1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 #define NVME_RDMA_DATA_SGL_SIZE \ 38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 39 #define NVME_RDMA_METADATA_SGL_SIZE \ 40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 41 42 struct nvme_rdma_device { 43 struct ib_device *dev; 44 struct ib_pd *pd; 45 struct kref ref; 46 struct list_head entry; 47 unsigned int num_inline_segments; 48 }; 49 50 struct nvme_rdma_qe { 51 struct ib_cqe cqe; 52 void *data; 53 u64 dma; 54 }; 55 56 struct nvme_rdma_sgl { 57 int nents; 58 struct sg_table sg_table; 59 }; 60 61 struct nvme_rdma_queue; 62 struct nvme_rdma_request { 63 struct nvme_request req; 64 struct ib_mr *mr; 65 struct nvme_rdma_qe sqe; 66 union nvme_result result; 67 __le16 status; 68 refcount_t ref; 69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 70 u32 num_sge; 71 struct ib_reg_wr reg_wr; 72 struct ib_cqe reg_cqe; 73 struct nvme_rdma_queue *queue; 74 struct nvme_rdma_sgl data_sgl; 75 struct nvme_rdma_sgl *metadata_sgl; 76 bool use_sig_mr; 77 }; 78 79 enum nvme_rdma_queue_flags { 80 NVME_RDMA_Q_ALLOCATED = 0, 81 NVME_RDMA_Q_LIVE = 1, 82 NVME_RDMA_Q_TR_READY = 2, 83 }; 84 85 struct nvme_rdma_queue { 86 struct nvme_rdma_qe *rsp_ring; 87 int queue_size; 88 size_t cmnd_capsule_len; 89 struct nvme_rdma_ctrl *ctrl; 90 struct nvme_rdma_device *device; 91 struct ib_cq *ib_cq; 92 struct ib_qp *qp; 93 94 unsigned long flags; 95 struct rdma_cm_id *cm_id; 96 int cm_error; 97 struct completion cm_done; 98 bool pi_support; 99 int cq_size; 100 }; 101 102 struct nvme_rdma_ctrl { 103 /* read only in the hot path */ 104 struct nvme_rdma_queue *queues; 105 106 /* other member variables */ 107 struct blk_mq_tag_set tag_set; 108 struct work_struct err_work; 109 110 struct nvme_rdma_qe async_event_sqe; 111 112 struct delayed_work reconnect_work; 113 114 struct list_head list; 115 116 struct blk_mq_tag_set admin_tag_set; 117 struct nvme_rdma_device *device; 118 119 u32 max_fr_pages; 120 121 struct sockaddr_storage addr; 122 struct sockaddr_storage src_addr; 123 124 struct nvme_ctrl ctrl; 125 bool use_inline_data; 126 u32 io_queues[HCTX_MAX_TYPES]; 127 }; 128 129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 130 { 131 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 132 } 133 134 static LIST_HEAD(device_list); 135 static DEFINE_MUTEX(device_list_mutex); 136 137 static LIST_HEAD(nvme_rdma_ctrl_list); 138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 139 140 /* 141 * Disabling this option makes small I/O goes faster, but is fundamentally 142 * unsafe. With it turned off we will have to register a global rkey that 143 * allows read and write access to all physical memory. 144 */ 145 static bool register_always = true; 146 module_param(register_always, bool, 0444); 147 MODULE_PARM_DESC(register_always, 148 "Use memory registration even for contiguous memory regions"); 149 150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 151 struct rdma_cm_event *event); 152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 153 static void nvme_rdma_complete_rq(struct request *rq); 154 155 static const struct blk_mq_ops nvme_rdma_mq_ops; 156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 157 158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 159 { 160 return queue - queue->ctrl->queues; 161 } 162 163 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 164 { 165 return nvme_rdma_queue_idx(queue) > 166 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 167 queue->ctrl->io_queues[HCTX_TYPE_READ]; 168 } 169 170 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 171 { 172 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 173 } 174 175 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 176 size_t capsule_size, enum dma_data_direction dir) 177 { 178 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 179 kfree(qe->data); 180 } 181 182 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 183 size_t capsule_size, enum dma_data_direction dir) 184 { 185 qe->data = kzalloc(capsule_size, GFP_KERNEL); 186 if (!qe->data) 187 return -ENOMEM; 188 189 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 190 if (ib_dma_mapping_error(ibdev, qe->dma)) { 191 kfree(qe->data); 192 qe->data = NULL; 193 return -ENOMEM; 194 } 195 196 return 0; 197 } 198 199 static void nvme_rdma_free_ring(struct ib_device *ibdev, 200 struct nvme_rdma_qe *ring, size_t ib_queue_size, 201 size_t capsule_size, enum dma_data_direction dir) 202 { 203 int i; 204 205 for (i = 0; i < ib_queue_size; i++) 206 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 207 kfree(ring); 208 } 209 210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 211 size_t ib_queue_size, size_t capsule_size, 212 enum dma_data_direction dir) 213 { 214 struct nvme_rdma_qe *ring; 215 int i; 216 217 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 218 if (!ring) 219 return NULL; 220 221 /* 222 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 223 * lifetime. It's safe, since any chage in the underlying RDMA device 224 * will issue error recovery and queue re-creation. 225 */ 226 for (i = 0; i < ib_queue_size; i++) { 227 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 228 goto out_free_ring; 229 } 230 231 return ring; 232 233 out_free_ring: 234 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 235 return NULL; 236 } 237 238 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 239 { 240 pr_debug("QP event %s (%d)\n", 241 ib_event_msg(event->event), event->event); 242 243 } 244 245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 246 { 247 int ret; 248 249 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 251 if (ret < 0) 252 return ret; 253 if (ret == 0) 254 return -ETIMEDOUT; 255 WARN_ON_ONCE(queue->cm_error > 0); 256 return queue->cm_error; 257 } 258 259 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 260 { 261 struct nvme_rdma_device *dev = queue->device; 262 struct ib_qp_init_attr init_attr; 263 int ret; 264 265 memset(&init_attr, 0, sizeof(init_attr)); 266 init_attr.event_handler = nvme_rdma_qp_event; 267 /* +1 for drain */ 268 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 269 /* +1 for drain */ 270 init_attr.cap.max_recv_wr = queue->queue_size + 1; 271 init_attr.cap.max_recv_sge = 1; 272 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 273 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 274 init_attr.qp_type = IB_QPT_RC; 275 init_attr.send_cq = queue->ib_cq; 276 init_attr.recv_cq = queue->ib_cq; 277 if (queue->pi_support) 278 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 279 init_attr.qp_context = queue; 280 281 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 282 283 queue->qp = queue->cm_id->qp; 284 return ret; 285 } 286 287 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx) 289 { 290 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 291 292 kfree(req->sqe.data); 293 } 294 295 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 296 struct request *rq, unsigned int hctx_idx, 297 unsigned int numa_node) 298 { 299 struct nvme_rdma_ctrl *ctrl = set->driver_data; 300 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 301 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 302 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 303 304 nvme_req(rq)->ctrl = &ctrl->ctrl; 305 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 306 if (!req->sqe.data) 307 return -ENOMEM; 308 309 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 310 if (queue->pi_support) 311 req->metadata_sgl = (void *)nvme_req(rq) + 312 sizeof(struct nvme_rdma_request) + 313 NVME_RDMA_DATA_SGL_SIZE; 314 315 req->queue = queue; 316 317 return 0; 318 } 319 320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 321 unsigned int hctx_idx) 322 { 323 struct nvme_rdma_ctrl *ctrl = data; 324 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 325 326 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 327 328 hctx->driver_data = queue; 329 return 0; 330 } 331 332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 333 unsigned int hctx_idx) 334 { 335 struct nvme_rdma_ctrl *ctrl = data; 336 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 337 338 BUG_ON(hctx_idx != 0); 339 340 hctx->driver_data = queue; 341 return 0; 342 } 343 344 static void nvme_rdma_free_dev(struct kref *ref) 345 { 346 struct nvme_rdma_device *ndev = 347 container_of(ref, struct nvme_rdma_device, ref); 348 349 mutex_lock(&device_list_mutex); 350 list_del(&ndev->entry); 351 mutex_unlock(&device_list_mutex); 352 353 ib_dealloc_pd(ndev->pd); 354 kfree(ndev); 355 } 356 357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 358 { 359 kref_put(&dev->ref, nvme_rdma_free_dev); 360 } 361 362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 363 { 364 return kref_get_unless_zero(&dev->ref); 365 } 366 367 static struct nvme_rdma_device * 368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 369 { 370 struct nvme_rdma_device *ndev; 371 372 mutex_lock(&device_list_mutex); 373 list_for_each_entry(ndev, &device_list, entry) { 374 if (ndev->dev->node_guid == cm_id->device->node_guid && 375 nvme_rdma_dev_get(ndev)) 376 goto out_unlock; 377 } 378 379 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 380 if (!ndev) 381 goto out_err; 382 383 ndev->dev = cm_id->device; 384 kref_init(&ndev->ref); 385 386 ndev->pd = ib_alloc_pd(ndev->dev, 387 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 388 if (IS_ERR(ndev->pd)) 389 goto out_free_dev; 390 391 if (!(ndev->dev->attrs.device_cap_flags & 392 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 393 dev_err(&ndev->dev->dev, 394 "Memory registrations not supported.\n"); 395 goto out_free_pd; 396 } 397 398 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 399 ndev->dev->attrs.max_send_sge - 1); 400 list_add(&ndev->entry, &device_list); 401 out_unlock: 402 mutex_unlock(&device_list_mutex); 403 return ndev; 404 405 out_free_pd: 406 ib_dealloc_pd(ndev->pd); 407 out_free_dev: 408 kfree(ndev); 409 out_err: 410 mutex_unlock(&device_list_mutex); 411 return NULL; 412 } 413 414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 415 { 416 if (nvme_rdma_poll_queue(queue)) 417 ib_free_cq(queue->ib_cq); 418 else 419 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 420 } 421 422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 423 { 424 struct nvme_rdma_device *dev; 425 struct ib_device *ibdev; 426 427 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 428 return; 429 430 dev = queue->device; 431 ibdev = dev->dev; 432 433 if (queue->pi_support) 434 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 435 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 436 437 /* 438 * The cm_id object might have been destroyed during RDMA connection 439 * establishment error flow to avoid getting other cma events, thus 440 * the destruction of the QP shouldn't use rdma_cm API. 441 */ 442 ib_destroy_qp(queue->qp); 443 nvme_rdma_free_cq(queue); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 452 { 453 u32 max_page_list_len; 454 455 if (pi_support) 456 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 457 else 458 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 459 460 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 461 } 462 463 static int nvme_rdma_create_cq(struct ib_device *ibdev, 464 struct nvme_rdma_queue *queue) 465 { 466 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 467 enum ib_poll_context poll_ctx; 468 469 /* 470 * Spread I/O queues completion vectors according their queue index. 471 * Admin queues can always go on completion vector 0. 472 */ 473 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 474 475 /* Polling queues need direct cq polling context */ 476 if (nvme_rdma_poll_queue(queue)) { 477 poll_ctx = IB_POLL_DIRECT; 478 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 479 comp_vector, poll_ctx); 480 } else { 481 poll_ctx = IB_POLL_SOFTIRQ; 482 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 483 comp_vector, poll_ctx); 484 } 485 486 if (IS_ERR(queue->ib_cq)) { 487 ret = PTR_ERR(queue->ib_cq); 488 return ret; 489 } 490 491 return 0; 492 } 493 494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 495 { 496 struct ib_device *ibdev; 497 const int send_wr_factor = 3; /* MR, SEND, INV */ 498 const int cq_factor = send_wr_factor + 1; /* + RECV */ 499 int ret, pages_per_mr; 500 501 queue->device = nvme_rdma_find_get_device(queue->cm_id); 502 if (!queue->device) { 503 dev_err(queue->cm_id->device->dev.parent, 504 "no client data found!\n"); 505 return -ECONNREFUSED; 506 } 507 ibdev = queue->device->dev; 508 509 /* +1 for ib_stop_cq */ 510 queue->cq_size = cq_factor * queue->queue_size + 1; 511 512 ret = nvme_rdma_create_cq(ibdev, queue); 513 if (ret) 514 goto out_put_dev; 515 516 ret = nvme_rdma_create_qp(queue, send_wr_factor); 517 if (ret) 518 goto out_destroy_ib_cq; 519 520 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 521 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 522 if (!queue->rsp_ring) { 523 ret = -ENOMEM; 524 goto out_destroy_qp; 525 } 526 527 /* 528 * Currently we don't use SG_GAPS MR's so if the first entry is 529 * misaligned we'll end up using two entries for a single data page, 530 * so one additional entry is required. 531 */ 532 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 533 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 534 queue->queue_size, 535 IB_MR_TYPE_MEM_REG, 536 pages_per_mr, 0); 537 if (ret) { 538 dev_err(queue->ctrl->ctrl.device, 539 "failed to initialize MR pool sized %d for QID %d\n", 540 queue->queue_size, nvme_rdma_queue_idx(queue)); 541 goto out_destroy_ring; 542 } 543 544 if (queue->pi_support) { 545 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 546 queue->queue_size, IB_MR_TYPE_INTEGRITY, 547 pages_per_mr, pages_per_mr); 548 if (ret) { 549 dev_err(queue->ctrl->ctrl.device, 550 "failed to initialize PI MR pool sized %d for QID %d\n", 551 queue->queue_size, nvme_rdma_queue_idx(queue)); 552 goto out_destroy_mr_pool; 553 } 554 } 555 556 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 557 558 return 0; 559 560 out_destroy_mr_pool: 561 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 562 out_destroy_ring: 563 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 564 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 565 out_destroy_qp: 566 rdma_destroy_qp(queue->cm_id); 567 out_destroy_ib_cq: 568 nvme_rdma_free_cq(queue); 569 out_put_dev: 570 nvme_rdma_dev_put(queue->device); 571 return ret; 572 } 573 574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 575 int idx, size_t queue_size) 576 { 577 struct nvme_rdma_queue *queue; 578 struct sockaddr *src_addr = NULL; 579 int ret; 580 581 queue = &ctrl->queues[idx]; 582 queue->ctrl = ctrl; 583 if (idx && ctrl->ctrl.max_integrity_segments) 584 queue->pi_support = true; 585 else 586 queue->pi_support = false; 587 init_completion(&queue->cm_done); 588 589 if (idx > 0) 590 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 591 else 592 queue->cmnd_capsule_len = sizeof(struct nvme_command); 593 594 queue->queue_size = queue_size; 595 596 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 597 RDMA_PS_TCP, IB_QPT_RC); 598 if (IS_ERR(queue->cm_id)) { 599 dev_info(ctrl->ctrl.device, 600 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 601 return PTR_ERR(queue->cm_id); 602 } 603 604 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 605 src_addr = (struct sockaddr *)&ctrl->src_addr; 606 607 queue->cm_error = -ETIMEDOUT; 608 ret = rdma_resolve_addr(queue->cm_id, src_addr, 609 (struct sockaddr *)&ctrl->addr, 610 NVME_RDMA_CONNECT_TIMEOUT_MS); 611 if (ret) { 612 dev_info(ctrl->ctrl.device, 613 "rdma_resolve_addr failed (%d).\n", ret); 614 goto out_destroy_cm_id; 615 } 616 617 ret = nvme_rdma_wait_for_cm(queue); 618 if (ret) { 619 dev_info(ctrl->ctrl.device, 620 "rdma connection establishment failed (%d)\n", ret); 621 goto out_destroy_cm_id; 622 } 623 624 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 625 626 return 0; 627 628 out_destroy_cm_id: 629 rdma_destroy_id(queue->cm_id); 630 nvme_rdma_destroy_queue_ib(queue); 631 return ret; 632 } 633 634 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 635 { 636 rdma_disconnect(queue->cm_id); 637 ib_drain_qp(queue->qp); 638 } 639 640 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 641 { 642 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 643 return; 644 __nvme_rdma_stop_queue(queue); 645 } 646 647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 648 { 649 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 650 return; 651 652 nvme_rdma_destroy_queue_ib(queue); 653 rdma_destroy_id(queue->cm_id); 654 } 655 656 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 657 { 658 int i; 659 660 for (i = 1; i < ctrl->ctrl.queue_count; i++) 661 nvme_rdma_free_queue(&ctrl->queues[i]); 662 } 663 664 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 665 { 666 int i; 667 668 for (i = 1; i < ctrl->ctrl.queue_count; i++) 669 nvme_rdma_stop_queue(&ctrl->queues[i]); 670 } 671 672 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 673 { 674 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 675 bool poll = nvme_rdma_poll_queue(queue); 676 int ret; 677 678 if (idx) 679 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 680 else 681 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 682 683 if (!ret) { 684 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 685 } else { 686 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 687 __nvme_rdma_stop_queue(queue); 688 dev_info(ctrl->ctrl.device, 689 "failed to connect queue: %d ret=%d\n", idx, ret); 690 } 691 return ret; 692 } 693 694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 695 { 696 int i, ret = 0; 697 698 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 699 ret = nvme_rdma_start_queue(ctrl, i); 700 if (ret) 701 goto out_stop_queues; 702 } 703 704 return 0; 705 706 out_stop_queues: 707 for (i--; i >= 1; i--) 708 nvme_rdma_stop_queue(&ctrl->queues[i]); 709 return ret; 710 } 711 712 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 713 { 714 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 715 struct ib_device *ibdev = ctrl->device->dev; 716 unsigned int nr_io_queues, nr_default_queues; 717 unsigned int nr_read_queues, nr_poll_queues; 718 int i, ret; 719 720 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 721 min(opts->nr_io_queues, num_online_cpus())); 722 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 723 min(opts->nr_write_queues, num_online_cpus())); 724 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 725 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 726 727 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 728 if (ret) 729 return ret; 730 731 ctrl->ctrl.queue_count = nr_io_queues + 1; 732 if (ctrl->ctrl.queue_count < 2) 733 return 0; 734 735 dev_info(ctrl->ctrl.device, 736 "creating %d I/O queues.\n", nr_io_queues); 737 738 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 739 /* 740 * separate read/write queues 741 * hand out dedicated default queues only after we have 742 * sufficient read queues. 743 */ 744 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 745 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 746 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 747 min(nr_default_queues, nr_io_queues); 748 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 749 } else { 750 /* 751 * shared read/write queues 752 * either no write queues were requested, or we don't have 753 * sufficient queue count to have dedicated default queues. 754 */ 755 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 756 min(nr_read_queues, nr_io_queues); 757 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 758 } 759 760 if (opts->nr_poll_queues && nr_io_queues) { 761 /* map dedicated poll queues only if we have queues left */ 762 ctrl->io_queues[HCTX_TYPE_POLL] = 763 min(nr_poll_queues, nr_io_queues); 764 } 765 766 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 767 ret = nvme_rdma_alloc_queue(ctrl, i, 768 ctrl->ctrl.sqsize + 1); 769 if (ret) 770 goto out_free_queues; 771 } 772 773 return 0; 774 775 out_free_queues: 776 for (i--; i >= 1; i--) 777 nvme_rdma_free_queue(&ctrl->queues[i]); 778 779 return ret; 780 } 781 782 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 783 bool admin) 784 { 785 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 786 struct blk_mq_tag_set *set; 787 int ret; 788 789 if (admin) { 790 set = &ctrl->admin_tag_set; 791 memset(set, 0, sizeof(*set)); 792 set->ops = &nvme_rdma_admin_mq_ops; 793 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 794 set->reserved_tags = 2; /* connect + keep-alive */ 795 set->numa_node = nctrl->numa_node; 796 set->cmd_size = sizeof(struct nvme_rdma_request) + 797 NVME_RDMA_DATA_SGL_SIZE; 798 set->driver_data = ctrl; 799 set->nr_hw_queues = 1; 800 set->timeout = ADMIN_TIMEOUT; 801 set->flags = BLK_MQ_F_NO_SCHED; 802 } else { 803 set = &ctrl->tag_set; 804 memset(set, 0, sizeof(*set)); 805 set->ops = &nvme_rdma_mq_ops; 806 set->queue_depth = nctrl->sqsize + 1; 807 set->reserved_tags = 1; /* fabric connect */ 808 set->numa_node = nctrl->numa_node; 809 set->flags = BLK_MQ_F_SHOULD_MERGE; 810 set->cmd_size = sizeof(struct nvme_rdma_request) + 811 NVME_RDMA_DATA_SGL_SIZE; 812 if (nctrl->max_integrity_segments) 813 set->cmd_size += sizeof(struct nvme_rdma_sgl) + 814 NVME_RDMA_METADATA_SGL_SIZE; 815 set->driver_data = ctrl; 816 set->nr_hw_queues = nctrl->queue_count - 1; 817 set->timeout = NVME_IO_TIMEOUT; 818 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 819 } 820 821 ret = blk_mq_alloc_tag_set(set); 822 if (ret) 823 return ERR_PTR(ret); 824 825 return set; 826 } 827 828 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 829 bool remove) 830 { 831 if (remove) { 832 blk_cleanup_queue(ctrl->ctrl.admin_q); 833 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 834 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 835 } 836 if (ctrl->async_event_sqe.data) { 837 cancel_work_sync(&ctrl->ctrl.async_event_work); 838 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 839 sizeof(struct nvme_command), DMA_TO_DEVICE); 840 ctrl->async_event_sqe.data = NULL; 841 } 842 nvme_rdma_free_queue(&ctrl->queues[0]); 843 } 844 845 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 846 bool new) 847 { 848 bool pi_capable = false; 849 int error; 850 851 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 852 if (error) 853 return error; 854 855 ctrl->device = ctrl->queues[0].device; 856 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 857 858 /* T10-PI support */ 859 if (ctrl->device->dev->attrs.device_cap_flags & 860 IB_DEVICE_INTEGRITY_HANDOVER) 861 pi_capable = true; 862 863 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 864 pi_capable); 865 866 /* 867 * Bind the async event SQE DMA mapping to the admin queue lifetime. 868 * It's safe, since any chage in the underlying RDMA device will issue 869 * error recovery and queue re-creation. 870 */ 871 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 872 sizeof(struct nvme_command), DMA_TO_DEVICE); 873 if (error) 874 goto out_free_queue; 875 876 if (new) { 877 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 878 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 879 error = PTR_ERR(ctrl->ctrl.admin_tagset); 880 goto out_free_async_qe; 881 } 882 883 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 884 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 885 error = PTR_ERR(ctrl->ctrl.fabrics_q); 886 goto out_free_tagset; 887 } 888 889 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 890 if (IS_ERR(ctrl->ctrl.admin_q)) { 891 error = PTR_ERR(ctrl->ctrl.admin_q); 892 goto out_cleanup_fabrics_q; 893 } 894 } 895 896 error = nvme_rdma_start_queue(ctrl, 0); 897 if (error) 898 goto out_cleanup_queue; 899 900 error = nvme_enable_ctrl(&ctrl->ctrl); 901 if (error) 902 goto out_stop_queue; 903 904 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 905 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 906 if (pi_capable) 907 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 908 else 909 ctrl->ctrl.max_integrity_segments = 0; 910 911 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 912 913 error = nvme_init_identify(&ctrl->ctrl); 914 if (error) 915 goto out_stop_queue; 916 917 return 0; 918 919 out_stop_queue: 920 nvme_rdma_stop_queue(&ctrl->queues[0]); 921 out_cleanup_queue: 922 if (new) 923 blk_cleanup_queue(ctrl->ctrl.admin_q); 924 out_cleanup_fabrics_q: 925 if (new) 926 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 927 out_free_tagset: 928 if (new) 929 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 930 out_free_async_qe: 931 if (ctrl->async_event_sqe.data) { 932 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 933 sizeof(struct nvme_command), DMA_TO_DEVICE); 934 ctrl->async_event_sqe.data = NULL; 935 } 936 out_free_queue: 937 nvme_rdma_free_queue(&ctrl->queues[0]); 938 return error; 939 } 940 941 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 942 bool remove) 943 { 944 if (remove) { 945 blk_cleanup_queue(ctrl->ctrl.connect_q); 946 blk_mq_free_tag_set(ctrl->ctrl.tagset); 947 } 948 nvme_rdma_free_io_queues(ctrl); 949 } 950 951 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 952 { 953 int ret; 954 955 ret = nvme_rdma_alloc_io_queues(ctrl); 956 if (ret) 957 return ret; 958 959 if (new) { 960 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 961 if (IS_ERR(ctrl->ctrl.tagset)) { 962 ret = PTR_ERR(ctrl->ctrl.tagset); 963 goto out_free_io_queues; 964 } 965 966 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 967 if (IS_ERR(ctrl->ctrl.connect_q)) { 968 ret = PTR_ERR(ctrl->ctrl.connect_q); 969 goto out_free_tag_set; 970 } 971 } 972 973 ret = nvme_rdma_start_io_queues(ctrl); 974 if (ret) 975 goto out_cleanup_connect_q; 976 977 if (!new) { 978 nvme_start_queues(&ctrl->ctrl); 979 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { 980 /* 981 * If we timed out waiting for freeze we are likely to 982 * be stuck. Fail the controller initialization just 983 * to be safe. 984 */ 985 ret = -ENODEV; 986 goto out_wait_freeze_timed_out; 987 } 988 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 989 ctrl->ctrl.queue_count - 1); 990 nvme_unfreeze(&ctrl->ctrl); 991 } 992 993 return 0; 994 995 out_wait_freeze_timed_out: 996 nvme_stop_queues(&ctrl->ctrl); 997 nvme_rdma_stop_io_queues(ctrl); 998 out_cleanup_connect_q: 999 if (new) 1000 blk_cleanup_queue(ctrl->ctrl.connect_q); 1001 out_free_tag_set: 1002 if (new) 1003 blk_mq_free_tag_set(ctrl->ctrl.tagset); 1004 out_free_io_queues: 1005 nvme_rdma_free_io_queues(ctrl); 1006 return ret; 1007 } 1008 1009 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 1010 bool remove) 1011 { 1012 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1013 blk_sync_queue(ctrl->ctrl.admin_q); 1014 nvme_rdma_stop_queue(&ctrl->queues[0]); 1015 if (ctrl->ctrl.admin_tagset) { 1016 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 1017 nvme_cancel_request, &ctrl->ctrl); 1018 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 1019 } 1020 if (remove) 1021 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1022 nvme_rdma_destroy_admin_queue(ctrl, remove); 1023 } 1024 1025 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 1026 bool remove) 1027 { 1028 if (ctrl->ctrl.queue_count > 1) { 1029 nvme_start_freeze(&ctrl->ctrl); 1030 nvme_stop_queues(&ctrl->ctrl); 1031 nvme_sync_io_queues(&ctrl->ctrl); 1032 nvme_rdma_stop_io_queues(ctrl); 1033 if (ctrl->ctrl.tagset) { 1034 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 1035 nvme_cancel_request, &ctrl->ctrl); 1036 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 1037 } 1038 if (remove) 1039 nvme_start_queues(&ctrl->ctrl); 1040 nvme_rdma_destroy_io_queues(ctrl, remove); 1041 } 1042 } 1043 1044 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1045 { 1046 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1047 1048 if (list_empty(&ctrl->list)) 1049 goto free_ctrl; 1050 1051 mutex_lock(&nvme_rdma_ctrl_mutex); 1052 list_del(&ctrl->list); 1053 mutex_unlock(&nvme_rdma_ctrl_mutex); 1054 1055 nvmf_free_options(nctrl->opts); 1056 free_ctrl: 1057 kfree(ctrl->queues); 1058 kfree(ctrl); 1059 } 1060 1061 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1062 { 1063 /* If we are resetting/deleting then do nothing */ 1064 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1065 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1066 ctrl->ctrl.state == NVME_CTRL_LIVE); 1067 return; 1068 } 1069 1070 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1071 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1072 ctrl->ctrl.opts->reconnect_delay); 1073 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1074 ctrl->ctrl.opts->reconnect_delay * HZ); 1075 } else { 1076 nvme_delete_ctrl(&ctrl->ctrl); 1077 } 1078 } 1079 1080 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1081 { 1082 int ret = -EINVAL; 1083 bool changed; 1084 1085 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1086 if (ret) 1087 return ret; 1088 1089 if (ctrl->ctrl.icdoff) { 1090 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1091 goto destroy_admin; 1092 } 1093 1094 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1095 dev_err(ctrl->ctrl.device, 1096 "Mandatory keyed sgls are not supported!\n"); 1097 goto destroy_admin; 1098 } 1099 1100 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1101 dev_warn(ctrl->ctrl.device, 1102 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1103 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1104 } 1105 1106 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1107 dev_warn(ctrl->ctrl.device, 1108 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1109 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1110 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1111 } 1112 1113 if (ctrl->ctrl.sgls & (1 << 20)) 1114 ctrl->use_inline_data = true; 1115 1116 if (ctrl->ctrl.queue_count > 1) { 1117 ret = nvme_rdma_configure_io_queues(ctrl, new); 1118 if (ret) 1119 goto destroy_admin; 1120 } 1121 1122 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1123 if (!changed) { 1124 /* 1125 * state change failure is ok if we started ctrl delete, 1126 * unless we're during creation of a new controller to 1127 * avoid races with teardown flow. 1128 */ 1129 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1130 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1131 WARN_ON_ONCE(new); 1132 ret = -EINVAL; 1133 goto destroy_io; 1134 } 1135 1136 nvme_start_ctrl(&ctrl->ctrl); 1137 return 0; 1138 1139 destroy_io: 1140 if (ctrl->ctrl.queue_count > 1) 1141 nvme_rdma_destroy_io_queues(ctrl, new); 1142 destroy_admin: 1143 nvme_rdma_stop_queue(&ctrl->queues[0]); 1144 nvme_rdma_destroy_admin_queue(ctrl, new); 1145 return ret; 1146 } 1147 1148 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1149 { 1150 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1151 struct nvme_rdma_ctrl, reconnect_work); 1152 1153 ++ctrl->ctrl.nr_reconnects; 1154 1155 if (nvme_rdma_setup_ctrl(ctrl, false)) 1156 goto requeue; 1157 1158 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1159 ctrl->ctrl.nr_reconnects); 1160 1161 ctrl->ctrl.nr_reconnects = 0; 1162 1163 return; 1164 1165 requeue: 1166 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1167 ctrl->ctrl.nr_reconnects); 1168 nvme_rdma_reconnect_or_remove(ctrl); 1169 } 1170 1171 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1172 { 1173 struct nvme_rdma_ctrl *ctrl = container_of(work, 1174 struct nvme_rdma_ctrl, err_work); 1175 1176 nvme_stop_keep_alive(&ctrl->ctrl); 1177 nvme_rdma_teardown_io_queues(ctrl, false); 1178 nvme_start_queues(&ctrl->ctrl); 1179 nvme_rdma_teardown_admin_queue(ctrl, false); 1180 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1181 1182 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1183 /* state change failure is ok if we started ctrl delete */ 1184 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1185 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1186 return; 1187 } 1188 1189 nvme_rdma_reconnect_or_remove(ctrl); 1190 } 1191 1192 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1193 { 1194 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1195 return; 1196 1197 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1198 queue_work(nvme_reset_wq, &ctrl->err_work); 1199 } 1200 1201 static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1202 { 1203 struct request *rq = blk_mq_rq_from_pdu(req); 1204 1205 if (!refcount_dec_and_test(&req->ref)) 1206 return; 1207 if (!nvme_try_complete_req(rq, req->status, req->result)) 1208 nvme_rdma_complete_rq(rq); 1209 } 1210 1211 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1212 const char *op) 1213 { 1214 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1215 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1216 1217 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1218 dev_info(ctrl->ctrl.device, 1219 "%s for CQE 0x%p failed with status %s (%d)\n", 1220 op, wc->wr_cqe, 1221 ib_wc_status_msg(wc->status), wc->status); 1222 nvme_rdma_error_recovery(ctrl); 1223 } 1224 1225 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1226 { 1227 if (unlikely(wc->status != IB_WC_SUCCESS)) 1228 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1229 } 1230 1231 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1232 { 1233 struct nvme_rdma_request *req = 1234 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1235 1236 if (unlikely(wc->status != IB_WC_SUCCESS)) 1237 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1238 else 1239 nvme_rdma_end_request(req); 1240 } 1241 1242 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1243 struct nvme_rdma_request *req) 1244 { 1245 struct ib_send_wr wr = { 1246 .opcode = IB_WR_LOCAL_INV, 1247 .next = NULL, 1248 .num_sge = 0, 1249 .send_flags = IB_SEND_SIGNALED, 1250 .ex.invalidate_rkey = req->mr->rkey, 1251 }; 1252 1253 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1254 wr.wr_cqe = &req->reg_cqe; 1255 1256 return ib_post_send(queue->qp, &wr, NULL); 1257 } 1258 1259 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1260 struct request *rq) 1261 { 1262 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1263 struct nvme_rdma_device *dev = queue->device; 1264 struct ib_device *ibdev = dev->dev; 1265 struct list_head *pool = &queue->qp->rdma_mrs; 1266 1267 if (!blk_rq_nr_phys_segments(rq)) 1268 return; 1269 1270 if (blk_integrity_rq(rq)) { 1271 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1272 req->metadata_sgl->nents, rq_dma_dir(rq)); 1273 sg_free_table_chained(&req->metadata_sgl->sg_table, 1274 NVME_INLINE_METADATA_SG_CNT); 1275 } 1276 1277 if (req->use_sig_mr) 1278 pool = &queue->qp->sig_mrs; 1279 1280 if (req->mr) { 1281 ib_mr_pool_put(queue->qp, pool, req->mr); 1282 req->mr = NULL; 1283 } 1284 1285 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1286 rq_dma_dir(rq)); 1287 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1288 } 1289 1290 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1291 { 1292 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1293 1294 sg->addr = 0; 1295 put_unaligned_le24(0, sg->length); 1296 put_unaligned_le32(0, sg->key); 1297 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1298 return 0; 1299 } 1300 1301 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1302 struct nvme_rdma_request *req, struct nvme_command *c, 1303 int count) 1304 { 1305 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1306 struct scatterlist *sgl = req->data_sgl.sg_table.sgl; 1307 struct ib_sge *sge = &req->sge[1]; 1308 u32 len = 0; 1309 int i; 1310 1311 for (i = 0; i < count; i++, sgl++, sge++) { 1312 sge->addr = sg_dma_address(sgl); 1313 sge->length = sg_dma_len(sgl); 1314 sge->lkey = queue->device->pd->local_dma_lkey; 1315 len += sge->length; 1316 } 1317 1318 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1319 sg->length = cpu_to_le32(len); 1320 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1321 1322 req->num_sge += count; 1323 return 0; 1324 } 1325 1326 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1327 struct nvme_rdma_request *req, struct nvme_command *c) 1328 { 1329 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1330 1331 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1332 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1333 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1334 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1335 return 0; 1336 } 1337 1338 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1339 struct nvme_rdma_request *req, struct nvme_command *c, 1340 int count) 1341 { 1342 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1343 int nr; 1344 1345 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1346 if (WARN_ON_ONCE(!req->mr)) 1347 return -EAGAIN; 1348 1349 /* 1350 * Align the MR to a 4K page size to match the ctrl page size and 1351 * the block virtual boundary. 1352 */ 1353 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1354 SZ_4K); 1355 if (unlikely(nr < count)) { 1356 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1357 req->mr = NULL; 1358 if (nr < 0) 1359 return nr; 1360 return -EINVAL; 1361 } 1362 1363 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1364 1365 req->reg_cqe.done = nvme_rdma_memreg_done; 1366 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1367 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1368 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1369 req->reg_wr.wr.num_sge = 0; 1370 req->reg_wr.mr = req->mr; 1371 req->reg_wr.key = req->mr->rkey; 1372 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1373 IB_ACCESS_REMOTE_READ | 1374 IB_ACCESS_REMOTE_WRITE; 1375 1376 sg->addr = cpu_to_le64(req->mr->iova); 1377 put_unaligned_le24(req->mr->length, sg->length); 1378 put_unaligned_le32(req->mr->rkey, sg->key); 1379 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1380 NVME_SGL_FMT_INVALIDATE; 1381 1382 return 0; 1383 } 1384 1385 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1386 struct nvme_command *cmd, struct ib_sig_domain *domain, 1387 u16 control, u8 pi_type) 1388 { 1389 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1390 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1391 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1392 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1393 if (control & NVME_RW_PRINFO_PRCHK_REF) 1394 domain->sig.dif.ref_remap = true; 1395 1396 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1397 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1398 domain->sig.dif.app_escape = true; 1399 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1400 domain->sig.dif.ref_escape = true; 1401 } 1402 1403 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1404 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1405 u8 pi_type) 1406 { 1407 u16 control = le16_to_cpu(cmd->rw.control); 1408 1409 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1410 if (control & NVME_RW_PRINFO_PRACT) { 1411 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1412 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1413 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1414 pi_type); 1415 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1416 control &= ~NVME_RW_PRINFO_PRACT; 1417 cmd->rw.control = cpu_to_le16(control); 1418 } else { 1419 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1420 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1421 pi_type); 1422 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1423 pi_type); 1424 } 1425 } 1426 1427 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1428 { 1429 *mask = 0; 1430 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1431 *mask |= IB_SIG_CHECK_REFTAG; 1432 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1433 *mask |= IB_SIG_CHECK_GUARD; 1434 } 1435 1436 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1437 { 1438 if (unlikely(wc->status != IB_WC_SUCCESS)) 1439 nvme_rdma_wr_error(cq, wc, "SIG"); 1440 } 1441 1442 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1443 struct nvme_rdma_request *req, struct nvme_command *c, 1444 int count, int pi_count) 1445 { 1446 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1447 struct ib_reg_wr *wr = &req->reg_wr; 1448 struct request *rq = blk_mq_rq_from_pdu(req); 1449 struct nvme_ns *ns = rq->q->queuedata; 1450 struct bio *bio = rq->bio; 1451 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1452 int nr; 1453 1454 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1455 if (WARN_ON_ONCE(!req->mr)) 1456 return -EAGAIN; 1457 1458 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1459 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1460 SZ_4K); 1461 if (unlikely(nr)) 1462 goto mr_put; 1463 1464 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c, 1465 req->mr->sig_attrs, ns->pi_type); 1466 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1467 1468 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1469 1470 req->reg_cqe.done = nvme_rdma_sig_done; 1471 memset(wr, 0, sizeof(*wr)); 1472 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1473 wr->wr.wr_cqe = &req->reg_cqe; 1474 wr->wr.num_sge = 0; 1475 wr->wr.send_flags = 0; 1476 wr->mr = req->mr; 1477 wr->key = req->mr->rkey; 1478 wr->access = IB_ACCESS_LOCAL_WRITE | 1479 IB_ACCESS_REMOTE_READ | 1480 IB_ACCESS_REMOTE_WRITE; 1481 1482 sg->addr = cpu_to_le64(req->mr->iova); 1483 put_unaligned_le24(req->mr->length, sg->length); 1484 put_unaligned_le32(req->mr->rkey, sg->key); 1485 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1486 1487 return 0; 1488 1489 mr_put: 1490 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1491 req->mr = NULL; 1492 if (nr < 0) 1493 return nr; 1494 return -EINVAL; 1495 } 1496 1497 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1498 struct request *rq, struct nvme_command *c) 1499 { 1500 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1501 struct nvme_rdma_device *dev = queue->device; 1502 struct ib_device *ibdev = dev->dev; 1503 int pi_count = 0; 1504 int count, ret; 1505 1506 req->num_sge = 1; 1507 refcount_set(&req->ref, 2); /* send and recv completions */ 1508 1509 c->common.flags |= NVME_CMD_SGL_METABUF; 1510 1511 if (!blk_rq_nr_phys_segments(rq)) 1512 return nvme_rdma_set_sg_null(c); 1513 1514 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1515 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1516 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1517 NVME_INLINE_SG_CNT); 1518 if (ret) 1519 return -ENOMEM; 1520 1521 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1522 req->data_sgl.sg_table.sgl); 1523 1524 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1525 req->data_sgl.nents, rq_dma_dir(rq)); 1526 if (unlikely(count <= 0)) { 1527 ret = -EIO; 1528 goto out_free_table; 1529 } 1530 1531 if (blk_integrity_rq(rq)) { 1532 req->metadata_sgl->sg_table.sgl = 1533 (struct scatterlist *)(req->metadata_sgl + 1); 1534 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1535 blk_rq_count_integrity_sg(rq->q, rq->bio), 1536 req->metadata_sgl->sg_table.sgl, 1537 NVME_INLINE_METADATA_SG_CNT); 1538 if (unlikely(ret)) { 1539 ret = -ENOMEM; 1540 goto out_unmap_sg; 1541 } 1542 1543 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1544 rq->bio, req->metadata_sgl->sg_table.sgl); 1545 pi_count = ib_dma_map_sg(ibdev, 1546 req->metadata_sgl->sg_table.sgl, 1547 req->metadata_sgl->nents, 1548 rq_dma_dir(rq)); 1549 if (unlikely(pi_count <= 0)) { 1550 ret = -EIO; 1551 goto out_free_pi_table; 1552 } 1553 } 1554 1555 if (req->use_sig_mr) { 1556 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1557 goto out; 1558 } 1559 1560 if (count <= dev->num_inline_segments) { 1561 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1562 queue->ctrl->use_inline_data && 1563 blk_rq_payload_bytes(rq) <= 1564 nvme_rdma_inline_data_size(queue)) { 1565 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1566 goto out; 1567 } 1568 1569 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1570 ret = nvme_rdma_map_sg_single(queue, req, c); 1571 goto out; 1572 } 1573 } 1574 1575 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1576 out: 1577 if (unlikely(ret)) 1578 goto out_unmap_pi_sg; 1579 1580 return 0; 1581 1582 out_unmap_pi_sg: 1583 if (blk_integrity_rq(rq)) 1584 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1585 req->metadata_sgl->nents, rq_dma_dir(rq)); 1586 out_free_pi_table: 1587 if (blk_integrity_rq(rq)) 1588 sg_free_table_chained(&req->metadata_sgl->sg_table, 1589 NVME_INLINE_METADATA_SG_CNT); 1590 out_unmap_sg: 1591 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1592 rq_dma_dir(rq)); 1593 out_free_table: 1594 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1595 return ret; 1596 } 1597 1598 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1599 { 1600 struct nvme_rdma_qe *qe = 1601 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1602 struct nvme_rdma_request *req = 1603 container_of(qe, struct nvme_rdma_request, sqe); 1604 1605 if (unlikely(wc->status != IB_WC_SUCCESS)) 1606 nvme_rdma_wr_error(cq, wc, "SEND"); 1607 else 1608 nvme_rdma_end_request(req); 1609 } 1610 1611 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1612 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1613 struct ib_send_wr *first) 1614 { 1615 struct ib_send_wr wr; 1616 int ret; 1617 1618 sge->addr = qe->dma; 1619 sge->length = sizeof(struct nvme_command); 1620 sge->lkey = queue->device->pd->local_dma_lkey; 1621 1622 wr.next = NULL; 1623 wr.wr_cqe = &qe->cqe; 1624 wr.sg_list = sge; 1625 wr.num_sge = num_sge; 1626 wr.opcode = IB_WR_SEND; 1627 wr.send_flags = IB_SEND_SIGNALED; 1628 1629 if (first) 1630 first->next = ≀ 1631 else 1632 first = ≀ 1633 1634 ret = ib_post_send(queue->qp, first, NULL); 1635 if (unlikely(ret)) { 1636 dev_err(queue->ctrl->ctrl.device, 1637 "%s failed with error code %d\n", __func__, ret); 1638 } 1639 return ret; 1640 } 1641 1642 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1643 struct nvme_rdma_qe *qe) 1644 { 1645 struct ib_recv_wr wr; 1646 struct ib_sge list; 1647 int ret; 1648 1649 list.addr = qe->dma; 1650 list.length = sizeof(struct nvme_completion); 1651 list.lkey = queue->device->pd->local_dma_lkey; 1652 1653 qe->cqe.done = nvme_rdma_recv_done; 1654 1655 wr.next = NULL; 1656 wr.wr_cqe = &qe->cqe; 1657 wr.sg_list = &list; 1658 wr.num_sge = 1; 1659 1660 ret = ib_post_recv(queue->qp, &wr, NULL); 1661 if (unlikely(ret)) { 1662 dev_err(queue->ctrl->ctrl.device, 1663 "%s failed with error code %d\n", __func__, ret); 1664 } 1665 return ret; 1666 } 1667 1668 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1669 { 1670 u32 queue_idx = nvme_rdma_queue_idx(queue); 1671 1672 if (queue_idx == 0) 1673 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1674 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1675 } 1676 1677 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1678 { 1679 if (unlikely(wc->status != IB_WC_SUCCESS)) 1680 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1681 } 1682 1683 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1684 { 1685 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1686 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1687 struct ib_device *dev = queue->device->dev; 1688 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1689 struct nvme_command *cmd = sqe->data; 1690 struct ib_sge sge; 1691 int ret; 1692 1693 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1694 1695 memset(cmd, 0, sizeof(*cmd)); 1696 cmd->common.opcode = nvme_admin_async_event; 1697 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1698 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1699 nvme_rdma_set_sg_null(cmd); 1700 1701 sqe->cqe.done = nvme_rdma_async_done; 1702 1703 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1704 DMA_TO_DEVICE); 1705 1706 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1707 WARN_ON_ONCE(ret); 1708 } 1709 1710 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1711 struct nvme_completion *cqe, struct ib_wc *wc) 1712 { 1713 struct request *rq; 1714 struct nvme_rdma_request *req; 1715 1716 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1717 if (!rq) { 1718 dev_err(queue->ctrl->ctrl.device, 1719 "tag 0x%x on QP %#x not found\n", 1720 cqe->command_id, queue->qp->qp_num); 1721 nvme_rdma_error_recovery(queue->ctrl); 1722 return; 1723 } 1724 req = blk_mq_rq_to_pdu(rq); 1725 1726 req->status = cqe->status; 1727 req->result = cqe->result; 1728 1729 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1730 if (unlikely(!req->mr || 1731 wc->ex.invalidate_rkey != req->mr->rkey)) { 1732 dev_err(queue->ctrl->ctrl.device, 1733 "Bogus remote invalidation for rkey %#x\n", 1734 req->mr ? req->mr->rkey : 0); 1735 nvme_rdma_error_recovery(queue->ctrl); 1736 } 1737 } else if (req->mr) { 1738 int ret; 1739 1740 ret = nvme_rdma_inv_rkey(queue, req); 1741 if (unlikely(ret < 0)) { 1742 dev_err(queue->ctrl->ctrl.device, 1743 "Queueing INV WR for rkey %#x failed (%d)\n", 1744 req->mr->rkey, ret); 1745 nvme_rdma_error_recovery(queue->ctrl); 1746 } 1747 /* the local invalidation completion will end the request */ 1748 return; 1749 } 1750 1751 nvme_rdma_end_request(req); 1752 } 1753 1754 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1755 { 1756 struct nvme_rdma_qe *qe = 1757 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1758 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1759 struct ib_device *ibdev = queue->device->dev; 1760 struct nvme_completion *cqe = qe->data; 1761 const size_t len = sizeof(struct nvme_completion); 1762 1763 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1764 nvme_rdma_wr_error(cq, wc, "RECV"); 1765 return; 1766 } 1767 1768 /* sanity checking for received data length */ 1769 if (unlikely(wc->byte_len < len)) { 1770 dev_err(queue->ctrl->ctrl.device, 1771 "Unexpected nvme completion length(%d)\n", wc->byte_len); 1772 nvme_rdma_error_recovery(queue->ctrl); 1773 return; 1774 } 1775 1776 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1777 /* 1778 * AEN requests are special as they don't time out and can 1779 * survive any kind of queue freeze and often don't respond to 1780 * aborts. We don't even bother to allocate a struct request 1781 * for them but rather special case them here. 1782 */ 1783 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1784 cqe->command_id))) 1785 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1786 &cqe->result); 1787 else 1788 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1789 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1790 1791 nvme_rdma_post_recv(queue, qe); 1792 } 1793 1794 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1795 { 1796 int ret, i; 1797 1798 for (i = 0; i < queue->queue_size; i++) { 1799 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1800 if (ret) 1801 goto out_destroy_queue_ib; 1802 } 1803 1804 return 0; 1805 1806 out_destroy_queue_ib: 1807 nvme_rdma_destroy_queue_ib(queue); 1808 return ret; 1809 } 1810 1811 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1812 struct rdma_cm_event *ev) 1813 { 1814 struct rdma_cm_id *cm_id = queue->cm_id; 1815 int status = ev->status; 1816 const char *rej_msg; 1817 const struct nvme_rdma_cm_rej *rej_data; 1818 u8 rej_data_len; 1819 1820 rej_msg = rdma_reject_msg(cm_id, status); 1821 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1822 1823 if (rej_data && rej_data_len >= sizeof(u16)) { 1824 u16 sts = le16_to_cpu(rej_data->sts); 1825 1826 dev_err(queue->ctrl->ctrl.device, 1827 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1828 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1829 } else { 1830 dev_err(queue->ctrl->ctrl.device, 1831 "Connect rejected: status %d (%s).\n", status, rej_msg); 1832 } 1833 1834 return -ECONNRESET; 1835 } 1836 1837 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1838 { 1839 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1840 int ret; 1841 1842 ret = nvme_rdma_create_queue_ib(queue); 1843 if (ret) 1844 return ret; 1845 1846 if (ctrl->opts->tos >= 0) 1847 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1848 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1849 if (ret) { 1850 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1851 queue->cm_error); 1852 goto out_destroy_queue; 1853 } 1854 1855 return 0; 1856 1857 out_destroy_queue: 1858 nvme_rdma_destroy_queue_ib(queue); 1859 return ret; 1860 } 1861 1862 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1863 { 1864 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1865 struct rdma_conn_param param = { }; 1866 struct nvme_rdma_cm_req priv = { }; 1867 int ret; 1868 1869 param.qp_num = queue->qp->qp_num; 1870 param.flow_control = 1; 1871 1872 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1873 /* maximum retry count */ 1874 param.retry_count = 7; 1875 param.rnr_retry_count = 7; 1876 param.private_data = &priv; 1877 param.private_data_len = sizeof(priv); 1878 1879 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1880 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1881 /* 1882 * set the admin queue depth to the minimum size 1883 * specified by the Fabrics standard. 1884 */ 1885 if (priv.qid == 0) { 1886 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1887 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1888 } else { 1889 /* 1890 * current interpretation of the fabrics spec 1891 * is at minimum you make hrqsize sqsize+1, or a 1892 * 1's based representation of sqsize. 1893 */ 1894 priv.hrqsize = cpu_to_le16(queue->queue_size); 1895 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1896 } 1897 1898 ret = rdma_connect_locked(queue->cm_id, ¶m); 1899 if (ret) { 1900 dev_err(ctrl->ctrl.device, 1901 "rdma_connect_locked failed (%d).\n", ret); 1902 goto out_destroy_queue_ib; 1903 } 1904 1905 return 0; 1906 1907 out_destroy_queue_ib: 1908 nvme_rdma_destroy_queue_ib(queue); 1909 return ret; 1910 } 1911 1912 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1913 struct rdma_cm_event *ev) 1914 { 1915 struct nvme_rdma_queue *queue = cm_id->context; 1916 int cm_error = 0; 1917 1918 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1919 rdma_event_msg(ev->event), ev->event, 1920 ev->status, cm_id); 1921 1922 switch (ev->event) { 1923 case RDMA_CM_EVENT_ADDR_RESOLVED: 1924 cm_error = nvme_rdma_addr_resolved(queue); 1925 break; 1926 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1927 cm_error = nvme_rdma_route_resolved(queue); 1928 break; 1929 case RDMA_CM_EVENT_ESTABLISHED: 1930 queue->cm_error = nvme_rdma_conn_established(queue); 1931 /* complete cm_done regardless of success/failure */ 1932 complete(&queue->cm_done); 1933 return 0; 1934 case RDMA_CM_EVENT_REJECTED: 1935 cm_error = nvme_rdma_conn_rejected(queue, ev); 1936 break; 1937 case RDMA_CM_EVENT_ROUTE_ERROR: 1938 case RDMA_CM_EVENT_CONNECT_ERROR: 1939 case RDMA_CM_EVENT_UNREACHABLE: 1940 nvme_rdma_destroy_queue_ib(queue); 1941 fallthrough; 1942 case RDMA_CM_EVENT_ADDR_ERROR: 1943 dev_dbg(queue->ctrl->ctrl.device, 1944 "CM error event %d\n", ev->event); 1945 cm_error = -ECONNRESET; 1946 break; 1947 case RDMA_CM_EVENT_DISCONNECTED: 1948 case RDMA_CM_EVENT_ADDR_CHANGE: 1949 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1950 dev_dbg(queue->ctrl->ctrl.device, 1951 "disconnect received - connection closed\n"); 1952 nvme_rdma_error_recovery(queue->ctrl); 1953 break; 1954 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1955 /* device removal is handled via the ib_client API */ 1956 break; 1957 default: 1958 dev_err(queue->ctrl->ctrl.device, 1959 "Unexpected RDMA CM event (%d)\n", ev->event); 1960 nvme_rdma_error_recovery(queue->ctrl); 1961 break; 1962 } 1963 1964 if (cm_error) { 1965 queue->cm_error = cm_error; 1966 complete(&queue->cm_done); 1967 } 1968 1969 return 0; 1970 } 1971 1972 static void nvme_rdma_complete_timed_out(struct request *rq) 1973 { 1974 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1975 struct nvme_rdma_queue *queue = req->queue; 1976 1977 nvme_rdma_stop_queue(queue); 1978 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 1979 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 1980 blk_mq_complete_request(rq); 1981 } 1982 } 1983 1984 static enum blk_eh_timer_return 1985 nvme_rdma_timeout(struct request *rq, bool reserved) 1986 { 1987 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1988 struct nvme_rdma_queue *queue = req->queue; 1989 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1990 1991 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1992 rq->tag, nvme_rdma_queue_idx(queue)); 1993 1994 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1995 /* 1996 * If we are resetting, connecting or deleting we should 1997 * complete immediately because we may block controller 1998 * teardown or setup sequence 1999 * - ctrl disable/shutdown fabrics requests 2000 * - connect requests 2001 * - initialization admin requests 2002 * - I/O requests that entered after unquiescing and 2003 * the controller stopped responding 2004 * 2005 * All other requests should be cancelled by the error 2006 * recovery work, so it's fine that we fail it here. 2007 */ 2008 nvme_rdma_complete_timed_out(rq); 2009 return BLK_EH_DONE; 2010 } 2011 2012 /* 2013 * LIVE state should trigger the normal error recovery which will 2014 * handle completing this request. 2015 */ 2016 nvme_rdma_error_recovery(ctrl); 2017 return BLK_EH_RESET_TIMER; 2018 } 2019 2020 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 2021 const struct blk_mq_queue_data *bd) 2022 { 2023 struct nvme_ns *ns = hctx->queue->queuedata; 2024 struct nvme_rdma_queue *queue = hctx->driver_data; 2025 struct request *rq = bd->rq; 2026 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2027 struct nvme_rdma_qe *sqe = &req->sqe; 2028 struct nvme_command *c = sqe->data; 2029 struct ib_device *dev; 2030 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 2031 blk_status_t ret; 2032 int err; 2033 2034 WARN_ON_ONCE(rq->tag < 0); 2035 2036 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2037 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2038 2039 dev = queue->device->dev; 2040 2041 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2042 sizeof(struct nvme_command), 2043 DMA_TO_DEVICE); 2044 err = ib_dma_mapping_error(dev, req->sqe.dma); 2045 if (unlikely(err)) 2046 return BLK_STS_RESOURCE; 2047 2048 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2049 sizeof(struct nvme_command), DMA_TO_DEVICE); 2050 2051 ret = nvme_setup_cmd(ns, rq, c); 2052 if (ret) 2053 goto unmap_qe; 2054 2055 blk_mq_start_request(rq); 2056 2057 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2058 queue->pi_support && 2059 (c->common.opcode == nvme_cmd_write || 2060 c->common.opcode == nvme_cmd_read) && 2061 nvme_ns_has_pi(ns)) 2062 req->use_sig_mr = true; 2063 else 2064 req->use_sig_mr = false; 2065 2066 err = nvme_rdma_map_data(queue, rq, c); 2067 if (unlikely(err < 0)) { 2068 dev_err(queue->ctrl->ctrl.device, 2069 "Failed to map data (%d)\n", err); 2070 goto err; 2071 } 2072 2073 sqe->cqe.done = nvme_rdma_send_done; 2074 2075 ib_dma_sync_single_for_device(dev, sqe->dma, 2076 sizeof(struct nvme_command), DMA_TO_DEVICE); 2077 2078 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2079 req->mr ? &req->reg_wr.wr : NULL); 2080 if (unlikely(err)) 2081 goto err_unmap; 2082 2083 return BLK_STS_OK; 2084 2085 err_unmap: 2086 nvme_rdma_unmap_data(queue, rq); 2087 err: 2088 if (err == -ENOMEM || err == -EAGAIN) 2089 ret = BLK_STS_RESOURCE; 2090 else 2091 ret = BLK_STS_IOERR; 2092 nvme_cleanup_cmd(rq); 2093 unmap_qe: 2094 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2095 DMA_TO_DEVICE); 2096 return ret; 2097 } 2098 2099 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 2100 { 2101 struct nvme_rdma_queue *queue = hctx->driver_data; 2102 2103 return ib_process_cq_direct(queue->ib_cq, -1); 2104 } 2105 2106 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2107 { 2108 struct request *rq = blk_mq_rq_from_pdu(req); 2109 struct ib_mr_status mr_status; 2110 int ret; 2111 2112 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2113 if (ret) { 2114 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2115 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2116 return; 2117 } 2118 2119 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2120 switch (mr_status.sig_err.err_type) { 2121 case IB_SIG_BAD_GUARD: 2122 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2123 break; 2124 case IB_SIG_BAD_REFTAG: 2125 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2126 break; 2127 case IB_SIG_BAD_APPTAG: 2128 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2129 break; 2130 } 2131 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2132 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2133 mr_status.sig_err.actual); 2134 } 2135 } 2136 2137 static void nvme_rdma_complete_rq(struct request *rq) 2138 { 2139 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2140 struct nvme_rdma_queue *queue = req->queue; 2141 struct ib_device *ibdev = queue->device->dev; 2142 2143 if (req->use_sig_mr) 2144 nvme_rdma_check_pi_status(req); 2145 2146 nvme_rdma_unmap_data(queue, rq); 2147 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2148 DMA_TO_DEVICE); 2149 nvme_complete_rq(rq); 2150 } 2151 2152 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2153 { 2154 struct nvme_rdma_ctrl *ctrl = set->driver_data; 2155 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2156 2157 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2158 /* separate read/write queues */ 2159 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2160 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2161 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2162 set->map[HCTX_TYPE_READ].nr_queues = 2163 ctrl->io_queues[HCTX_TYPE_READ]; 2164 set->map[HCTX_TYPE_READ].queue_offset = 2165 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2166 } else { 2167 /* shared read/write queues */ 2168 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2169 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2170 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2171 set->map[HCTX_TYPE_READ].nr_queues = 2172 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2173 set->map[HCTX_TYPE_READ].queue_offset = 0; 2174 } 2175 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 2176 ctrl->device->dev, 0); 2177 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 2178 ctrl->device->dev, 0); 2179 2180 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2181 /* map dedicated poll queues only if we have queues left */ 2182 set->map[HCTX_TYPE_POLL].nr_queues = 2183 ctrl->io_queues[HCTX_TYPE_POLL]; 2184 set->map[HCTX_TYPE_POLL].queue_offset = 2185 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2186 ctrl->io_queues[HCTX_TYPE_READ]; 2187 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2188 } 2189 2190 dev_info(ctrl->ctrl.device, 2191 "mapped %d/%d/%d default/read/poll queues.\n", 2192 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2193 ctrl->io_queues[HCTX_TYPE_READ], 2194 ctrl->io_queues[HCTX_TYPE_POLL]); 2195 2196 return 0; 2197 } 2198 2199 static const struct blk_mq_ops nvme_rdma_mq_ops = { 2200 .queue_rq = nvme_rdma_queue_rq, 2201 .complete = nvme_rdma_complete_rq, 2202 .init_request = nvme_rdma_init_request, 2203 .exit_request = nvme_rdma_exit_request, 2204 .init_hctx = nvme_rdma_init_hctx, 2205 .timeout = nvme_rdma_timeout, 2206 .map_queues = nvme_rdma_map_queues, 2207 .poll = nvme_rdma_poll, 2208 }; 2209 2210 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2211 .queue_rq = nvme_rdma_queue_rq, 2212 .complete = nvme_rdma_complete_rq, 2213 .init_request = nvme_rdma_init_request, 2214 .exit_request = nvme_rdma_exit_request, 2215 .init_hctx = nvme_rdma_init_admin_hctx, 2216 .timeout = nvme_rdma_timeout, 2217 }; 2218 2219 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2220 { 2221 cancel_work_sync(&ctrl->err_work); 2222 cancel_delayed_work_sync(&ctrl->reconnect_work); 2223 2224 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2225 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2226 if (shutdown) 2227 nvme_shutdown_ctrl(&ctrl->ctrl); 2228 else 2229 nvme_disable_ctrl(&ctrl->ctrl); 2230 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2231 } 2232 2233 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2234 { 2235 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2236 } 2237 2238 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2239 { 2240 struct nvme_rdma_ctrl *ctrl = 2241 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2242 2243 nvme_stop_ctrl(&ctrl->ctrl); 2244 nvme_rdma_shutdown_ctrl(ctrl, false); 2245 2246 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2247 /* state change failure should never happen */ 2248 WARN_ON_ONCE(1); 2249 return; 2250 } 2251 2252 if (nvme_rdma_setup_ctrl(ctrl, false)) 2253 goto out_fail; 2254 2255 return; 2256 2257 out_fail: 2258 ++ctrl->ctrl.nr_reconnects; 2259 nvme_rdma_reconnect_or_remove(ctrl); 2260 } 2261 2262 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2263 .name = "rdma", 2264 .module = THIS_MODULE, 2265 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2266 .reg_read32 = nvmf_reg_read32, 2267 .reg_read64 = nvmf_reg_read64, 2268 .reg_write32 = nvmf_reg_write32, 2269 .free_ctrl = nvme_rdma_free_ctrl, 2270 .submit_async_event = nvme_rdma_submit_async_event, 2271 .delete_ctrl = nvme_rdma_delete_ctrl, 2272 .get_address = nvmf_get_address, 2273 }; 2274 2275 /* 2276 * Fails a connection request if it matches an existing controller 2277 * (association) with the same tuple: 2278 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2279 * 2280 * if local address is not specified in the request, it will match an 2281 * existing controller with all the other parameters the same and no 2282 * local port address specified as well. 2283 * 2284 * The ports don't need to be compared as they are intrinsically 2285 * already matched by the port pointers supplied. 2286 */ 2287 static bool 2288 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2289 { 2290 struct nvme_rdma_ctrl *ctrl; 2291 bool found = false; 2292 2293 mutex_lock(&nvme_rdma_ctrl_mutex); 2294 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2295 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2296 if (found) 2297 break; 2298 } 2299 mutex_unlock(&nvme_rdma_ctrl_mutex); 2300 2301 return found; 2302 } 2303 2304 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2305 struct nvmf_ctrl_options *opts) 2306 { 2307 struct nvme_rdma_ctrl *ctrl; 2308 int ret; 2309 bool changed; 2310 2311 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2312 if (!ctrl) 2313 return ERR_PTR(-ENOMEM); 2314 ctrl->ctrl.opts = opts; 2315 INIT_LIST_HEAD(&ctrl->list); 2316 2317 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2318 opts->trsvcid = 2319 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2320 if (!opts->trsvcid) { 2321 ret = -ENOMEM; 2322 goto out_free_ctrl; 2323 } 2324 opts->mask |= NVMF_OPT_TRSVCID; 2325 } 2326 2327 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2328 opts->traddr, opts->trsvcid, &ctrl->addr); 2329 if (ret) { 2330 pr_err("malformed address passed: %s:%s\n", 2331 opts->traddr, opts->trsvcid); 2332 goto out_free_ctrl; 2333 } 2334 2335 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2336 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2337 opts->host_traddr, NULL, &ctrl->src_addr); 2338 if (ret) { 2339 pr_err("malformed src address passed: %s\n", 2340 opts->host_traddr); 2341 goto out_free_ctrl; 2342 } 2343 } 2344 2345 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2346 ret = -EALREADY; 2347 goto out_free_ctrl; 2348 } 2349 2350 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2351 nvme_rdma_reconnect_ctrl_work); 2352 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2353 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2354 2355 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2356 opts->nr_poll_queues + 1; 2357 ctrl->ctrl.sqsize = opts->queue_size - 1; 2358 ctrl->ctrl.kato = opts->kato; 2359 2360 ret = -ENOMEM; 2361 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2362 GFP_KERNEL); 2363 if (!ctrl->queues) 2364 goto out_free_ctrl; 2365 2366 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2367 0 /* no quirks, we're perfect! */); 2368 if (ret) 2369 goto out_kfree_queues; 2370 2371 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2372 WARN_ON_ONCE(!changed); 2373 2374 ret = nvme_rdma_setup_ctrl(ctrl, true); 2375 if (ret) 2376 goto out_uninit_ctrl; 2377 2378 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2379 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2380 2381 mutex_lock(&nvme_rdma_ctrl_mutex); 2382 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2383 mutex_unlock(&nvme_rdma_ctrl_mutex); 2384 2385 return &ctrl->ctrl; 2386 2387 out_uninit_ctrl: 2388 nvme_uninit_ctrl(&ctrl->ctrl); 2389 nvme_put_ctrl(&ctrl->ctrl); 2390 if (ret > 0) 2391 ret = -EIO; 2392 return ERR_PTR(ret); 2393 out_kfree_queues: 2394 kfree(ctrl->queues); 2395 out_free_ctrl: 2396 kfree(ctrl); 2397 return ERR_PTR(ret); 2398 } 2399 2400 static struct nvmf_transport_ops nvme_rdma_transport = { 2401 .name = "rdma", 2402 .module = THIS_MODULE, 2403 .required_opts = NVMF_OPT_TRADDR, 2404 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2405 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2406 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2407 NVMF_OPT_TOS, 2408 .create_ctrl = nvme_rdma_create_ctrl, 2409 }; 2410 2411 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2412 { 2413 struct nvme_rdma_ctrl *ctrl; 2414 struct nvme_rdma_device *ndev; 2415 bool found = false; 2416 2417 mutex_lock(&device_list_mutex); 2418 list_for_each_entry(ndev, &device_list, entry) { 2419 if (ndev->dev == ib_device) { 2420 found = true; 2421 break; 2422 } 2423 } 2424 mutex_unlock(&device_list_mutex); 2425 2426 if (!found) 2427 return; 2428 2429 /* Delete all controllers using this device */ 2430 mutex_lock(&nvme_rdma_ctrl_mutex); 2431 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2432 if (ctrl->device->dev != ib_device) 2433 continue; 2434 nvme_delete_ctrl(&ctrl->ctrl); 2435 } 2436 mutex_unlock(&nvme_rdma_ctrl_mutex); 2437 2438 flush_workqueue(nvme_delete_wq); 2439 } 2440 2441 static struct ib_client nvme_rdma_ib_client = { 2442 .name = "nvme_rdma", 2443 .remove = nvme_rdma_remove_one 2444 }; 2445 2446 static int __init nvme_rdma_init_module(void) 2447 { 2448 int ret; 2449 2450 ret = ib_register_client(&nvme_rdma_ib_client); 2451 if (ret) 2452 return ret; 2453 2454 ret = nvmf_register_transport(&nvme_rdma_transport); 2455 if (ret) 2456 goto err_unreg_client; 2457 2458 return 0; 2459 2460 err_unreg_client: 2461 ib_unregister_client(&nvme_rdma_ib_client); 2462 return ret; 2463 } 2464 2465 static void __exit nvme_rdma_cleanup_module(void) 2466 { 2467 struct nvme_rdma_ctrl *ctrl; 2468 2469 nvmf_unregister_transport(&nvme_rdma_transport); 2470 ib_unregister_client(&nvme_rdma_ib_client); 2471 2472 mutex_lock(&nvme_rdma_ctrl_mutex); 2473 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2474 nvme_delete_ctrl(&ctrl->ctrl); 2475 mutex_unlock(&nvme_rdma_ctrl_mutex); 2476 flush_workqueue(nvme_delete_wq); 2477 } 2478 2479 module_init(nvme_rdma_init_module); 2480 module_exit(nvme_rdma_cleanup_module); 2481 2482 MODULE_LICENSE("GPL v2"); 2483