1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 struct nvme_rdma_device { 38 struct ib_device *dev; 39 struct ib_pd *pd; 40 struct kref ref; 41 struct list_head entry; 42 unsigned int num_inline_segments; 43 }; 44 45 struct nvme_rdma_qe { 46 struct ib_cqe cqe; 47 void *data; 48 u64 dma; 49 }; 50 51 struct nvme_rdma_queue; 52 struct nvme_rdma_request { 53 struct nvme_request req; 54 struct ib_mr *mr; 55 struct nvme_rdma_qe sqe; 56 union nvme_result result; 57 __le16 status; 58 refcount_t ref; 59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 60 u32 num_sge; 61 int nents; 62 struct ib_reg_wr reg_wr; 63 struct ib_cqe reg_cqe; 64 struct nvme_rdma_queue *queue; 65 struct sg_table sg_table; 66 struct scatterlist first_sgl[]; 67 }; 68 69 enum nvme_rdma_queue_flags { 70 NVME_RDMA_Q_ALLOCATED = 0, 71 NVME_RDMA_Q_LIVE = 1, 72 NVME_RDMA_Q_TR_READY = 2, 73 }; 74 75 struct nvme_rdma_queue { 76 struct nvme_rdma_qe *rsp_ring; 77 int queue_size; 78 size_t cmnd_capsule_len; 79 struct nvme_rdma_ctrl *ctrl; 80 struct nvme_rdma_device *device; 81 struct ib_cq *ib_cq; 82 struct ib_qp *qp; 83 84 unsigned long flags; 85 struct rdma_cm_id *cm_id; 86 int cm_error; 87 struct completion cm_done; 88 }; 89 90 struct nvme_rdma_ctrl { 91 /* read only in the hot path */ 92 struct nvme_rdma_queue *queues; 93 94 /* other member variables */ 95 struct blk_mq_tag_set tag_set; 96 struct work_struct err_work; 97 98 struct nvme_rdma_qe async_event_sqe; 99 100 struct delayed_work reconnect_work; 101 102 struct list_head list; 103 104 struct blk_mq_tag_set admin_tag_set; 105 struct nvme_rdma_device *device; 106 107 u32 max_fr_pages; 108 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 112 struct nvme_ctrl ctrl; 113 bool use_inline_data; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 118 { 119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 120 } 121 122 static LIST_HEAD(device_list); 123 static DEFINE_MUTEX(device_list_mutex); 124 125 static LIST_HEAD(nvme_rdma_ctrl_list); 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 127 128 /* 129 * Disabling this option makes small I/O goes faster, but is fundamentally 130 * unsafe. With it turned off we will have to register a global rkey that 131 * allows read and write access to all physical memory. 132 */ 133 static bool register_always = true; 134 module_param(register_always, bool, 0444); 135 MODULE_PARM_DESC(register_always, 136 "Use memory registration even for contiguous memory regions"); 137 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 139 struct rdma_cm_event *event); 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 141 142 static const struct blk_mq_ops nvme_rdma_mq_ops; 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 144 145 /* XXX: really should move to a generic header sooner or later.. */ 146 static inline void put_unaligned_le24(u32 val, u8 *p) 147 { 148 *p++ = val; 149 *p++ = val >> 8; 150 *p++ = val >> 16; 151 } 152 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 154 { 155 return queue - queue->ctrl->queues; 156 } 157 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 159 { 160 return nvme_rdma_queue_idx(queue) > 161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 162 queue->ctrl->io_queues[HCTX_TYPE_READ]; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 qe->data = NULL; 188 return -ENOMEM; 189 } 190 191 return 0; 192 } 193 194 static void nvme_rdma_free_ring(struct ib_device *ibdev, 195 struct nvme_rdma_qe *ring, size_t ib_queue_size, 196 size_t capsule_size, enum dma_data_direction dir) 197 { 198 int i; 199 200 for (i = 0; i < ib_queue_size; i++) 201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 202 kfree(ring); 203 } 204 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 206 size_t ib_queue_size, size_t capsule_size, 207 enum dma_data_direction dir) 208 { 209 struct nvme_rdma_qe *ring; 210 int i; 211 212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 213 if (!ring) 214 return NULL; 215 216 /* 217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 218 * lifetime. It's safe, since any chage in the underlying RDMA device 219 * will issue error recovery and queue re-creation. 220 */ 221 for (i = 0; i < ib_queue_size; i++) { 222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 223 goto out_free_ring; 224 } 225 226 return ring; 227 228 out_free_ring: 229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 230 return NULL; 231 } 232 233 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 234 { 235 pr_debug("QP event %s (%d)\n", 236 ib_event_msg(event->event), event->event); 237 238 } 239 240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 241 { 242 int ret; 243 244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 246 if (ret < 0) 247 return ret; 248 if (ret == 0) 249 return -ETIMEDOUT; 250 WARN_ON_ONCE(queue->cm_error > 0); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 280 struct request *rq, unsigned int hctx_idx) 281 { 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 284 kfree(req->sqe.data); 285 } 286 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx, 289 unsigned int numa_node) 290 { 291 struct nvme_rdma_ctrl *ctrl = set->driver_data; 292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 295 296 nvme_req(rq)->ctrl = &ctrl->ctrl; 297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 298 if (!req->sqe.data) 299 return -ENOMEM; 300 301 req->queue = queue; 302 303 return 0; 304 } 305 306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 307 unsigned int hctx_idx) 308 { 309 struct nvme_rdma_ctrl *ctrl = data; 310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 311 312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 313 314 hctx->driver_data = queue; 315 return 0; 316 } 317 318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 319 unsigned int hctx_idx) 320 { 321 struct nvme_rdma_ctrl *ctrl = data; 322 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 323 324 BUG_ON(hctx_idx != 0); 325 326 hctx->driver_data = queue; 327 return 0; 328 } 329 330 static void nvme_rdma_free_dev(struct kref *ref) 331 { 332 struct nvme_rdma_device *ndev = 333 container_of(ref, struct nvme_rdma_device, ref); 334 335 mutex_lock(&device_list_mutex); 336 list_del(&ndev->entry); 337 mutex_unlock(&device_list_mutex); 338 339 ib_dealloc_pd(ndev->pd); 340 kfree(ndev); 341 } 342 343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 344 { 345 kref_put(&dev->ref, nvme_rdma_free_dev); 346 } 347 348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 349 { 350 return kref_get_unless_zero(&dev->ref); 351 } 352 353 static struct nvme_rdma_device * 354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 355 { 356 struct nvme_rdma_device *ndev; 357 358 mutex_lock(&device_list_mutex); 359 list_for_each_entry(ndev, &device_list, entry) { 360 if (ndev->dev->node_guid == cm_id->device->node_guid && 361 nvme_rdma_dev_get(ndev)) 362 goto out_unlock; 363 } 364 365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 366 if (!ndev) 367 goto out_err; 368 369 ndev->dev = cm_id->device; 370 kref_init(&ndev->ref); 371 372 ndev->pd = ib_alloc_pd(ndev->dev, 373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 374 if (IS_ERR(ndev->pd)) 375 goto out_free_dev; 376 377 if (!(ndev->dev->attrs.device_cap_flags & 378 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 379 dev_err(&ndev->dev->dev, 380 "Memory registrations not supported.\n"); 381 goto out_free_pd; 382 } 383 384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 385 ndev->dev->attrs.max_send_sge - 1); 386 list_add(&ndev->entry, &device_list); 387 out_unlock: 388 mutex_unlock(&device_list_mutex); 389 return ndev; 390 391 out_free_pd: 392 ib_dealloc_pd(ndev->pd); 393 out_free_dev: 394 kfree(ndev); 395 out_err: 396 mutex_unlock(&device_list_mutex); 397 return NULL; 398 } 399 400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 401 { 402 struct nvme_rdma_device *dev; 403 struct ib_device *ibdev; 404 405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 406 return; 407 408 dev = queue->device; 409 ibdev = dev->dev; 410 411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 412 413 /* 414 * The cm_id object might have been destroyed during RDMA connection 415 * establishment error flow to avoid getting other cma events, thus 416 * the destruction of the QP shouldn't use rdma_cm API. 417 */ 418 ib_destroy_qp(queue->qp); 419 ib_free_cq(queue->ib_cq); 420 421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 422 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 423 424 nvme_rdma_dev_put(dev); 425 } 426 427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 428 { 429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 430 ibdev->attrs.max_fast_reg_page_list_len); 431 } 432 433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 434 { 435 struct ib_device *ibdev; 436 const int send_wr_factor = 3; /* MR, SEND, INV */ 437 const int cq_factor = send_wr_factor + 1; /* + RECV */ 438 int comp_vector, idx = nvme_rdma_queue_idx(queue); 439 enum ib_poll_context poll_ctx; 440 int ret; 441 442 queue->device = nvme_rdma_find_get_device(queue->cm_id); 443 if (!queue->device) { 444 dev_err(queue->cm_id->device->dev.parent, 445 "no client data found!\n"); 446 return -ECONNREFUSED; 447 } 448 ibdev = queue->device->dev; 449 450 /* 451 * Spread I/O queues completion vectors according their queue index. 452 * Admin queues can always go on completion vector 0. 453 */ 454 comp_vector = idx == 0 ? idx : idx - 1; 455 456 /* Polling queues need direct cq polling context */ 457 if (nvme_rdma_poll_queue(queue)) 458 poll_ctx = IB_POLL_DIRECT; 459 else 460 poll_ctx = IB_POLL_SOFTIRQ; 461 462 /* +1 for ib_stop_cq */ 463 queue->ib_cq = ib_alloc_cq(ibdev, queue, 464 cq_factor * queue->queue_size + 1, 465 comp_vector, poll_ctx); 466 if (IS_ERR(queue->ib_cq)) { 467 ret = PTR_ERR(queue->ib_cq); 468 goto out_put_dev; 469 } 470 471 ret = nvme_rdma_create_qp(queue, send_wr_factor); 472 if (ret) 473 goto out_destroy_ib_cq; 474 475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 476 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 477 if (!queue->rsp_ring) { 478 ret = -ENOMEM; 479 goto out_destroy_qp; 480 } 481 482 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 483 queue->queue_size, 484 IB_MR_TYPE_MEM_REG, 485 nvme_rdma_get_max_fr_pages(ibdev), 0); 486 if (ret) { 487 dev_err(queue->ctrl->ctrl.device, 488 "failed to initialize MR pool sized %d for QID %d\n", 489 queue->queue_size, idx); 490 goto out_destroy_ring; 491 } 492 493 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 494 495 return 0; 496 497 out_destroy_ring: 498 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 499 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 500 out_destroy_qp: 501 rdma_destroy_qp(queue->cm_id); 502 out_destroy_ib_cq: 503 ib_free_cq(queue->ib_cq); 504 out_put_dev: 505 nvme_rdma_dev_put(queue->device); 506 return ret; 507 } 508 509 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 510 int idx, size_t queue_size) 511 { 512 struct nvme_rdma_queue *queue; 513 struct sockaddr *src_addr = NULL; 514 int ret; 515 516 queue = &ctrl->queues[idx]; 517 queue->ctrl = ctrl; 518 init_completion(&queue->cm_done); 519 520 if (idx > 0) 521 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 522 else 523 queue->cmnd_capsule_len = sizeof(struct nvme_command); 524 525 queue->queue_size = queue_size; 526 527 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 528 RDMA_PS_TCP, IB_QPT_RC); 529 if (IS_ERR(queue->cm_id)) { 530 dev_info(ctrl->ctrl.device, 531 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 532 return PTR_ERR(queue->cm_id); 533 } 534 535 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 536 src_addr = (struct sockaddr *)&ctrl->src_addr; 537 538 queue->cm_error = -ETIMEDOUT; 539 ret = rdma_resolve_addr(queue->cm_id, src_addr, 540 (struct sockaddr *)&ctrl->addr, 541 NVME_RDMA_CONNECT_TIMEOUT_MS); 542 if (ret) { 543 dev_info(ctrl->ctrl.device, 544 "rdma_resolve_addr failed (%d).\n", ret); 545 goto out_destroy_cm_id; 546 } 547 548 ret = nvme_rdma_wait_for_cm(queue); 549 if (ret) { 550 dev_info(ctrl->ctrl.device, 551 "rdma connection establishment failed (%d)\n", ret); 552 goto out_destroy_cm_id; 553 } 554 555 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 556 557 return 0; 558 559 out_destroy_cm_id: 560 rdma_destroy_id(queue->cm_id); 561 nvme_rdma_destroy_queue_ib(queue); 562 return ret; 563 } 564 565 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 566 { 567 rdma_disconnect(queue->cm_id); 568 ib_drain_qp(queue->qp); 569 } 570 571 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 572 { 573 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 574 return; 575 __nvme_rdma_stop_queue(queue); 576 } 577 578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 579 { 580 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 581 return; 582 583 nvme_rdma_destroy_queue_ib(queue); 584 rdma_destroy_id(queue->cm_id); 585 } 586 587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 588 { 589 int i; 590 591 for (i = 1; i < ctrl->ctrl.queue_count; i++) 592 nvme_rdma_free_queue(&ctrl->queues[i]); 593 } 594 595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 596 { 597 int i; 598 599 for (i = 1; i < ctrl->ctrl.queue_count; i++) 600 nvme_rdma_stop_queue(&ctrl->queues[i]); 601 } 602 603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 604 { 605 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 606 bool poll = nvme_rdma_poll_queue(queue); 607 int ret; 608 609 if (idx) 610 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 611 else 612 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 613 614 if (!ret) { 615 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 616 } else { 617 __nvme_rdma_stop_queue(queue); 618 dev_info(ctrl->ctrl.device, 619 "failed to connect queue: %d ret=%d\n", idx, ret); 620 } 621 return ret; 622 } 623 624 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 int i, ret = 0; 627 628 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 629 ret = nvme_rdma_start_queue(ctrl, i); 630 if (ret) 631 goto out_stop_queues; 632 } 633 634 return 0; 635 636 out_stop_queues: 637 for (i--; i >= 1; i--) 638 nvme_rdma_stop_queue(&ctrl->queues[i]); 639 return ret; 640 } 641 642 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 643 { 644 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 645 struct ib_device *ibdev = ctrl->device->dev; 646 unsigned int nr_io_queues, nr_default_queues; 647 unsigned int nr_read_queues, nr_poll_queues; 648 int i, ret; 649 650 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 651 min(opts->nr_io_queues, num_online_cpus())); 652 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 653 min(opts->nr_write_queues, num_online_cpus())); 654 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 655 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 656 657 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 658 if (ret) 659 return ret; 660 661 ctrl->ctrl.queue_count = nr_io_queues + 1; 662 if (ctrl->ctrl.queue_count < 2) 663 return 0; 664 665 dev_info(ctrl->ctrl.device, 666 "creating %d I/O queues.\n", nr_io_queues); 667 668 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 669 /* 670 * separate read/write queues 671 * hand out dedicated default queues only after we have 672 * sufficient read queues. 673 */ 674 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 675 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 676 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 677 min(nr_default_queues, nr_io_queues); 678 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 679 } else { 680 /* 681 * shared read/write queues 682 * either no write queues were requested, or we don't have 683 * sufficient queue count to have dedicated default queues. 684 */ 685 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 686 min(nr_read_queues, nr_io_queues); 687 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 688 } 689 690 if (opts->nr_poll_queues && nr_io_queues) { 691 /* map dedicated poll queues only if we have queues left */ 692 ctrl->io_queues[HCTX_TYPE_POLL] = 693 min(nr_poll_queues, nr_io_queues); 694 } 695 696 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 697 ret = nvme_rdma_alloc_queue(ctrl, i, 698 ctrl->ctrl.sqsize + 1); 699 if (ret) 700 goto out_free_queues; 701 } 702 703 return 0; 704 705 out_free_queues: 706 for (i--; i >= 1; i--) 707 nvme_rdma_free_queue(&ctrl->queues[i]); 708 709 return ret; 710 } 711 712 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 713 bool admin) 714 { 715 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 716 struct blk_mq_tag_set *set; 717 int ret; 718 719 if (admin) { 720 set = &ctrl->admin_tag_set; 721 memset(set, 0, sizeof(*set)); 722 set->ops = &nvme_rdma_admin_mq_ops; 723 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 724 set->reserved_tags = 2; /* connect + keep-alive */ 725 set->numa_node = nctrl->numa_node; 726 set->cmd_size = sizeof(struct nvme_rdma_request) + 727 SG_CHUNK_SIZE * sizeof(struct scatterlist); 728 set->driver_data = ctrl; 729 set->nr_hw_queues = 1; 730 set->timeout = ADMIN_TIMEOUT; 731 set->flags = BLK_MQ_F_NO_SCHED; 732 } else { 733 set = &ctrl->tag_set; 734 memset(set, 0, sizeof(*set)); 735 set->ops = &nvme_rdma_mq_ops; 736 set->queue_depth = nctrl->sqsize + 1; 737 set->reserved_tags = 1; /* fabric connect */ 738 set->numa_node = nctrl->numa_node; 739 set->flags = BLK_MQ_F_SHOULD_MERGE; 740 set->cmd_size = sizeof(struct nvme_rdma_request) + 741 SG_CHUNK_SIZE * sizeof(struct scatterlist); 742 set->driver_data = ctrl; 743 set->nr_hw_queues = nctrl->queue_count - 1; 744 set->timeout = NVME_IO_TIMEOUT; 745 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 746 } 747 748 ret = blk_mq_alloc_tag_set(set); 749 if (ret) 750 return ERR_PTR(ret); 751 752 return set; 753 } 754 755 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 756 bool remove) 757 { 758 if (remove) { 759 blk_cleanup_queue(ctrl->ctrl.admin_q); 760 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 761 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 762 } 763 if (ctrl->async_event_sqe.data) { 764 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 765 sizeof(struct nvme_command), DMA_TO_DEVICE); 766 ctrl->async_event_sqe.data = NULL; 767 } 768 nvme_rdma_free_queue(&ctrl->queues[0]); 769 } 770 771 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 772 bool new) 773 { 774 int error; 775 776 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 777 if (error) 778 return error; 779 780 ctrl->device = ctrl->queues[0].device; 781 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 782 783 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 784 785 /* 786 * Bind the async event SQE DMA mapping to the admin queue lifetime. 787 * It's safe, since any chage in the underlying RDMA device will issue 788 * error recovery and queue re-creation. 789 */ 790 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 791 sizeof(struct nvme_command), DMA_TO_DEVICE); 792 if (error) 793 goto out_free_queue; 794 795 if (new) { 796 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 797 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 798 error = PTR_ERR(ctrl->ctrl.admin_tagset); 799 goto out_free_async_qe; 800 } 801 802 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 803 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 804 error = PTR_ERR(ctrl->ctrl.fabrics_q); 805 goto out_free_tagset; 806 } 807 808 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 809 if (IS_ERR(ctrl->ctrl.admin_q)) { 810 error = PTR_ERR(ctrl->ctrl.admin_q); 811 goto out_cleanup_fabrics_q; 812 } 813 } 814 815 error = nvme_rdma_start_queue(ctrl, 0); 816 if (error) 817 goto out_cleanup_queue; 818 819 error = nvme_enable_ctrl(&ctrl->ctrl); 820 if (error) 821 goto out_stop_queue; 822 823 ctrl->ctrl.max_hw_sectors = 824 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 825 826 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 827 828 error = nvme_init_identify(&ctrl->ctrl); 829 if (error) 830 goto out_stop_queue; 831 832 return 0; 833 834 out_stop_queue: 835 nvme_rdma_stop_queue(&ctrl->queues[0]); 836 out_cleanup_queue: 837 if (new) 838 blk_cleanup_queue(ctrl->ctrl.admin_q); 839 out_cleanup_fabrics_q: 840 if (new) 841 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 842 out_free_tagset: 843 if (new) 844 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 845 out_free_async_qe: 846 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 847 sizeof(struct nvme_command), DMA_TO_DEVICE); 848 ctrl->async_event_sqe.data = NULL; 849 out_free_queue: 850 nvme_rdma_free_queue(&ctrl->queues[0]); 851 return error; 852 } 853 854 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 855 bool remove) 856 { 857 if (remove) { 858 blk_cleanup_queue(ctrl->ctrl.connect_q); 859 blk_mq_free_tag_set(ctrl->ctrl.tagset); 860 } 861 nvme_rdma_free_io_queues(ctrl); 862 } 863 864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 865 { 866 int ret; 867 868 ret = nvme_rdma_alloc_io_queues(ctrl); 869 if (ret) 870 return ret; 871 872 if (new) { 873 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 874 if (IS_ERR(ctrl->ctrl.tagset)) { 875 ret = PTR_ERR(ctrl->ctrl.tagset); 876 goto out_free_io_queues; 877 } 878 879 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 880 if (IS_ERR(ctrl->ctrl.connect_q)) { 881 ret = PTR_ERR(ctrl->ctrl.connect_q); 882 goto out_free_tag_set; 883 } 884 } else { 885 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 886 ctrl->ctrl.queue_count - 1); 887 } 888 889 ret = nvme_rdma_start_io_queues(ctrl); 890 if (ret) 891 goto out_cleanup_connect_q; 892 893 return 0; 894 895 out_cleanup_connect_q: 896 if (new) 897 blk_cleanup_queue(ctrl->ctrl.connect_q); 898 out_free_tag_set: 899 if (new) 900 blk_mq_free_tag_set(ctrl->ctrl.tagset); 901 out_free_io_queues: 902 nvme_rdma_free_io_queues(ctrl); 903 return ret; 904 } 905 906 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 907 bool remove) 908 { 909 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 910 nvme_rdma_stop_queue(&ctrl->queues[0]); 911 if (ctrl->ctrl.admin_tagset) { 912 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 913 nvme_cancel_request, &ctrl->ctrl); 914 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 915 } 916 if (remove) 917 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 918 nvme_rdma_destroy_admin_queue(ctrl, remove); 919 } 920 921 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 922 bool remove) 923 { 924 if (ctrl->ctrl.queue_count > 1) { 925 nvme_stop_queues(&ctrl->ctrl); 926 nvme_rdma_stop_io_queues(ctrl); 927 if (ctrl->ctrl.tagset) { 928 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 929 nvme_cancel_request, &ctrl->ctrl); 930 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 931 } 932 if (remove) 933 nvme_start_queues(&ctrl->ctrl); 934 nvme_rdma_destroy_io_queues(ctrl, remove); 935 } 936 } 937 938 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 939 { 940 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 941 942 if (list_empty(&ctrl->list)) 943 goto free_ctrl; 944 945 mutex_lock(&nvme_rdma_ctrl_mutex); 946 list_del(&ctrl->list); 947 mutex_unlock(&nvme_rdma_ctrl_mutex); 948 949 nvmf_free_options(nctrl->opts); 950 free_ctrl: 951 kfree(ctrl->queues); 952 kfree(ctrl); 953 } 954 955 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 956 { 957 /* If we are resetting/deleting then do nothing */ 958 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 959 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 960 ctrl->ctrl.state == NVME_CTRL_LIVE); 961 return; 962 } 963 964 if (nvmf_should_reconnect(&ctrl->ctrl)) { 965 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 966 ctrl->ctrl.opts->reconnect_delay); 967 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 968 ctrl->ctrl.opts->reconnect_delay * HZ); 969 } else { 970 nvme_delete_ctrl(&ctrl->ctrl); 971 } 972 } 973 974 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 975 { 976 int ret = -EINVAL; 977 bool changed; 978 979 ret = nvme_rdma_configure_admin_queue(ctrl, new); 980 if (ret) 981 return ret; 982 983 if (ctrl->ctrl.icdoff) { 984 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 985 goto destroy_admin; 986 } 987 988 if (!(ctrl->ctrl.sgls & (1 << 2))) { 989 dev_err(ctrl->ctrl.device, 990 "Mandatory keyed sgls are not supported!\n"); 991 goto destroy_admin; 992 } 993 994 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 995 dev_warn(ctrl->ctrl.device, 996 "queue_size %zu > ctrl sqsize %u, clamping down\n", 997 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 998 } 999 1000 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1001 dev_warn(ctrl->ctrl.device, 1002 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1003 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1004 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1005 } 1006 1007 if (ctrl->ctrl.sgls & (1 << 20)) 1008 ctrl->use_inline_data = true; 1009 1010 if (ctrl->ctrl.queue_count > 1) { 1011 ret = nvme_rdma_configure_io_queues(ctrl, new); 1012 if (ret) 1013 goto destroy_admin; 1014 } 1015 1016 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1017 if (!changed) { 1018 /* state change failure is ok if we're in DELETING state */ 1019 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1020 ret = -EINVAL; 1021 goto destroy_io; 1022 } 1023 1024 nvme_start_ctrl(&ctrl->ctrl); 1025 return 0; 1026 1027 destroy_io: 1028 if (ctrl->ctrl.queue_count > 1) 1029 nvme_rdma_destroy_io_queues(ctrl, new); 1030 destroy_admin: 1031 nvme_rdma_stop_queue(&ctrl->queues[0]); 1032 nvme_rdma_destroy_admin_queue(ctrl, new); 1033 return ret; 1034 } 1035 1036 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1037 { 1038 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1039 struct nvme_rdma_ctrl, reconnect_work); 1040 1041 ++ctrl->ctrl.nr_reconnects; 1042 1043 if (nvme_rdma_setup_ctrl(ctrl, false)) 1044 goto requeue; 1045 1046 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1047 ctrl->ctrl.nr_reconnects); 1048 1049 ctrl->ctrl.nr_reconnects = 0; 1050 1051 return; 1052 1053 requeue: 1054 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1055 ctrl->ctrl.nr_reconnects); 1056 nvme_rdma_reconnect_or_remove(ctrl); 1057 } 1058 1059 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1060 { 1061 struct nvme_rdma_ctrl *ctrl = container_of(work, 1062 struct nvme_rdma_ctrl, err_work); 1063 1064 nvme_stop_keep_alive(&ctrl->ctrl); 1065 nvme_rdma_teardown_io_queues(ctrl, false); 1066 nvme_start_queues(&ctrl->ctrl); 1067 nvme_rdma_teardown_admin_queue(ctrl, false); 1068 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1069 1070 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1071 /* state change failure is ok if we're in DELETING state */ 1072 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1073 return; 1074 } 1075 1076 nvme_rdma_reconnect_or_remove(ctrl); 1077 } 1078 1079 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1080 { 1081 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1082 return; 1083 1084 queue_work(nvme_wq, &ctrl->err_work); 1085 } 1086 1087 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1088 const char *op) 1089 { 1090 struct nvme_rdma_queue *queue = cq->cq_context; 1091 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1092 1093 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1094 dev_info(ctrl->ctrl.device, 1095 "%s for CQE 0x%p failed with status %s (%d)\n", 1096 op, wc->wr_cqe, 1097 ib_wc_status_msg(wc->status), wc->status); 1098 nvme_rdma_error_recovery(ctrl); 1099 } 1100 1101 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1102 { 1103 if (unlikely(wc->status != IB_WC_SUCCESS)) 1104 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1105 } 1106 1107 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1108 { 1109 struct nvme_rdma_request *req = 1110 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1111 struct request *rq = blk_mq_rq_from_pdu(req); 1112 1113 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1114 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1115 return; 1116 } 1117 1118 if (refcount_dec_and_test(&req->ref)) 1119 nvme_end_request(rq, req->status, req->result); 1120 1121 } 1122 1123 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1124 struct nvme_rdma_request *req) 1125 { 1126 struct ib_send_wr wr = { 1127 .opcode = IB_WR_LOCAL_INV, 1128 .next = NULL, 1129 .num_sge = 0, 1130 .send_flags = IB_SEND_SIGNALED, 1131 .ex.invalidate_rkey = req->mr->rkey, 1132 }; 1133 1134 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1135 wr.wr_cqe = &req->reg_cqe; 1136 1137 return ib_post_send(queue->qp, &wr, NULL); 1138 } 1139 1140 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1141 struct request *rq) 1142 { 1143 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1144 struct nvme_rdma_device *dev = queue->device; 1145 struct ib_device *ibdev = dev->dev; 1146 1147 if (!blk_rq_nr_phys_segments(rq)) 1148 return; 1149 1150 if (req->mr) { 1151 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1152 req->mr = NULL; 1153 } 1154 1155 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq)); 1156 1157 nvme_cleanup_cmd(rq); 1158 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE); 1159 } 1160 1161 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1162 { 1163 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1164 1165 sg->addr = 0; 1166 put_unaligned_le24(0, sg->length); 1167 put_unaligned_le32(0, sg->key); 1168 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1169 return 0; 1170 } 1171 1172 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1173 struct nvme_rdma_request *req, struct nvme_command *c, 1174 int count) 1175 { 1176 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1177 struct scatterlist *sgl = req->sg_table.sgl; 1178 struct ib_sge *sge = &req->sge[1]; 1179 u32 len = 0; 1180 int i; 1181 1182 for (i = 0; i < count; i++, sgl++, sge++) { 1183 sge->addr = sg_dma_address(sgl); 1184 sge->length = sg_dma_len(sgl); 1185 sge->lkey = queue->device->pd->local_dma_lkey; 1186 len += sge->length; 1187 } 1188 1189 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1190 sg->length = cpu_to_le32(len); 1191 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1192 1193 req->num_sge += count; 1194 return 0; 1195 } 1196 1197 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1198 struct nvme_rdma_request *req, struct nvme_command *c) 1199 { 1200 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1201 1202 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1203 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1204 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1205 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1206 return 0; 1207 } 1208 1209 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1210 struct nvme_rdma_request *req, struct nvme_command *c, 1211 int count) 1212 { 1213 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1214 int nr; 1215 1216 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1217 if (WARN_ON_ONCE(!req->mr)) 1218 return -EAGAIN; 1219 1220 /* 1221 * Align the MR to a 4K page size to match the ctrl page size and 1222 * the block virtual boundary. 1223 */ 1224 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1225 if (unlikely(nr < count)) { 1226 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1227 req->mr = NULL; 1228 if (nr < 0) 1229 return nr; 1230 return -EINVAL; 1231 } 1232 1233 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1234 1235 req->reg_cqe.done = nvme_rdma_memreg_done; 1236 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1237 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1238 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1239 req->reg_wr.wr.num_sge = 0; 1240 req->reg_wr.mr = req->mr; 1241 req->reg_wr.key = req->mr->rkey; 1242 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1243 IB_ACCESS_REMOTE_READ | 1244 IB_ACCESS_REMOTE_WRITE; 1245 1246 sg->addr = cpu_to_le64(req->mr->iova); 1247 put_unaligned_le24(req->mr->length, sg->length); 1248 put_unaligned_le32(req->mr->rkey, sg->key); 1249 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1250 NVME_SGL_FMT_INVALIDATE; 1251 1252 return 0; 1253 } 1254 1255 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1256 struct request *rq, struct nvme_command *c) 1257 { 1258 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1259 struct nvme_rdma_device *dev = queue->device; 1260 struct ib_device *ibdev = dev->dev; 1261 int count, ret; 1262 1263 req->num_sge = 1; 1264 refcount_set(&req->ref, 2); /* send and recv completions */ 1265 1266 c->common.flags |= NVME_CMD_SGL_METABUF; 1267 1268 if (!blk_rq_nr_phys_segments(rq)) 1269 return nvme_rdma_set_sg_null(c); 1270 1271 req->sg_table.sgl = req->first_sgl; 1272 ret = sg_alloc_table_chained(&req->sg_table, 1273 blk_rq_nr_phys_segments(rq), req->sg_table.sgl, 1274 SG_CHUNK_SIZE); 1275 if (ret) 1276 return -ENOMEM; 1277 1278 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1279 1280 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1281 rq_dma_dir(rq)); 1282 if (unlikely(count <= 0)) { 1283 ret = -EIO; 1284 goto out_free_table; 1285 } 1286 1287 if (count <= dev->num_inline_segments) { 1288 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1289 queue->ctrl->use_inline_data && 1290 blk_rq_payload_bytes(rq) <= 1291 nvme_rdma_inline_data_size(queue)) { 1292 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1293 goto out; 1294 } 1295 1296 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1297 ret = nvme_rdma_map_sg_single(queue, req, c); 1298 goto out; 1299 } 1300 } 1301 1302 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1303 out: 1304 if (unlikely(ret)) 1305 goto out_unmap_sg; 1306 1307 return 0; 1308 1309 out_unmap_sg: 1310 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq)); 1311 out_free_table: 1312 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE); 1313 return ret; 1314 } 1315 1316 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1317 { 1318 struct nvme_rdma_qe *qe = 1319 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1320 struct nvme_rdma_request *req = 1321 container_of(qe, struct nvme_rdma_request, sqe); 1322 struct request *rq = blk_mq_rq_from_pdu(req); 1323 1324 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1325 nvme_rdma_wr_error(cq, wc, "SEND"); 1326 return; 1327 } 1328 1329 if (refcount_dec_and_test(&req->ref)) 1330 nvme_end_request(rq, req->status, req->result); 1331 } 1332 1333 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1334 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1335 struct ib_send_wr *first) 1336 { 1337 struct ib_send_wr wr; 1338 int ret; 1339 1340 sge->addr = qe->dma; 1341 sge->length = sizeof(struct nvme_command), 1342 sge->lkey = queue->device->pd->local_dma_lkey; 1343 1344 wr.next = NULL; 1345 wr.wr_cqe = &qe->cqe; 1346 wr.sg_list = sge; 1347 wr.num_sge = num_sge; 1348 wr.opcode = IB_WR_SEND; 1349 wr.send_flags = IB_SEND_SIGNALED; 1350 1351 if (first) 1352 first->next = ≀ 1353 else 1354 first = ≀ 1355 1356 ret = ib_post_send(queue->qp, first, NULL); 1357 if (unlikely(ret)) { 1358 dev_err(queue->ctrl->ctrl.device, 1359 "%s failed with error code %d\n", __func__, ret); 1360 } 1361 return ret; 1362 } 1363 1364 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1365 struct nvme_rdma_qe *qe) 1366 { 1367 struct ib_recv_wr wr; 1368 struct ib_sge list; 1369 int ret; 1370 1371 list.addr = qe->dma; 1372 list.length = sizeof(struct nvme_completion); 1373 list.lkey = queue->device->pd->local_dma_lkey; 1374 1375 qe->cqe.done = nvme_rdma_recv_done; 1376 1377 wr.next = NULL; 1378 wr.wr_cqe = &qe->cqe; 1379 wr.sg_list = &list; 1380 wr.num_sge = 1; 1381 1382 ret = ib_post_recv(queue->qp, &wr, NULL); 1383 if (unlikely(ret)) { 1384 dev_err(queue->ctrl->ctrl.device, 1385 "%s failed with error code %d\n", __func__, ret); 1386 } 1387 return ret; 1388 } 1389 1390 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1391 { 1392 u32 queue_idx = nvme_rdma_queue_idx(queue); 1393 1394 if (queue_idx == 0) 1395 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1396 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1397 } 1398 1399 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1400 { 1401 if (unlikely(wc->status != IB_WC_SUCCESS)) 1402 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1403 } 1404 1405 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1406 { 1407 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1408 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1409 struct ib_device *dev = queue->device->dev; 1410 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1411 struct nvme_command *cmd = sqe->data; 1412 struct ib_sge sge; 1413 int ret; 1414 1415 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1416 1417 memset(cmd, 0, sizeof(*cmd)); 1418 cmd->common.opcode = nvme_admin_async_event; 1419 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1420 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1421 nvme_rdma_set_sg_null(cmd); 1422 1423 sqe->cqe.done = nvme_rdma_async_done; 1424 1425 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1426 DMA_TO_DEVICE); 1427 1428 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1429 WARN_ON_ONCE(ret); 1430 } 1431 1432 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1433 struct nvme_completion *cqe, struct ib_wc *wc) 1434 { 1435 struct request *rq; 1436 struct nvme_rdma_request *req; 1437 1438 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1439 if (!rq) { 1440 dev_err(queue->ctrl->ctrl.device, 1441 "tag 0x%x on QP %#x not found\n", 1442 cqe->command_id, queue->qp->qp_num); 1443 nvme_rdma_error_recovery(queue->ctrl); 1444 return; 1445 } 1446 req = blk_mq_rq_to_pdu(rq); 1447 1448 req->status = cqe->status; 1449 req->result = cqe->result; 1450 1451 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1452 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1453 dev_err(queue->ctrl->ctrl.device, 1454 "Bogus remote invalidation for rkey %#x\n", 1455 req->mr->rkey); 1456 nvme_rdma_error_recovery(queue->ctrl); 1457 } 1458 } else if (req->mr) { 1459 int ret; 1460 1461 ret = nvme_rdma_inv_rkey(queue, req); 1462 if (unlikely(ret < 0)) { 1463 dev_err(queue->ctrl->ctrl.device, 1464 "Queueing INV WR for rkey %#x failed (%d)\n", 1465 req->mr->rkey, ret); 1466 nvme_rdma_error_recovery(queue->ctrl); 1467 } 1468 /* the local invalidation completion will end the request */ 1469 return; 1470 } 1471 1472 if (refcount_dec_and_test(&req->ref)) 1473 nvme_end_request(rq, req->status, req->result); 1474 } 1475 1476 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1477 { 1478 struct nvme_rdma_qe *qe = 1479 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1480 struct nvme_rdma_queue *queue = cq->cq_context; 1481 struct ib_device *ibdev = queue->device->dev; 1482 struct nvme_completion *cqe = qe->data; 1483 const size_t len = sizeof(struct nvme_completion); 1484 1485 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1486 nvme_rdma_wr_error(cq, wc, "RECV"); 1487 return; 1488 } 1489 1490 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1491 /* 1492 * AEN requests are special as they don't time out and can 1493 * survive any kind of queue freeze and often don't respond to 1494 * aborts. We don't even bother to allocate a struct request 1495 * for them but rather special case them here. 1496 */ 1497 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1498 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1499 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1500 &cqe->result); 1501 else 1502 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1503 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1504 1505 nvme_rdma_post_recv(queue, qe); 1506 } 1507 1508 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1509 { 1510 int ret, i; 1511 1512 for (i = 0; i < queue->queue_size; i++) { 1513 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1514 if (ret) 1515 goto out_destroy_queue_ib; 1516 } 1517 1518 return 0; 1519 1520 out_destroy_queue_ib: 1521 nvme_rdma_destroy_queue_ib(queue); 1522 return ret; 1523 } 1524 1525 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1526 struct rdma_cm_event *ev) 1527 { 1528 struct rdma_cm_id *cm_id = queue->cm_id; 1529 int status = ev->status; 1530 const char *rej_msg; 1531 const struct nvme_rdma_cm_rej *rej_data; 1532 u8 rej_data_len; 1533 1534 rej_msg = rdma_reject_msg(cm_id, status); 1535 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1536 1537 if (rej_data && rej_data_len >= sizeof(u16)) { 1538 u16 sts = le16_to_cpu(rej_data->sts); 1539 1540 dev_err(queue->ctrl->ctrl.device, 1541 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1542 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1543 } else { 1544 dev_err(queue->ctrl->ctrl.device, 1545 "Connect rejected: status %d (%s).\n", status, rej_msg); 1546 } 1547 1548 return -ECONNRESET; 1549 } 1550 1551 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1552 { 1553 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1554 int ret; 1555 1556 ret = nvme_rdma_create_queue_ib(queue); 1557 if (ret) 1558 return ret; 1559 1560 if (ctrl->opts->tos >= 0) 1561 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1562 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1563 if (ret) { 1564 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1565 queue->cm_error); 1566 goto out_destroy_queue; 1567 } 1568 1569 return 0; 1570 1571 out_destroy_queue: 1572 nvme_rdma_destroy_queue_ib(queue); 1573 return ret; 1574 } 1575 1576 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1577 { 1578 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1579 struct rdma_conn_param param = { }; 1580 struct nvme_rdma_cm_req priv = { }; 1581 int ret; 1582 1583 param.qp_num = queue->qp->qp_num; 1584 param.flow_control = 1; 1585 1586 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1587 /* maximum retry count */ 1588 param.retry_count = 7; 1589 param.rnr_retry_count = 7; 1590 param.private_data = &priv; 1591 param.private_data_len = sizeof(priv); 1592 1593 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1594 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1595 /* 1596 * set the admin queue depth to the minimum size 1597 * specified by the Fabrics standard. 1598 */ 1599 if (priv.qid == 0) { 1600 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1601 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1602 } else { 1603 /* 1604 * current interpretation of the fabrics spec 1605 * is at minimum you make hrqsize sqsize+1, or a 1606 * 1's based representation of sqsize. 1607 */ 1608 priv.hrqsize = cpu_to_le16(queue->queue_size); 1609 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1610 } 1611 1612 ret = rdma_connect(queue->cm_id, ¶m); 1613 if (ret) { 1614 dev_err(ctrl->ctrl.device, 1615 "rdma_connect failed (%d).\n", ret); 1616 goto out_destroy_queue_ib; 1617 } 1618 1619 return 0; 1620 1621 out_destroy_queue_ib: 1622 nvme_rdma_destroy_queue_ib(queue); 1623 return ret; 1624 } 1625 1626 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1627 struct rdma_cm_event *ev) 1628 { 1629 struct nvme_rdma_queue *queue = cm_id->context; 1630 int cm_error = 0; 1631 1632 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1633 rdma_event_msg(ev->event), ev->event, 1634 ev->status, cm_id); 1635 1636 switch (ev->event) { 1637 case RDMA_CM_EVENT_ADDR_RESOLVED: 1638 cm_error = nvme_rdma_addr_resolved(queue); 1639 break; 1640 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1641 cm_error = nvme_rdma_route_resolved(queue); 1642 break; 1643 case RDMA_CM_EVENT_ESTABLISHED: 1644 queue->cm_error = nvme_rdma_conn_established(queue); 1645 /* complete cm_done regardless of success/failure */ 1646 complete(&queue->cm_done); 1647 return 0; 1648 case RDMA_CM_EVENT_REJECTED: 1649 nvme_rdma_destroy_queue_ib(queue); 1650 cm_error = nvme_rdma_conn_rejected(queue, ev); 1651 break; 1652 case RDMA_CM_EVENT_ROUTE_ERROR: 1653 case RDMA_CM_EVENT_CONNECT_ERROR: 1654 case RDMA_CM_EVENT_UNREACHABLE: 1655 nvme_rdma_destroy_queue_ib(queue); 1656 /* fall through */ 1657 case RDMA_CM_EVENT_ADDR_ERROR: 1658 dev_dbg(queue->ctrl->ctrl.device, 1659 "CM error event %d\n", ev->event); 1660 cm_error = -ECONNRESET; 1661 break; 1662 case RDMA_CM_EVENT_DISCONNECTED: 1663 case RDMA_CM_EVENT_ADDR_CHANGE: 1664 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1665 dev_dbg(queue->ctrl->ctrl.device, 1666 "disconnect received - connection closed\n"); 1667 nvme_rdma_error_recovery(queue->ctrl); 1668 break; 1669 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1670 /* device removal is handled via the ib_client API */ 1671 break; 1672 default: 1673 dev_err(queue->ctrl->ctrl.device, 1674 "Unexpected RDMA CM event (%d)\n", ev->event); 1675 nvme_rdma_error_recovery(queue->ctrl); 1676 break; 1677 } 1678 1679 if (cm_error) { 1680 queue->cm_error = cm_error; 1681 complete(&queue->cm_done); 1682 } 1683 1684 return 0; 1685 } 1686 1687 static enum blk_eh_timer_return 1688 nvme_rdma_timeout(struct request *rq, bool reserved) 1689 { 1690 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1691 struct nvme_rdma_queue *queue = req->queue; 1692 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1693 1694 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1695 rq->tag, nvme_rdma_queue_idx(queue)); 1696 1697 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1698 /* 1699 * Teardown immediately if controller times out while starting 1700 * or we are already started error recovery. all outstanding 1701 * requests are completed on shutdown, so we return BLK_EH_DONE. 1702 */ 1703 flush_work(&ctrl->err_work); 1704 nvme_rdma_teardown_io_queues(ctrl, false); 1705 nvme_rdma_teardown_admin_queue(ctrl, false); 1706 return BLK_EH_DONE; 1707 } 1708 1709 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1710 nvme_rdma_error_recovery(ctrl); 1711 1712 return BLK_EH_RESET_TIMER; 1713 } 1714 1715 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1716 const struct blk_mq_queue_data *bd) 1717 { 1718 struct nvme_ns *ns = hctx->queue->queuedata; 1719 struct nvme_rdma_queue *queue = hctx->driver_data; 1720 struct request *rq = bd->rq; 1721 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1722 struct nvme_rdma_qe *sqe = &req->sqe; 1723 struct nvme_command *c = sqe->data; 1724 struct ib_device *dev; 1725 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1726 blk_status_t ret; 1727 int err; 1728 1729 WARN_ON_ONCE(rq->tag < 0); 1730 1731 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1732 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1733 1734 dev = queue->device->dev; 1735 1736 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 1737 sizeof(struct nvme_command), 1738 DMA_TO_DEVICE); 1739 err = ib_dma_mapping_error(dev, req->sqe.dma); 1740 if (unlikely(err)) 1741 return BLK_STS_RESOURCE; 1742 1743 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1744 sizeof(struct nvme_command), DMA_TO_DEVICE); 1745 1746 ret = nvme_setup_cmd(ns, rq, c); 1747 if (ret) 1748 goto unmap_qe; 1749 1750 blk_mq_start_request(rq); 1751 1752 err = nvme_rdma_map_data(queue, rq, c); 1753 if (unlikely(err < 0)) { 1754 dev_err(queue->ctrl->ctrl.device, 1755 "Failed to map data (%d)\n", err); 1756 nvme_cleanup_cmd(rq); 1757 goto err; 1758 } 1759 1760 sqe->cqe.done = nvme_rdma_send_done; 1761 1762 ib_dma_sync_single_for_device(dev, sqe->dma, 1763 sizeof(struct nvme_command), DMA_TO_DEVICE); 1764 1765 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1766 req->mr ? &req->reg_wr.wr : NULL); 1767 if (unlikely(err)) { 1768 nvme_rdma_unmap_data(queue, rq); 1769 goto err; 1770 } 1771 1772 return BLK_STS_OK; 1773 1774 err: 1775 if (err == -ENOMEM || err == -EAGAIN) 1776 ret = BLK_STS_RESOURCE; 1777 else 1778 ret = BLK_STS_IOERR; 1779 unmap_qe: 1780 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 1781 DMA_TO_DEVICE); 1782 return ret; 1783 } 1784 1785 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1786 { 1787 struct nvme_rdma_queue *queue = hctx->driver_data; 1788 1789 return ib_process_cq_direct(queue->ib_cq, -1); 1790 } 1791 1792 static void nvme_rdma_complete_rq(struct request *rq) 1793 { 1794 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1795 struct nvme_rdma_queue *queue = req->queue; 1796 struct ib_device *ibdev = queue->device->dev; 1797 1798 nvme_rdma_unmap_data(queue, rq); 1799 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 1800 DMA_TO_DEVICE); 1801 nvme_complete_rq(rq); 1802 } 1803 1804 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1805 { 1806 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1807 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1808 1809 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 1810 /* separate read/write queues */ 1811 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1812 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1813 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1814 set->map[HCTX_TYPE_READ].nr_queues = 1815 ctrl->io_queues[HCTX_TYPE_READ]; 1816 set->map[HCTX_TYPE_READ].queue_offset = 1817 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1818 } else { 1819 /* shared read/write queues */ 1820 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1821 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1822 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1823 set->map[HCTX_TYPE_READ].nr_queues = 1824 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1825 set->map[HCTX_TYPE_READ].queue_offset = 0; 1826 } 1827 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1828 ctrl->device->dev, 0); 1829 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1830 ctrl->device->dev, 0); 1831 1832 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 1833 /* map dedicated poll queues only if we have queues left */ 1834 set->map[HCTX_TYPE_POLL].nr_queues = 1835 ctrl->io_queues[HCTX_TYPE_POLL]; 1836 set->map[HCTX_TYPE_POLL].queue_offset = 1837 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1838 ctrl->io_queues[HCTX_TYPE_READ]; 1839 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1840 } 1841 1842 dev_info(ctrl->ctrl.device, 1843 "mapped %d/%d/%d default/read/poll queues.\n", 1844 ctrl->io_queues[HCTX_TYPE_DEFAULT], 1845 ctrl->io_queues[HCTX_TYPE_READ], 1846 ctrl->io_queues[HCTX_TYPE_POLL]); 1847 1848 return 0; 1849 } 1850 1851 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1852 .queue_rq = nvme_rdma_queue_rq, 1853 .complete = nvme_rdma_complete_rq, 1854 .init_request = nvme_rdma_init_request, 1855 .exit_request = nvme_rdma_exit_request, 1856 .init_hctx = nvme_rdma_init_hctx, 1857 .timeout = nvme_rdma_timeout, 1858 .map_queues = nvme_rdma_map_queues, 1859 .poll = nvme_rdma_poll, 1860 }; 1861 1862 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1863 .queue_rq = nvme_rdma_queue_rq, 1864 .complete = nvme_rdma_complete_rq, 1865 .init_request = nvme_rdma_init_request, 1866 .exit_request = nvme_rdma_exit_request, 1867 .init_hctx = nvme_rdma_init_admin_hctx, 1868 .timeout = nvme_rdma_timeout, 1869 }; 1870 1871 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1872 { 1873 cancel_work_sync(&ctrl->err_work); 1874 cancel_delayed_work_sync(&ctrl->reconnect_work); 1875 1876 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1877 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1878 if (shutdown) 1879 nvme_shutdown_ctrl(&ctrl->ctrl); 1880 else 1881 nvme_disable_ctrl(&ctrl->ctrl); 1882 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1883 } 1884 1885 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1886 { 1887 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1888 } 1889 1890 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1891 { 1892 struct nvme_rdma_ctrl *ctrl = 1893 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1894 1895 nvme_stop_ctrl(&ctrl->ctrl); 1896 nvme_rdma_shutdown_ctrl(ctrl, false); 1897 1898 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1899 /* state change failure should never happen */ 1900 WARN_ON_ONCE(1); 1901 return; 1902 } 1903 1904 if (nvme_rdma_setup_ctrl(ctrl, false)) 1905 goto out_fail; 1906 1907 return; 1908 1909 out_fail: 1910 ++ctrl->ctrl.nr_reconnects; 1911 nvme_rdma_reconnect_or_remove(ctrl); 1912 } 1913 1914 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1915 .name = "rdma", 1916 .module = THIS_MODULE, 1917 .flags = NVME_F_FABRICS, 1918 .reg_read32 = nvmf_reg_read32, 1919 .reg_read64 = nvmf_reg_read64, 1920 .reg_write32 = nvmf_reg_write32, 1921 .free_ctrl = nvme_rdma_free_ctrl, 1922 .submit_async_event = nvme_rdma_submit_async_event, 1923 .delete_ctrl = nvme_rdma_delete_ctrl, 1924 .get_address = nvmf_get_address, 1925 }; 1926 1927 /* 1928 * Fails a connection request if it matches an existing controller 1929 * (association) with the same tuple: 1930 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1931 * 1932 * if local address is not specified in the request, it will match an 1933 * existing controller with all the other parameters the same and no 1934 * local port address specified as well. 1935 * 1936 * The ports don't need to be compared as they are intrinsically 1937 * already matched by the port pointers supplied. 1938 */ 1939 static bool 1940 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1941 { 1942 struct nvme_rdma_ctrl *ctrl; 1943 bool found = false; 1944 1945 mutex_lock(&nvme_rdma_ctrl_mutex); 1946 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1947 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1948 if (found) 1949 break; 1950 } 1951 mutex_unlock(&nvme_rdma_ctrl_mutex); 1952 1953 return found; 1954 } 1955 1956 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1957 struct nvmf_ctrl_options *opts) 1958 { 1959 struct nvme_rdma_ctrl *ctrl; 1960 int ret; 1961 bool changed; 1962 1963 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1964 if (!ctrl) 1965 return ERR_PTR(-ENOMEM); 1966 ctrl->ctrl.opts = opts; 1967 INIT_LIST_HEAD(&ctrl->list); 1968 1969 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1970 opts->trsvcid = 1971 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1972 if (!opts->trsvcid) { 1973 ret = -ENOMEM; 1974 goto out_free_ctrl; 1975 } 1976 opts->mask |= NVMF_OPT_TRSVCID; 1977 } 1978 1979 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1980 opts->traddr, opts->trsvcid, &ctrl->addr); 1981 if (ret) { 1982 pr_err("malformed address passed: %s:%s\n", 1983 opts->traddr, opts->trsvcid); 1984 goto out_free_ctrl; 1985 } 1986 1987 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1988 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1989 opts->host_traddr, NULL, &ctrl->src_addr); 1990 if (ret) { 1991 pr_err("malformed src address passed: %s\n", 1992 opts->host_traddr); 1993 goto out_free_ctrl; 1994 } 1995 } 1996 1997 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1998 ret = -EALREADY; 1999 goto out_free_ctrl; 2000 } 2001 2002 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2003 nvme_rdma_reconnect_ctrl_work); 2004 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2005 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2006 2007 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2008 opts->nr_poll_queues + 1; 2009 ctrl->ctrl.sqsize = opts->queue_size - 1; 2010 ctrl->ctrl.kato = opts->kato; 2011 2012 ret = -ENOMEM; 2013 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2014 GFP_KERNEL); 2015 if (!ctrl->queues) 2016 goto out_free_ctrl; 2017 2018 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2019 0 /* no quirks, we're perfect! */); 2020 if (ret) 2021 goto out_kfree_queues; 2022 2023 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2024 WARN_ON_ONCE(!changed); 2025 2026 ret = nvme_rdma_setup_ctrl(ctrl, true); 2027 if (ret) 2028 goto out_uninit_ctrl; 2029 2030 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2031 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2032 2033 nvme_get_ctrl(&ctrl->ctrl); 2034 2035 mutex_lock(&nvme_rdma_ctrl_mutex); 2036 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2037 mutex_unlock(&nvme_rdma_ctrl_mutex); 2038 2039 return &ctrl->ctrl; 2040 2041 out_uninit_ctrl: 2042 nvme_uninit_ctrl(&ctrl->ctrl); 2043 nvme_put_ctrl(&ctrl->ctrl); 2044 if (ret > 0) 2045 ret = -EIO; 2046 return ERR_PTR(ret); 2047 out_kfree_queues: 2048 kfree(ctrl->queues); 2049 out_free_ctrl: 2050 kfree(ctrl); 2051 return ERR_PTR(ret); 2052 } 2053 2054 static struct nvmf_transport_ops nvme_rdma_transport = { 2055 .name = "rdma", 2056 .module = THIS_MODULE, 2057 .required_opts = NVMF_OPT_TRADDR, 2058 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2059 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2060 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2061 NVMF_OPT_TOS, 2062 .create_ctrl = nvme_rdma_create_ctrl, 2063 }; 2064 2065 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2066 { 2067 struct nvme_rdma_ctrl *ctrl; 2068 struct nvme_rdma_device *ndev; 2069 bool found = false; 2070 2071 mutex_lock(&device_list_mutex); 2072 list_for_each_entry(ndev, &device_list, entry) { 2073 if (ndev->dev == ib_device) { 2074 found = true; 2075 break; 2076 } 2077 } 2078 mutex_unlock(&device_list_mutex); 2079 2080 if (!found) 2081 return; 2082 2083 /* Delete all controllers using this device */ 2084 mutex_lock(&nvme_rdma_ctrl_mutex); 2085 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2086 if (ctrl->device->dev != ib_device) 2087 continue; 2088 nvme_delete_ctrl(&ctrl->ctrl); 2089 } 2090 mutex_unlock(&nvme_rdma_ctrl_mutex); 2091 2092 flush_workqueue(nvme_delete_wq); 2093 } 2094 2095 static struct ib_client nvme_rdma_ib_client = { 2096 .name = "nvme_rdma", 2097 .remove = nvme_rdma_remove_one 2098 }; 2099 2100 static int __init nvme_rdma_init_module(void) 2101 { 2102 int ret; 2103 2104 ret = ib_register_client(&nvme_rdma_ib_client); 2105 if (ret) 2106 return ret; 2107 2108 ret = nvmf_register_transport(&nvme_rdma_transport); 2109 if (ret) 2110 goto err_unreg_client; 2111 2112 return 0; 2113 2114 err_unreg_client: 2115 ib_unregister_client(&nvme_rdma_ib_client); 2116 return ret; 2117 } 2118 2119 static void __exit nvme_rdma_cleanup_module(void) 2120 { 2121 nvmf_unregister_transport(&nvme_rdma_transport); 2122 ib_unregister_client(&nvme_rdma_ib_client); 2123 } 2124 2125 module_init(nvme_rdma_init_module); 2126 module_exit(nvme_rdma_cleanup_module); 2127 2128 MODULE_LICENSE("GPL v2"); 2129