sge = 0;
964 	req->reg_wr.mr = req->mr;
965 	req->reg_wr.key = req->mr->rkey;
966 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
967 			     IB_ACCESS_REMOTE_READ |
968 			     IB_ACCESS_REMOTE_WRITE;
969 
970 	req->mr->need_inval = true;
971 
972 	sg->addr = cpu_to_le64(req->mr->iova);
973 	put_unaligned_le24(req->mr->length, sg->length);
974 	put_unaligned_le32(req->mr->rkey, sg->key);
975 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
976 			NVME_SGL_FMT_INVALIDATE;
977 
978 	return 0;
979 }
980 
981 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
982 		struct request *rq, struct nvme_command *c)
983 {
984 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
985 	struct nvme_rdma_device *dev = queue->device;
986 	struct ib_device *ibdev = dev->dev;
987 	int count, ret;
988 
989 	req->num_sge = 1;
990 	req->inline_data = false;
991 	req->mr->need_inval = false;
992 
993 	c->common.flags |= NVME_CMD_SGL_METABUF;
994 
995 	if (!blk_rq_bytes(rq))
996 		return nvme_rdma_set_sg_null(c);
997 
998 	req->sg_table.sgl = req->first_sgl;
999 	ret = sg_alloc_table_chained(&req->sg_table,
1000 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1001 	if (ret)
1002 		return -ENOMEM;
1003 
1004 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1005 
1006 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1007 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1008 	if (unlikely(count <= 0)) {
1009 		sg_free_table_chained(&req->sg_table, true);
1010 		return -EIO;
1011 	}
1012 
1013 	if (count == 1) {
1014 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1015 		    blk_rq_payload_bytes(rq) <=
1016 				nvme_rdma_inline_data_size(queue))
1017 			return nvme_rdma_map_sg_inline(queue, req, c);
1018 
1019 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1020 			return nvme_rdma_map_sg_single(queue, req, c);
1021 	}
1022 
1023 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1024 }
1025 
1026 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1027 {
1028 	if (unlikely(wc->status != IB_WC_SUCCESS))
1029 		nvme_rdma_wr_error(cq, wc, "SEND");
1030 }
1031 
1032 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1033 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1034 		struct ib_send_wr *first, bool flush)
1035 {
1036 	struct ib_send_wr wr, *bad_wr;
1037 	int ret;
1038 
1039 	sge->addr   = qe->dma;
1040 	sge->length = sizeof(struct nvme_command),
1041 	sge->lkey   = queue->device->pd->local_dma_lkey;
1042 
1043 	qe->cqe.done = nvme_rdma_send_done;
1044 
1045 	wr.next       = NULL;
1046 	wr.wr_cqe     = &qe->cqe;
1047 	wr.sg_list    = sge;
1048 	wr.num_sge    = num_sge;
1049 	wr.opcode     = IB_WR_SEND;
1050 	wr.send_flags = 0;
1051 
1052 	/*
1053 	 * Unsignalled send completions are another giant desaster in the
1054 	 * IB Verbs spec:  If we don't regularly post signalled sends
1055 	 * the send queue will fill up and only a QP reset will rescue us.
1056 	 * Would have been way to obvious to handle this in hardware or
1057 	 * at least the RDMA stack..
1058 	 *
1059 	 * This messy and racy code sniplet is copy and pasted from the iSER
1060 	 * initiator, and the magic '32' comes from there as well.
1061 	 *
1062 	 * Always signal the flushes. The magic request used for the flush
1063 	 * sequencer is not allocated in our driver's tagset and it's
1064 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1065 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1066 	 * embedded in request's payload, is not freed when __ib_process_cq()
1067 	 * calls wr_cqe->done().
1068 	 */
1069 	if ((++queue->sig_count % 32) == 0 || flush)
1070 		wr.send_flags |= IB_SEND_SIGNALED;
1071 
1072 	if (first)
1073 		first->next = &wr;
1074 	else
1075 		first = &wr;
1076 
1077 	ret = ib_post_send(queue->qp, first, &bad_wr);
1078 	if (ret) {
1079 		dev_err(queue->ctrl->ctrl.device,
1080 			     "%s failed with error code %d\n", __func__, ret);
1081 	}
1082 	return ret;
1083 }
1084 
1085 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1086 		struct nvme_rdma_qe *qe)
1087 {
1088 	struct ib_recv_wr wr, *bad_wr;
1089 	struct ib_sge list;
1090 	int ret;
1091 
1092 	list.addr   = qe->dma;
1093 	list.length = sizeof(struct nvme_completion);
1094 	list.lkey   = queue->device->pd->local_dma_lkey;
1095 
1096 	qe->cqe.done = nvme_rdma_recv_done;
1097 
1098 	wr.next     = NULL;
1099 	wr.wr_cqe   = &qe->cqe;
1100 	wr.sg_list  = &list;
1101 	wr.num_sge  = 1;
1102 
1103 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1104 	if (ret) {
1105 		dev_err(queue->ctrl->ctrl.device,
1106 			"%s failed with error code %d\n", __func__, ret);
1107 	}
1108 	return ret;
1109 }
1110 
1111 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1112 {
1113 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1114 
1115 	if (queue_idx == 0)
1116 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1117 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1118 }
1119 
1120 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1121 {
1122 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1123 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1124 	struct ib_device *dev = queue->device->dev;
1125 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1126 	struct nvme_command *cmd = sqe->data;
1127 	struct ib_sge sge;
1128 	int ret;
1129 
1130 	if (WARN_ON_ONCE(aer_idx != 0))
1131 		return;
1132 
1133 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1134 
1135 	memset(cmd, 0, sizeof(*cmd));
1136 	cmd->common.opcode = nvme_admin_async_event;
1137 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1138 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1139 	nvme_rdma_set_sg_null(cmd);
1140 
1141 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1142 			DMA_TO_DEVICE);
1143 
1144 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1145 	WARN_ON_ONCE(ret);
1146 }
1147 
1148 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1149 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1150 {
1151 	struct request *rq;
1152 	struct nvme_rdma_request *req;
1153 	int ret = 0;
1154 
1155 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1156 	if (!rq) {
1157 		dev_err(queue->ctrl->ctrl.device,
1158 			"tag 0x%x on QP %#x not found\n",
1159 			cqe->command_id, queue->qp->qp_num);
1160 		nvme_rdma_error_recovery(queue->ctrl);
1161 		return ret;
1162 	}
1163 	req = blk_mq_rq_to_pdu(rq);
1164 
1165 	if (rq->tag == tag)
1166 		ret = 1;
1167 
1168 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1169 	    wc->ex.invalidate_rkey == req->mr->rkey)
1170 		req->mr->need_inval = false;
1171 
1172 	req->req.result = cqe->result;
1173 	blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1);
1174 	return ret;
1175 }
1176 
1177 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1178 {
1179 	struct nvme_rdma_qe *qe =
1180 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1181 	struct nvme_rdma_queue *queue = cq->cq_context;
1182 	struct ib_device *ibdev = queue->device->dev;
1183 	struct nvme_completion *cqe = qe->data;
1184 	const size_t len = sizeof(struct nvme_completion);
1185 	int ret = 0;
1186 
1187 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1188 		nvme_rdma_wr_error(cq, wc, "RECV");
1189 		return 0;
1190 	}
1191 
1192 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1193 	/*
1194 	 * AEN requests are special as they don't time out and can
1195 	 * survive any kind of queue freeze and often don't respond to
1196 	 * aborts.  We don't even bother to allocate a struct request
1197 	 * for them but rather special case them here.
1198 	 */
1199 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1200 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1201 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1202 				&cqe->result);
1203 	else
1204 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1205 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1206 
1207 	nvme_rdma_post_recv(queue, qe);
1208 	return ret;
1209 }
1210 
1211 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1212 {
1213 	__nvme_rdma_recv_done(cq, wc, -1);
1214 }
1215 
1216 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1217 {
1218 	int ret, i;
1219 
1220 	for (i = 0; i < queue->queue_size; i++) {
1221 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1222 		if (ret)
1223 			goto out_destroy_queue_ib;
1224 	}
1225 
1226 	return 0;
1227 
1228 out_destroy_queue_ib:
1229 	nvme_rdma_destroy_queue_ib(queue);
1230 	return ret;
1231 }
1232 
1233 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1234 		struct rdma_cm_event *ev)
1235 {
1236 	struct rdma_cm_id *cm_id = queue->cm_id;
1237 	int status = ev->status;
1238 	const char *rej_msg;
1239 	const struct nvme_rdma_cm_rej *rej_data;
1240 	u8 rej_data_len;
1241 
1242 	rej_msg = rdma_reject_msg(cm_id, status);
1243 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1244 
1245 	if (rej_data && rej_data_len >= sizeof(u16)) {
1246 		u16 sts = le16_to_cpu(rej_data->sts);
1247 
1248 		dev_err(queue->ctrl->ctrl.device,
1249 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1250 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1251 	} else {
1252 		dev_err(queue->ctrl->ctrl.device,
1253 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1254 	}
1255 
1256 	return -ECONNRESET;
1257 }
1258 
1259 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1260 {
1261 	struct nvme_rdma_device *dev;
1262 	int ret;
1263 
1264 	dev = nvme_rdma_find_get_device(queue->cm_id);
1265 	if (!dev) {
1266 		dev_err(queue->cm_id->device->dev.parent,
1267 			"no client data found!\n");
1268 		return -ECONNREFUSED;
1269 	}
1270 
1271 	ret = nvme_rdma_create_queue_ib(queue, dev);
1272 	if (ret) {
1273 		nvme_rdma_dev_put(dev);
1274 		goto out;
1275 	}
1276 
1277 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1278 	if (ret) {
1279 		dev_err(queue->ctrl->ctrl.device,
1280 			"rdma_resolve_route failed (%d).\n",
1281 			queue->cm_error);
1282 		goto out_destroy_queue;
1283 	}
1284 
1285 	return 0;
1286 
1287 out_destroy_queue:
1288 	nvme_rdma_destroy_queue_ib(queue);
1289 out:
1290 	return ret;
1291 }
1292 
1293 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1294 {
1295 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1296 	struct rdma_conn_param param = { };
1297 	struct nvme_rdma_cm_req priv = { };
1298 	int ret;
1299 
1300 	param.qp_num = queue->qp->qp_num;
1301 	param.flow_control = 1;
1302 
1303 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1304 	/* maximum retry count */
1305 	param.retry_count = 7;
1306 	param.rnr_retry_count = 7;
1307 	param.private_data = &priv;
1308 	param.private_data_len = sizeof(priv);
1309 
1310 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1311 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1312 	/*
1313 	 * set the admin queue depth to the minimum size
1314 	 * specified by the Fabrics standard.
1315 	 */
1316 	if (priv.qid == 0) {
1317 		priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1318 		priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1319 	} else {
1320 		/*
1321 		 * current interpretation of the fabrics spec
1322 		 * is at minimum you make hrqsize sqsize+1, or a
1323 		 * 1's based representation of sqsize.
1324 		 */
1325 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1326 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1327 	}
1328 
1329 	ret = rdma_connect(queue->cm_id, &param);
1330 	if (ret) {
1331 		dev_err(ctrl->ctrl.device,
1332 			"rdma_connect failed (%d).\n", ret);
1333 		goto out_destroy_queue_ib;
1334 	}
1335 
1336 	return 0;
1337 
1338 out_destroy_queue_ib:
1339 	nvme_rdma_destroy_queue_ib(queue);
1340 	return ret;
1341 }
1342 
1343 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1344 		struct rdma_cm_event *ev)
1345 {
1346 	struct nvme_rdma_queue *queue = cm_id->context;
1347 	int cm_error = 0;
1348 
1349 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1350 		rdma_event_msg(ev->event), ev->event,
1351 		ev->status, cm_id);
1352 
1353 	switch (ev->event) {
1354 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1355 		cm_error = nvme_rdma_addr_resolved(queue);
1356 		break;
1357 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1358 		cm_error = nvme_rdma_route_resolved(queue);
1359 		break;
1360 	case RDMA_CM_EVENT_ESTABLISHED:
1361 		queue->cm_error = nvme_rdma_conn_established(queue);
1362 		/* complete cm_done regardless of success/failure */
1363 		complete(&queue->cm_done);
1364 		return 0;
1365 	case RDMA_CM_EVENT_REJECTED:
1366 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1367 		break;
1368 	case RDMA_CM_EVENT_ADDR_ERROR:
1369 	case RDMA_CM_EVENT_ROUTE_ERROR:
1370 	case RDMA_CM_EVENT_CONNECT_ERROR:
1371 	case RDMA_CM_EVENT_UNREACHABLE:
1372 		dev_dbg(queue->ctrl->ctrl.device,
1373 			"CM error event %d\n", ev->event);
1374 		cm_error = -ECONNRESET;
1375 		break;
1376 	case RDMA_CM_EVENT_DISCONNECTED:
1377 	case RDMA_CM_EVENT_ADDR_CHANGE:
1378 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1379 		dev_dbg(queue->ctrl->ctrl.device,
1380 			"disconnect received - connection closed\n");
1381 		nvme_rdma_error_recovery(queue->ctrl);
1382 		break;
1383 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1384 		/* device removal is handled via the ib_client API */
1385 		break;
1386 	default:
1387 		dev_err(queue->ctrl->ctrl.device,
1388 			"Unexpected RDMA CM event (%d)\n", ev->event);
1389 		nvme_rdma_error_recovery(queue->ctrl);
1390 		break;
1391 	}
1392 
1393 	if (cm_error) {
1394 		queue->cm_error = cm_error;
1395 		complete(&queue->cm_done);
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static enum blk_eh_timer_return
1402 nvme_rdma_timeout(struct request *rq, bool reserved)
1403 {
1404 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1405 
1406 	/* queue error recovery */
1407 	nvme_rdma_error_recovery(req->queue->ctrl);
1408 
1409 	/* fail with DNR on cmd timeout */
1410 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1411 
1412 	return BLK_EH_HANDLED;
1413 }
1414 
1415 /*
1416  * We cannot accept any other command until the Connect command has completed.
1417  */
1418 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
1419 		struct request *rq)
1420 {
1421 	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1422 		struct nvme_command *cmd = nvme_req(rq)->cmd;
1423 
1424 		if (!blk_rq_is_passthrough(rq) ||
1425 		    cmd->common.opcode != nvme_fabrics_command ||
1426 		    cmd->fabrics.fctype != nvme_fabrics_type_connect)
1427 			return false;
1428 	}
1429 
1430 	return true;
1431 }
1432 
1433 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1434 		const struct blk_mq_queue_data *bd)
1435 {
1436 	struct nvme_ns *ns = hctx->queue->queuedata;
1437 	struct nvme_rdma_queue *queue = hctx->driver_data;
1438 	struct request *rq = bd->rq;
1439 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1440 	struct nvme_rdma_qe *sqe = &req->sqe;
1441 	struct nvme_command *c = sqe->data;
1442 	bool flush = false;
1443 	struct ib_device *dev;
1444 	int ret;
1445 
1446 	WARN_ON_ONCE(rq->tag < 0);
1447 
1448 	if (!nvme_rdma_queue_is_ready(queue, rq))
1449 		return BLK_MQ_RQ_QUEUE_BUSY;
1450 
1451 	dev = queue->device->dev;
1452 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1453 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1454 
1455 	ret = nvme_setup_cmd(ns, rq, c);
1456 	if (ret != BLK_MQ_RQ_QUEUE_OK)
1457 		return ret;
1458 
1459 	blk_mq_start_request(rq);
1460 
1461 	ret = nvme_rdma_map_data(queue, rq, c);
1462 	if (ret < 0) {
1463 		dev_err(queue->ctrl->ctrl.device,
1464 			     "Failed to map data (%d)\n", ret);
1465 		nvme_cleanup_cmd(rq);
1466 		goto err;
1467 	}
1468 
1469 	ib_dma_sync_single_for_device(dev, sqe->dma,
1470 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1471 
1472 	if (req_op(rq) == REQ_OP_FLUSH)
1473 		flush = true;
1474 	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1475 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1476 	if (ret) {
1477 		nvme_rdma_unmap_data(queue, rq);
1478 		goto err;
1479 	}
1480 
1481 	return BLK_MQ_RQ_QUEUE_OK;
1482 err:
1483 	return (ret == -ENOMEM || ret == -EAGAIN) ?
1484 		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1485 }
1486 
1487 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1488 {
1489 	struct nvme_rdma_queue *queue = hctx->driver_data;
1490 	struct ib_cq *cq = queue->ib_cq;
1491 	struct ib_wc wc;
1492 	int found = 0;
1493 
1494 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1495 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1496 		struct ib_cqe *cqe = wc.wr_cqe;
1497 
1498 		if (cqe) {
1499 			if (cqe->done == nvme_rdma_recv_done)
1500 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1501 			else
1502 				cqe->done(cq, &wc);
1503 		}
1504 	}
1505 
1506 	return found;
1507 }
1508 
1509 static void nvme_rdma_complete_rq(struct request *rq)
1510 {
1511 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1512 	struct nvme_rdma_queue *queue = req->queue;
1513 	int error = 0;
1514 
1515 	nvme_rdma_unmap_data(queue, rq);
1516 
1517 	if (unlikely(rq->errors)) {
1518 		if (nvme_req_needs_retry(rq, rq->errors)) {
1519 			nvme_requeue_req(rq);
1520 			return;
1521 		}
1522 
1523 		if (blk_rq_is_passthrough(rq))
1524 			error = rq->errors;
1525 		else
1526 			error = nvme_error_status(rq->errors);
1527 	}
1528 
1529 	blk_mq_end_request(rq, error);
1530 }
1531 
1532 static struct blk_mq_ops nvme_rdma_mq_ops = {
1533 	.queue_rq	= nvme_rdma_queue_rq,
1534 	.complete	= nvme_rdma_complete_rq,
1535 	.init_request	= nvme_rdma_init_request,
1536 	.exit_request	= nvme_rdma_exit_request,
1537 	.reinit_request	= nvme_rdma_reinit_request,
1538 	.init_hctx	= nvme_rdma_init_hctx,
1539 	.poll		= nvme_rdma_poll,
1540 	.timeout	= nvme_rdma_timeout,
1541 };
1542 
1543 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1544 	.queue_rq	= nvme_rdma_queue_rq,
1545 	.complete	= nvme_rdma_complete_rq,
1546 	.init_request	= nvme_rdma_init_admin_request,
1547 	.exit_request	= nvme_rdma_exit_admin_request,
1548 	.reinit_request	= nvme_rdma_reinit_request,
1549 	.init_hctx	= nvme_rdma_init_admin_hctx,
1550 	.timeout	= nvme_rdma_timeout,
1551 };
1552 
1553 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1554 {
1555 	int error;
1556 
1557 	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1558 	if (error)
1559 		return error;
1560 
1561 	ctrl->device = ctrl->queues[0].device;
1562 
1563 	/*
1564 	 * We need a reference on the device as long as the tag_set is alive,
1565 	 * as the MRs in the request structures need a valid ib_device.
1566 	 */
1567 	error = -EINVAL;
1568 	if (!nvme_rdma_dev_get(ctrl->device))
1569 		goto out_free_queue;
1570 
1571 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1572 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1573 
1574 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1575 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1576 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1577 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1578 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1579 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1580 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1581 	ctrl->admin_tag_set.driver_data = ctrl;
1582 	ctrl->admin_tag_set.nr_hw_queues = 1;
1583 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1584 
1585 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1586 	if (error)
1587 		goto out_put_dev;
1588 
1589 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1590 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1591 		error = PTR_ERR(ctrl->ctrl.admin_q);
1592 		goto out_free_tagset;
1593 	}
1594 
1595 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1596 	if (error)
1597 		goto out_cleanup_queue;
1598 
1599 	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1600 
1601 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1602 	if (error) {
1603 		dev_err(ctrl->ctrl.device,
1604 			"prop_get NVME_REG_CAP failed\n");
1605 		goto out_cleanup_queue;
1606 	}
1607 
1608 	ctrl->ctrl.sqsize =
1609 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1610 
1611 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1612 	if (error)
1613 		goto out_cleanup_queue;
1614 
1615 	ctrl->ctrl.max_hw_sectors =
1616 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1617 
1618 	error = nvme_init_identify(&ctrl->ctrl);
1619 	if (error)
1620 		goto out_cleanup_queue;
1621 
1622 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1623 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1624 			DMA_TO_DEVICE);
1625 	if (error)
1626 		goto out_cleanup_queue;
1627 
1628 	nvme_start_keep_alive(&ctrl->ctrl);
1629 
1630 	return 0;
1631 
1632 out_cleanup_queue:
1633 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1634 out_free_tagset:
1635 	/* disconnect and drain the queue before freeing the tagset */
1636 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1637 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1638 out_put_dev:
1639 	nvme_rdma_dev_put(ctrl->device);
1640 out_free_queue:
1641 	nvme_rdma_free_queue(&ctrl->queues[0]);
1642 	return error;
1643 }
1644 
1645 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1646 {
1647 	nvme_stop_keep_alive(&ctrl->ctrl);
1648 	cancel_work_sync(&ctrl->err_work);
1649 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1650 
1651 	if (ctrl->queue_count > 1) {
1652 		nvme_stop_queues(&ctrl->ctrl);
1653 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1654 					nvme_cancel_request, &ctrl->ctrl);
1655 		nvme_rdma_free_io_queues(ctrl);
1656 	}
1657 
1658 	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1659 		nvme_shutdown_ctrl(&ctrl->ctrl);
1660 
1661 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1662 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1663 				nvme_cancel_request, &ctrl->ctrl);
1664 	nvme_rdma_destroy_admin_queue(ctrl);
1665 }
1666 
1667 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1668 {
1669 	nvme_uninit_ctrl(&ctrl->ctrl);
1670 	if (shutdown)
1671 		nvme_rdma_shutdown_ctrl(ctrl);
1672 
1673 	if (ctrl->ctrl.tagset) {
1674 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1675 		blk_mq_free_tag_set(&ctrl->tag_set);
1676 		nvme_rdma_dev_put(ctrl->device);
1677 	}
1678 
1679 	nvme_put_ctrl(&ctrl->ctrl);
1680 }
1681 
1682 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1683 {
1684 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1685 				struct nvme_rdma_ctrl, delete_work);
1686 
1687 	__nvme_rdma_remove_ctrl(ctrl, true);
1688 }
1689 
1690 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1691 {
1692 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1693 		return -EBUSY;
1694 
1695 	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1696 		return -EBUSY;
1697 
1698 	return 0;
1699 }
1700 
1701 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1702 {
1703 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1704 	int ret = 0;
1705 
1706 	/*
1707 	 * Keep a reference until all work is flushed since
1708 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1709 	 */
1710 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1711 		return -EBUSY;
1712 	ret = __nvme_rdma_del_ctrl(ctrl);
1713 	if (!ret)
1714 		flush_work(&ctrl->delete_work);
1715 	nvme_put_ctrl(&ctrl->ctrl);
1716 	return ret;
1717 }
1718 
1719 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1720 {
1721 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1722 				struct nvme_rdma_ctrl, delete_work);
1723 
1724 	__nvme_rdma_remove_ctrl(ctrl, false);
1725 }
1726 
1727 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1728 {
1729 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1730 					struct nvme_rdma_ctrl, reset_work);
1731 	int ret;
1732 	bool changed;
1733 
1734 	nvme_rdma_shutdown_ctrl(ctrl);
1735 
1736 	ret = nvme_rdma_configure_admin_queue(ctrl);
1737 	if (ret) {
1738 		/* ctrl is already shutdown, just remove the ctrl */
1739 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1740 		goto del_dead_ctrl;
1741 	}
1742 
1743 	if (ctrl->queue_count > 1) {
1744 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1745 		if (ret)
1746 			goto del_dead_ctrl;
1747 
1748 		ret = nvme_rdma_init_io_queues(ctrl);
1749 		if (ret)
1750 			goto del_dead_ctrl;
1751 
1752 		ret = nvme_rdma_connect_io_queues(ctrl);
1753 		if (ret)
1754 			goto del_dead_ctrl;
1755 	}
1756 
1757 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1758 	WARN_ON_ONCE(!changed);
1759 
1760 	if (ctrl->queue_count > 1) {
1761 		nvme_start_queues(&ctrl->ctrl);
1762 		nvme_queue_scan(&ctrl->ctrl);
1763 		nvme_queue_async_events(&ctrl->ctrl);
1764 	}
1765 
1766 	return;
1767 
1768 del_dead_ctrl:
1769 	/* Deleting this dead controller... */
1770 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1771 	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1772 }
1773 
1774 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1775 {
1776 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1777 
1778 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1779 		return -EBUSY;
1780 
1781 	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1782 		return -EBUSY;
1783 
1784 	flush_work(&ctrl->reset_work);
1785 
1786 	return 0;
1787 }
1788 
1789 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1790 	.name			= "rdma",
1791 	.module			= THIS_MODULE,
1792 	.is_fabrics		= true,
1793 	.reg_read32		= nvmf_reg_read32,
1794 	.reg_read64		= nvmf_reg_read64,
1795 	.reg_write32		= nvmf_reg_write32,
1796 	.reset_ctrl		= nvme_rdma_reset_ctrl,
1797 	.free_ctrl		= nvme_rdma_free_ctrl,
1798 	.submit_async_event	= nvme_rdma_submit_async_event,
1799 	.delete_ctrl		= nvme_rdma_del_ctrl,
1800 	.get_subsysnqn		= nvmf_get_subsysnqn,
1801 	.get_address		= nvmf_get_address,
1802 };
1803 
1804 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1805 {
1806 	int ret;
1807 
1808 	ret = nvme_rdma_init_io_queues(ctrl);
1809 	if (ret)
1810 		return ret;
1811 
1812 	/*
1813 	 * We need a reference on the device as long as the tag_set is alive,
1814 	 * as the MRs in the request structures need a valid ib_device.
1815 	 */
1816 	ret = -EINVAL;
1817 	if (!nvme_rdma_dev_get(ctrl->device))
1818 		goto out_free_io_queues;
1819 
1820 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1821 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1822 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1823 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1824 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1825 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1826 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1827 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1828 	ctrl->tag_set.driver_data = ctrl;
1829 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1830 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1831 
1832 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1833 	if (ret)
1834 		goto out_put_dev;
1835 	ctrl->ctrl.tagset = &ctrl->tag_set;
1836 
1837 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1838 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1839 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1840 		goto out_free_tag_set;
1841 	}
1842 
1843 	ret = nvme_rdma_connect_io_queues(ctrl);
1844 	if (ret)
1845 		goto out_cleanup_connect_q;
1846 
1847 	return 0;
1848 
1849 out_cleanup_connect_q:
1850 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1851 out_free_tag_set:
1852 	blk_mq_free_tag_set(&ctrl->tag_set);
1853 out_put_dev:
1854 	nvme_rdma_dev_put(ctrl->device);
1855 out_free_io_queues:
1856 	nvme_rdma_free_io_queues(ctrl);
1857 	return ret;
1858 }
1859 
1860 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1861 {
1862 	u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1863 	size_t buflen = strlen(p);
1864 
1865 	/* XXX: handle IPv6 addresses */
1866 
1867 	if (buflen > INET_ADDRSTRLEN)
1868 		return -EINVAL;
1869 	if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1870 		return -EINVAL;
1871 	in_addr->sin_family = AF_INET;
1872 	return 0;
1873 }
1874 
1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1876 		struct nvmf_ctrl_options *opts)
1877 {
1878 	struct nvme_rdma_ctrl *ctrl;
1879 	int ret;
1880 	bool changed;
1881 
1882 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1883 	if (!ctrl)
1884 		return ERR_PTR(-ENOMEM);
1885 	ctrl->ctrl.opts = opts;
1886 	INIT_LIST_HEAD(&ctrl->list);
1887 
1888 	ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1889 	if (ret) {
1890 		pr_err("malformed IP address passed: %s\n", opts->traddr);
1891 		goto out_free_ctrl;
1892 	}
1893 
1894 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1895 		ret = nvme_rdma_parse_ipaddr(&ctrl->src_addr_in,
1896 				opts->host_traddr);
1897 		if (ret) {
1898 			pr_err("malformed src IP address passed: %s\n",
1899 			       opts->host_traddr);
1900 			goto out_free_ctrl;
1901 		}
1902 	}
1903 
1904 	if (opts->mask & NVMF_OPT_TRSVCID) {
1905 		u16 port;
1906 
1907 		ret = kstrtou16(opts->trsvcid, 0, &port);
1908 		if (ret)
1909 			goto out_free_ctrl;
1910 
1911 		ctrl->addr_in.sin_port = cpu_to_be16(port);
1912 	} else {
1913 		ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1914 	}
1915 
1916 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1917 				0 /* no quirks, we're perfect! */);
1918 	if (ret)
1919 		goto out_free_ctrl;
1920 
1921 	ctrl->reconnect_delay = opts->reconnect_delay;
1922 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1923 			nvme_rdma_reconnect_ctrl_work);
1924 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1925 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1926 	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1927 	spin_lock_init(&ctrl->lock);
1928 
1929 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1930 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1931 	ctrl->ctrl.kato = opts->kato;
1932 
1933 	ret = -ENOMEM;
1934 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1935 				GFP_KERNEL);
1936 	if (!ctrl->queues)
1937 		goto out_uninit_ctrl;
1938 
1939 	ret = nvme_rdma_configure_admin_queue(ctrl);
1940 	if (ret)
1941 		goto out_kfree_queues;
1942 
1943 	/* sanity check icdoff */
1944 	if (ctrl->ctrl.icdoff) {
1945 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1946 		goto out_remove_admin_queue;
1947 	}
1948 
1949 	/* sanity check keyed sgls */
1950 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1951 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1952 		goto out_remove_admin_queue;
1953 	}
1954 
1955 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1956 		/* warn if maxcmd is lower than queue_size */
1957 		dev_warn(ctrl->ctrl.device,
1958 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1959 			opts->queue_size, ctrl->ctrl.maxcmd);
1960 		opts->queue_size = ctrl->ctrl.maxcmd;
1961 	}
1962 
1963 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1964 		/* warn if sqsize is lower than queue_size */
1965 		dev_warn(ctrl->ctrl.device,
1966 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1967 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1968 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1969 	}
1970 
1971 	if (opts->nr_io_queues) {
1972 		ret = nvme_rdma_create_io_queues(ctrl);
1973 		if (ret)
1974 			goto out_remove_admin_queue;
1975 	}
1976 
1977 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1978 	WARN_ON_ONCE(!changed);
1979 
1980 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1981 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1982 
1983 	kref_get(&ctrl->ctrl.kref);
1984 
1985 	mutex_lock(&nvme_rdma_ctrl_mutex);
1986 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1987 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1988 
1989 	if (opts->nr_io_queues) {
1990 		nvme_queue_scan(&ctrl->ctrl);
1991 		nvme_queue_async_events(&ctrl->ctrl);
1992 	}
1993 
1994 	return &ctrl->ctrl;
1995 
1996 out_remove_admin_queue:
1997 	nvme_stop_keep_alive(&ctrl->ctrl);
1998 	nvme_rdma_destroy_admin_queue(ctrl);
1999 out_kfree_queues:
2000 	kfree(ctrl->queues);
2001 out_uninit_ctrl:
2002 	nvme_uninit_ctrl(&ctrl->ctrl);
2003 	nvme_put_ctrl(&ctrl->ctrl);
2004 	if (ret > 0)
2005 		ret = -EIO;
2006 	return ERR_PTR(ret);
2007 out_free_ctrl:
2008 	kfree(ctrl);
2009 	return ERR_PTR(ret);
2010 }
2011 
2012 static struct nvmf_transport_ops nvme_rdma_transport = {
2013 	.name		= "rdma",
2014 	.required_opts	= NVMF_OPT_TRADDR,
2015 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2016 			  NVMF_OPT_HOST_TRADDR,
2017 	.create_ctrl	= nvme_rdma_create_ctrl,
2018 };
2019 
2020 static void nvme_rdma_add_one(struct ib_device *ib_device)
2021 {
2022 }
2023 
2024 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2025 {
2026 	struct nvme_rdma_ctrl *ctrl;
2027 
2028 	/* Delete all controllers using this device */
2029 	mutex_lock(&nvme_rdma_ctrl_mutex);
2030 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2031 		if (ctrl->device->dev != ib_device)
2032 			continue;
2033 		dev_info(ctrl->ctrl.device,
2034 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
2035 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2036 		__nvme_rdma_del_ctrl(ctrl);
2037 	}
2038 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2039 
2040 	flush_workqueue(nvme_rdma_wq);
2041 }
2042 
2043 static struct ib_client nvme_rdma_ib_client = {
2044 	.name   = "nvme_rdma",
2045 	.add = nvme_rdma_add_one,
2046 	.remove = nvme_rdma_remove_one
2047 };
2048 
2049 static int __init nvme_rdma_init_module(void)
2050 {
2051 	int ret;
2052 
2053 	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2054 	if (!nvme_rdma_wq)
2055 		return -ENOMEM;
2056 
2057 	ret = ib_register_client(&nvme_rdma_ib_client);
2058 	if (ret) {
2059 		destroy_workqueue(nvme_rdma_wq);
2060 		return ret;
2061 	}
2062 
2063 	return nvmf_register_transport(&nvme_rdma_transport);
2064 }
2065 
2066 static void __exit nvme_rdma_cleanup_module(void)
2067 {
2068 	nvmf_unregister_transport(&nvme_rdma_transport);
2069 	ib_unregister_client(&nvme_rdma_ib_client);
2070 	destroy_workqueue(nvme_rdma_wq);
2071 }
2072 
2073 module_init(nvme_rdma_init_module);
2074 module_exit(nvme_rdma_cleanup_module);
2075 
2076 MODULE_LICENSE("GPL v2");
2077