1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 unsigned int num_inline_segments; 51 }; 52 53 struct nvme_rdma_qe { 54 struct ib_cqe cqe; 55 void *data; 56 u64 dma; 57 }; 58 59 struct nvme_rdma_queue; 60 struct nvme_rdma_request { 61 struct nvme_request req; 62 struct ib_mr *mr; 63 struct nvme_rdma_qe sqe; 64 union nvme_result result; 65 __le16 status; 66 refcount_t ref; 67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 68 u32 num_sge; 69 int nents; 70 struct ib_reg_wr reg_wr; 71 struct ib_cqe reg_cqe; 72 struct nvme_rdma_queue *queue; 73 struct sg_table sg_table; 74 struct scatterlist first_sgl[]; 75 }; 76 77 enum nvme_rdma_queue_flags { 78 NVME_RDMA_Q_ALLOCATED = 0, 79 NVME_RDMA_Q_LIVE = 1, 80 NVME_RDMA_Q_TR_READY = 2, 81 }; 82 83 struct nvme_rdma_queue { 84 struct nvme_rdma_qe *rsp_ring; 85 int queue_size; 86 size_t cmnd_capsule_len; 87 struct nvme_rdma_ctrl *ctrl; 88 struct nvme_rdma_device *device; 89 struct ib_cq *ib_cq; 90 struct ib_qp *qp; 91 92 unsigned long flags; 93 struct rdma_cm_id *cm_id; 94 int cm_error; 95 struct completion cm_done; 96 }; 97 98 struct nvme_rdma_ctrl { 99 /* read only in the hot path */ 100 struct nvme_rdma_queue *queues; 101 102 /* other member variables */ 103 struct blk_mq_tag_set tag_set; 104 struct work_struct err_work; 105 106 struct nvme_rdma_qe async_event_sqe; 107 108 struct delayed_work reconnect_work; 109 110 struct list_head list; 111 112 struct blk_mq_tag_set admin_tag_set; 113 struct nvme_rdma_device *device; 114 115 u32 max_fr_pages; 116 117 struct sockaddr_storage addr; 118 struct sockaddr_storage src_addr; 119 120 struct nvme_ctrl ctrl; 121 bool use_inline_data; 122 }; 123 124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 125 { 126 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 127 } 128 129 static LIST_HEAD(device_list); 130 static DEFINE_MUTEX(device_list_mutex); 131 132 static LIST_HEAD(nvme_rdma_ctrl_list); 133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 134 135 /* 136 * Disabling this option makes small I/O goes faster, but is fundamentally 137 * unsafe. With it turned off we will have to register a global rkey that 138 * allows read and write access to all physical memory. 139 */ 140 static bool register_always = true; 141 module_param(register_always, bool, 0444); 142 MODULE_PARM_DESC(register_always, 143 "Use memory registration even for contiguous memory regions"); 144 145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 146 struct rdma_cm_event *event); 147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 148 149 static const struct blk_mq_ops nvme_rdma_mq_ops; 150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 151 152 /* XXX: really should move to a generic header sooner or later.. */ 153 static inline void put_unaligned_le24(u32 val, u8 *p) 154 { 155 *p++ = val; 156 *p++ = val >> 8; 157 *p++ = val >> 16; 158 } 159 160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 161 { 162 return queue - queue->ctrl->queues; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 return -ENOMEM; 188 } 189 190 return 0; 191 } 192 193 static void nvme_rdma_free_ring(struct ib_device *ibdev, 194 struct nvme_rdma_qe *ring, size_t ib_queue_size, 195 size_t capsule_size, enum dma_data_direction dir) 196 { 197 int i; 198 199 for (i = 0; i < ib_queue_size; i++) 200 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 201 kfree(ring); 202 } 203 204 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 205 size_t ib_queue_size, size_t capsule_size, 206 enum dma_data_direction dir) 207 { 208 struct nvme_rdma_qe *ring; 209 int i; 210 211 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 212 if (!ring) 213 return NULL; 214 215 for (i = 0; i < ib_queue_size; i++) { 216 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 217 goto out_free_ring; 218 } 219 220 return ring; 221 222 out_free_ring: 223 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 224 return NULL; 225 } 226 227 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 228 { 229 pr_debug("QP event %s (%d)\n", 230 ib_event_msg(event->event), event->event); 231 232 } 233 234 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 235 { 236 wait_for_completion_interruptible_timeout(&queue->cm_done, 237 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 238 return queue->cm_error; 239 } 240 241 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 242 { 243 struct nvme_rdma_device *dev = queue->device; 244 struct ib_qp_init_attr init_attr; 245 int ret; 246 247 memset(&init_attr, 0, sizeof(init_attr)); 248 init_attr.event_handler = nvme_rdma_qp_event; 249 /* +1 for drain */ 250 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 251 /* +1 for drain */ 252 init_attr.cap.max_recv_wr = queue->queue_size + 1; 253 init_attr.cap.max_recv_sge = 1; 254 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 255 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 256 init_attr.qp_type = IB_QPT_RC; 257 init_attr.send_cq = queue->ib_cq; 258 init_attr.recv_cq = queue->ib_cq; 259 260 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 261 262 queue->qp = queue->cm_id->qp; 263 return ret; 264 } 265 266 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 267 struct request *rq, unsigned int hctx_idx) 268 { 269 struct nvme_rdma_ctrl *ctrl = set->driver_data; 270 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 271 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 272 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 273 struct nvme_rdma_device *dev = queue->device; 274 275 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 276 DMA_TO_DEVICE); 277 } 278 279 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 280 struct request *rq, unsigned int hctx_idx, 281 unsigned int numa_node) 282 { 283 struct nvme_rdma_ctrl *ctrl = set->driver_data; 284 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 285 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 286 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 287 struct nvme_rdma_device *dev = queue->device; 288 struct ib_device *ibdev = dev->dev; 289 int ret; 290 291 nvme_req(rq)->ctrl = &ctrl->ctrl; 292 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 293 DMA_TO_DEVICE); 294 if (ret) 295 return ret; 296 297 req->queue = queue; 298 299 return 0; 300 } 301 302 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 303 unsigned int hctx_idx) 304 { 305 struct nvme_rdma_ctrl *ctrl = data; 306 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 307 308 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 309 310 hctx->driver_data = queue; 311 return 0; 312 } 313 314 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 315 unsigned int hctx_idx) 316 { 317 struct nvme_rdma_ctrl *ctrl = data; 318 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 319 320 BUG_ON(hctx_idx != 0); 321 322 hctx->driver_data = queue; 323 return 0; 324 } 325 326 static void nvme_rdma_free_dev(struct kref *ref) 327 { 328 struct nvme_rdma_device *ndev = 329 container_of(ref, struct nvme_rdma_device, ref); 330 331 mutex_lock(&device_list_mutex); 332 list_del(&ndev->entry); 333 mutex_unlock(&device_list_mutex); 334 335 ib_dealloc_pd(ndev->pd); 336 kfree(ndev); 337 } 338 339 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 340 { 341 kref_put(&dev->ref, nvme_rdma_free_dev); 342 } 343 344 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 345 { 346 return kref_get_unless_zero(&dev->ref); 347 } 348 349 static struct nvme_rdma_device * 350 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 351 { 352 struct nvme_rdma_device *ndev; 353 354 mutex_lock(&device_list_mutex); 355 list_for_each_entry(ndev, &device_list, entry) { 356 if (ndev->dev->node_guid == cm_id->device->node_guid && 357 nvme_rdma_dev_get(ndev)) 358 goto out_unlock; 359 } 360 361 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 362 if (!ndev) 363 goto out_err; 364 365 ndev->dev = cm_id->device; 366 kref_init(&ndev->ref); 367 368 ndev->pd = ib_alloc_pd(ndev->dev, 369 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 370 if (IS_ERR(ndev->pd)) 371 goto out_free_dev; 372 373 if (!(ndev->dev->attrs.device_cap_flags & 374 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 375 dev_err(&ndev->dev->dev, 376 "Memory registrations not supported.\n"); 377 goto out_free_pd; 378 } 379 380 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 381 ndev->dev->attrs.max_send_sge - 1); 382 list_add(&ndev->entry, &device_list); 383 out_unlock: 384 mutex_unlock(&device_list_mutex); 385 return ndev; 386 387 out_free_pd: 388 ib_dealloc_pd(ndev->pd); 389 out_free_dev: 390 kfree(ndev); 391 out_err: 392 mutex_unlock(&device_list_mutex); 393 return NULL; 394 } 395 396 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 397 { 398 struct nvme_rdma_device *dev; 399 struct ib_device *ibdev; 400 401 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 402 return; 403 404 dev = queue->device; 405 ibdev = dev->dev; 406 407 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 408 409 /* 410 * The cm_id object might have been destroyed during RDMA connection 411 * establishment error flow to avoid getting other cma events, thus 412 * the destruction of the QP shouldn't use rdma_cm API. 413 */ 414 ib_destroy_qp(queue->qp); 415 ib_free_cq(queue->ib_cq); 416 417 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 418 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 419 420 nvme_rdma_dev_put(dev); 421 } 422 423 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 424 { 425 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 426 ibdev->attrs.max_fast_reg_page_list_len); 427 } 428 429 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 430 { 431 struct ib_device *ibdev; 432 const int send_wr_factor = 3; /* MR, SEND, INV */ 433 const int cq_factor = send_wr_factor + 1; /* + RECV */ 434 int comp_vector, idx = nvme_rdma_queue_idx(queue); 435 int ret; 436 437 queue->device = nvme_rdma_find_get_device(queue->cm_id); 438 if (!queue->device) { 439 dev_err(queue->cm_id->device->dev.parent, 440 "no client data found!\n"); 441 return -ECONNREFUSED; 442 } 443 ibdev = queue->device->dev; 444 445 /* 446 * Spread I/O queues completion vectors according their queue index. 447 * Admin queues can always go on completion vector 0. 448 */ 449 comp_vector = idx == 0 ? idx : idx - 1; 450 451 /* +1 for ib_stop_cq */ 452 queue->ib_cq = ib_alloc_cq(ibdev, queue, 453 cq_factor * queue->queue_size + 1, 454 comp_vector, IB_POLL_SOFTIRQ); 455 if (IS_ERR(queue->ib_cq)) { 456 ret = PTR_ERR(queue->ib_cq); 457 goto out_put_dev; 458 } 459 460 ret = nvme_rdma_create_qp(queue, send_wr_factor); 461 if (ret) 462 goto out_destroy_ib_cq; 463 464 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 465 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 466 if (!queue->rsp_ring) { 467 ret = -ENOMEM; 468 goto out_destroy_qp; 469 } 470 471 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 472 queue->queue_size, 473 IB_MR_TYPE_MEM_REG, 474 nvme_rdma_get_max_fr_pages(ibdev)); 475 if (ret) { 476 dev_err(queue->ctrl->ctrl.device, 477 "failed to initialize MR pool sized %d for QID %d\n", 478 queue->queue_size, idx); 479 goto out_destroy_ring; 480 } 481 482 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 483 484 return 0; 485 486 out_destroy_ring: 487 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 488 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 489 out_destroy_qp: 490 rdma_destroy_qp(queue->cm_id); 491 out_destroy_ib_cq: 492 ib_free_cq(queue->ib_cq); 493 out_put_dev: 494 nvme_rdma_dev_put(queue->device); 495 return ret; 496 } 497 498 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 499 int idx, size_t queue_size) 500 { 501 struct nvme_rdma_queue *queue; 502 struct sockaddr *src_addr = NULL; 503 int ret; 504 505 queue = &ctrl->queues[idx]; 506 queue->ctrl = ctrl; 507 init_completion(&queue->cm_done); 508 509 if (idx > 0) 510 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 511 else 512 queue->cmnd_capsule_len = sizeof(struct nvme_command); 513 514 queue->queue_size = queue_size; 515 516 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 517 RDMA_PS_TCP, IB_QPT_RC); 518 if (IS_ERR(queue->cm_id)) { 519 dev_info(ctrl->ctrl.device, 520 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 521 return PTR_ERR(queue->cm_id); 522 } 523 524 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 525 src_addr = (struct sockaddr *)&ctrl->src_addr; 526 527 queue->cm_error = -ETIMEDOUT; 528 ret = rdma_resolve_addr(queue->cm_id, src_addr, 529 (struct sockaddr *)&ctrl->addr, 530 NVME_RDMA_CONNECT_TIMEOUT_MS); 531 if (ret) { 532 dev_info(ctrl->ctrl.device, 533 "rdma_resolve_addr failed (%d).\n", ret); 534 goto out_destroy_cm_id; 535 } 536 537 ret = nvme_rdma_wait_for_cm(queue); 538 if (ret) { 539 dev_info(ctrl->ctrl.device, 540 "rdma connection establishment failed (%d)\n", ret); 541 goto out_destroy_cm_id; 542 } 543 544 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 545 546 return 0; 547 548 out_destroy_cm_id: 549 rdma_destroy_id(queue->cm_id); 550 nvme_rdma_destroy_queue_ib(queue); 551 return ret; 552 } 553 554 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 555 { 556 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 557 return; 558 559 rdma_disconnect(queue->cm_id); 560 ib_drain_qp(queue->qp); 561 } 562 563 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 564 { 565 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 566 return; 567 568 nvme_rdma_destroy_queue_ib(queue); 569 rdma_destroy_id(queue->cm_id); 570 } 571 572 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 573 { 574 int i; 575 576 for (i = 1; i < ctrl->ctrl.queue_count; i++) 577 nvme_rdma_free_queue(&ctrl->queues[i]); 578 } 579 580 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 581 { 582 int i; 583 584 for (i = 1; i < ctrl->ctrl.queue_count; i++) 585 nvme_rdma_stop_queue(&ctrl->queues[i]); 586 } 587 588 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 589 { 590 int ret; 591 592 if (idx) 593 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 594 else 595 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 596 597 if (!ret) 598 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 599 else 600 dev_info(ctrl->ctrl.device, 601 "failed to connect queue: %d ret=%d\n", idx, ret); 602 return ret; 603 } 604 605 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 606 { 607 int i, ret = 0; 608 609 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 610 ret = nvme_rdma_start_queue(ctrl, i); 611 if (ret) 612 goto out_stop_queues; 613 } 614 615 return 0; 616 617 out_stop_queues: 618 for (i--; i >= 1; i--) 619 nvme_rdma_stop_queue(&ctrl->queues[i]); 620 return ret; 621 } 622 623 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 624 { 625 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 626 struct ib_device *ibdev = ctrl->device->dev; 627 unsigned int nr_io_queues; 628 int i, ret; 629 630 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 631 632 /* 633 * we map queues according to the device irq vectors for 634 * optimal locality so we don't need more queues than 635 * completion vectors. 636 */ 637 nr_io_queues = min_t(unsigned int, nr_io_queues, 638 ibdev->num_comp_vectors); 639 640 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 641 if (ret) 642 return ret; 643 644 ctrl->ctrl.queue_count = nr_io_queues + 1; 645 if (ctrl->ctrl.queue_count < 2) 646 return 0; 647 648 dev_info(ctrl->ctrl.device, 649 "creating %d I/O queues.\n", nr_io_queues); 650 651 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 652 ret = nvme_rdma_alloc_queue(ctrl, i, 653 ctrl->ctrl.sqsize + 1); 654 if (ret) 655 goto out_free_queues; 656 } 657 658 return 0; 659 660 out_free_queues: 661 for (i--; i >= 1; i--) 662 nvme_rdma_free_queue(&ctrl->queues[i]); 663 664 return ret; 665 } 666 667 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 668 struct blk_mq_tag_set *set) 669 { 670 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 671 672 blk_mq_free_tag_set(set); 673 nvme_rdma_dev_put(ctrl->device); 674 } 675 676 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 677 bool admin) 678 { 679 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 680 struct blk_mq_tag_set *set; 681 int ret; 682 683 if (admin) { 684 set = &ctrl->admin_tag_set; 685 memset(set, 0, sizeof(*set)); 686 set->ops = &nvme_rdma_admin_mq_ops; 687 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 688 set->reserved_tags = 2; /* connect + keep-alive */ 689 set->numa_node = NUMA_NO_NODE; 690 set->cmd_size = sizeof(struct nvme_rdma_request) + 691 SG_CHUNK_SIZE * sizeof(struct scatterlist); 692 set->driver_data = ctrl; 693 set->nr_hw_queues = 1; 694 set->timeout = ADMIN_TIMEOUT; 695 set->flags = BLK_MQ_F_NO_SCHED; 696 } else { 697 set = &ctrl->tag_set; 698 memset(set, 0, sizeof(*set)); 699 set->ops = &nvme_rdma_mq_ops; 700 set->queue_depth = nctrl->sqsize + 1; 701 set->reserved_tags = 1; /* fabric connect */ 702 set->numa_node = NUMA_NO_NODE; 703 set->flags = BLK_MQ_F_SHOULD_MERGE; 704 set->cmd_size = sizeof(struct nvme_rdma_request) + 705 SG_CHUNK_SIZE * sizeof(struct scatterlist); 706 set->driver_data = ctrl; 707 set->nr_hw_queues = nctrl->queue_count - 1; 708 set->timeout = NVME_IO_TIMEOUT; 709 } 710 711 ret = blk_mq_alloc_tag_set(set); 712 if (ret) 713 goto out; 714 715 /* 716 * We need a reference on the device as long as the tag_set is alive, 717 * as the MRs in the request structures need a valid ib_device. 718 */ 719 ret = nvme_rdma_dev_get(ctrl->device); 720 if (!ret) { 721 ret = -EINVAL; 722 goto out_free_tagset; 723 } 724 725 return set; 726 727 out_free_tagset: 728 blk_mq_free_tag_set(set); 729 out: 730 return ERR_PTR(ret); 731 } 732 733 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 734 bool remove) 735 { 736 if (remove) { 737 blk_cleanup_queue(ctrl->ctrl.admin_q); 738 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 739 } 740 if (ctrl->async_event_sqe.data) { 741 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 742 sizeof(struct nvme_command), DMA_TO_DEVICE); 743 ctrl->async_event_sqe.data = NULL; 744 } 745 nvme_rdma_free_queue(&ctrl->queues[0]); 746 } 747 748 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 749 bool new) 750 { 751 int error; 752 753 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 754 if (error) 755 return error; 756 757 ctrl->device = ctrl->queues[0].device; 758 759 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 760 761 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 762 sizeof(struct nvme_command), DMA_TO_DEVICE); 763 if (error) 764 goto out_free_queue; 765 766 if (new) { 767 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 768 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 769 error = PTR_ERR(ctrl->ctrl.admin_tagset); 770 goto out_free_async_qe; 771 } 772 773 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 774 if (IS_ERR(ctrl->ctrl.admin_q)) { 775 error = PTR_ERR(ctrl->ctrl.admin_q); 776 goto out_free_tagset; 777 } 778 } 779 780 error = nvme_rdma_start_queue(ctrl, 0); 781 if (error) 782 goto out_cleanup_queue; 783 784 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 785 &ctrl->ctrl.cap); 786 if (error) { 787 dev_err(ctrl->ctrl.device, 788 "prop_get NVME_REG_CAP failed\n"); 789 goto out_stop_queue; 790 } 791 792 ctrl->ctrl.sqsize = 793 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 794 795 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 796 if (error) 797 goto out_stop_queue; 798 799 ctrl->ctrl.max_hw_sectors = 800 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 801 802 error = nvme_init_identify(&ctrl->ctrl); 803 if (error) 804 goto out_stop_queue; 805 806 return 0; 807 808 out_stop_queue: 809 nvme_rdma_stop_queue(&ctrl->queues[0]); 810 out_cleanup_queue: 811 if (new) 812 blk_cleanup_queue(ctrl->ctrl.admin_q); 813 out_free_tagset: 814 if (new) 815 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 816 out_free_async_qe: 817 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 818 sizeof(struct nvme_command), DMA_TO_DEVICE); 819 out_free_queue: 820 nvme_rdma_free_queue(&ctrl->queues[0]); 821 return error; 822 } 823 824 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 825 bool remove) 826 { 827 if (remove) { 828 blk_cleanup_queue(ctrl->ctrl.connect_q); 829 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 830 } 831 nvme_rdma_free_io_queues(ctrl); 832 } 833 834 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 835 { 836 int ret; 837 838 ret = nvme_rdma_alloc_io_queues(ctrl); 839 if (ret) 840 return ret; 841 842 if (new) { 843 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 844 if (IS_ERR(ctrl->ctrl.tagset)) { 845 ret = PTR_ERR(ctrl->ctrl.tagset); 846 goto out_free_io_queues; 847 } 848 849 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 850 if (IS_ERR(ctrl->ctrl.connect_q)) { 851 ret = PTR_ERR(ctrl->ctrl.connect_q); 852 goto out_free_tag_set; 853 } 854 } else { 855 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 856 ctrl->ctrl.queue_count - 1); 857 } 858 859 ret = nvme_rdma_start_io_queues(ctrl); 860 if (ret) 861 goto out_cleanup_connect_q; 862 863 return 0; 864 865 out_cleanup_connect_q: 866 if (new) 867 blk_cleanup_queue(ctrl->ctrl.connect_q); 868 out_free_tag_set: 869 if (new) 870 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 871 out_free_io_queues: 872 nvme_rdma_free_io_queues(ctrl); 873 return ret; 874 } 875 876 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 877 bool remove) 878 { 879 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 880 nvme_rdma_stop_queue(&ctrl->queues[0]); 881 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, 882 &ctrl->ctrl); 883 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 884 nvme_rdma_destroy_admin_queue(ctrl, remove); 885 } 886 887 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 888 bool remove) 889 { 890 if (ctrl->ctrl.queue_count > 1) { 891 nvme_stop_queues(&ctrl->ctrl); 892 nvme_rdma_stop_io_queues(ctrl); 893 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, 894 &ctrl->ctrl); 895 if (remove) 896 nvme_start_queues(&ctrl->ctrl); 897 nvme_rdma_destroy_io_queues(ctrl, remove); 898 } 899 } 900 901 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 902 { 903 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 904 905 cancel_work_sync(&ctrl->err_work); 906 cancel_delayed_work_sync(&ctrl->reconnect_work); 907 } 908 909 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 910 { 911 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 912 913 if (list_empty(&ctrl->list)) 914 goto free_ctrl; 915 916 mutex_lock(&nvme_rdma_ctrl_mutex); 917 list_del(&ctrl->list); 918 mutex_unlock(&nvme_rdma_ctrl_mutex); 919 920 nvmf_free_options(nctrl->opts); 921 free_ctrl: 922 kfree(ctrl->queues); 923 kfree(ctrl); 924 } 925 926 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 927 { 928 /* If we are resetting/deleting then do nothing */ 929 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 930 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 931 ctrl->ctrl.state == NVME_CTRL_LIVE); 932 return; 933 } 934 935 if (nvmf_should_reconnect(&ctrl->ctrl)) { 936 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 937 ctrl->ctrl.opts->reconnect_delay); 938 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 939 ctrl->ctrl.opts->reconnect_delay * HZ); 940 } else { 941 nvme_delete_ctrl(&ctrl->ctrl); 942 } 943 } 944 945 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 946 { 947 int ret = -EINVAL; 948 bool changed; 949 950 ret = nvme_rdma_configure_admin_queue(ctrl, new); 951 if (ret) 952 return ret; 953 954 if (ctrl->ctrl.icdoff) { 955 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 956 goto destroy_admin; 957 } 958 959 if (!(ctrl->ctrl.sgls & (1 << 2))) { 960 dev_err(ctrl->ctrl.device, 961 "Mandatory keyed sgls are not supported!\n"); 962 goto destroy_admin; 963 } 964 965 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 966 dev_warn(ctrl->ctrl.device, 967 "queue_size %zu > ctrl sqsize %u, clamping down\n", 968 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 969 } 970 971 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 972 dev_warn(ctrl->ctrl.device, 973 "sqsize %u > ctrl maxcmd %u, clamping down\n", 974 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 975 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 976 } 977 978 if (ctrl->ctrl.sgls & (1 << 20)) 979 ctrl->use_inline_data = true; 980 981 if (ctrl->ctrl.queue_count > 1) { 982 ret = nvme_rdma_configure_io_queues(ctrl, new); 983 if (ret) 984 goto destroy_admin; 985 } 986 987 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 988 if (!changed) { 989 /* state change failure is ok if we're in DELETING state */ 990 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 991 ret = -EINVAL; 992 goto destroy_io; 993 } 994 995 nvme_start_ctrl(&ctrl->ctrl); 996 return 0; 997 998 destroy_io: 999 if (ctrl->ctrl.queue_count > 1) 1000 nvme_rdma_destroy_io_queues(ctrl, new); 1001 destroy_admin: 1002 nvme_rdma_stop_queue(&ctrl->queues[0]); 1003 nvme_rdma_destroy_admin_queue(ctrl, new); 1004 return ret; 1005 } 1006 1007 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1008 { 1009 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1010 struct nvme_rdma_ctrl, reconnect_work); 1011 1012 ++ctrl->ctrl.nr_reconnects; 1013 1014 if (nvme_rdma_setup_ctrl(ctrl, false)) 1015 goto requeue; 1016 1017 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1018 ctrl->ctrl.nr_reconnects); 1019 1020 ctrl->ctrl.nr_reconnects = 0; 1021 1022 return; 1023 1024 requeue: 1025 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1026 ctrl->ctrl.nr_reconnects); 1027 nvme_rdma_reconnect_or_remove(ctrl); 1028 } 1029 1030 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1031 { 1032 struct nvme_rdma_ctrl *ctrl = container_of(work, 1033 struct nvme_rdma_ctrl, err_work); 1034 1035 nvme_stop_keep_alive(&ctrl->ctrl); 1036 nvme_rdma_teardown_io_queues(ctrl, false); 1037 nvme_start_queues(&ctrl->ctrl); 1038 nvme_rdma_teardown_admin_queue(ctrl, false); 1039 1040 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1041 /* state change failure is ok if we're in DELETING state */ 1042 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1043 return; 1044 } 1045 1046 nvme_rdma_reconnect_or_remove(ctrl); 1047 } 1048 1049 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1050 { 1051 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1052 return; 1053 1054 queue_work(nvme_wq, &ctrl->err_work); 1055 } 1056 1057 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1058 const char *op) 1059 { 1060 struct nvme_rdma_queue *queue = cq->cq_context; 1061 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1062 1063 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1064 dev_info(ctrl->ctrl.device, 1065 "%s for CQE 0x%p failed with status %s (%d)\n", 1066 op, wc->wr_cqe, 1067 ib_wc_status_msg(wc->status), wc->status); 1068 nvme_rdma_error_recovery(ctrl); 1069 } 1070 1071 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1072 { 1073 if (unlikely(wc->status != IB_WC_SUCCESS)) 1074 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1075 } 1076 1077 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1078 { 1079 struct nvme_rdma_request *req = 1080 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1081 struct request *rq = blk_mq_rq_from_pdu(req); 1082 1083 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1084 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1085 return; 1086 } 1087 1088 if (refcount_dec_and_test(&req->ref)) 1089 nvme_end_request(rq, req->status, req->result); 1090 1091 } 1092 1093 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1094 struct nvme_rdma_request *req) 1095 { 1096 struct ib_send_wr wr = { 1097 .opcode = IB_WR_LOCAL_INV, 1098 .next = NULL, 1099 .num_sge = 0, 1100 .send_flags = IB_SEND_SIGNALED, 1101 .ex.invalidate_rkey = req->mr->rkey, 1102 }; 1103 1104 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1105 wr.wr_cqe = &req->reg_cqe; 1106 1107 return ib_post_send(queue->qp, &wr, NULL); 1108 } 1109 1110 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1111 struct request *rq) 1112 { 1113 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1114 struct nvme_rdma_device *dev = queue->device; 1115 struct ib_device *ibdev = dev->dev; 1116 1117 if (!blk_rq_payload_bytes(rq)) 1118 return; 1119 1120 if (req->mr) { 1121 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1122 req->mr = NULL; 1123 } 1124 1125 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1126 req->nents, rq_data_dir(rq) == 1127 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1128 1129 nvme_cleanup_cmd(rq); 1130 sg_free_table_chained(&req->sg_table, true); 1131 } 1132 1133 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1134 { 1135 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1136 1137 sg->addr = 0; 1138 put_unaligned_le24(0, sg->length); 1139 put_unaligned_le32(0, sg->key); 1140 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1141 return 0; 1142 } 1143 1144 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1145 struct nvme_rdma_request *req, struct nvme_command *c, 1146 int count) 1147 { 1148 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1149 struct scatterlist *sgl = req->sg_table.sgl; 1150 struct ib_sge *sge = &req->sge[1]; 1151 u32 len = 0; 1152 int i; 1153 1154 for (i = 0; i < count; i++, sgl++, sge++) { 1155 sge->addr = sg_dma_address(sgl); 1156 sge->length = sg_dma_len(sgl); 1157 sge->lkey = queue->device->pd->local_dma_lkey; 1158 len += sge->length; 1159 } 1160 1161 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1162 sg->length = cpu_to_le32(len); 1163 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1164 1165 req->num_sge += count; 1166 return 0; 1167 } 1168 1169 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1170 struct nvme_rdma_request *req, struct nvme_command *c) 1171 { 1172 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1173 1174 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1175 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1176 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1177 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1178 return 0; 1179 } 1180 1181 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1182 struct nvme_rdma_request *req, struct nvme_command *c, 1183 int count) 1184 { 1185 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1186 int nr; 1187 1188 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1189 if (WARN_ON_ONCE(!req->mr)) 1190 return -EAGAIN; 1191 1192 /* 1193 * Align the MR to a 4K page size to match the ctrl page size and 1194 * the block virtual boundary. 1195 */ 1196 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1197 if (unlikely(nr < count)) { 1198 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1199 req->mr = NULL; 1200 if (nr < 0) 1201 return nr; 1202 return -EINVAL; 1203 } 1204 1205 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1206 1207 req->reg_cqe.done = nvme_rdma_memreg_done; 1208 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1209 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1210 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1211 req->reg_wr.wr.num_sge = 0; 1212 req->reg_wr.mr = req->mr; 1213 req->reg_wr.key = req->mr->rkey; 1214 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1215 IB_ACCESS_REMOTE_READ | 1216 IB_ACCESS_REMOTE_WRITE; 1217 1218 sg->addr = cpu_to_le64(req->mr->iova); 1219 put_unaligned_le24(req->mr->length, sg->length); 1220 put_unaligned_le32(req->mr->rkey, sg->key); 1221 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1222 NVME_SGL_FMT_INVALIDATE; 1223 1224 return 0; 1225 } 1226 1227 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1228 struct request *rq, struct nvme_command *c) 1229 { 1230 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1231 struct nvme_rdma_device *dev = queue->device; 1232 struct ib_device *ibdev = dev->dev; 1233 int count, ret; 1234 1235 req->num_sge = 1; 1236 refcount_set(&req->ref, 2); /* send and recv completions */ 1237 1238 c->common.flags |= NVME_CMD_SGL_METABUF; 1239 1240 if (!blk_rq_payload_bytes(rq)) 1241 return nvme_rdma_set_sg_null(c); 1242 1243 req->sg_table.sgl = req->first_sgl; 1244 ret = sg_alloc_table_chained(&req->sg_table, 1245 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1246 if (ret) 1247 return -ENOMEM; 1248 1249 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1250 1251 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1252 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1253 if (unlikely(count <= 0)) { 1254 ret = -EIO; 1255 goto out_free_table; 1256 } 1257 1258 if (count <= dev->num_inline_segments) { 1259 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1260 queue->ctrl->use_inline_data && 1261 blk_rq_payload_bytes(rq) <= 1262 nvme_rdma_inline_data_size(queue)) { 1263 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1264 goto out; 1265 } 1266 1267 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1268 ret = nvme_rdma_map_sg_single(queue, req, c); 1269 goto out; 1270 } 1271 } 1272 1273 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1274 out: 1275 if (unlikely(ret)) 1276 goto out_unmap_sg; 1277 1278 return 0; 1279 1280 out_unmap_sg: 1281 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1282 req->nents, rq_data_dir(rq) == 1283 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1284 out_free_table: 1285 sg_free_table_chained(&req->sg_table, true); 1286 return ret; 1287 } 1288 1289 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1290 { 1291 struct nvme_rdma_qe *qe = 1292 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1293 struct nvme_rdma_request *req = 1294 container_of(qe, struct nvme_rdma_request, sqe); 1295 struct request *rq = blk_mq_rq_from_pdu(req); 1296 1297 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1298 nvme_rdma_wr_error(cq, wc, "SEND"); 1299 return; 1300 } 1301 1302 if (refcount_dec_and_test(&req->ref)) 1303 nvme_end_request(rq, req->status, req->result); 1304 } 1305 1306 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1307 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1308 struct ib_send_wr *first) 1309 { 1310 struct ib_send_wr wr; 1311 int ret; 1312 1313 sge->addr = qe->dma; 1314 sge->length = sizeof(struct nvme_command), 1315 sge->lkey = queue->device->pd->local_dma_lkey; 1316 1317 wr.next = NULL; 1318 wr.wr_cqe = &qe->cqe; 1319 wr.sg_list = sge; 1320 wr.num_sge = num_sge; 1321 wr.opcode = IB_WR_SEND; 1322 wr.send_flags = IB_SEND_SIGNALED; 1323 1324 if (first) 1325 first->next = ≀ 1326 else 1327 first = ≀ 1328 1329 ret = ib_post_send(queue->qp, first, NULL); 1330 if (unlikely(ret)) { 1331 dev_err(queue->ctrl->ctrl.device, 1332 "%s failed with error code %d\n", __func__, ret); 1333 } 1334 return ret; 1335 } 1336 1337 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1338 struct nvme_rdma_qe *qe) 1339 { 1340 struct ib_recv_wr wr; 1341 struct ib_sge list; 1342 int ret; 1343 1344 list.addr = qe->dma; 1345 list.length = sizeof(struct nvme_completion); 1346 list.lkey = queue->device->pd->local_dma_lkey; 1347 1348 qe->cqe.done = nvme_rdma_recv_done; 1349 1350 wr.next = NULL; 1351 wr.wr_cqe = &qe->cqe; 1352 wr.sg_list = &list; 1353 wr.num_sge = 1; 1354 1355 ret = ib_post_recv(queue->qp, &wr, NULL); 1356 if (unlikely(ret)) { 1357 dev_err(queue->ctrl->ctrl.device, 1358 "%s failed with error code %d\n", __func__, ret); 1359 } 1360 return ret; 1361 } 1362 1363 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1364 { 1365 u32 queue_idx = nvme_rdma_queue_idx(queue); 1366 1367 if (queue_idx == 0) 1368 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1369 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1370 } 1371 1372 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1373 { 1374 if (unlikely(wc->status != IB_WC_SUCCESS)) 1375 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1376 } 1377 1378 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1379 { 1380 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1381 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1382 struct ib_device *dev = queue->device->dev; 1383 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1384 struct nvme_command *cmd = sqe->data; 1385 struct ib_sge sge; 1386 int ret; 1387 1388 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1389 1390 memset(cmd, 0, sizeof(*cmd)); 1391 cmd->common.opcode = nvme_admin_async_event; 1392 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1393 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1394 nvme_rdma_set_sg_null(cmd); 1395 1396 sqe->cqe.done = nvme_rdma_async_done; 1397 1398 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1399 DMA_TO_DEVICE); 1400 1401 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1402 WARN_ON_ONCE(ret); 1403 } 1404 1405 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1406 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1407 { 1408 struct request *rq; 1409 struct nvme_rdma_request *req; 1410 int ret = 0; 1411 1412 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1413 if (!rq) { 1414 dev_err(queue->ctrl->ctrl.device, 1415 "tag 0x%x on QP %#x not found\n", 1416 cqe->command_id, queue->qp->qp_num); 1417 nvme_rdma_error_recovery(queue->ctrl); 1418 return ret; 1419 } 1420 req = blk_mq_rq_to_pdu(rq); 1421 1422 req->status = cqe->status; 1423 req->result = cqe->result; 1424 1425 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1426 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1427 dev_err(queue->ctrl->ctrl.device, 1428 "Bogus remote invalidation for rkey %#x\n", 1429 req->mr->rkey); 1430 nvme_rdma_error_recovery(queue->ctrl); 1431 } 1432 } else if (req->mr) { 1433 ret = nvme_rdma_inv_rkey(queue, req); 1434 if (unlikely(ret < 0)) { 1435 dev_err(queue->ctrl->ctrl.device, 1436 "Queueing INV WR for rkey %#x failed (%d)\n", 1437 req->mr->rkey, ret); 1438 nvme_rdma_error_recovery(queue->ctrl); 1439 } 1440 /* the local invalidation completion will end the request */ 1441 return 0; 1442 } 1443 1444 if (refcount_dec_and_test(&req->ref)) { 1445 if (rq->tag == tag) 1446 ret = 1; 1447 nvme_end_request(rq, req->status, req->result); 1448 } 1449 1450 return ret; 1451 } 1452 1453 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1454 { 1455 struct nvme_rdma_qe *qe = 1456 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1457 struct nvme_rdma_queue *queue = cq->cq_context; 1458 struct ib_device *ibdev = queue->device->dev; 1459 struct nvme_completion *cqe = qe->data; 1460 const size_t len = sizeof(struct nvme_completion); 1461 int ret = 0; 1462 1463 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1464 nvme_rdma_wr_error(cq, wc, "RECV"); 1465 return 0; 1466 } 1467 1468 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1469 /* 1470 * AEN requests are special as they don't time out and can 1471 * survive any kind of queue freeze and often don't respond to 1472 * aborts. We don't even bother to allocate a struct request 1473 * for them but rather special case them here. 1474 */ 1475 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1476 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1477 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1478 &cqe->result); 1479 else 1480 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1481 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1482 1483 nvme_rdma_post_recv(queue, qe); 1484 return ret; 1485 } 1486 1487 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1488 { 1489 __nvme_rdma_recv_done(cq, wc, -1); 1490 } 1491 1492 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1493 { 1494 int ret, i; 1495 1496 for (i = 0; i < queue->queue_size; i++) { 1497 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1498 if (ret) 1499 goto out_destroy_queue_ib; 1500 } 1501 1502 return 0; 1503 1504 out_destroy_queue_ib: 1505 nvme_rdma_destroy_queue_ib(queue); 1506 return ret; 1507 } 1508 1509 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1510 struct rdma_cm_event *ev) 1511 { 1512 struct rdma_cm_id *cm_id = queue->cm_id; 1513 int status = ev->status; 1514 const char *rej_msg; 1515 const struct nvme_rdma_cm_rej *rej_data; 1516 u8 rej_data_len; 1517 1518 rej_msg = rdma_reject_msg(cm_id, status); 1519 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1520 1521 if (rej_data && rej_data_len >= sizeof(u16)) { 1522 u16 sts = le16_to_cpu(rej_data->sts); 1523 1524 dev_err(queue->ctrl->ctrl.device, 1525 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1526 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1527 } else { 1528 dev_err(queue->ctrl->ctrl.device, 1529 "Connect rejected: status %d (%s).\n", status, rej_msg); 1530 } 1531 1532 return -ECONNRESET; 1533 } 1534 1535 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1536 { 1537 int ret; 1538 1539 ret = nvme_rdma_create_queue_ib(queue); 1540 if (ret) 1541 return ret; 1542 1543 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1544 if (ret) { 1545 dev_err(queue->ctrl->ctrl.device, 1546 "rdma_resolve_route failed (%d).\n", 1547 queue->cm_error); 1548 goto out_destroy_queue; 1549 } 1550 1551 return 0; 1552 1553 out_destroy_queue: 1554 nvme_rdma_destroy_queue_ib(queue); 1555 return ret; 1556 } 1557 1558 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1559 { 1560 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1561 struct rdma_conn_param param = { }; 1562 struct nvme_rdma_cm_req priv = { }; 1563 int ret; 1564 1565 param.qp_num = queue->qp->qp_num; 1566 param.flow_control = 1; 1567 1568 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1569 /* maximum retry count */ 1570 param.retry_count = 7; 1571 param.rnr_retry_count = 7; 1572 param.private_data = &priv; 1573 param.private_data_len = sizeof(priv); 1574 1575 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1576 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1577 /* 1578 * set the admin queue depth to the minimum size 1579 * specified by the Fabrics standard. 1580 */ 1581 if (priv.qid == 0) { 1582 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1583 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1584 } else { 1585 /* 1586 * current interpretation of the fabrics spec 1587 * is at minimum you make hrqsize sqsize+1, or a 1588 * 1's based representation of sqsize. 1589 */ 1590 priv.hrqsize = cpu_to_le16(queue->queue_size); 1591 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1592 } 1593 1594 ret = rdma_connect(queue->cm_id, ¶m); 1595 if (ret) { 1596 dev_err(ctrl->ctrl.device, 1597 "rdma_connect failed (%d).\n", ret); 1598 goto out_destroy_queue_ib; 1599 } 1600 1601 return 0; 1602 1603 out_destroy_queue_ib: 1604 nvme_rdma_destroy_queue_ib(queue); 1605 return ret; 1606 } 1607 1608 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1609 struct rdma_cm_event *ev) 1610 { 1611 struct nvme_rdma_queue *queue = cm_id->context; 1612 int cm_error = 0; 1613 1614 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1615 rdma_event_msg(ev->event), ev->event, 1616 ev->status, cm_id); 1617 1618 switch (ev->event) { 1619 case RDMA_CM_EVENT_ADDR_RESOLVED: 1620 cm_error = nvme_rdma_addr_resolved(queue); 1621 break; 1622 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1623 cm_error = nvme_rdma_route_resolved(queue); 1624 break; 1625 case RDMA_CM_EVENT_ESTABLISHED: 1626 queue->cm_error = nvme_rdma_conn_established(queue); 1627 /* complete cm_done regardless of success/failure */ 1628 complete(&queue->cm_done); 1629 return 0; 1630 case RDMA_CM_EVENT_REJECTED: 1631 nvme_rdma_destroy_queue_ib(queue); 1632 cm_error = nvme_rdma_conn_rejected(queue, ev); 1633 break; 1634 case RDMA_CM_EVENT_ROUTE_ERROR: 1635 case RDMA_CM_EVENT_CONNECT_ERROR: 1636 case RDMA_CM_EVENT_UNREACHABLE: 1637 nvme_rdma_destroy_queue_ib(queue); 1638 /* fall through */ 1639 case RDMA_CM_EVENT_ADDR_ERROR: 1640 dev_dbg(queue->ctrl->ctrl.device, 1641 "CM error event %d\n", ev->event); 1642 cm_error = -ECONNRESET; 1643 break; 1644 case RDMA_CM_EVENT_DISCONNECTED: 1645 case RDMA_CM_EVENT_ADDR_CHANGE: 1646 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1647 dev_dbg(queue->ctrl->ctrl.device, 1648 "disconnect received - connection closed\n"); 1649 nvme_rdma_error_recovery(queue->ctrl); 1650 break; 1651 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1652 /* device removal is handled via the ib_client API */ 1653 break; 1654 default: 1655 dev_err(queue->ctrl->ctrl.device, 1656 "Unexpected RDMA CM event (%d)\n", ev->event); 1657 nvme_rdma_error_recovery(queue->ctrl); 1658 break; 1659 } 1660 1661 if (cm_error) { 1662 queue->cm_error = cm_error; 1663 complete(&queue->cm_done); 1664 } 1665 1666 return 0; 1667 } 1668 1669 static enum blk_eh_timer_return 1670 nvme_rdma_timeout(struct request *rq, bool reserved) 1671 { 1672 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1673 1674 dev_warn(req->queue->ctrl->ctrl.device, 1675 "I/O %d QID %d timeout, reset controller\n", 1676 rq->tag, nvme_rdma_queue_idx(req->queue)); 1677 1678 /* queue error recovery */ 1679 nvme_rdma_error_recovery(req->queue->ctrl); 1680 1681 /* fail with DNR on cmd timeout */ 1682 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1683 1684 return BLK_EH_DONE; 1685 } 1686 1687 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1688 const struct blk_mq_queue_data *bd) 1689 { 1690 struct nvme_ns *ns = hctx->queue->queuedata; 1691 struct nvme_rdma_queue *queue = hctx->driver_data; 1692 struct request *rq = bd->rq; 1693 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1694 struct nvme_rdma_qe *sqe = &req->sqe; 1695 struct nvme_command *c = sqe->data; 1696 struct ib_device *dev; 1697 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1698 blk_status_t ret; 1699 int err; 1700 1701 WARN_ON_ONCE(rq->tag < 0); 1702 1703 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1704 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1705 1706 dev = queue->device->dev; 1707 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1708 sizeof(struct nvme_command), DMA_TO_DEVICE); 1709 1710 ret = nvme_setup_cmd(ns, rq, c); 1711 if (ret) 1712 return ret; 1713 1714 blk_mq_start_request(rq); 1715 1716 err = nvme_rdma_map_data(queue, rq, c); 1717 if (unlikely(err < 0)) { 1718 dev_err(queue->ctrl->ctrl.device, 1719 "Failed to map data (%d)\n", err); 1720 nvme_cleanup_cmd(rq); 1721 goto err; 1722 } 1723 1724 sqe->cqe.done = nvme_rdma_send_done; 1725 1726 ib_dma_sync_single_for_device(dev, sqe->dma, 1727 sizeof(struct nvme_command), DMA_TO_DEVICE); 1728 1729 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1730 req->mr ? &req->reg_wr.wr : NULL); 1731 if (unlikely(err)) { 1732 nvme_rdma_unmap_data(queue, rq); 1733 goto err; 1734 } 1735 1736 return BLK_STS_OK; 1737 err: 1738 if (err == -ENOMEM || err == -EAGAIN) 1739 return BLK_STS_RESOURCE; 1740 return BLK_STS_IOERR; 1741 } 1742 1743 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1744 { 1745 struct nvme_rdma_queue *queue = hctx->driver_data; 1746 struct ib_cq *cq = queue->ib_cq; 1747 struct ib_wc wc; 1748 int found = 0; 1749 1750 while (ib_poll_cq(cq, 1, &wc) > 0) { 1751 struct ib_cqe *cqe = wc.wr_cqe; 1752 1753 if (cqe) { 1754 if (cqe->done == nvme_rdma_recv_done) 1755 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1756 else 1757 cqe->done(cq, &wc); 1758 } 1759 } 1760 1761 return found; 1762 } 1763 1764 static void nvme_rdma_complete_rq(struct request *rq) 1765 { 1766 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1767 1768 nvme_rdma_unmap_data(req->queue, rq); 1769 nvme_complete_rq(rq); 1770 } 1771 1772 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1773 { 1774 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1775 1776 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1777 } 1778 1779 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1780 .queue_rq = nvme_rdma_queue_rq, 1781 .complete = nvme_rdma_complete_rq, 1782 .init_request = nvme_rdma_init_request, 1783 .exit_request = nvme_rdma_exit_request, 1784 .init_hctx = nvme_rdma_init_hctx, 1785 .poll = nvme_rdma_poll, 1786 .timeout = nvme_rdma_timeout, 1787 .map_queues = nvme_rdma_map_queues, 1788 }; 1789 1790 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1791 .queue_rq = nvme_rdma_queue_rq, 1792 .complete = nvme_rdma_complete_rq, 1793 .init_request = nvme_rdma_init_request, 1794 .exit_request = nvme_rdma_exit_request, 1795 .init_hctx = nvme_rdma_init_admin_hctx, 1796 .timeout = nvme_rdma_timeout, 1797 }; 1798 1799 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1800 { 1801 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1802 if (shutdown) 1803 nvme_shutdown_ctrl(&ctrl->ctrl); 1804 else 1805 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1806 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1807 } 1808 1809 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1810 { 1811 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1812 } 1813 1814 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1815 { 1816 struct nvme_rdma_ctrl *ctrl = 1817 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1818 1819 nvme_stop_ctrl(&ctrl->ctrl); 1820 nvme_rdma_shutdown_ctrl(ctrl, false); 1821 1822 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1823 /* state change failure should never happen */ 1824 WARN_ON_ONCE(1); 1825 return; 1826 } 1827 1828 if (nvme_rdma_setup_ctrl(ctrl, false)) 1829 goto out_fail; 1830 1831 return; 1832 1833 out_fail: 1834 ++ctrl->ctrl.nr_reconnects; 1835 nvme_rdma_reconnect_or_remove(ctrl); 1836 } 1837 1838 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1839 .name = "rdma", 1840 .module = THIS_MODULE, 1841 .flags = NVME_F_FABRICS, 1842 .reg_read32 = nvmf_reg_read32, 1843 .reg_read64 = nvmf_reg_read64, 1844 .reg_write32 = nvmf_reg_write32, 1845 .free_ctrl = nvme_rdma_free_ctrl, 1846 .submit_async_event = nvme_rdma_submit_async_event, 1847 .delete_ctrl = nvme_rdma_delete_ctrl, 1848 .get_address = nvmf_get_address, 1849 .stop_ctrl = nvme_rdma_stop_ctrl, 1850 }; 1851 1852 static inline bool 1853 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1854 struct nvmf_ctrl_options *opts) 1855 { 1856 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1857 1858 1859 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1860 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1861 return false; 1862 1863 if (opts->mask & NVMF_OPT_TRSVCID && 1864 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1865 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1866 return false; 1867 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1868 if (strcmp(opts->trsvcid, stdport)) 1869 return false; 1870 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1871 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1872 return false; 1873 } 1874 /* else, it's a match as both have stdport. Fall to next checks */ 1875 1876 /* 1877 * checking the local address is rough. In most cases, one 1878 * is not specified and the host port is selected by the stack. 1879 * 1880 * Assume no match if: 1881 * local address is specified and address is not the same 1882 * local address is not specified but remote is, or vice versa 1883 * (admin using specific host_traddr when it matters). 1884 */ 1885 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1886 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1887 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1888 return false; 1889 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1890 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1891 return false; 1892 /* 1893 * if neither controller had an host port specified, assume it's 1894 * a match as everything else matched. 1895 */ 1896 1897 return true; 1898 } 1899 1900 /* 1901 * Fails a connection request if it matches an existing controller 1902 * (association) with the same tuple: 1903 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1904 * 1905 * if local address is not specified in the request, it will match an 1906 * existing controller with all the other parameters the same and no 1907 * local port address specified as well. 1908 * 1909 * The ports don't need to be compared as they are intrinsically 1910 * already matched by the port pointers supplied. 1911 */ 1912 static bool 1913 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1914 { 1915 struct nvme_rdma_ctrl *ctrl; 1916 bool found = false; 1917 1918 mutex_lock(&nvme_rdma_ctrl_mutex); 1919 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1920 found = __nvme_rdma_options_match(ctrl, opts); 1921 if (found) 1922 break; 1923 } 1924 mutex_unlock(&nvme_rdma_ctrl_mutex); 1925 1926 return found; 1927 } 1928 1929 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1930 struct nvmf_ctrl_options *opts) 1931 { 1932 struct nvme_rdma_ctrl *ctrl; 1933 int ret; 1934 bool changed; 1935 char *port; 1936 1937 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1938 if (!ctrl) 1939 return ERR_PTR(-ENOMEM); 1940 ctrl->ctrl.opts = opts; 1941 INIT_LIST_HEAD(&ctrl->list); 1942 1943 if (opts->mask & NVMF_OPT_TRSVCID) 1944 port = opts->trsvcid; 1945 else 1946 port = __stringify(NVME_RDMA_IP_PORT); 1947 1948 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1949 opts->traddr, port, &ctrl->addr); 1950 if (ret) { 1951 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1952 goto out_free_ctrl; 1953 } 1954 1955 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1956 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1957 opts->host_traddr, NULL, &ctrl->src_addr); 1958 if (ret) { 1959 pr_err("malformed src address passed: %s\n", 1960 opts->host_traddr); 1961 goto out_free_ctrl; 1962 } 1963 } 1964 1965 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1966 ret = -EALREADY; 1967 goto out_free_ctrl; 1968 } 1969 1970 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1971 nvme_rdma_reconnect_ctrl_work); 1972 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1973 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1974 1975 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1976 ctrl->ctrl.sqsize = opts->queue_size - 1; 1977 ctrl->ctrl.kato = opts->kato; 1978 1979 ret = -ENOMEM; 1980 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1981 GFP_KERNEL); 1982 if (!ctrl->queues) 1983 goto out_free_ctrl; 1984 1985 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1986 0 /* no quirks, we're perfect! */); 1987 if (ret) 1988 goto out_kfree_queues; 1989 1990 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1991 WARN_ON_ONCE(!changed); 1992 1993 ret = nvme_rdma_setup_ctrl(ctrl, true); 1994 if (ret) 1995 goto out_uninit_ctrl; 1996 1997 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1998 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1999 2000 nvme_get_ctrl(&ctrl->ctrl); 2001 2002 mutex_lock(&nvme_rdma_ctrl_mutex); 2003 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2004 mutex_unlock(&nvme_rdma_ctrl_mutex); 2005 2006 return &ctrl->ctrl; 2007 2008 out_uninit_ctrl: 2009 nvme_uninit_ctrl(&ctrl->ctrl); 2010 nvme_put_ctrl(&ctrl->ctrl); 2011 if (ret > 0) 2012 ret = -EIO; 2013 return ERR_PTR(ret); 2014 out_kfree_queues: 2015 kfree(ctrl->queues); 2016 out_free_ctrl: 2017 kfree(ctrl); 2018 return ERR_PTR(ret); 2019 } 2020 2021 static struct nvmf_transport_ops nvme_rdma_transport = { 2022 .name = "rdma", 2023 .module = THIS_MODULE, 2024 .required_opts = NVMF_OPT_TRADDR, 2025 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2026 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2027 .create_ctrl = nvme_rdma_create_ctrl, 2028 }; 2029 2030 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2031 { 2032 struct nvme_rdma_ctrl *ctrl; 2033 struct nvme_rdma_device *ndev; 2034 bool found = false; 2035 2036 mutex_lock(&device_list_mutex); 2037 list_for_each_entry(ndev, &device_list, entry) { 2038 if (ndev->dev == ib_device) { 2039 found = true; 2040 break; 2041 } 2042 } 2043 mutex_unlock(&device_list_mutex); 2044 2045 if (!found) 2046 return; 2047 2048 /* Delete all controllers using this device */ 2049 mutex_lock(&nvme_rdma_ctrl_mutex); 2050 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2051 if (ctrl->device->dev != ib_device) 2052 continue; 2053 nvme_delete_ctrl(&ctrl->ctrl); 2054 } 2055 mutex_unlock(&nvme_rdma_ctrl_mutex); 2056 2057 flush_workqueue(nvme_delete_wq); 2058 } 2059 2060 static struct ib_client nvme_rdma_ib_client = { 2061 .name = "nvme_rdma", 2062 .remove = nvme_rdma_remove_one 2063 }; 2064 2065 static int __init nvme_rdma_init_module(void) 2066 { 2067 int ret; 2068 2069 ret = ib_register_client(&nvme_rdma_ib_client); 2070 if (ret) 2071 return ret; 2072 2073 ret = nvmf_register_transport(&nvme_rdma_transport); 2074 if (ret) 2075 goto err_unreg_client; 2076 2077 return 0; 2078 2079 err_unreg_client: 2080 ib_unregister_client(&nvme_rdma_ib_client); 2081 return ret; 2082 } 2083 2084 static void __exit nvme_rdma_cleanup_module(void) 2085 { 2086 nvmf_unregister_transport(&nvme_rdma_transport); 2087 ib_unregister_client(&nvme_rdma_ib_client); 2088 } 2089 2090 module_init(nvme_rdma_init_module); 2091 module_exit(nvme_rdma_cleanup_module); 2092 2093 MODULE_LICENSE("GPL v2"); 2094