xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision f79e4d5f)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 };
51 
52 struct nvme_rdma_qe {
53 	struct ib_cqe		cqe;
54 	void			*data;
55 	u64			dma;
56 };
57 
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60 	struct nvme_request	req;
61 	struct ib_mr		*mr;
62 	struct nvme_rdma_qe	sqe;
63 	union nvme_result	result;
64 	__le16			status;
65 	refcount_t		ref;
66 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67 	u32			num_sge;
68 	int			nents;
69 	struct ib_reg_wr	reg_wr;
70 	struct ib_cqe		reg_cqe;
71 	struct nvme_rdma_queue  *queue;
72 	struct sg_table		sg_table;
73 	struct scatterlist	first_sgl[];
74 };
75 
76 enum nvme_rdma_queue_flags {
77 	NVME_RDMA_Q_ALLOCATED		= 0,
78 	NVME_RDMA_Q_LIVE		= 1,
79 	NVME_RDMA_Q_TR_READY		= 2,
80 };
81 
82 struct nvme_rdma_queue {
83 	struct nvme_rdma_qe	*rsp_ring;
84 	int			queue_size;
85 	size_t			cmnd_capsule_len;
86 	struct nvme_rdma_ctrl	*ctrl;
87 	struct nvme_rdma_device	*device;
88 	struct ib_cq		*ib_cq;
89 	struct ib_qp		*qp;
90 
91 	unsigned long		flags;
92 	struct rdma_cm_id	*cm_id;
93 	int			cm_error;
94 	struct completion	cm_done;
95 };
96 
97 struct nvme_rdma_ctrl {
98 	/* read only in the hot path */
99 	struct nvme_rdma_queue	*queues;
100 
101 	/* other member variables */
102 	struct blk_mq_tag_set	tag_set;
103 	struct work_struct	err_work;
104 
105 	struct nvme_rdma_qe	async_event_sqe;
106 
107 	struct delayed_work	reconnect_work;
108 
109 	struct list_head	list;
110 
111 	struct blk_mq_tag_set	admin_tag_set;
112 	struct nvme_rdma_device	*device;
113 
114 	u32			max_fr_pages;
115 
116 	struct sockaddr_storage addr;
117 	struct sockaddr_storage src_addr;
118 
119 	struct nvme_ctrl	ctrl;
120 };
121 
122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
123 {
124 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
125 }
126 
127 static LIST_HEAD(device_list);
128 static DEFINE_MUTEX(device_list_mutex);
129 
130 static LIST_HEAD(nvme_rdma_ctrl_list);
131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
132 
133 /*
134  * Disabling this option makes small I/O goes faster, but is fundamentally
135  * unsafe.  With it turned off we will have to register a global rkey that
136  * allows read and write access to all physical memory.
137  */
138 static bool register_always = true;
139 module_param(register_always, bool, 0444);
140 MODULE_PARM_DESC(register_always,
141 	 "Use memory registration even for contiguous memory regions");
142 
143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
144 		struct rdma_cm_event *event);
145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
146 
147 static const struct blk_mq_ops nvme_rdma_mq_ops;
148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
149 
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline void put_unaligned_le24(u32 val, u8 *p)
152 {
153 	*p++ = val;
154 	*p++ = val >> 8;
155 	*p++ = val >> 16;
156 }
157 
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160 	return queue - queue->ctrl->queues;
161 }
162 
163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
164 {
165 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
166 }
167 
168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
169 		size_t capsule_size, enum dma_data_direction dir)
170 {
171 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
172 	kfree(qe->data);
173 }
174 
175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176 		size_t capsule_size, enum dma_data_direction dir)
177 {
178 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
179 	if (!qe->data)
180 		return -ENOMEM;
181 
182 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
183 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
184 		kfree(qe->data);
185 		return -ENOMEM;
186 	}
187 
188 	return 0;
189 }
190 
191 static void nvme_rdma_free_ring(struct ib_device *ibdev,
192 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
193 		size_t capsule_size, enum dma_data_direction dir)
194 {
195 	int i;
196 
197 	for (i = 0; i < ib_queue_size; i++)
198 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
199 	kfree(ring);
200 }
201 
202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
203 		size_t ib_queue_size, size_t capsule_size,
204 		enum dma_data_direction dir)
205 {
206 	struct nvme_rdma_qe *ring;
207 	int i;
208 
209 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
210 	if (!ring)
211 		return NULL;
212 
213 	for (i = 0; i < ib_queue_size; i++) {
214 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215 			goto out_free_ring;
216 	}
217 
218 	return ring;
219 
220 out_free_ring:
221 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222 	return NULL;
223 }
224 
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227 	pr_debug("QP event %s (%d)\n",
228 		 ib_event_msg(event->event), event->event);
229 
230 }
231 
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234 	wait_for_completion_interruptible_timeout(&queue->cm_done,
235 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
236 	return queue->cm_error;
237 }
238 
239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
240 {
241 	struct nvme_rdma_device *dev = queue->device;
242 	struct ib_qp_init_attr init_attr;
243 	int ret;
244 
245 	memset(&init_attr, 0, sizeof(init_attr));
246 	init_attr.event_handler = nvme_rdma_qp_event;
247 	/* +1 for drain */
248 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
249 	/* +1 for drain */
250 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
251 	init_attr.cap.max_recv_sge = 1;
252 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
253 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
254 	init_attr.qp_type = IB_QPT_RC;
255 	init_attr.send_cq = queue->ib_cq;
256 	init_attr.recv_cq = queue->ib_cq;
257 
258 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
259 
260 	queue->qp = queue->cm_id->qp;
261 	return ret;
262 }
263 
264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
265 		struct request *rq, unsigned int hctx_idx)
266 {
267 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
268 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
271 	struct nvme_rdma_device *dev = queue->device;
272 
273 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
274 			DMA_TO_DEVICE);
275 }
276 
277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
278 		struct request *rq, unsigned int hctx_idx,
279 		unsigned int numa_node)
280 {
281 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
282 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
285 	struct nvme_rdma_device *dev = queue->device;
286 	struct ib_device *ibdev = dev->dev;
287 	int ret;
288 
289 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
290 			DMA_TO_DEVICE);
291 	if (ret)
292 		return ret;
293 
294 	req->queue = queue;
295 
296 	return 0;
297 }
298 
299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
300 		unsigned int hctx_idx)
301 {
302 	struct nvme_rdma_ctrl *ctrl = data;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
304 
305 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306 
307 	hctx->driver_data = queue;
308 	return 0;
309 }
310 
311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
312 		unsigned int hctx_idx)
313 {
314 	struct nvme_rdma_ctrl *ctrl = data;
315 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
316 
317 	BUG_ON(hctx_idx != 0);
318 
319 	hctx->driver_data = queue;
320 	return 0;
321 }
322 
323 static void nvme_rdma_free_dev(struct kref *ref)
324 {
325 	struct nvme_rdma_device *ndev =
326 		container_of(ref, struct nvme_rdma_device, ref);
327 
328 	mutex_lock(&device_list_mutex);
329 	list_del(&ndev->entry);
330 	mutex_unlock(&device_list_mutex);
331 
332 	ib_dealloc_pd(ndev->pd);
333 	kfree(ndev);
334 }
335 
336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
337 {
338 	kref_put(&dev->ref, nvme_rdma_free_dev);
339 }
340 
341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
342 {
343 	return kref_get_unless_zero(&dev->ref);
344 }
345 
346 static struct nvme_rdma_device *
347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
348 {
349 	struct nvme_rdma_device *ndev;
350 
351 	mutex_lock(&device_list_mutex);
352 	list_for_each_entry(ndev, &device_list, entry) {
353 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
354 		    nvme_rdma_dev_get(ndev))
355 			goto out_unlock;
356 	}
357 
358 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
359 	if (!ndev)
360 		goto out_err;
361 
362 	ndev->dev = cm_id->device;
363 	kref_init(&ndev->ref);
364 
365 	ndev->pd = ib_alloc_pd(ndev->dev,
366 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367 	if (IS_ERR(ndev->pd))
368 		goto out_free_dev;
369 
370 	if (!(ndev->dev->attrs.device_cap_flags &
371 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
372 		dev_err(&ndev->dev->dev,
373 			"Memory registrations not supported.\n");
374 		goto out_free_pd;
375 	}
376 
377 	list_add(&ndev->entry, &device_list);
378 out_unlock:
379 	mutex_unlock(&device_list_mutex);
380 	return ndev;
381 
382 out_free_pd:
383 	ib_dealloc_pd(ndev->pd);
384 out_free_dev:
385 	kfree(ndev);
386 out_err:
387 	mutex_unlock(&device_list_mutex);
388 	return NULL;
389 }
390 
391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
392 {
393 	struct nvme_rdma_device *dev;
394 	struct ib_device *ibdev;
395 
396 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
397 		return;
398 
399 	dev = queue->device;
400 	ibdev = dev->dev;
401 
402 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
403 
404 	/*
405 	 * The cm_id object might have been destroyed during RDMA connection
406 	 * establishment error flow to avoid getting other cma events, thus
407 	 * the destruction of the QP shouldn't use rdma_cm API.
408 	 */
409 	ib_destroy_qp(queue->qp);
410 	ib_free_cq(queue->ib_cq);
411 
412 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
413 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
414 
415 	nvme_rdma_dev_put(dev);
416 }
417 
418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
419 {
420 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
421 		     ibdev->attrs.max_fast_reg_page_list_len);
422 }
423 
424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 	struct ib_device *ibdev;
427 	const int send_wr_factor = 3;			/* MR, SEND, INV */
428 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
429 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
430 	int ret;
431 
432 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
433 	if (!queue->device) {
434 		dev_err(queue->cm_id->device->dev.parent,
435 			"no client data found!\n");
436 		return -ECONNREFUSED;
437 	}
438 	ibdev = queue->device->dev;
439 
440 	/*
441 	 * Spread I/O queues completion vectors according their queue index.
442 	 * Admin queues can always go on completion vector 0.
443 	 */
444 	comp_vector = idx == 0 ? idx : idx - 1;
445 
446 	/* +1 for ib_stop_cq */
447 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
448 				cq_factor * queue->queue_size + 1,
449 				comp_vector, IB_POLL_SOFTIRQ);
450 	if (IS_ERR(queue->ib_cq)) {
451 		ret = PTR_ERR(queue->ib_cq);
452 		goto out_put_dev;
453 	}
454 
455 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
456 	if (ret)
457 		goto out_destroy_ib_cq;
458 
459 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
460 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
461 	if (!queue->rsp_ring) {
462 		ret = -ENOMEM;
463 		goto out_destroy_qp;
464 	}
465 
466 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
467 			      queue->queue_size,
468 			      IB_MR_TYPE_MEM_REG,
469 			      nvme_rdma_get_max_fr_pages(ibdev));
470 	if (ret) {
471 		dev_err(queue->ctrl->ctrl.device,
472 			"failed to initialize MR pool sized %d for QID %d\n",
473 			queue->queue_size, idx);
474 		goto out_destroy_ring;
475 	}
476 
477 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
478 
479 	return 0;
480 
481 out_destroy_ring:
482 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 out_destroy_qp:
485 	rdma_destroy_qp(queue->cm_id);
486 out_destroy_ib_cq:
487 	ib_free_cq(queue->ib_cq);
488 out_put_dev:
489 	nvme_rdma_dev_put(queue->device);
490 	return ret;
491 }
492 
493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494 		int idx, size_t queue_size)
495 {
496 	struct nvme_rdma_queue *queue;
497 	struct sockaddr *src_addr = NULL;
498 	int ret;
499 
500 	queue = &ctrl->queues[idx];
501 	queue->ctrl = ctrl;
502 	init_completion(&queue->cm_done);
503 
504 	if (idx > 0)
505 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
506 	else
507 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
508 
509 	queue->queue_size = queue_size;
510 
511 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
512 			RDMA_PS_TCP, IB_QPT_RC);
513 	if (IS_ERR(queue->cm_id)) {
514 		dev_info(ctrl->ctrl.device,
515 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
516 		return PTR_ERR(queue->cm_id);
517 	}
518 
519 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520 		src_addr = (struct sockaddr *)&ctrl->src_addr;
521 
522 	queue->cm_error = -ETIMEDOUT;
523 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
524 			(struct sockaddr *)&ctrl->addr,
525 			NVME_RDMA_CONNECT_TIMEOUT_MS);
526 	if (ret) {
527 		dev_info(ctrl->ctrl.device,
528 			"rdma_resolve_addr failed (%d).\n", ret);
529 		goto out_destroy_cm_id;
530 	}
531 
532 	ret = nvme_rdma_wait_for_cm(queue);
533 	if (ret) {
534 		dev_info(ctrl->ctrl.device,
535 			"rdma connection establishment failed (%d)\n", ret);
536 		goto out_destroy_cm_id;
537 	}
538 
539 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540 
541 	return 0;
542 
543 out_destroy_cm_id:
544 	rdma_destroy_id(queue->cm_id);
545 	nvme_rdma_destroy_queue_ib(queue);
546 	return ret;
547 }
548 
549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
550 {
551 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
552 		return;
553 
554 	rdma_disconnect(queue->cm_id);
555 	ib_drain_qp(queue->qp);
556 }
557 
558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
559 {
560 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561 		return;
562 
563 	nvme_rdma_destroy_queue_ib(queue);
564 	rdma_destroy_id(queue->cm_id);
565 }
566 
567 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
568 {
569 	int i;
570 
571 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
572 		nvme_rdma_free_queue(&ctrl->queues[i]);
573 }
574 
575 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
576 {
577 	int i;
578 
579 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
580 		nvme_rdma_stop_queue(&ctrl->queues[i]);
581 }
582 
583 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
584 {
585 	int ret;
586 
587 	if (idx)
588 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
589 	else
590 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
591 
592 	if (!ret)
593 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
594 	else
595 		dev_info(ctrl->ctrl.device,
596 			"failed to connect queue: %d ret=%d\n", idx, ret);
597 	return ret;
598 }
599 
600 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
601 {
602 	int i, ret = 0;
603 
604 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
605 		ret = nvme_rdma_start_queue(ctrl, i);
606 		if (ret)
607 			goto out_stop_queues;
608 	}
609 
610 	return 0;
611 
612 out_stop_queues:
613 	for (i--; i >= 1; i--)
614 		nvme_rdma_stop_queue(&ctrl->queues[i]);
615 	return ret;
616 }
617 
618 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
621 	struct ib_device *ibdev = ctrl->device->dev;
622 	unsigned int nr_io_queues;
623 	int i, ret;
624 
625 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
626 
627 	/*
628 	 * we map queues according to the device irq vectors for
629 	 * optimal locality so we don't need more queues than
630 	 * completion vectors.
631 	 */
632 	nr_io_queues = min_t(unsigned int, nr_io_queues,
633 				ibdev->num_comp_vectors);
634 
635 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
636 	if (ret)
637 		return ret;
638 
639 	ctrl->ctrl.queue_count = nr_io_queues + 1;
640 	if (ctrl->ctrl.queue_count < 2)
641 		return 0;
642 
643 	dev_info(ctrl->ctrl.device,
644 		"creating %d I/O queues.\n", nr_io_queues);
645 
646 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
647 		ret = nvme_rdma_alloc_queue(ctrl, i,
648 				ctrl->ctrl.sqsize + 1);
649 		if (ret)
650 			goto out_free_queues;
651 	}
652 
653 	return 0;
654 
655 out_free_queues:
656 	for (i--; i >= 1; i--)
657 		nvme_rdma_free_queue(&ctrl->queues[i]);
658 
659 	return ret;
660 }
661 
662 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
663 		struct blk_mq_tag_set *set)
664 {
665 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
666 
667 	blk_mq_free_tag_set(set);
668 	nvme_rdma_dev_put(ctrl->device);
669 }
670 
671 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
672 		bool admin)
673 {
674 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
675 	struct blk_mq_tag_set *set;
676 	int ret;
677 
678 	if (admin) {
679 		set = &ctrl->admin_tag_set;
680 		memset(set, 0, sizeof(*set));
681 		set->ops = &nvme_rdma_admin_mq_ops;
682 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
683 		set->reserved_tags = 2; /* connect + keep-alive */
684 		set->numa_node = NUMA_NO_NODE;
685 		set->cmd_size = sizeof(struct nvme_rdma_request) +
686 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
687 		set->driver_data = ctrl;
688 		set->nr_hw_queues = 1;
689 		set->timeout = ADMIN_TIMEOUT;
690 		set->flags = BLK_MQ_F_NO_SCHED;
691 	} else {
692 		set = &ctrl->tag_set;
693 		memset(set, 0, sizeof(*set));
694 		set->ops = &nvme_rdma_mq_ops;
695 		set->queue_depth = nctrl->sqsize + 1;
696 		set->reserved_tags = 1; /* fabric connect */
697 		set->numa_node = NUMA_NO_NODE;
698 		set->flags = BLK_MQ_F_SHOULD_MERGE;
699 		set->cmd_size = sizeof(struct nvme_rdma_request) +
700 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
701 		set->driver_data = ctrl;
702 		set->nr_hw_queues = nctrl->queue_count - 1;
703 		set->timeout = NVME_IO_TIMEOUT;
704 	}
705 
706 	ret = blk_mq_alloc_tag_set(set);
707 	if (ret)
708 		goto out;
709 
710 	/*
711 	 * We need a reference on the device as long as the tag_set is alive,
712 	 * as the MRs in the request structures need a valid ib_device.
713 	 */
714 	ret = nvme_rdma_dev_get(ctrl->device);
715 	if (!ret) {
716 		ret = -EINVAL;
717 		goto out_free_tagset;
718 	}
719 
720 	return set;
721 
722 out_free_tagset:
723 	blk_mq_free_tag_set(set);
724 out:
725 	return ERR_PTR(ret);
726 }
727 
728 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
729 		bool remove)
730 {
731 	if (remove) {
732 		blk_cleanup_queue(ctrl->ctrl.admin_q);
733 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
734 	}
735 	if (ctrl->async_event_sqe.data) {
736 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
737 				sizeof(struct nvme_command), DMA_TO_DEVICE);
738 		ctrl->async_event_sqe.data = NULL;
739 	}
740 	nvme_rdma_free_queue(&ctrl->queues[0]);
741 }
742 
743 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
744 		bool new)
745 {
746 	int error;
747 
748 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
749 	if (error)
750 		return error;
751 
752 	ctrl->device = ctrl->queues[0].device;
753 
754 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
755 
756 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
757 			sizeof(struct nvme_command), DMA_TO_DEVICE);
758 	if (error)
759 		goto out_free_queue;
760 
761 	if (new) {
762 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
763 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
764 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
765 			goto out_free_async_qe;
766 		}
767 
768 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
769 		if (IS_ERR(ctrl->ctrl.admin_q)) {
770 			error = PTR_ERR(ctrl->ctrl.admin_q);
771 			goto out_free_tagset;
772 		}
773 	}
774 
775 	error = nvme_rdma_start_queue(ctrl, 0);
776 	if (error)
777 		goto out_cleanup_queue;
778 
779 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
780 			&ctrl->ctrl.cap);
781 	if (error) {
782 		dev_err(ctrl->ctrl.device,
783 			"prop_get NVME_REG_CAP failed\n");
784 		goto out_stop_queue;
785 	}
786 
787 	ctrl->ctrl.sqsize =
788 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
789 
790 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
791 	if (error)
792 		goto out_stop_queue;
793 
794 	ctrl->ctrl.max_hw_sectors =
795 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
796 
797 	error = nvme_init_identify(&ctrl->ctrl);
798 	if (error)
799 		goto out_stop_queue;
800 
801 	return 0;
802 
803 out_stop_queue:
804 	nvme_rdma_stop_queue(&ctrl->queues[0]);
805 out_cleanup_queue:
806 	if (new)
807 		blk_cleanup_queue(ctrl->ctrl.admin_q);
808 out_free_tagset:
809 	if (new)
810 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
811 out_free_async_qe:
812 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
813 		sizeof(struct nvme_command), DMA_TO_DEVICE);
814 out_free_queue:
815 	nvme_rdma_free_queue(&ctrl->queues[0]);
816 	return error;
817 }
818 
819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
820 		bool remove)
821 {
822 	if (remove) {
823 		blk_cleanup_queue(ctrl->ctrl.connect_q);
824 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
825 	}
826 	nvme_rdma_free_io_queues(ctrl);
827 }
828 
829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
830 {
831 	int ret;
832 
833 	ret = nvme_rdma_alloc_io_queues(ctrl);
834 	if (ret)
835 		return ret;
836 
837 	if (new) {
838 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
839 		if (IS_ERR(ctrl->ctrl.tagset)) {
840 			ret = PTR_ERR(ctrl->ctrl.tagset);
841 			goto out_free_io_queues;
842 		}
843 
844 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
845 		if (IS_ERR(ctrl->ctrl.connect_q)) {
846 			ret = PTR_ERR(ctrl->ctrl.connect_q);
847 			goto out_free_tag_set;
848 		}
849 	} else {
850 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
851 			ctrl->ctrl.queue_count - 1);
852 	}
853 
854 	ret = nvme_rdma_start_io_queues(ctrl);
855 	if (ret)
856 		goto out_cleanup_connect_q;
857 
858 	return 0;
859 
860 out_cleanup_connect_q:
861 	if (new)
862 		blk_cleanup_queue(ctrl->ctrl.connect_q);
863 out_free_tag_set:
864 	if (new)
865 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 out_free_io_queues:
867 	nvme_rdma_free_io_queues(ctrl);
868 	return ret;
869 }
870 
871 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
872 {
873 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
874 
875 	cancel_work_sync(&ctrl->err_work);
876 	cancel_delayed_work_sync(&ctrl->reconnect_work);
877 }
878 
879 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
880 {
881 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
882 
883 	if (list_empty(&ctrl->list))
884 		goto free_ctrl;
885 
886 	mutex_lock(&nvme_rdma_ctrl_mutex);
887 	list_del(&ctrl->list);
888 	mutex_unlock(&nvme_rdma_ctrl_mutex);
889 
890 	nvmf_free_options(nctrl->opts);
891 free_ctrl:
892 	kfree(ctrl->queues);
893 	kfree(ctrl);
894 }
895 
896 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
897 {
898 	/* If we are resetting/deleting then do nothing */
899 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
900 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
901 			ctrl->ctrl.state == NVME_CTRL_LIVE);
902 		return;
903 	}
904 
905 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
906 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
907 			ctrl->ctrl.opts->reconnect_delay);
908 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
909 				ctrl->ctrl.opts->reconnect_delay * HZ);
910 	} else {
911 		nvme_delete_ctrl(&ctrl->ctrl);
912 	}
913 }
914 
915 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
916 {
917 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
918 			struct nvme_rdma_ctrl, reconnect_work);
919 	bool changed;
920 	int ret;
921 
922 	++ctrl->ctrl.nr_reconnects;
923 
924 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
925 	if (ret)
926 		goto requeue;
927 
928 	if (ctrl->ctrl.queue_count > 1) {
929 		ret = nvme_rdma_configure_io_queues(ctrl, false);
930 		if (ret)
931 			goto destroy_admin;
932 	}
933 
934 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
935 	if (!changed) {
936 		/* state change failure is ok if we're in DELETING state */
937 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
938 		return;
939 	}
940 
941 	nvme_start_ctrl(&ctrl->ctrl);
942 
943 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
944 			ctrl->ctrl.nr_reconnects);
945 
946 	ctrl->ctrl.nr_reconnects = 0;
947 
948 	return;
949 
950 destroy_admin:
951 	nvme_rdma_stop_queue(&ctrl->queues[0]);
952 	nvme_rdma_destroy_admin_queue(ctrl, false);
953 requeue:
954 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
955 			ctrl->ctrl.nr_reconnects);
956 	nvme_rdma_reconnect_or_remove(ctrl);
957 }
958 
959 static void nvme_rdma_error_recovery_work(struct work_struct *work)
960 {
961 	struct nvme_rdma_ctrl *ctrl = container_of(work,
962 			struct nvme_rdma_ctrl, err_work);
963 
964 	nvme_stop_keep_alive(&ctrl->ctrl);
965 
966 	if (ctrl->ctrl.queue_count > 1) {
967 		nvme_stop_queues(&ctrl->ctrl);
968 		nvme_rdma_stop_io_queues(ctrl);
969 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
970 					nvme_cancel_request, &ctrl->ctrl);
971 		nvme_rdma_destroy_io_queues(ctrl, false);
972 	}
973 
974 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
975 	nvme_rdma_stop_queue(&ctrl->queues[0]);
976 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
977 				nvme_cancel_request, &ctrl->ctrl);
978 	nvme_rdma_destroy_admin_queue(ctrl, false);
979 
980 	/*
981 	 * queues are not a live anymore, so restart the queues to fail fast
982 	 * new IO
983 	 */
984 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
985 	nvme_start_queues(&ctrl->ctrl);
986 
987 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
988 		/* state change failure is ok if we're in DELETING state */
989 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
990 		return;
991 	}
992 
993 	nvme_rdma_reconnect_or_remove(ctrl);
994 }
995 
996 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
997 {
998 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
999 		return;
1000 
1001 	queue_work(nvme_wq, &ctrl->err_work);
1002 }
1003 
1004 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1005 		const char *op)
1006 {
1007 	struct nvme_rdma_queue *queue = cq->cq_context;
1008 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1009 
1010 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1011 		dev_info(ctrl->ctrl.device,
1012 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1013 			     op, wc->wr_cqe,
1014 			     ib_wc_status_msg(wc->status), wc->status);
1015 	nvme_rdma_error_recovery(ctrl);
1016 }
1017 
1018 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1019 {
1020 	if (unlikely(wc->status != IB_WC_SUCCESS))
1021 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1022 }
1023 
1024 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1025 {
1026 	struct nvme_rdma_request *req =
1027 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1028 	struct request *rq = blk_mq_rq_from_pdu(req);
1029 
1030 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1031 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1032 		return;
1033 	}
1034 
1035 	if (refcount_dec_and_test(&req->ref))
1036 		nvme_end_request(rq, req->status, req->result);
1037 
1038 }
1039 
1040 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1041 		struct nvme_rdma_request *req)
1042 {
1043 	struct ib_send_wr *bad_wr;
1044 	struct ib_send_wr wr = {
1045 		.opcode		    = IB_WR_LOCAL_INV,
1046 		.next		    = NULL,
1047 		.num_sge	    = 0,
1048 		.send_flags	    = IB_SEND_SIGNALED,
1049 		.ex.invalidate_rkey = req->mr->rkey,
1050 	};
1051 
1052 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1053 	wr.wr_cqe = &req->reg_cqe;
1054 
1055 	return ib_post_send(queue->qp, &wr, &bad_wr);
1056 }
1057 
1058 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1059 		struct request *rq)
1060 {
1061 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1062 	struct nvme_rdma_device *dev = queue->device;
1063 	struct ib_device *ibdev = dev->dev;
1064 
1065 	if (!blk_rq_payload_bytes(rq))
1066 		return;
1067 
1068 	if (req->mr) {
1069 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1070 		req->mr = NULL;
1071 	}
1072 
1073 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1074 			req->nents, rq_data_dir(rq) ==
1075 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1076 
1077 	nvme_cleanup_cmd(rq);
1078 	sg_free_table_chained(&req->sg_table, true);
1079 }
1080 
1081 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1082 {
1083 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1084 
1085 	sg->addr = 0;
1086 	put_unaligned_le24(0, sg->length);
1087 	put_unaligned_le32(0, sg->key);
1088 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1089 	return 0;
1090 }
1091 
1092 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1093 		struct nvme_rdma_request *req, struct nvme_command *c)
1094 {
1095 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1096 
1097 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1098 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1099 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1100 
1101 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1102 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1103 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1104 
1105 	req->num_sge++;
1106 	return 0;
1107 }
1108 
1109 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1110 		struct nvme_rdma_request *req, struct nvme_command *c)
1111 {
1112 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1113 
1114 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1115 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1116 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1117 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1118 	return 0;
1119 }
1120 
1121 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1122 		struct nvme_rdma_request *req, struct nvme_command *c,
1123 		int count)
1124 {
1125 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1126 	int nr;
1127 
1128 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1129 	if (WARN_ON_ONCE(!req->mr))
1130 		return -EAGAIN;
1131 
1132 	/*
1133 	 * Align the MR to a 4K page size to match the ctrl page size and
1134 	 * the block virtual boundary.
1135 	 */
1136 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1137 	if (unlikely(nr < count)) {
1138 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1139 		req->mr = NULL;
1140 		if (nr < 0)
1141 			return nr;
1142 		return -EINVAL;
1143 	}
1144 
1145 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1146 
1147 	req->reg_cqe.done = nvme_rdma_memreg_done;
1148 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1149 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1150 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1151 	req->reg_wr.wr.num_sge = 0;
1152 	req->reg_wr.mr = req->mr;
1153 	req->reg_wr.key = req->mr->rkey;
1154 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1155 			     IB_ACCESS_REMOTE_READ |
1156 			     IB_ACCESS_REMOTE_WRITE;
1157 
1158 	sg->addr = cpu_to_le64(req->mr->iova);
1159 	put_unaligned_le24(req->mr->length, sg->length);
1160 	put_unaligned_le32(req->mr->rkey, sg->key);
1161 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1162 			NVME_SGL_FMT_INVALIDATE;
1163 
1164 	return 0;
1165 }
1166 
1167 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1168 		struct request *rq, struct nvme_command *c)
1169 {
1170 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1171 	struct nvme_rdma_device *dev = queue->device;
1172 	struct ib_device *ibdev = dev->dev;
1173 	int count, ret;
1174 
1175 	req->num_sge = 1;
1176 	refcount_set(&req->ref, 2); /* send and recv completions */
1177 
1178 	c->common.flags |= NVME_CMD_SGL_METABUF;
1179 
1180 	if (!blk_rq_payload_bytes(rq))
1181 		return nvme_rdma_set_sg_null(c);
1182 
1183 	req->sg_table.sgl = req->first_sgl;
1184 	ret = sg_alloc_table_chained(&req->sg_table,
1185 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1186 	if (ret)
1187 		return -ENOMEM;
1188 
1189 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1190 
1191 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1192 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1193 	if (unlikely(count <= 0)) {
1194 		ret = -EIO;
1195 		goto out_free_table;
1196 	}
1197 
1198 	if (count == 1) {
1199 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1200 		    blk_rq_payload_bytes(rq) <=
1201 				nvme_rdma_inline_data_size(queue)) {
1202 			ret = nvme_rdma_map_sg_inline(queue, req, c);
1203 			goto out;
1204 		}
1205 
1206 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1207 			ret = nvme_rdma_map_sg_single(queue, req, c);
1208 			goto out;
1209 		}
1210 	}
1211 
1212 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1213 out:
1214 	if (unlikely(ret))
1215 		goto out_unmap_sg;
1216 
1217 	return 0;
1218 
1219 out_unmap_sg:
1220 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1221 			req->nents, rq_data_dir(rq) ==
1222 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1223 out_free_table:
1224 	sg_free_table_chained(&req->sg_table, true);
1225 	return ret;
1226 }
1227 
1228 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1229 {
1230 	struct nvme_rdma_qe *qe =
1231 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1232 	struct nvme_rdma_request *req =
1233 		container_of(qe, struct nvme_rdma_request, sqe);
1234 	struct request *rq = blk_mq_rq_from_pdu(req);
1235 
1236 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1237 		nvme_rdma_wr_error(cq, wc, "SEND");
1238 		return;
1239 	}
1240 
1241 	if (refcount_dec_and_test(&req->ref))
1242 		nvme_end_request(rq, req->status, req->result);
1243 }
1244 
1245 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1246 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1247 		struct ib_send_wr *first)
1248 {
1249 	struct ib_send_wr wr, *bad_wr;
1250 	int ret;
1251 
1252 	sge->addr   = qe->dma;
1253 	sge->length = sizeof(struct nvme_command),
1254 	sge->lkey   = queue->device->pd->local_dma_lkey;
1255 
1256 	wr.next       = NULL;
1257 	wr.wr_cqe     = &qe->cqe;
1258 	wr.sg_list    = sge;
1259 	wr.num_sge    = num_sge;
1260 	wr.opcode     = IB_WR_SEND;
1261 	wr.send_flags = IB_SEND_SIGNALED;
1262 
1263 	if (first)
1264 		first->next = &wr;
1265 	else
1266 		first = &wr;
1267 
1268 	ret = ib_post_send(queue->qp, first, &bad_wr);
1269 	if (unlikely(ret)) {
1270 		dev_err(queue->ctrl->ctrl.device,
1271 			     "%s failed with error code %d\n", __func__, ret);
1272 	}
1273 	return ret;
1274 }
1275 
1276 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1277 		struct nvme_rdma_qe *qe)
1278 {
1279 	struct ib_recv_wr wr, *bad_wr;
1280 	struct ib_sge list;
1281 	int ret;
1282 
1283 	list.addr   = qe->dma;
1284 	list.length = sizeof(struct nvme_completion);
1285 	list.lkey   = queue->device->pd->local_dma_lkey;
1286 
1287 	qe->cqe.done = nvme_rdma_recv_done;
1288 
1289 	wr.next     = NULL;
1290 	wr.wr_cqe   = &qe->cqe;
1291 	wr.sg_list  = &list;
1292 	wr.num_sge  = 1;
1293 
1294 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1295 	if (unlikely(ret)) {
1296 		dev_err(queue->ctrl->ctrl.device,
1297 			"%s failed with error code %d\n", __func__, ret);
1298 	}
1299 	return ret;
1300 }
1301 
1302 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1303 {
1304 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1305 
1306 	if (queue_idx == 0)
1307 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1308 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1309 }
1310 
1311 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1312 {
1313 	if (unlikely(wc->status != IB_WC_SUCCESS))
1314 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1315 }
1316 
1317 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1318 {
1319 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1320 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1321 	struct ib_device *dev = queue->device->dev;
1322 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1323 	struct nvme_command *cmd = sqe->data;
1324 	struct ib_sge sge;
1325 	int ret;
1326 
1327 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1328 
1329 	memset(cmd, 0, sizeof(*cmd));
1330 	cmd->common.opcode = nvme_admin_async_event;
1331 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1332 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1333 	nvme_rdma_set_sg_null(cmd);
1334 
1335 	sqe->cqe.done = nvme_rdma_async_done;
1336 
1337 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1338 			DMA_TO_DEVICE);
1339 
1340 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1341 	WARN_ON_ONCE(ret);
1342 }
1343 
1344 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1345 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1346 {
1347 	struct request *rq;
1348 	struct nvme_rdma_request *req;
1349 	int ret = 0;
1350 
1351 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1352 	if (!rq) {
1353 		dev_err(queue->ctrl->ctrl.device,
1354 			"tag 0x%x on QP %#x not found\n",
1355 			cqe->command_id, queue->qp->qp_num);
1356 		nvme_rdma_error_recovery(queue->ctrl);
1357 		return ret;
1358 	}
1359 	req = blk_mq_rq_to_pdu(rq);
1360 
1361 	req->status = cqe->status;
1362 	req->result = cqe->result;
1363 
1364 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1365 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1366 			dev_err(queue->ctrl->ctrl.device,
1367 				"Bogus remote invalidation for rkey %#x\n",
1368 				req->mr->rkey);
1369 			nvme_rdma_error_recovery(queue->ctrl);
1370 		}
1371 	} else if (req->mr) {
1372 		ret = nvme_rdma_inv_rkey(queue, req);
1373 		if (unlikely(ret < 0)) {
1374 			dev_err(queue->ctrl->ctrl.device,
1375 				"Queueing INV WR for rkey %#x failed (%d)\n",
1376 				req->mr->rkey, ret);
1377 			nvme_rdma_error_recovery(queue->ctrl);
1378 		}
1379 		/* the local invalidation completion will end the request */
1380 		return 0;
1381 	}
1382 
1383 	if (refcount_dec_and_test(&req->ref)) {
1384 		if (rq->tag == tag)
1385 			ret = 1;
1386 		nvme_end_request(rq, req->status, req->result);
1387 	}
1388 
1389 	return ret;
1390 }
1391 
1392 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1393 {
1394 	struct nvme_rdma_qe *qe =
1395 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1396 	struct nvme_rdma_queue *queue = cq->cq_context;
1397 	struct ib_device *ibdev = queue->device->dev;
1398 	struct nvme_completion *cqe = qe->data;
1399 	const size_t len = sizeof(struct nvme_completion);
1400 	int ret = 0;
1401 
1402 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1403 		nvme_rdma_wr_error(cq, wc, "RECV");
1404 		return 0;
1405 	}
1406 
1407 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1408 	/*
1409 	 * AEN requests are special as they don't time out and can
1410 	 * survive any kind of queue freeze and often don't respond to
1411 	 * aborts.  We don't even bother to allocate a struct request
1412 	 * for them but rather special case them here.
1413 	 */
1414 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1415 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1416 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1417 				&cqe->result);
1418 	else
1419 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1420 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1421 
1422 	nvme_rdma_post_recv(queue, qe);
1423 	return ret;
1424 }
1425 
1426 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1427 {
1428 	__nvme_rdma_recv_done(cq, wc, -1);
1429 }
1430 
1431 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1432 {
1433 	int ret, i;
1434 
1435 	for (i = 0; i < queue->queue_size; i++) {
1436 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1437 		if (ret)
1438 			goto out_destroy_queue_ib;
1439 	}
1440 
1441 	return 0;
1442 
1443 out_destroy_queue_ib:
1444 	nvme_rdma_destroy_queue_ib(queue);
1445 	return ret;
1446 }
1447 
1448 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1449 		struct rdma_cm_event *ev)
1450 {
1451 	struct rdma_cm_id *cm_id = queue->cm_id;
1452 	int status = ev->status;
1453 	const char *rej_msg;
1454 	const struct nvme_rdma_cm_rej *rej_data;
1455 	u8 rej_data_len;
1456 
1457 	rej_msg = rdma_reject_msg(cm_id, status);
1458 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1459 
1460 	if (rej_data && rej_data_len >= sizeof(u16)) {
1461 		u16 sts = le16_to_cpu(rej_data->sts);
1462 
1463 		dev_err(queue->ctrl->ctrl.device,
1464 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1465 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1466 	} else {
1467 		dev_err(queue->ctrl->ctrl.device,
1468 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1469 	}
1470 
1471 	return -ECONNRESET;
1472 }
1473 
1474 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1475 {
1476 	int ret;
1477 
1478 	ret = nvme_rdma_create_queue_ib(queue);
1479 	if (ret)
1480 		return ret;
1481 
1482 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1483 	if (ret) {
1484 		dev_err(queue->ctrl->ctrl.device,
1485 			"rdma_resolve_route failed (%d).\n",
1486 			queue->cm_error);
1487 		goto out_destroy_queue;
1488 	}
1489 
1490 	return 0;
1491 
1492 out_destroy_queue:
1493 	nvme_rdma_destroy_queue_ib(queue);
1494 	return ret;
1495 }
1496 
1497 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1498 {
1499 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1500 	struct rdma_conn_param param = { };
1501 	struct nvme_rdma_cm_req priv = { };
1502 	int ret;
1503 
1504 	param.qp_num = queue->qp->qp_num;
1505 	param.flow_control = 1;
1506 
1507 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1508 	/* maximum retry count */
1509 	param.retry_count = 7;
1510 	param.rnr_retry_count = 7;
1511 	param.private_data = &priv;
1512 	param.private_data_len = sizeof(priv);
1513 
1514 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1515 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1516 	/*
1517 	 * set the admin queue depth to the minimum size
1518 	 * specified by the Fabrics standard.
1519 	 */
1520 	if (priv.qid == 0) {
1521 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1522 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1523 	} else {
1524 		/*
1525 		 * current interpretation of the fabrics spec
1526 		 * is at minimum you make hrqsize sqsize+1, or a
1527 		 * 1's based representation of sqsize.
1528 		 */
1529 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1530 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1531 	}
1532 
1533 	ret = rdma_connect(queue->cm_id, &param);
1534 	if (ret) {
1535 		dev_err(ctrl->ctrl.device,
1536 			"rdma_connect failed (%d).\n", ret);
1537 		goto out_destroy_queue_ib;
1538 	}
1539 
1540 	return 0;
1541 
1542 out_destroy_queue_ib:
1543 	nvme_rdma_destroy_queue_ib(queue);
1544 	return ret;
1545 }
1546 
1547 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1548 		struct rdma_cm_event *ev)
1549 {
1550 	struct nvme_rdma_queue *queue = cm_id->context;
1551 	int cm_error = 0;
1552 
1553 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1554 		rdma_event_msg(ev->event), ev->event,
1555 		ev->status, cm_id);
1556 
1557 	switch (ev->event) {
1558 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1559 		cm_error = nvme_rdma_addr_resolved(queue);
1560 		break;
1561 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1562 		cm_error = nvme_rdma_route_resolved(queue);
1563 		break;
1564 	case RDMA_CM_EVENT_ESTABLISHED:
1565 		queue->cm_error = nvme_rdma_conn_established(queue);
1566 		/* complete cm_done regardless of success/failure */
1567 		complete(&queue->cm_done);
1568 		return 0;
1569 	case RDMA_CM_EVENT_REJECTED:
1570 		nvme_rdma_destroy_queue_ib(queue);
1571 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1572 		break;
1573 	case RDMA_CM_EVENT_ROUTE_ERROR:
1574 	case RDMA_CM_EVENT_CONNECT_ERROR:
1575 	case RDMA_CM_EVENT_UNREACHABLE:
1576 		nvme_rdma_destroy_queue_ib(queue);
1577 	case RDMA_CM_EVENT_ADDR_ERROR:
1578 		dev_dbg(queue->ctrl->ctrl.device,
1579 			"CM error event %d\n", ev->event);
1580 		cm_error = -ECONNRESET;
1581 		break;
1582 	case RDMA_CM_EVENT_DISCONNECTED:
1583 	case RDMA_CM_EVENT_ADDR_CHANGE:
1584 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1585 		dev_dbg(queue->ctrl->ctrl.device,
1586 			"disconnect received - connection closed\n");
1587 		nvme_rdma_error_recovery(queue->ctrl);
1588 		break;
1589 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1590 		/* device removal is handled via the ib_client API */
1591 		break;
1592 	default:
1593 		dev_err(queue->ctrl->ctrl.device,
1594 			"Unexpected RDMA CM event (%d)\n", ev->event);
1595 		nvme_rdma_error_recovery(queue->ctrl);
1596 		break;
1597 	}
1598 
1599 	if (cm_error) {
1600 		queue->cm_error = cm_error;
1601 		complete(&queue->cm_done);
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static enum blk_eh_timer_return
1608 nvme_rdma_timeout(struct request *rq, bool reserved)
1609 {
1610 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1611 
1612 	dev_warn(req->queue->ctrl->ctrl.device,
1613 		 "I/O %d QID %d timeout, reset controller\n",
1614 		 rq->tag, nvme_rdma_queue_idx(req->queue));
1615 
1616 	/* queue error recovery */
1617 	nvme_rdma_error_recovery(req->queue->ctrl);
1618 
1619 	/* fail with DNR on cmd timeout */
1620 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1621 
1622 	return BLK_EH_DONE;
1623 }
1624 
1625 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1626 		const struct blk_mq_queue_data *bd)
1627 {
1628 	struct nvme_ns *ns = hctx->queue->queuedata;
1629 	struct nvme_rdma_queue *queue = hctx->driver_data;
1630 	struct request *rq = bd->rq;
1631 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1632 	struct nvme_rdma_qe *sqe = &req->sqe;
1633 	struct nvme_command *c = sqe->data;
1634 	struct ib_device *dev;
1635 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1636 	blk_status_t ret;
1637 	int err;
1638 
1639 	WARN_ON_ONCE(rq->tag < 0);
1640 
1641 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1642 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1643 
1644 	dev = queue->device->dev;
1645 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1646 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1647 
1648 	ret = nvme_setup_cmd(ns, rq, c);
1649 	if (ret)
1650 		return ret;
1651 
1652 	blk_mq_start_request(rq);
1653 
1654 	err = nvme_rdma_map_data(queue, rq, c);
1655 	if (unlikely(err < 0)) {
1656 		dev_err(queue->ctrl->ctrl.device,
1657 			     "Failed to map data (%d)\n", err);
1658 		nvme_cleanup_cmd(rq);
1659 		goto err;
1660 	}
1661 
1662 	sqe->cqe.done = nvme_rdma_send_done;
1663 
1664 	ib_dma_sync_single_for_device(dev, sqe->dma,
1665 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1666 
1667 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1668 			req->mr ? &req->reg_wr.wr : NULL);
1669 	if (unlikely(err)) {
1670 		nvme_rdma_unmap_data(queue, rq);
1671 		goto err;
1672 	}
1673 
1674 	return BLK_STS_OK;
1675 err:
1676 	if (err == -ENOMEM || err == -EAGAIN)
1677 		return BLK_STS_RESOURCE;
1678 	return BLK_STS_IOERR;
1679 }
1680 
1681 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1682 {
1683 	struct nvme_rdma_queue *queue = hctx->driver_data;
1684 	struct ib_cq *cq = queue->ib_cq;
1685 	struct ib_wc wc;
1686 	int found = 0;
1687 
1688 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1689 		struct ib_cqe *cqe = wc.wr_cqe;
1690 
1691 		if (cqe) {
1692 			if (cqe->done == nvme_rdma_recv_done)
1693 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1694 			else
1695 				cqe->done(cq, &wc);
1696 		}
1697 	}
1698 
1699 	return found;
1700 }
1701 
1702 static void nvme_rdma_complete_rq(struct request *rq)
1703 {
1704 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1705 
1706 	nvme_rdma_unmap_data(req->queue, rq);
1707 	nvme_complete_rq(rq);
1708 }
1709 
1710 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1711 {
1712 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1713 
1714 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1715 }
1716 
1717 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1718 	.queue_rq	= nvme_rdma_queue_rq,
1719 	.complete	= nvme_rdma_complete_rq,
1720 	.init_request	= nvme_rdma_init_request,
1721 	.exit_request	= nvme_rdma_exit_request,
1722 	.init_hctx	= nvme_rdma_init_hctx,
1723 	.poll		= nvme_rdma_poll,
1724 	.timeout	= nvme_rdma_timeout,
1725 	.map_queues	= nvme_rdma_map_queues,
1726 };
1727 
1728 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1729 	.queue_rq	= nvme_rdma_queue_rq,
1730 	.complete	= nvme_rdma_complete_rq,
1731 	.init_request	= nvme_rdma_init_request,
1732 	.exit_request	= nvme_rdma_exit_request,
1733 	.init_hctx	= nvme_rdma_init_admin_hctx,
1734 	.timeout	= nvme_rdma_timeout,
1735 };
1736 
1737 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1738 {
1739 	if (ctrl->ctrl.queue_count > 1) {
1740 		nvme_stop_queues(&ctrl->ctrl);
1741 		nvme_rdma_stop_io_queues(ctrl);
1742 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1743 					nvme_cancel_request, &ctrl->ctrl);
1744 		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1745 	}
1746 
1747 	if (shutdown)
1748 		nvme_shutdown_ctrl(&ctrl->ctrl);
1749 	else
1750 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1751 
1752 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1753 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1754 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1755 				nvme_cancel_request, &ctrl->ctrl);
1756 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1757 	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1758 }
1759 
1760 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1761 {
1762 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1763 }
1764 
1765 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1766 {
1767 	struct nvme_rdma_ctrl *ctrl =
1768 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1769 	int ret;
1770 	bool changed;
1771 
1772 	nvme_stop_ctrl(&ctrl->ctrl);
1773 	nvme_rdma_shutdown_ctrl(ctrl, false);
1774 
1775 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1776 		/* state change failure should never happen */
1777 		WARN_ON_ONCE(1);
1778 		return;
1779 	}
1780 
1781 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1782 	if (ret)
1783 		goto out_fail;
1784 
1785 	if (ctrl->ctrl.queue_count > 1) {
1786 		ret = nvme_rdma_configure_io_queues(ctrl, false);
1787 		if (ret)
1788 			goto out_fail;
1789 	}
1790 
1791 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1792 	if (!changed) {
1793 		/* state change failure is ok if we're in DELETING state */
1794 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1795 		return;
1796 	}
1797 
1798 	nvme_start_ctrl(&ctrl->ctrl);
1799 
1800 	return;
1801 
1802 out_fail:
1803 	++ctrl->ctrl.nr_reconnects;
1804 	nvme_rdma_reconnect_or_remove(ctrl);
1805 }
1806 
1807 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1808 	.name			= "rdma",
1809 	.module			= THIS_MODULE,
1810 	.flags			= NVME_F_FABRICS,
1811 	.reg_read32		= nvmf_reg_read32,
1812 	.reg_read64		= nvmf_reg_read64,
1813 	.reg_write32		= nvmf_reg_write32,
1814 	.free_ctrl		= nvme_rdma_free_ctrl,
1815 	.submit_async_event	= nvme_rdma_submit_async_event,
1816 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1817 	.get_address		= nvmf_get_address,
1818 	.stop_ctrl		= nvme_rdma_stop_ctrl,
1819 };
1820 
1821 static inline bool
1822 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1823 	struct nvmf_ctrl_options *opts)
1824 {
1825 	char *stdport = __stringify(NVME_RDMA_IP_PORT);
1826 
1827 
1828 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1829 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1830 		return false;
1831 
1832 	if (opts->mask & NVMF_OPT_TRSVCID &&
1833 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1834 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1835 			return false;
1836 	} else if (opts->mask & NVMF_OPT_TRSVCID) {
1837 		if (strcmp(opts->trsvcid, stdport))
1838 			return false;
1839 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1840 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1841 			return false;
1842 	}
1843 	/* else, it's a match as both have stdport. Fall to next checks */
1844 
1845 	/*
1846 	 * checking the local address is rough. In most cases, one
1847 	 * is not specified and the host port is selected by the stack.
1848 	 *
1849 	 * Assume no match if:
1850 	 *  local address is specified and address is not the same
1851 	 *  local address is not specified but remote is, or vice versa
1852 	 *    (admin using specific host_traddr when it matters).
1853 	 */
1854 	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1855 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1856 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1857 			return false;
1858 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1859 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1860 		return false;
1861 	/*
1862 	 * if neither controller had an host port specified, assume it's
1863 	 * a match as everything else matched.
1864 	 */
1865 
1866 	return true;
1867 }
1868 
1869 /*
1870  * Fails a connection request if it matches an existing controller
1871  * (association) with the same tuple:
1872  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1873  *
1874  * if local address is not specified in the request, it will match an
1875  * existing controller with all the other parameters the same and no
1876  * local port address specified as well.
1877  *
1878  * The ports don't need to be compared as they are intrinsically
1879  * already matched by the port pointers supplied.
1880  */
1881 static bool
1882 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1883 {
1884 	struct nvme_rdma_ctrl *ctrl;
1885 	bool found = false;
1886 
1887 	mutex_lock(&nvme_rdma_ctrl_mutex);
1888 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1889 		found = __nvme_rdma_options_match(ctrl, opts);
1890 		if (found)
1891 			break;
1892 	}
1893 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1894 
1895 	return found;
1896 }
1897 
1898 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1899 		struct nvmf_ctrl_options *opts)
1900 {
1901 	struct nvme_rdma_ctrl *ctrl;
1902 	int ret;
1903 	bool changed;
1904 	char *port;
1905 
1906 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1907 	if (!ctrl)
1908 		return ERR_PTR(-ENOMEM);
1909 	ctrl->ctrl.opts = opts;
1910 	INIT_LIST_HEAD(&ctrl->list);
1911 
1912 	if (opts->mask & NVMF_OPT_TRSVCID)
1913 		port = opts->trsvcid;
1914 	else
1915 		port = __stringify(NVME_RDMA_IP_PORT);
1916 
1917 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1918 			opts->traddr, port, &ctrl->addr);
1919 	if (ret) {
1920 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1921 		goto out_free_ctrl;
1922 	}
1923 
1924 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1925 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1926 			opts->host_traddr, NULL, &ctrl->src_addr);
1927 		if (ret) {
1928 			pr_err("malformed src address passed: %s\n",
1929 			       opts->host_traddr);
1930 			goto out_free_ctrl;
1931 		}
1932 	}
1933 
1934 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1935 		ret = -EALREADY;
1936 		goto out_free_ctrl;
1937 	}
1938 
1939 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1940 			nvme_rdma_reconnect_ctrl_work);
1941 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1942 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1943 
1944 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1945 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1946 	ctrl->ctrl.kato = opts->kato;
1947 
1948 	ret = -ENOMEM;
1949 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1950 				GFP_KERNEL);
1951 	if (!ctrl->queues)
1952 		goto out_free_ctrl;
1953 
1954 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1955 				0 /* no quirks, we're perfect! */);
1956 	if (ret)
1957 		goto out_kfree_queues;
1958 
1959 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1960 	WARN_ON_ONCE(!changed);
1961 
1962 	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1963 	if (ret)
1964 		goto out_uninit_ctrl;
1965 
1966 	/* sanity check icdoff */
1967 	if (ctrl->ctrl.icdoff) {
1968 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1969 		ret = -EINVAL;
1970 		goto out_remove_admin_queue;
1971 	}
1972 
1973 	/* sanity check keyed sgls */
1974 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1975 		dev_err(ctrl->ctrl.device,
1976 			"Mandatory keyed sgls are not supported!\n");
1977 		ret = -EINVAL;
1978 		goto out_remove_admin_queue;
1979 	}
1980 
1981 	/* only warn if argument is too large here, will clamp later */
1982 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1983 		dev_warn(ctrl->ctrl.device,
1984 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1985 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1986 	}
1987 
1988 	/* warn if maxcmd is lower than sqsize+1 */
1989 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1990 		dev_warn(ctrl->ctrl.device,
1991 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1992 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1993 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1994 	}
1995 
1996 	if (opts->nr_io_queues) {
1997 		ret = nvme_rdma_configure_io_queues(ctrl, true);
1998 		if (ret)
1999 			goto out_remove_admin_queue;
2000 	}
2001 
2002 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2003 	WARN_ON_ONCE(!changed);
2004 
2005 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2006 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2007 
2008 	nvme_get_ctrl(&ctrl->ctrl);
2009 
2010 	mutex_lock(&nvme_rdma_ctrl_mutex);
2011 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2012 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2013 
2014 	nvme_start_ctrl(&ctrl->ctrl);
2015 
2016 	return &ctrl->ctrl;
2017 
2018 out_remove_admin_queue:
2019 	nvme_rdma_stop_queue(&ctrl->queues[0]);
2020 	nvme_rdma_destroy_admin_queue(ctrl, true);
2021 out_uninit_ctrl:
2022 	nvme_uninit_ctrl(&ctrl->ctrl);
2023 	nvme_put_ctrl(&ctrl->ctrl);
2024 	if (ret > 0)
2025 		ret = -EIO;
2026 	return ERR_PTR(ret);
2027 out_kfree_queues:
2028 	kfree(ctrl->queues);
2029 out_free_ctrl:
2030 	kfree(ctrl);
2031 	return ERR_PTR(ret);
2032 }
2033 
2034 static struct nvmf_transport_ops nvme_rdma_transport = {
2035 	.name		= "rdma",
2036 	.module		= THIS_MODULE,
2037 	.required_opts	= NVMF_OPT_TRADDR,
2038 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2039 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2040 	.create_ctrl	= nvme_rdma_create_ctrl,
2041 };
2042 
2043 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2044 {
2045 	struct nvme_rdma_ctrl *ctrl;
2046 	struct nvme_rdma_device *ndev;
2047 	bool found = false;
2048 
2049 	mutex_lock(&device_list_mutex);
2050 	list_for_each_entry(ndev, &device_list, entry) {
2051 		if (ndev->dev == ib_device) {
2052 			found = true;
2053 			break;
2054 		}
2055 	}
2056 	mutex_unlock(&device_list_mutex);
2057 
2058 	if (!found)
2059 		return;
2060 
2061 	/* Delete all controllers using this device */
2062 	mutex_lock(&nvme_rdma_ctrl_mutex);
2063 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2064 		if (ctrl->device->dev != ib_device)
2065 			continue;
2066 		nvme_delete_ctrl(&ctrl->ctrl);
2067 	}
2068 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2069 
2070 	flush_workqueue(nvme_delete_wq);
2071 }
2072 
2073 static struct ib_client nvme_rdma_ib_client = {
2074 	.name   = "nvme_rdma",
2075 	.remove = nvme_rdma_remove_one
2076 };
2077 
2078 static int __init nvme_rdma_init_module(void)
2079 {
2080 	int ret;
2081 
2082 	ret = ib_register_client(&nvme_rdma_ib_client);
2083 	if (ret)
2084 		return ret;
2085 
2086 	ret = nvmf_register_transport(&nvme_rdma_transport);
2087 	if (ret)
2088 		goto err_unreg_client;
2089 
2090 	return 0;
2091 
2092 err_unreg_client:
2093 	ib_unregister_client(&nvme_rdma_ib_client);
2094 	return ret;
2095 }
2096 
2097 static void __exit nvme_rdma_cleanup_module(void)
2098 {
2099 	nvmf_unregister_transport(&nvme_rdma_transport);
2100 	ib_unregister_client(&nvme_rdma_ib_client);
2101 }
2102 
2103 module_init(nvme_rdma_init_module);
2104 module_exit(nvme_rdma_cleanup_module);
2105 
2106 MODULE_LICENSE("GPL v2");
2107