xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision f5b06569)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33 
34 #include "nvme.h"
35 #include "fabrics.h"
36 
37 
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS	1000		/* 1 second */
39 
40 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
41 
42 #define NVME_RDMA_MAX_SEGMENTS		256
43 
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
45 
46 #define NVME_RDMA_MAX_PAGES_PER_MR	512
47 
48 #define NVME_RDMA_DEF_RECONNECT_DELAY	20
49 
50 /*
51  * We handle AEN commands ourselves and don't even let the
52  * block layer know about them.
53  */
54 #define NVME_RDMA_NR_AEN_COMMANDS      1
55 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
56 	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
57 
58 struct nvme_rdma_device {
59 	struct ib_device       *dev;
60 	struct ib_pd	       *pd;
61 	struct ib_mr	       *mr;
62 	struct kref		ref;
63 	struct list_head	entry;
64 };
65 
66 struct nvme_rdma_qe {
67 	struct ib_cqe		cqe;
68 	void			*data;
69 	u64			dma;
70 };
71 
72 struct nvme_rdma_queue;
73 struct nvme_rdma_request {
74 	struct ib_mr		*mr;
75 	struct nvme_rdma_qe	sqe;
76 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
77 	u32			num_sge;
78 	int			nents;
79 	bool			inline_data;
80 	bool			need_inval;
81 	struct ib_reg_wr	reg_wr;
82 	struct ib_cqe		reg_cqe;
83 	struct nvme_rdma_queue  *queue;
84 	struct sg_table		sg_table;
85 	struct scatterlist	first_sgl[];
86 };
87 
88 enum nvme_rdma_queue_flags {
89 	NVME_RDMA_Q_CONNECTED = (1 << 0),
90 };
91 
92 struct nvme_rdma_queue {
93 	struct nvme_rdma_qe	*rsp_ring;
94 	u8			sig_count;
95 	int			queue_size;
96 	size_t			cmnd_capsule_len;
97 	struct nvme_rdma_ctrl	*ctrl;
98 	struct nvme_rdma_device	*device;
99 	struct ib_cq		*ib_cq;
100 	struct ib_qp		*qp;
101 
102 	unsigned long		flags;
103 	struct rdma_cm_id	*cm_id;
104 	int			cm_error;
105 	struct completion	cm_done;
106 };
107 
108 struct nvme_rdma_ctrl {
109 	/* read and written in the hot path */
110 	spinlock_t		lock;
111 
112 	/* read only in the hot path */
113 	struct nvme_rdma_queue	*queues;
114 	u32			queue_count;
115 
116 	/* other member variables */
117 	struct blk_mq_tag_set	tag_set;
118 	struct work_struct	delete_work;
119 	struct work_struct	reset_work;
120 	struct work_struct	err_work;
121 
122 	struct nvme_rdma_qe	async_event_sqe;
123 
124 	int			reconnect_delay;
125 	struct delayed_work	reconnect_work;
126 
127 	struct list_head	list;
128 
129 	struct blk_mq_tag_set	admin_tag_set;
130 	struct nvme_rdma_device	*device;
131 
132 	u64			cap;
133 	u32			max_fr_pages;
134 
135 	union {
136 		struct sockaddr addr;
137 		struct sockaddr_in addr_in;
138 	};
139 
140 	struct nvme_ctrl	ctrl;
141 };
142 
143 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
144 {
145 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
146 }
147 
148 static LIST_HEAD(device_list);
149 static DEFINE_MUTEX(device_list_mutex);
150 
151 static LIST_HEAD(nvme_rdma_ctrl_list);
152 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
153 
154 static struct workqueue_struct *nvme_rdma_wq;
155 
156 /*
157  * Disabling this option makes small I/O goes faster, but is fundamentally
158  * unsafe.  With it turned off we will have to register a global rkey that
159  * allows read and write access to all physical memory.
160  */
161 static bool register_always = true;
162 module_param(register_always, bool, 0444);
163 MODULE_PARM_DESC(register_always,
164 	 "Use memory registration even for contiguous memory regions");
165 
166 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
167 		struct rdma_cm_event *event);
168 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169 
170 /* XXX: really should move to a generic header sooner or later.. */
171 static inline void put_unaligned_le24(u32 val, u8 *p)
172 {
173 	*p++ = val;
174 	*p++ = val >> 8;
175 	*p++ = val >> 16;
176 }
177 
178 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
179 {
180 	return queue - queue->ctrl->queues;
181 }
182 
183 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
184 {
185 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
186 }
187 
188 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
189 		size_t capsule_size, enum dma_data_direction dir)
190 {
191 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
192 	kfree(qe->data);
193 }
194 
195 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
196 		size_t capsule_size, enum dma_data_direction dir)
197 {
198 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
199 	if (!qe->data)
200 		return -ENOMEM;
201 
202 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
203 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
204 		kfree(qe->data);
205 		return -ENOMEM;
206 	}
207 
208 	return 0;
209 }
210 
211 static void nvme_rdma_free_ring(struct ib_device *ibdev,
212 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
213 		size_t capsule_size, enum dma_data_direction dir)
214 {
215 	int i;
216 
217 	for (i = 0; i < ib_queue_size; i++)
218 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
219 	kfree(ring);
220 }
221 
222 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
223 		size_t ib_queue_size, size_t capsule_size,
224 		enum dma_data_direction dir)
225 {
226 	struct nvme_rdma_qe *ring;
227 	int i;
228 
229 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
230 	if (!ring)
231 		return NULL;
232 
233 	for (i = 0; i < ib_queue_size; i++) {
234 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
235 			goto out_free_ring;
236 	}
237 
238 	return ring;
239 
240 out_free_ring:
241 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
242 	return NULL;
243 }
244 
245 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
246 {
247 	pr_debug("QP event %d\n", event->event);
248 }
249 
250 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
251 {
252 	wait_for_completion_interruptible_timeout(&queue->cm_done,
253 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
254 	return queue->cm_error;
255 }
256 
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 	struct nvme_rdma_device *dev = queue->device;
260 	struct ib_qp_init_attr init_attr;
261 	int ret;
262 
263 	memset(&init_attr, 0, sizeof(init_attr));
264 	init_attr.event_handler = nvme_rdma_qp_event;
265 	/* +1 for drain */
266 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 	/* +1 for drain */
268 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 	init_attr.cap.max_recv_sge = 1;
270 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
271 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 	init_attr.qp_type = IB_QPT_RC;
273 	init_attr.send_cq = queue->ib_cq;
274 	init_attr.recv_cq = queue->ib_cq;
275 
276 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
277 
278 	queue->qp = queue->cm_id->qp;
279 	return ret;
280 }
281 
282 static int nvme_rdma_reinit_request(void *data, struct request *rq)
283 {
284 	struct nvme_rdma_ctrl *ctrl = data;
285 	struct nvme_rdma_device *dev = ctrl->device;
286 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
287 	int ret = 0;
288 
289 	if (!req->need_inval)
290 		goto out;
291 
292 	ib_dereg_mr(req->mr);
293 
294 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
295 			ctrl->max_fr_pages);
296 	if (IS_ERR(req->mr)) {
297 		ret = PTR_ERR(req->mr);
298 		req->mr = NULL;
299 	}
300 
301 	req->need_inval = false;
302 
303 out:
304 	return ret;
305 }
306 
307 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
308 		struct request *rq, unsigned int queue_idx)
309 {
310 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
311 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
312 	struct nvme_rdma_device *dev = queue->device;
313 
314 	if (req->mr)
315 		ib_dereg_mr(req->mr);
316 
317 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
318 			DMA_TO_DEVICE);
319 }
320 
321 static void nvme_rdma_exit_request(void *data, struct request *rq,
322 				unsigned int hctx_idx, unsigned int rq_idx)
323 {
324 	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
325 }
326 
327 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
328 				unsigned int hctx_idx, unsigned int rq_idx)
329 {
330 	return __nvme_rdma_exit_request(data, rq, 0);
331 }
332 
333 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
334 		struct request *rq, unsigned int queue_idx)
335 {
336 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
337 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
338 	struct nvme_rdma_device *dev = queue->device;
339 	struct ib_device *ibdev = dev->dev;
340 	int ret;
341 
342 	BUG_ON(queue_idx >= ctrl->queue_count);
343 
344 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
345 			DMA_TO_DEVICE);
346 	if (ret)
347 		return ret;
348 
349 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
350 			ctrl->max_fr_pages);
351 	if (IS_ERR(req->mr)) {
352 		ret = PTR_ERR(req->mr);
353 		goto out_free_qe;
354 	}
355 
356 	req->queue = queue;
357 
358 	return 0;
359 
360 out_free_qe:
361 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
362 			DMA_TO_DEVICE);
363 	return -ENOMEM;
364 }
365 
366 static int nvme_rdma_init_request(void *data, struct request *rq,
367 				unsigned int hctx_idx, unsigned int rq_idx,
368 				unsigned int numa_node)
369 {
370 	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
371 }
372 
373 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
374 				unsigned int hctx_idx, unsigned int rq_idx,
375 				unsigned int numa_node)
376 {
377 	return __nvme_rdma_init_request(data, rq, 0);
378 }
379 
380 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
381 		unsigned int hctx_idx)
382 {
383 	struct nvme_rdma_ctrl *ctrl = data;
384 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
385 
386 	BUG_ON(hctx_idx >= ctrl->queue_count);
387 
388 	hctx->driver_data = queue;
389 	return 0;
390 }
391 
392 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393 		unsigned int hctx_idx)
394 {
395 	struct nvme_rdma_ctrl *ctrl = data;
396 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
397 
398 	BUG_ON(hctx_idx != 0);
399 
400 	hctx->driver_data = queue;
401 	return 0;
402 }
403 
404 static void nvme_rdma_free_dev(struct kref *ref)
405 {
406 	struct nvme_rdma_device *ndev =
407 		container_of(ref, struct nvme_rdma_device, ref);
408 
409 	mutex_lock(&device_list_mutex);
410 	list_del(&ndev->entry);
411 	mutex_unlock(&device_list_mutex);
412 
413 	if (!register_always)
414 		ib_dereg_mr(ndev->mr);
415 	ib_dealloc_pd(ndev->pd);
416 
417 	kfree(ndev);
418 }
419 
420 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
421 {
422 	kref_put(&dev->ref, nvme_rdma_free_dev);
423 }
424 
425 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
426 {
427 	return kref_get_unless_zero(&dev->ref);
428 }
429 
430 static struct nvme_rdma_device *
431 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
432 {
433 	struct nvme_rdma_device *ndev;
434 
435 	mutex_lock(&device_list_mutex);
436 	list_for_each_entry(ndev, &device_list, entry) {
437 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
438 		    nvme_rdma_dev_get(ndev))
439 			goto out_unlock;
440 	}
441 
442 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
443 	if (!ndev)
444 		goto out_err;
445 
446 	ndev->dev = cm_id->device;
447 	kref_init(&ndev->ref);
448 
449 	ndev->pd = ib_alloc_pd(ndev->dev);
450 	if (IS_ERR(ndev->pd))
451 		goto out_free_dev;
452 
453 	if (!register_always) {
454 		ndev->mr = ib_get_dma_mr(ndev->pd,
455 					    IB_ACCESS_LOCAL_WRITE |
456 					    IB_ACCESS_REMOTE_READ |
457 					    IB_ACCESS_REMOTE_WRITE);
458 		if (IS_ERR(ndev->mr))
459 			goto out_free_pd;
460 	}
461 
462 	if (!(ndev->dev->attrs.device_cap_flags &
463 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
464 		dev_err(&ndev->dev->dev,
465 			"Memory registrations not supported.\n");
466 		goto out_free_mr;
467 	}
468 
469 	list_add(&ndev->entry, &device_list);
470 out_unlock:
471 	mutex_unlock(&device_list_mutex);
472 	return ndev;
473 
474 out_free_mr:
475 	if (!register_always)
476 		ib_dereg_mr(ndev->mr);
477 out_free_pd:
478 	ib_dealloc_pd(ndev->pd);
479 out_free_dev:
480 	kfree(ndev);
481 out_err:
482 	mutex_unlock(&device_list_mutex);
483 	return NULL;
484 }
485 
486 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
487 {
488 	struct nvme_rdma_device *dev = queue->device;
489 	struct ib_device *ibdev = dev->dev;
490 
491 	rdma_destroy_qp(queue->cm_id);
492 	ib_free_cq(queue->ib_cq);
493 
494 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
495 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
496 
497 	nvme_rdma_dev_put(dev);
498 }
499 
500 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
501 		struct nvme_rdma_device *dev)
502 {
503 	struct ib_device *ibdev = dev->dev;
504 	const int send_wr_factor = 3;			/* MR, SEND, INV */
505 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
506 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
507 
508 	int ret;
509 
510 	queue->device = dev;
511 
512 	/*
513 	 * The admin queue is barely used once the controller is live, so don't
514 	 * bother to spread it out.
515 	 */
516 	if (idx == 0)
517 		comp_vector = 0;
518 	else
519 		comp_vector = idx % ibdev->num_comp_vectors;
520 
521 
522 	/* +1 for ib_stop_cq */
523 	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
524 				cq_factor * queue->queue_size + 1, comp_vector,
525 				IB_POLL_SOFTIRQ);
526 	if (IS_ERR(queue->ib_cq)) {
527 		ret = PTR_ERR(queue->ib_cq);
528 		goto out;
529 	}
530 
531 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
532 	if (ret)
533 		goto out_destroy_ib_cq;
534 
535 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
536 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
537 	if (!queue->rsp_ring) {
538 		ret = -ENOMEM;
539 		goto out_destroy_qp;
540 	}
541 
542 	return 0;
543 
544 out_destroy_qp:
545 	ib_destroy_qp(queue->qp);
546 out_destroy_ib_cq:
547 	ib_free_cq(queue->ib_cq);
548 out:
549 	return ret;
550 }
551 
552 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
553 		int idx, size_t queue_size)
554 {
555 	struct nvme_rdma_queue *queue;
556 	int ret;
557 
558 	queue = &ctrl->queues[idx];
559 	queue->ctrl = ctrl;
560 	init_completion(&queue->cm_done);
561 
562 	if (idx > 0)
563 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
564 	else
565 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
566 
567 	queue->queue_size = queue_size;
568 
569 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
570 			RDMA_PS_TCP, IB_QPT_RC);
571 	if (IS_ERR(queue->cm_id)) {
572 		dev_info(ctrl->ctrl.device,
573 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
574 		return PTR_ERR(queue->cm_id);
575 	}
576 
577 	queue->cm_error = -ETIMEDOUT;
578 	ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
579 			NVME_RDMA_CONNECT_TIMEOUT_MS);
580 	if (ret) {
581 		dev_info(ctrl->ctrl.device,
582 			"rdma_resolve_addr failed (%d).\n", ret);
583 		goto out_destroy_cm_id;
584 	}
585 
586 	ret = nvme_rdma_wait_for_cm(queue);
587 	if (ret) {
588 		dev_info(ctrl->ctrl.device,
589 			"rdma_resolve_addr wait failed (%d).\n", ret);
590 		goto out_destroy_cm_id;
591 	}
592 
593 	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
594 
595 	return 0;
596 
597 out_destroy_cm_id:
598 	rdma_destroy_id(queue->cm_id);
599 	return ret;
600 }
601 
602 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
603 {
604 	rdma_disconnect(queue->cm_id);
605 	ib_drain_qp(queue->qp);
606 }
607 
608 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
609 {
610 	nvme_rdma_destroy_queue_ib(queue);
611 	rdma_destroy_id(queue->cm_id);
612 }
613 
614 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
615 {
616 	if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
617 		return;
618 	nvme_rdma_stop_queue(queue);
619 	nvme_rdma_free_queue(queue);
620 }
621 
622 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624 	int i;
625 
626 	for (i = 1; i < ctrl->queue_count; i++)
627 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
628 }
629 
630 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632 	int i, ret = 0;
633 
634 	for (i = 1; i < ctrl->queue_count; i++) {
635 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
636 		if (ret)
637 			break;
638 	}
639 
640 	return ret;
641 }
642 
643 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
644 {
645 	int i, ret;
646 
647 	for (i = 1; i < ctrl->queue_count; i++) {
648 		ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
649 		if (ret) {
650 			dev_info(ctrl->ctrl.device,
651 				"failed to initialize i/o queue: %d\n", ret);
652 			goto out_free_queues;
653 		}
654 	}
655 
656 	return 0;
657 
658 out_free_queues:
659 	for (; i >= 1; i--)
660 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
661 
662 	return ret;
663 }
664 
665 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
666 {
667 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
668 			sizeof(struct nvme_command), DMA_TO_DEVICE);
669 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
670 	blk_cleanup_queue(ctrl->ctrl.admin_q);
671 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
672 	nvme_rdma_dev_put(ctrl->device);
673 }
674 
675 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
676 {
677 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
678 
679 	if (list_empty(&ctrl->list))
680 		goto free_ctrl;
681 
682 	mutex_lock(&nvme_rdma_ctrl_mutex);
683 	list_del(&ctrl->list);
684 	mutex_unlock(&nvme_rdma_ctrl_mutex);
685 
686 	kfree(ctrl->queues);
687 	nvmf_free_options(nctrl->opts);
688 free_ctrl:
689 	kfree(ctrl);
690 }
691 
692 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
693 {
694 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
695 			struct nvme_rdma_ctrl, reconnect_work);
696 	bool changed;
697 	int ret;
698 
699 	if (ctrl->queue_count > 1) {
700 		nvme_rdma_free_io_queues(ctrl);
701 
702 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
703 		if (ret)
704 			goto requeue;
705 	}
706 
707 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
708 
709 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
710 	if (ret)
711 		goto requeue;
712 
713 	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
714 	if (ret)
715 		goto requeue;
716 
717 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
718 
719 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
720 	if (ret)
721 		goto stop_admin_q;
722 
723 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
724 	if (ret)
725 		goto stop_admin_q;
726 
727 	nvme_start_keep_alive(&ctrl->ctrl);
728 
729 	if (ctrl->queue_count > 1) {
730 		ret = nvme_rdma_init_io_queues(ctrl);
731 		if (ret)
732 			goto stop_admin_q;
733 
734 		ret = nvme_rdma_connect_io_queues(ctrl);
735 		if (ret)
736 			goto stop_admin_q;
737 	}
738 
739 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
740 	WARN_ON_ONCE(!changed);
741 
742 	if (ctrl->queue_count > 1) {
743 		nvme_start_queues(&ctrl->ctrl);
744 		nvme_queue_scan(&ctrl->ctrl);
745 		nvme_queue_async_events(&ctrl->ctrl);
746 	}
747 
748 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
749 
750 	return;
751 
752 stop_admin_q:
753 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
754 requeue:
755 	/* Make sure we are not resetting/deleting */
756 	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
757 		dev_info(ctrl->ctrl.device,
758 			"Failed reconnect attempt, requeueing...\n");
759 		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
760 					ctrl->reconnect_delay * HZ);
761 	}
762 }
763 
764 static void nvme_rdma_error_recovery_work(struct work_struct *work)
765 {
766 	struct nvme_rdma_ctrl *ctrl = container_of(work,
767 			struct nvme_rdma_ctrl, err_work);
768 
769 	nvme_stop_keep_alive(&ctrl->ctrl);
770 	if (ctrl->queue_count > 1)
771 		nvme_stop_queues(&ctrl->ctrl);
772 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
773 
774 	/* We must take care of fastfail/requeue all our inflight requests */
775 	if (ctrl->queue_count > 1)
776 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
777 					nvme_cancel_request, &ctrl->ctrl);
778 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
779 				nvme_cancel_request, &ctrl->ctrl);
780 
781 	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
782 		ctrl->reconnect_delay);
783 
784 	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
785 				ctrl->reconnect_delay * HZ);
786 }
787 
788 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
789 {
790 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
791 		return;
792 
793 	queue_work(nvme_rdma_wq, &ctrl->err_work);
794 }
795 
796 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
797 		const char *op)
798 {
799 	struct nvme_rdma_queue *queue = cq->cq_context;
800 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
801 
802 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
803 		dev_info(ctrl->ctrl.device,
804 			     "%s for CQE 0x%p failed with status %s (%d)\n",
805 			     op, wc->wr_cqe,
806 			     ib_wc_status_msg(wc->status), wc->status);
807 	nvme_rdma_error_recovery(ctrl);
808 }
809 
810 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
811 {
812 	if (unlikely(wc->status != IB_WC_SUCCESS))
813 		nvme_rdma_wr_error(cq, wc, "MEMREG");
814 }
815 
816 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
817 {
818 	if (unlikely(wc->status != IB_WC_SUCCESS))
819 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
820 }
821 
822 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
823 		struct nvme_rdma_request *req)
824 {
825 	struct ib_send_wr *bad_wr;
826 	struct ib_send_wr wr = {
827 		.opcode		    = IB_WR_LOCAL_INV,
828 		.next		    = NULL,
829 		.num_sge	    = 0,
830 		.send_flags	    = 0,
831 		.ex.invalidate_rkey = req->mr->rkey,
832 	};
833 
834 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
835 	wr.wr_cqe = &req->reg_cqe;
836 
837 	return ib_post_send(queue->qp, &wr, &bad_wr);
838 }
839 
840 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
841 		struct request *rq)
842 {
843 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
844 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
845 	struct nvme_rdma_device *dev = queue->device;
846 	struct ib_device *ibdev = dev->dev;
847 	int res;
848 
849 	if (!blk_rq_bytes(rq))
850 		return;
851 
852 	if (req->need_inval) {
853 		res = nvme_rdma_inv_rkey(queue, req);
854 		if (res < 0) {
855 			dev_err(ctrl->ctrl.device,
856 				"Queueing INV WR for rkey %#x failed (%d)\n",
857 				req->mr->rkey, res);
858 			nvme_rdma_error_recovery(queue->ctrl);
859 		}
860 	}
861 
862 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
863 			req->nents, rq_data_dir(rq) ==
864 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
865 
866 	nvme_cleanup_cmd(rq);
867 	sg_free_table_chained(&req->sg_table, true);
868 }
869 
870 static int nvme_rdma_set_sg_null(struct nvme_command *c)
871 {
872 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
873 
874 	sg->addr = 0;
875 	put_unaligned_le24(0, sg->length);
876 	put_unaligned_le32(0, sg->key);
877 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
878 	return 0;
879 }
880 
881 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
882 		struct nvme_rdma_request *req, struct nvme_command *c)
883 {
884 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
885 
886 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
887 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
888 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
889 
890 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
891 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
892 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
893 
894 	req->inline_data = true;
895 	req->num_sge++;
896 	return 0;
897 }
898 
899 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
900 		struct nvme_rdma_request *req, struct nvme_command *c)
901 {
902 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
903 
904 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
905 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
906 	put_unaligned_le32(queue->device->mr->rkey, sg->key);
907 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
908 	return 0;
909 }
910 
911 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
912 		struct nvme_rdma_request *req, struct nvme_command *c,
913 		int count)
914 {
915 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
916 	int nr;
917 
918 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
919 	if (nr < count) {
920 		if (nr < 0)
921 			return nr;
922 		return -EINVAL;
923 	}
924 
925 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
926 
927 	req->reg_cqe.done = nvme_rdma_memreg_done;
928 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
929 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
930 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
931 	req->reg_wr.wr.num_sge = 0;
932 	req->reg_wr.mr = req->mr;
933 	req->reg_wr.key = req->mr->rkey;
934 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
935 			     IB_ACCESS_REMOTE_READ |
936 			     IB_ACCESS_REMOTE_WRITE;
937 
938 	req->need_inval = true;
939 
940 	sg->addr = cpu_to_le64(req->mr->iova);
941 	put_unaligned_le24(req->mr->length, sg->length);
942 	put_unaligned_le32(req->mr->rkey, sg->key);
943 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
944 			NVME_SGL_FMT_INVALIDATE;
945 
946 	return 0;
947 }
948 
949 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
950 		struct request *rq, unsigned int map_len,
951 		struct nvme_command *c)
952 {
953 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
954 	struct nvme_rdma_device *dev = queue->device;
955 	struct ib_device *ibdev = dev->dev;
956 	int nents, count;
957 	int ret;
958 
959 	req->num_sge = 1;
960 	req->inline_data = false;
961 	req->need_inval = false;
962 
963 	c->common.flags |= NVME_CMD_SGL_METABUF;
964 
965 	if (!blk_rq_bytes(rq))
966 		return nvme_rdma_set_sg_null(c);
967 
968 	req->sg_table.sgl = req->first_sgl;
969 	ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
970 				req->sg_table.sgl);
971 	if (ret)
972 		return -ENOMEM;
973 
974 	nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
975 	BUG_ON(nents > rq->nr_phys_segments);
976 	req->nents = nents;
977 
978 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
979 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
980 	if (unlikely(count <= 0)) {
981 		sg_free_table_chained(&req->sg_table, true);
982 		return -EIO;
983 	}
984 
985 	if (count == 1) {
986 		if (rq_data_dir(rq) == WRITE &&
987 		    map_len <= nvme_rdma_inline_data_size(queue) &&
988 		    nvme_rdma_queue_idx(queue))
989 			return nvme_rdma_map_sg_inline(queue, req, c);
990 
991 		if (!register_always)
992 			return nvme_rdma_map_sg_single(queue, req, c);
993 	}
994 
995 	return nvme_rdma_map_sg_fr(queue, req, c, count);
996 }
997 
998 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
999 {
1000 	if (unlikely(wc->status != IB_WC_SUCCESS))
1001 		nvme_rdma_wr_error(cq, wc, "SEND");
1002 }
1003 
1004 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1005 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1006 		struct ib_send_wr *first, bool flush)
1007 {
1008 	struct ib_send_wr wr, *bad_wr;
1009 	int ret;
1010 
1011 	sge->addr   = qe->dma;
1012 	sge->length = sizeof(struct nvme_command),
1013 	sge->lkey   = queue->device->pd->local_dma_lkey;
1014 
1015 	qe->cqe.done = nvme_rdma_send_done;
1016 
1017 	wr.next       = NULL;
1018 	wr.wr_cqe     = &qe->cqe;
1019 	wr.sg_list    = sge;
1020 	wr.num_sge    = num_sge;
1021 	wr.opcode     = IB_WR_SEND;
1022 	wr.send_flags = 0;
1023 
1024 	/*
1025 	 * Unsignalled send completions are another giant desaster in the
1026 	 * IB Verbs spec:  If we don't regularly post signalled sends
1027 	 * the send queue will fill up and only a QP reset will rescue us.
1028 	 * Would have been way to obvious to handle this in hardware or
1029 	 * at least the RDMA stack..
1030 	 *
1031 	 * This messy and racy code sniplet is copy and pasted from the iSER
1032 	 * initiator, and the magic '32' comes from there as well.
1033 	 *
1034 	 * Always signal the flushes. The magic request used for the flush
1035 	 * sequencer is not allocated in our driver's tagset and it's
1036 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1037 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1038 	 * embeded in request's payload, is not freed when __ib_process_cq()
1039 	 * calls wr_cqe->done().
1040 	 */
1041 	if ((++queue->sig_count % 32) == 0 || flush)
1042 		wr.send_flags |= IB_SEND_SIGNALED;
1043 
1044 	if (first)
1045 		first->next = &wr;
1046 	else
1047 		first = &wr;
1048 
1049 	ret = ib_post_send(queue->qp, first, &bad_wr);
1050 	if (ret) {
1051 		dev_err(queue->ctrl->ctrl.device,
1052 			     "%s failed with error code %d\n", __func__, ret);
1053 	}
1054 	return ret;
1055 }
1056 
1057 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1058 		struct nvme_rdma_qe *qe)
1059 {
1060 	struct ib_recv_wr wr, *bad_wr;
1061 	struct ib_sge list;
1062 	int ret;
1063 
1064 	list.addr   = qe->dma;
1065 	list.length = sizeof(struct nvme_completion);
1066 	list.lkey   = queue->device->pd->local_dma_lkey;
1067 
1068 	qe->cqe.done = nvme_rdma_recv_done;
1069 
1070 	wr.next     = NULL;
1071 	wr.wr_cqe   = &qe->cqe;
1072 	wr.sg_list  = &list;
1073 	wr.num_sge  = 1;
1074 
1075 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1076 	if (ret) {
1077 		dev_err(queue->ctrl->ctrl.device,
1078 			"%s failed with error code %d\n", __func__, ret);
1079 	}
1080 	return ret;
1081 }
1082 
1083 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1084 {
1085 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1086 
1087 	if (queue_idx == 0)
1088 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1089 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1090 }
1091 
1092 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1093 {
1094 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1095 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1096 	struct ib_device *dev = queue->device->dev;
1097 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1098 	struct nvme_command *cmd = sqe->data;
1099 	struct ib_sge sge;
1100 	int ret;
1101 
1102 	if (WARN_ON_ONCE(aer_idx != 0))
1103 		return;
1104 
1105 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1106 
1107 	memset(cmd, 0, sizeof(*cmd));
1108 	cmd->common.opcode = nvme_admin_async_event;
1109 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1110 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1111 	nvme_rdma_set_sg_null(cmd);
1112 
1113 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1114 			DMA_TO_DEVICE);
1115 
1116 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1117 	WARN_ON_ONCE(ret);
1118 }
1119 
1120 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1121 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1122 {
1123 	u16 status = le16_to_cpu(cqe->status);
1124 	struct request *rq;
1125 	struct nvme_rdma_request *req;
1126 	int ret = 0;
1127 
1128 	status >>= 1;
1129 
1130 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1131 	if (!rq) {
1132 		dev_err(queue->ctrl->ctrl.device,
1133 			"tag 0x%x on QP %#x not found\n",
1134 			cqe->command_id, queue->qp->qp_num);
1135 		nvme_rdma_error_recovery(queue->ctrl);
1136 		return ret;
1137 	}
1138 	req = blk_mq_rq_to_pdu(rq);
1139 
1140 	if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1141 		memcpy(rq->special, cqe, sizeof(*cqe));
1142 
1143 	if (rq->tag == tag)
1144 		ret = 1;
1145 
1146 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1147 	    wc->ex.invalidate_rkey == req->mr->rkey)
1148 		req->need_inval = false;
1149 
1150 	blk_mq_complete_request(rq, status);
1151 
1152 	return ret;
1153 }
1154 
1155 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1156 {
1157 	struct nvme_rdma_qe *qe =
1158 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1159 	struct nvme_rdma_queue *queue = cq->cq_context;
1160 	struct ib_device *ibdev = queue->device->dev;
1161 	struct nvme_completion *cqe = qe->data;
1162 	const size_t len = sizeof(struct nvme_completion);
1163 	int ret = 0;
1164 
1165 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1166 		nvme_rdma_wr_error(cq, wc, "RECV");
1167 		return 0;
1168 	}
1169 
1170 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1171 	/*
1172 	 * AEN requests are special as they don't time out and can
1173 	 * survive any kind of queue freeze and often don't respond to
1174 	 * aborts.  We don't even bother to allocate a struct request
1175 	 * for them but rather special case them here.
1176 	 */
1177 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1178 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1179 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1180 	else
1181 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1182 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1183 
1184 	nvme_rdma_post_recv(queue, qe);
1185 	return ret;
1186 }
1187 
1188 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1189 {
1190 	__nvme_rdma_recv_done(cq, wc, -1);
1191 }
1192 
1193 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1194 {
1195 	int ret, i;
1196 
1197 	for (i = 0; i < queue->queue_size; i++) {
1198 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1199 		if (ret)
1200 			goto out_destroy_queue_ib;
1201 	}
1202 
1203 	return 0;
1204 
1205 out_destroy_queue_ib:
1206 	nvme_rdma_destroy_queue_ib(queue);
1207 	return ret;
1208 }
1209 
1210 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1211 		struct rdma_cm_event *ev)
1212 {
1213 	if (ev->param.conn.private_data_len) {
1214 		struct nvme_rdma_cm_rej *rej =
1215 			(struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1216 
1217 		dev_err(queue->ctrl->ctrl.device,
1218 			"Connect rejected, status %d.", le16_to_cpu(rej->sts));
1219 		/* XXX: Think of something clever to do here... */
1220 	} else {
1221 		dev_err(queue->ctrl->ctrl.device,
1222 			"Connect rejected, no private data.\n");
1223 	}
1224 
1225 	return -ECONNRESET;
1226 }
1227 
1228 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1229 {
1230 	struct nvme_rdma_device *dev;
1231 	int ret;
1232 
1233 	dev = nvme_rdma_find_get_device(queue->cm_id);
1234 	if (!dev) {
1235 		dev_err(queue->cm_id->device->dma_device,
1236 			"no client data found!\n");
1237 		return -ECONNREFUSED;
1238 	}
1239 
1240 	ret = nvme_rdma_create_queue_ib(queue, dev);
1241 	if (ret) {
1242 		nvme_rdma_dev_put(dev);
1243 		goto out;
1244 	}
1245 
1246 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1247 	if (ret) {
1248 		dev_err(queue->ctrl->ctrl.device,
1249 			"rdma_resolve_route failed (%d).\n",
1250 			queue->cm_error);
1251 		goto out_destroy_queue;
1252 	}
1253 
1254 	return 0;
1255 
1256 out_destroy_queue:
1257 	nvme_rdma_destroy_queue_ib(queue);
1258 out:
1259 	return ret;
1260 }
1261 
1262 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1263 {
1264 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1265 	struct rdma_conn_param param = { };
1266 	struct nvme_rdma_cm_req priv = { };
1267 	int ret;
1268 
1269 	param.qp_num = queue->qp->qp_num;
1270 	param.flow_control = 1;
1271 
1272 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1273 	/* maximum retry count */
1274 	param.retry_count = 7;
1275 	param.rnr_retry_count = 7;
1276 	param.private_data = &priv;
1277 	param.private_data_len = sizeof(priv);
1278 
1279 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1280 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1281 	priv.hrqsize = cpu_to_le16(queue->queue_size);
1282 	priv.hsqsize = cpu_to_le16(queue->queue_size);
1283 
1284 	ret = rdma_connect(queue->cm_id, &param);
1285 	if (ret) {
1286 		dev_err(ctrl->ctrl.device,
1287 			"rdma_connect failed (%d).\n", ret);
1288 		goto out_destroy_queue_ib;
1289 	}
1290 
1291 	return 0;
1292 
1293 out_destroy_queue_ib:
1294 	nvme_rdma_destroy_queue_ib(queue);
1295 	return ret;
1296 }
1297 
1298 /**
1299  * nvme_rdma_device_unplug() - Handle RDMA device unplug
1300  * @queue:      Queue that owns the cm_id that caught the event
1301  *
1302  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1303  * to unplug so we should take care of destroying our RDMA resources.
1304  * This event will be generated for each allocated cm_id.
1305  *
1306  * In our case, the RDMA resources are managed per controller and not
1307  * only per queue. So the way we handle this is we trigger an implicit
1308  * controller deletion upon the first DEVICE_REMOVAL event we see, and
1309  * hold the event inflight until the controller deletion is completed.
1310  *
1311  * One exception that we need to handle is the destruction of the cm_id
1312  * that caught the event. Since we hold the callout until the controller
1313  * deletion is completed, we'll deadlock if the controller deletion will
1314  * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1315  * of destroying this queue before-hand, destroy the queue resources,
1316  * then queue the controller deletion which won't destroy this queue and
1317  * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
1318  */
1319 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1320 {
1321 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1322 	int ret;
1323 
1324 	/* Own the controller deletion */
1325 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1326 		return 0;
1327 
1328 	dev_warn(ctrl->ctrl.device,
1329 		"Got rdma device removal event, deleting ctrl\n");
1330 
1331 	/* Get rid of reconnect work if its running */
1332 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1333 
1334 	/* Disable the queue so ctrl delete won't free it */
1335 	if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1336 		/* Free this queue ourselves */
1337 		nvme_rdma_stop_queue(queue);
1338 		nvme_rdma_destroy_queue_ib(queue);
1339 
1340 		/* Return non-zero so the cm_id will destroy implicitly */
1341 		ret = 1;
1342 	}
1343 
1344 	/* Queue controller deletion */
1345 	queue_work(nvme_rdma_wq, &ctrl->delete_work);
1346 	flush_work(&ctrl->delete_work);
1347 	return ret;
1348 }
1349 
1350 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1351 		struct rdma_cm_event *ev)
1352 {
1353 	struct nvme_rdma_queue *queue = cm_id->context;
1354 	int cm_error = 0;
1355 
1356 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1357 		rdma_event_msg(ev->event), ev->event,
1358 		ev->status, cm_id);
1359 
1360 	switch (ev->event) {
1361 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1362 		cm_error = nvme_rdma_addr_resolved(queue);
1363 		break;
1364 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1365 		cm_error = nvme_rdma_route_resolved(queue);
1366 		break;
1367 	case RDMA_CM_EVENT_ESTABLISHED:
1368 		queue->cm_error = nvme_rdma_conn_established(queue);
1369 		/* complete cm_done regardless of success/failure */
1370 		complete(&queue->cm_done);
1371 		return 0;
1372 	case RDMA_CM_EVENT_REJECTED:
1373 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1374 		break;
1375 	case RDMA_CM_EVENT_ADDR_ERROR:
1376 	case RDMA_CM_EVENT_ROUTE_ERROR:
1377 	case RDMA_CM_EVENT_CONNECT_ERROR:
1378 	case RDMA_CM_EVENT_UNREACHABLE:
1379 		dev_dbg(queue->ctrl->ctrl.device,
1380 			"CM error event %d\n", ev->event);
1381 		cm_error = -ECONNRESET;
1382 		break;
1383 	case RDMA_CM_EVENT_DISCONNECTED:
1384 	case RDMA_CM_EVENT_ADDR_CHANGE:
1385 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1386 		dev_dbg(queue->ctrl->ctrl.device,
1387 			"disconnect received - connection closed\n");
1388 		nvme_rdma_error_recovery(queue->ctrl);
1389 		break;
1390 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1391 		/* return 1 means impliciy CM ID destroy */
1392 		return nvme_rdma_device_unplug(queue);
1393 	default:
1394 		dev_err(queue->ctrl->ctrl.device,
1395 			"Unexpected RDMA CM event (%d)\n", ev->event);
1396 		nvme_rdma_error_recovery(queue->ctrl);
1397 		break;
1398 	}
1399 
1400 	if (cm_error) {
1401 		queue->cm_error = cm_error;
1402 		complete(&queue->cm_done);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static enum blk_eh_timer_return
1409 nvme_rdma_timeout(struct request *rq, bool reserved)
1410 {
1411 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1412 
1413 	/* queue error recovery */
1414 	nvme_rdma_error_recovery(req->queue->ctrl);
1415 
1416 	/* fail with DNR on cmd timeout */
1417 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1418 
1419 	return BLK_EH_HANDLED;
1420 }
1421 
1422 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1423 		const struct blk_mq_queue_data *bd)
1424 {
1425 	struct nvme_ns *ns = hctx->queue->queuedata;
1426 	struct nvme_rdma_queue *queue = hctx->driver_data;
1427 	struct request *rq = bd->rq;
1428 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1429 	struct nvme_rdma_qe *sqe = &req->sqe;
1430 	struct nvme_command *c = sqe->data;
1431 	bool flush = false;
1432 	struct ib_device *dev;
1433 	unsigned int map_len;
1434 	int ret;
1435 
1436 	WARN_ON_ONCE(rq->tag < 0);
1437 
1438 	dev = queue->device->dev;
1439 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1440 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1441 
1442 	ret = nvme_setup_cmd(ns, rq, c);
1443 	if (ret)
1444 		return ret;
1445 
1446 	c->common.command_id = rq->tag;
1447 	blk_mq_start_request(rq);
1448 
1449 	map_len = nvme_map_len(rq);
1450 	ret = nvme_rdma_map_data(queue, rq, map_len, c);
1451 	if (ret < 0) {
1452 		dev_err(queue->ctrl->ctrl.device,
1453 			     "Failed to map data (%d)\n", ret);
1454 		nvme_cleanup_cmd(rq);
1455 		goto err;
1456 	}
1457 
1458 	ib_dma_sync_single_for_device(dev, sqe->dma,
1459 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1460 
1461 	if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1462 		flush = true;
1463 	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1464 			req->need_inval ? &req->reg_wr.wr : NULL, flush);
1465 	if (ret) {
1466 		nvme_rdma_unmap_data(queue, rq);
1467 		goto err;
1468 	}
1469 
1470 	return BLK_MQ_RQ_QUEUE_OK;
1471 err:
1472 	return (ret == -ENOMEM || ret == -EAGAIN) ?
1473 		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1474 }
1475 
1476 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1477 {
1478 	struct nvme_rdma_queue *queue = hctx->driver_data;
1479 	struct ib_cq *cq = queue->ib_cq;
1480 	struct ib_wc wc;
1481 	int found = 0;
1482 
1483 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1484 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1485 		struct ib_cqe *cqe = wc.wr_cqe;
1486 
1487 		if (cqe) {
1488 			if (cqe->done == nvme_rdma_recv_done)
1489 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1490 			else
1491 				cqe->done(cq, &wc);
1492 		}
1493 	}
1494 
1495 	return found;
1496 }
1497 
1498 static void nvme_rdma_complete_rq(struct request *rq)
1499 {
1500 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1501 	struct nvme_rdma_queue *queue = req->queue;
1502 	int error = 0;
1503 
1504 	nvme_rdma_unmap_data(queue, rq);
1505 
1506 	if (unlikely(rq->errors)) {
1507 		if (nvme_req_needs_retry(rq, rq->errors)) {
1508 			nvme_requeue_req(rq);
1509 			return;
1510 		}
1511 
1512 		if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1513 			error = rq->errors;
1514 		else
1515 			error = nvme_error_status(rq->errors);
1516 	}
1517 
1518 	blk_mq_end_request(rq, error);
1519 }
1520 
1521 static struct blk_mq_ops nvme_rdma_mq_ops = {
1522 	.queue_rq	= nvme_rdma_queue_rq,
1523 	.complete	= nvme_rdma_complete_rq,
1524 	.map_queue	= blk_mq_map_queue,
1525 	.init_request	= nvme_rdma_init_request,
1526 	.exit_request	= nvme_rdma_exit_request,
1527 	.reinit_request	= nvme_rdma_reinit_request,
1528 	.init_hctx	= nvme_rdma_init_hctx,
1529 	.poll		= nvme_rdma_poll,
1530 	.timeout	= nvme_rdma_timeout,
1531 };
1532 
1533 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1534 	.queue_rq	= nvme_rdma_queue_rq,
1535 	.complete	= nvme_rdma_complete_rq,
1536 	.map_queue	= blk_mq_map_queue,
1537 	.init_request	= nvme_rdma_init_admin_request,
1538 	.exit_request	= nvme_rdma_exit_admin_request,
1539 	.reinit_request	= nvme_rdma_reinit_request,
1540 	.init_hctx	= nvme_rdma_init_admin_hctx,
1541 	.timeout	= nvme_rdma_timeout,
1542 };
1543 
1544 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1545 {
1546 	int error;
1547 
1548 	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1549 	if (error)
1550 		return error;
1551 
1552 	ctrl->device = ctrl->queues[0].device;
1553 
1554 	/*
1555 	 * We need a reference on the device as long as the tag_set is alive,
1556 	 * as the MRs in the request structures need a valid ib_device.
1557 	 */
1558 	error = -EINVAL;
1559 	if (!nvme_rdma_dev_get(ctrl->device))
1560 		goto out_free_queue;
1561 
1562 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1563 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1564 
1565 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1566 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1567 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1568 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1569 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1570 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1571 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1572 	ctrl->admin_tag_set.driver_data = ctrl;
1573 	ctrl->admin_tag_set.nr_hw_queues = 1;
1574 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1575 
1576 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1577 	if (error)
1578 		goto out_put_dev;
1579 
1580 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1581 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1582 		error = PTR_ERR(ctrl->ctrl.admin_q);
1583 		goto out_free_tagset;
1584 	}
1585 
1586 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1587 	if (error)
1588 		goto out_cleanup_queue;
1589 
1590 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1591 	if (error) {
1592 		dev_err(ctrl->ctrl.device,
1593 			"prop_get NVME_REG_CAP failed\n");
1594 		goto out_cleanup_queue;
1595 	}
1596 
1597 	ctrl->ctrl.sqsize =
1598 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1599 
1600 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1601 	if (error)
1602 		goto out_cleanup_queue;
1603 
1604 	ctrl->ctrl.max_hw_sectors =
1605 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1606 
1607 	error = nvme_init_identify(&ctrl->ctrl);
1608 	if (error)
1609 		goto out_cleanup_queue;
1610 
1611 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1612 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1613 			DMA_TO_DEVICE);
1614 	if (error)
1615 		goto out_cleanup_queue;
1616 
1617 	nvme_start_keep_alive(&ctrl->ctrl);
1618 
1619 	return 0;
1620 
1621 out_cleanup_queue:
1622 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1623 out_free_tagset:
1624 	/* disconnect and drain the queue before freeing the tagset */
1625 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1626 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1627 out_put_dev:
1628 	nvme_rdma_dev_put(ctrl->device);
1629 out_free_queue:
1630 	nvme_rdma_free_queue(&ctrl->queues[0]);
1631 	return error;
1632 }
1633 
1634 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1635 {
1636 	nvme_stop_keep_alive(&ctrl->ctrl);
1637 	cancel_work_sync(&ctrl->err_work);
1638 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1639 
1640 	if (ctrl->queue_count > 1) {
1641 		nvme_stop_queues(&ctrl->ctrl);
1642 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1643 					nvme_cancel_request, &ctrl->ctrl);
1644 		nvme_rdma_free_io_queues(ctrl);
1645 	}
1646 
1647 	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1648 		nvme_shutdown_ctrl(&ctrl->ctrl);
1649 
1650 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1651 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1652 				nvme_cancel_request, &ctrl->ctrl);
1653 	nvme_rdma_destroy_admin_queue(ctrl);
1654 }
1655 
1656 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1657 {
1658 	nvme_uninit_ctrl(&ctrl->ctrl);
1659 	if (shutdown)
1660 		nvme_rdma_shutdown_ctrl(ctrl);
1661 
1662 	if (ctrl->ctrl.tagset) {
1663 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1664 		blk_mq_free_tag_set(&ctrl->tag_set);
1665 		nvme_rdma_dev_put(ctrl->device);
1666 	}
1667 
1668 	nvme_put_ctrl(&ctrl->ctrl);
1669 }
1670 
1671 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1672 {
1673 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1674 				struct nvme_rdma_ctrl, delete_work);
1675 
1676 	__nvme_rdma_remove_ctrl(ctrl, true);
1677 }
1678 
1679 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1680 {
1681 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1682 		return -EBUSY;
1683 
1684 	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1685 		return -EBUSY;
1686 
1687 	return 0;
1688 }
1689 
1690 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1691 {
1692 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1693 	int ret;
1694 
1695 	ret = __nvme_rdma_del_ctrl(ctrl);
1696 	if (ret)
1697 		return ret;
1698 
1699 	flush_work(&ctrl->delete_work);
1700 
1701 	return 0;
1702 }
1703 
1704 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1705 {
1706 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1707 				struct nvme_rdma_ctrl, delete_work);
1708 
1709 	__nvme_rdma_remove_ctrl(ctrl, false);
1710 }
1711 
1712 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1713 {
1714 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1715 					struct nvme_rdma_ctrl, reset_work);
1716 	int ret;
1717 	bool changed;
1718 
1719 	nvme_rdma_shutdown_ctrl(ctrl);
1720 
1721 	ret = nvme_rdma_configure_admin_queue(ctrl);
1722 	if (ret) {
1723 		/* ctrl is already shutdown, just remove the ctrl */
1724 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1725 		goto del_dead_ctrl;
1726 	}
1727 
1728 	if (ctrl->queue_count > 1) {
1729 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1730 		if (ret)
1731 			goto del_dead_ctrl;
1732 
1733 		ret = nvme_rdma_init_io_queues(ctrl);
1734 		if (ret)
1735 			goto del_dead_ctrl;
1736 
1737 		ret = nvme_rdma_connect_io_queues(ctrl);
1738 		if (ret)
1739 			goto del_dead_ctrl;
1740 	}
1741 
1742 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1743 	WARN_ON_ONCE(!changed);
1744 
1745 	if (ctrl->queue_count > 1) {
1746 		nvme_start_queues(&ctrl->ctrl);
1747 		nvme_queue_scan(&ctrl->ctrl);
1748 		nvme_queue_async_events(&ctrl->ctrl);
1749 	}
1750 
1751 	return;
1752 
1753 del_dead_ctrl:
1754 	/* Deleting this dead controller... */
1755 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1756 	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1757 }
1758 
1759 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1760 {
1761 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1762 
1763 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1764 		return -EBUSY;
1765 
1766 	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1767 		return -EBUSY;
1768 
1769 	flush_work(&ctrl->reset_work);
1770 
1771 	return 0;
1772 }
1773 
1774 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1775 	.name			= "rdma",
1776 	.module			= THIS_MODULE,
1777 	.is_fabrics		= true,
1778 	.reg_read32		= nvmf_reg_read32,
1779 	.reg_read64		= nvmf_reg_read64,
1780 	.reg_write32		= nvmf_reg_write32,
1781 	.reset_ctrl		= nvme_rdma_reset_ctrl,
1782 	.free_ctrl		= nvme_rdma_free_ctrl,
1783 	.submit_async_event	= nvme_rdma_submit_async_event,
1784 	.delete_ctrl		= nvme_rdma_del_ctrl,
1785 	.get_subsysnqn		= nvmf_get_subsysnqn,
1786 	.get_address		= nvmf_get_address,
1787 };
1788 
1789 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1790 {
1791 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1792 	int ret;
1793 
1794 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1795 	if (ret)
1796 		return ret;
1797 
1798 	ctrl->queue_count = opts->nr_io_queues + 1;
1799 	if (ctrl->queue_count < 2)
1800 		return 0;
1801 
1802 	dev_info(ctrl->ctrl.device,
1803 		"creating %d I/O queues.\n", opts->nr_io_queues);
1804 
1805 	ret = nvme_rdma_init_io_queues(ctrl);
1806 	if (ret)
1807 		return ret;
1808 
1809 	/*
1810 	 * We need a reference on the device as long as the tag_set is alive,
1811 	 * as the MRs in the request structures need a valid ib_device.
1812 	 */
1813 	ret = -EINVAL;
1814 	if (!nvme_rdma_dev_get(ctrl->device))
1815 		goto out_free_io_queues;
1816 
1817 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1818 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1819 	ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
1820 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1821 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1822 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1823 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1824 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1825 	ctrl->tag_set.driver_data = ctrl;
1826 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1827 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1828 
1829 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1830 	if (ret)
1831 		goto out_put_dev;
1832 	ctrl->ctrl.tagset = &ctrl->tag_set;
1833 
1834 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1835 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1836 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1837 		goto out_free_tag_set;
1838 	}
1839 
1840 	ret = nvme_rdma_connect_io_queues(ctrl);
1841 	if (ret)
1842 		goto out_cleanup_connect_q;
1843 
1844 	return 0;
1845 
1846 out_cleanup_connect_q:
1847 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1848 out_free_tag_set:
1849 	blk_mq_free_tag_set(&ctrl->tag_set);
1850 out_put_dev:
1851 	nvme_rdma_dev_put(ctrl->device);
1852 out_free_io_queues:
1853 	nvme_rdma_free_io_queues(ctrl);
1854 	return ret;
1855 }
1856 
1857 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1858 {
1859 	u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1860 	size_t buflen = strlen(p);
1861 
1862 	/* XXX: handle IPv6 addresses */
1863 
1864 	if (buflen > INET_ADDRSTRLEN)
1865 		return -EINVAL;
1866 	if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1867 		return -EINVAL;
1868 	in_addr->sin_family = AF_INET;
1869 	return 0;
1870 }
1871 
1872 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1873 		struct nvmf_ctrl_options *opts)
1874 {
1875 	struct nvme_rdma_ctrl *ctrl;
1876 	int ret;
1877 	bool changed;
1878 
1879 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1880 	if (!ctrl)
1881 		return ERR_PTR(-ENOMEM);
1882 	ctrl->ctrl.opts = opts;
1883 	INIT_LIST_HEAD(&ctrl->list);
1884 
1885 	ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1886 	if (ret) {
1887 		pr_err("malformed IP address passed: %s\n", opts->traddr);
1888 		goto out_free_ctrl;
1889 	}
1890 
1891 	if (opts->mask & NVMF_OPT_TRSVCID) {
1892 		u16 port;
1893 
1894 		ret = kstrtou16(opts->trsvcid, 0, &port);
1895 		if (ret)
1896 			goto out_free_ctrl;
1897 
1898 		ctrl->addr_in.sin_port = cpu_to_be16(port);
1899 	} else {
1900 		ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1901 	}
1902 
1903 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1904 				0 /* no quirks, we're perfect! */);
1905 	if (ret)
1906 		goto out_free_ctrl;
1907 
1908 	ctrl->reconnect_delay = opts->reconnect_delay;
1909 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1910 			nvme_rdma_reconnect_ctrl_work);
1911 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1912 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1913 	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1914 	spin_lock_init(&ctrl->lock);
1915 
1916 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1917 	ctrl->ctrl.sqsize = opts->queue_size;
1918 	ctrl->ctrl.kato = opts->kato;
1919 
1920 	ret = -ENOMEM;
1921 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1922 				GFP_KERNEL);
1923 	if (!ctrl->queues)
1924 		goto out_uninit_ctrl;
1925 
1926 	ret = nvme_rdma_configure_admin_queue(ctrl);
1927 	if (ret)
1928 		goto out_kfree_queues;
1929 
1930 	/* sanity check icdoff */
1931 	if (ctrl->ctrl.icdoff) {
1932 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1933 		goto out_remove_admin_queue;
1934 	}
1935 
1936 	/* sanity check keyed sgls */
1937 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1938 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1939 		goto out_remove_admin_queue;
1940 	}
1941 
1942 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1943 		/* warn if maxcmd is lower than queue_size */
1944 		dev_warn(ctrl->ctrl.device,
1945 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1946 			opts->queue_size, ctrl->ctrl.maxcmd);
1947 		opts->queue_size = ctrl->ctrl.maxcmd;
1948 	}
1949 
1950 	if (opts->nr_io_queues) {
1951 		ret = nvme_rdma_create_io_queues(ctrl);
1952 		if (ret)
1953 			goto out_remove_admin_queue;
1954 	}
1955 
1956 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1957 	WARN_ON_ONCE(!changed);
1958 
1959 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1960 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1961 
1962 	kref_get(&ctrl->ctrl.kref);
1963 
1964 	mutex_lock(&nvme_rdma_ctrl_mutex);
1965 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1966 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1967 
1968 	if (opts->nr_io_queues) {
1969 		nvme_queue_scan(&ctrl->ctrl);
1970 		nvme_queue_async_events(&ctrl->ctrl);
1971 	}
1972 
1973 	return &ctrl->ctrl;
1974 
1975 out_remove_admin_queue:
1976 	nvme_stop_keep_alive(&ctrl->ctrl);
1977 	nvme_rdma_destroy_admin_queue(ctrl);
1978 out_kfree_queues:
1979 	kfree(ctrl->queues);
1980 out_uninit_ctrl:
1981 	nvme_uninit_ctrl(&ctrl->ctrl);
1982 	nvme_put_ctrl(&ctrl->ctrl);
1983 	if (ret > 0)
1984 		ret = -EIO;
1985 	return ERR_PTR(ret);
1986 out_free_ctrl:
1987 	kfree(ctrl);
1988 	return ERR_PTR(ret);
1989 }
1990 
1991 static struct nvmf_transport_ops nvme_rdma_transport = {
1992 	.name		= "rdma",
1993 	.required_opts	= NVMF_OPT_TRADDR,
1994 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1995 	.create_ctrl	= nvme_rdma_create_ctrl,
1996 };
1997 
1998 static int __init nvme_rdma_init_module(void)
1999 {
2000 	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2001 	if (!nvme_rdma_wq)
2002 		return -ENOMEM;
2003 
2004 	nvmf_register_transport(&nvme_rdma_transport);
2005 	return 0;
2006 }
2007 
2008 static void __exit nvme_rdma_cleanup_module(void)
2009 {
2010 	struct nvme_rdma_ctrl *ctrl;
2011 
2012 	nvmf_unregister_transport(&nvme_rdma_transport);
2013 
2014 	mutex_lock(&nvme_rdma_ctrl_mutex);
2015 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2016 		__nvme_rdma_del_ctrl(ctrl);
2017 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2018 
2019 	destroy_workqueue(nvme_rdma_wq);
2020 }
2021 
2022 module_init(nvme_rdma_init_module);
2023 module_exit(nvme_rdma_cleanup_module);
2024 
2025 MODULE_LICENSE("GPL v2");
2026