xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision d061864b)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 	unsigned int		num_inline_segments;
51 };
52 
53 struct nvme_rdma_qe {
54 	struct ib_cqe		cqe;
55 	void			*data;
56 	u64			dma;
57 };
58 
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61 	struct nvme_request	req;
62 	struct ib_mr		*mr;
63 	struct nvme_rdma_qe	sqe;
64 	union nvme_result	result;
65 	__le16			status;
66 	refcount_t		ref;
67 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 	u32			num_sge;
69 	int			nents;
70 	struct ib_reg_wr	reg_wr;
71 	struct ib_cqe		reg_cqe;
72 	struct nvme_rdma_queue  *queue;
73 	struct sg_table		sg_table;
74 	struct scatterlist	first_sgl[];
75 };
76 
77 enum nvme_rdma_queue_flags {
78 	NVME_RDMA_Q_ALLOCATED		= 0,
79 	NVME_RDMA_Q_LIVE		= 1,
80 	NVME_RDMA_Q_TR_READY		= 2,
81 };
82 
83 struct nvme_rdma_queue {
84 	struct nvme_rdma_qe	*rsp_ring;
85 	int			queue_size;
86 	size_t			cmnd_capsule_len;
87 	struct nvme_rdma_ctrl	*ctrl;
88 	struct nvme_rdma_device	*device;
89 	struct ib_cq		*ib_cq;
90 	struct ib_qp		*qp;
91 
92 	unsigned long		flags;
93 	struct rdma_cm_id	*cm_id;
94 	int			cm_error;
95 	struct completion	cm_done;
96 };
97 
98 struct nvme_rdma_ctrl {
99 	/* read only in the hot path */
100 	struct nvme_rdma_queue	*queues;
101 
102 	/* other member variables */
103 	struct blk_mq_tag_set	tag_set;
104 	struct work_struct	err_work;
105 
106 	struct nvme_rdma_qe	async_event_sqe;
107 
108 	struct delayed_work	reconnect_work;
109 
110 	struct list_head	list;
111 
112 	struct blk_mq_tag_set	admin_tag_set;
113 	struct nvme_rdma_device	*device;
114 
115 	u32			max_fr_pages;
116 
117 	struct sockaddr_storage addr;
118 	struct sockaddr_storage src_addr;
119 
120 	struct nvme_ctrl	ctrl;
121 	bool			use_inline_data;
122 };
123 
124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125 {
126 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127 }
128 
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131 
132 static LIST_HEAD(nvme_rdma_ctrl_list);
133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134 
135 /*
136  * Disabling this option makes small I/O goes faster, but is fundamentally
137  * unsafe.  With it turned off we will have to register a global rkey that
138  * allows read and write access to all physical memory.
139  */
140 static bool register_always = true;
141 module_param(register_always, bool, 0444);
142 MODULE_PARM_DESC(register_always,
143 	 "Use memory registration even for contiguous memory regions");
144 
145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146 		struct rdma_cm_event *event);
147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148 
149 static const struct blk_mq_ops nvme_rdma_mq_ops;
150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151 
152 /* XXX: really should move to a generic header sooner or later.. */
153 static inline void put_unaligned_le24(u32 val, u8 *p)
154 {
155 	*p++ = val;
156 	*p++ = val >> 8;
157 	*p++ = val >> 16;
158 }
159 
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 	return queue - queue->ctrl->queues;
163 }
164 
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169 
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 		size_t capsule_size, enum dma_data_direction dir)
172 {
173 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 	kfree(qe->data);
175 }
176 
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 	if (!qe->data)
182 		return -ENOMEM;
183 
184 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 		kfree(qe->data);
187 		return -ENOMEM;
188 	}
189 
190 	return 0;
191 }
192 
193 static void nvme_rdma_free_ring(struct ib_device *ibdev,
194 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
195 		size_t capsule_size, enum dma_data_direction dir)
196 {
197 	int i;
198 
199 	for (i = 0; i < ib_queue_size; i++)
200 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
201 	kfree(ring);
202 }
203 
204 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
205 		size_t ib_queue_size, size_t capsule_size,
206 		enum dma_data_direction dir)
207 {
208 	struct nvme_rdma_qe *ring;
209 	int i;
210 
211 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
212 	if (!ring)
213 		return NULL;
214 
215 	for (i = 0; i < ib_queue_size; i++) {
216 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
217 			goto out_free_ring;
218 	}
219 
220 	return ring;
221 
222 out_free_ring:
223 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
224 	return NULL;
225 }
226 
227 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
228 {
229 	pr_debug("QP event %s (%d)\n",
230 		 ib_event_msg(event->event), event->event);
231 
232 }
233 
234 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
235 {
236 	wait_for_completion_interruptible_timeout(&queue->cm_done,
237 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
238 	return queue->cm_error;
239 }
240 
241 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
242 {
243 	struct nvme_rdma_device *dev = queue->device;
244 	struct ib_qp_init_attr init_attr;
245 	int ret;
246 
247 	memset(&init_attr, 0, sizeof(init_attr));
248 	init_attr.event_handler = nvme_rdma_qp_event;
249 	/* +1 for drain */
250 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
251 	/* +1 for drain */
252 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
253 	init_attr.cap.max_recv_sge = 1;
254 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
255 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
256 	init_attr.qp_type = IB_QPT_RC;
257 	init_attr.send_cq = queue->ib_cq;
258 	init_attr.recv_cq = queue->ib_cq;
259 
260 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
261 
262 	queue->qp = queue->cm_id->qp;
263 	return ret;
264 }
265 
266 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
267 		struct request *rq, unsigned int hctx_idx)
268 {
269 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
270 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
271 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
272 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
273 	struct nvme_rdma_device *dev = queue->device;
274 
275 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
276 			DMA_TO_DEVICE);
277 }
278 
279 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
280 		struct request *rq, unsigned int hctx_idx,
281 		unsigned int numa_node)
282 {
283 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
284 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
285 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
286 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
287 	struct nvme_rdma_device *dev = queue->device;
288 	struct ib_device *ibdev = dev->dev;
289 	int ret;
290 
291 	nvme_req(rq)->ctrl = &ctrl->ctrl;
292 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
293 			DMA_TO_DEVICE);
294 	if (ret)
295 		return ret;
296 
297 	req->queue = queue;
298 
299 	return 0;
300 }
301 
302 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
303 		unsigned int hctx_idx)
304 {
305 	struct nvme_rdma_ctrl *ctrl = data;
306 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
307 
308 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
309 
310 	hctx->driver_data = queue;
311 	return 0;
312 }
313 
314 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
315 		unsigned int hctx_idx)
316 {
317 	struct nvme_rdma_ctrl *ctrl = data;
318 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
319 
320 	BUG_ON(hctx_idx != 0);
321 
322 	hctx->driver_data = queue;
323 	return 0;
324 }
325 
326 static void nvme_rdma_free_dev(struct kref *ref)
327 {
328 	struct nvme_rdma_device *ndev =
329 		container_of(ref, struct nvme_rdma_device, ref);
330 
331 	mutex_lock(&device_list_mutex);
332 	list_del(&ndev->entry);
333 	mutex_unlock(&device_list_mutex);
334 
335 	ib_dealloc_pd(ndev->pd);
336 	kfree(ndev);
337 }
338 
339 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
340 {
341 	kref_put(&dev->ref, nvme_rdma_free_dev);
342 }
343 
344 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
345 {
346 	return kref_get_unless_zero(&dev->ref);
347 }
348 
349 static struct nvme_rdma_device *
350 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
351 {
352 	struct nvme_rdma_device *ndev;
353 
354 	mutex_lock(&device_list_mutex);
355 	list_for_each_entry(ndev, &device_list, entry) {
356 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
357 		    nvme_rdma_dev_get(ndev))
358 			goto out_unlock;
359 	}
360 
361 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
362 	if (!ndev)
363 		goto out_err;
364 
365 	ndev->dev = cm_id->device;
366 	kref_init(&ndev->ref);
367 
368 	ndev->pd = ib_alloc_pd(ndev->dev,
369 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
370 	if (IS_ERR(ndev->pd))
371 		goto out_free_dev;
372 
373 	if (!(ndev->dev->attrs.device_cap_flags &
374 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
375 		dev_err(&ndev->dev->dev,
376 			"Memory registrations not supported.\n");
377 		goto out_free_pd;
378 	}
379 
380 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
381 					ndev->dev->attrs.max_send_sge - 1);
382 	list_add(&ndev->entry, &device_list);
383 out_unlock:
384 	mutex_unlock(&device_list_mutex);
385 	return ndev;
386 
387 out_free_pd:
388 	ib_dealloc_pd(ndev->pd);
389 out_free_dev:
390 	kfree(ndev);
391 out_err:
392 	mutex_unlock(&device_list_mutex);
393 	return NULL;
394 }
395 
396 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
397 {
398 	struct nvme_rdma_device *dev;
399 	struct ib_device *ibdev;
400 
401 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
402 		return;
403 
404 	dev = queue->device;
405 	ibdev = dev->dev;
406 
407 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
408 
409 	/*
410 	 * The cm_id object might have been destroyed during RDMA connection
411 	 * establishment error flow to avoid getting other cma events, thus
412 	 * the destruction of the QP shouldn't use rdma_cm API.
413 	 */
414 	ib_destroy_qp(queue->qp);
415 	ib_free_cq(queue->ib_cq);
416 
417 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
418 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
419 
420 	nvme_rdma_dev_put(dev);
421 }
422 
423 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
424 {
425 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
426 		     ibdev->attrs.max_fast_reg_page_list_len);
427 }
428 
429 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
430 {
431 	struct ib_device *ibdev;
432 	const int send_wr_factor = 3;			/* MR, SEND, INV */
433 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
434 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
435 	int ret;
436 
437 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
438 	if (!queue->device) {
439 		dev_err(queue->cm_id->device->dev.parent,
440 			"no client data found!\n");
441 		return -ECONNREFUSED;
442 	}
443 	ibdev = queue->device->dev;
444 
445 	/*
446 	 * Spread I/O queues completion vectors according their queue index.
447 	 * Admin queues can always go on completion vector 0.
448 	 */
449 	comp_vector = idx == 0 ? idx : idx - 1;
450 
451 	/* +1 for ib_stop_cq */
452 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
453 				cq_factor * queue->queue_size + 1,
454 				comp_vector, IB_POLL_SOFTIRQ);
455 	if (IS_ERR(queue->ib_cq)) {
456 		ret = PTR_ERR(queue->ib_cq);
457 		goto out_put_dev;
458 	}
459 
460 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
461 	if (ret)
462 		goto out_destroy_ib_cq;
463 
464 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
465 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
466 	if (!queue->rsp_ring) {
467 		ret = -ENOMEM;
468 		goto out_destroy_qp;
469 	}
470 
471 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
472 			      queue->queue_size,
473 			      IB_MR_TYPE_MEM_REG,
474 			      nvme_rdma_get_max_fr_pages(ibdev));
475 	if (ret) {
476 		dev_err(queue->ctrl->ctrl.device,
477 			"failed to initialize MR pool sized %d for QID %d\n",
478 			queue->queue_size, idx);
479 		goto out_destroy_ring;
480 	}
481 
482 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
483 
484 	return 0;
485 
486 out_destroy_ring:
487 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
488 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
489 out_destroy_qp:
490 	rdma_destroy_qp(queue->cm_id);
491 out_destroy_ib_cq:
492 	ib_free_cq(queue->ib_cq);
493 out_put_dev:
494 	nvme_rdma_dev_put(queue->device);
495 	return ret;
496 }
497 
498 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
499 		int idx, size_t queue_size)
500 {
501 	struct nvme_rdma_queue *queue;
502 	struct sockaddr *src_addr = NULL;
503 	int ret;
504 
505 	queue = &ctrl->queues[idx];
506 	queue->ctrl = ctrl;
507 	init_completion(&queue->cm_done);
508 
509 	if (idx > 0)
510 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
511 	else
512 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
513 
514 	queue->queue_size = queue_size;
515 
516 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
517 			RDMA_PS_TCP, IB_QPT_RC);
518 	if (IS_ERR(queue->cm_id)) {
519 		dev_info(ctrl->ctrl.device,
520 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
521 		return PTR_ERR(queue->cm_id);
522 	}
523 
524 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
525 		src_addr = (struct sockaddr *)&ctrl->src_addr;
526 
527 	queue->cm_error = -ETIMEDOUT;
528 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
529 			(struct sockaddr *)&ctrl->addr,
530 			NVME_RDMA_CONNECT_TIMEOUT_MS);
531 	if (ret) {
532 		dev_info(ctrl->ctrl.device,
533 			"rdma_resolve_addr failed (%d).\n", ret);
534 		goto out_destroy_cm_id;
535 	}
536 
537 	ret = nvme_rdma_wait_for_cm(queue);
538 	if (ret) {
539 		dev_info(ctrl->ctrl.device,
540 			"rdma connection establishment failed (%d)\n", ret);
541 		goto out_destroy_cm_id;
542 	}
543 
544 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
545 
546 	return 0;
547 
548 out_destroy_cm_id:
549 	rdma_destroy_id(queue->cm_id);
550 	nvme_rdma_destroy_queue_ib(queue);
551 	return ret;
552 }
553 
554 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
555 {
556 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
557 		return;
558 
559 	rdma_disconnect(queue->cm_id);
560 	ib_drain_qp(queue->qp);
561 }
562 
563 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
564 {
565 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
566 		return;
567 
568 	nvme_rdma_destroy_queue_ib(queue);
569 	rdma_destroy_id(queue->cm_id);
570 }
571 
572 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
573 {
574 	int i;
575 
576 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
577 		nvme_rdma_free_queue(&ctrl->queues[i]);
578 }
579 
580 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
581 {
582 	int i;
583 
584 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
585 		nvme_rdma_stop_queue(&ctrl->queues[i]);
586 }
587 
588 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
589 {
590 	int ret;
591 
592 	if (idx)
593 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
594 	else
595 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
596 
597 	if (!ret)
598 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
599 	else
600 		dev_info(ctrl->ctrl.device,
601 			"failed to connect queue: %d ret=%d\n", idx, ret);
602 	return ret;
603 }
604 
605 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
606 {
607 	int i, ret = 0;
608 
609 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
610 		ret = nvme_rdma_start_queue(ctrl, i);
611 		if (ret)
612 			goto out_stop_queues;
613 	}
614 
615 	return 0;
616 
617 out_stop_queues:
618 	for (i--; i >= 1; i--)
619 		nvme_rdma_stop_queue(&ctrl->queues[i]);
620 	return ret;
621 }
622 
623 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
624 {
625 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
626 	struct ib_device *ibdev = ctrl->device->dev;
627 	unsigned int nr_io_queues;
628 	int i, ret;
629 
630 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
631 
632 	/*
633 	 * we map queues according to the device irq vectors for
634 	 * optimal locality so we don't need more queues than
635 	 * completion vectors.
636 	 */
637 	nr_io_queues = min_t(unsigned int, nr_io_queues,
638 				ibdev->num_comp_vectors);
639 
640 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
641 	if (ret)
642 		return ret;
643 
644 	ctrl->ctrl.queue_count = nr_io_queues + 1;
645 	if (ctrl->ctrl.queue_count < 2)
646 		return 0;
647 
648 	dev_info(ctrl->ctrl.device,
649 		"creating %d I/O queues.\n", nr_io_queues);
650 
651 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
652 		ret = nvme_rdma_alloc_queue(ctrl, i,
653 				ctrl->ctrl.sqsize + 1);
654 		if (ret)
655 			goto out_free_queues;
656 	}
657 
658 	return 0;
659 
660 out_free_queues:
661 	for (i--; i >= 1; i--)
662 		nvme_rdma_free_queue(&ctrl->queues[i]);
663 
664 	return ret;
665 }
666 
667 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
668 		struct blk_mq_tag_set *set)
669 {
670 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
671 
672 	blk_mq_free_tag_set(set);
673 	nvme_rdma_dev_put(ctrl->device);
674 }
675 
676 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
677 		bool admin)
678 {
679 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
680 	struct blk_mq_tag_set *set;
681 	int ret;
682 
683 	if (admin) {
684 		set = &ctrl->admin_tag_set;
685 		memset(set, 0, sizeof(*set));
686 		set->ops = &nvme_rdma_admin_mq_ops;
687 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
688 		set->reserved_tags = 2; /* connect + keep-alive */
689 		set->numa_node = NUMA_NO_NODE;
690 		set->cmd_size = sizeof(struct nvme_rdma_request) +
691 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
692 		set->driver_data = ctrl;
693 		set->nr_hw_queues = 1;
694 		set->timeout = ADMIN_TIMEOUT;
695 		set->flags = BLK_MQ_F_NO_SCHED;
696 	} else {
697 		set = &ctrl->tag_set;
698 		memset(set, 0, sizeof(*set));
699 		set->ops = &nvme_rdma_mq_ops;
700 		set->queue_depth = nctrl->sqsize + 1;
701 		set->reserved_tags = 1; /* fabric connect */
702 		set->numa_node = NUMA_NO_NODE;
703 		set->flags = BLK_MQ_F_SHOULD_MERGE;
704 		set->cmd_size = sizeof(struct nvme_rdma_request) +
705 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
706 		set->driver_data = ctrl;
707 		set->nr_hw_queues = nctrl->queue_count - 1;
708 		set->timeout = NVME_IO_TIMEOUT;
709 	}
710 
711 	ret = blk_mq_alloc_tag_set(set);
712 	if (ret)
713 		goto out;
714 
715 	/*
716 	 * We need a reference on the device as long as the tag_set is alive,
717 	 * as the MRs in the request structures need a valid ib_device.
718 	 */
719 	ret = nvme_rdma_dev_get(ctrl->device);
720 	if (!ret) {
721 		ret = -EINVAL;
722 		goto out_free_tagset;
723 	}
724 
725 	return set;
726 
727 out_free_tagset:
728 	blk_mq_free_tag_set(set);
729 out:
730 	return ERR_PTR(ret);
731 }
732 
733 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
734 		bool remove)
735 {
736 	if (remove) {
737 		blk_cleanup_queue(ctrl->ctrl.admin_q);
738 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
739 	}
740 	if (ctrl->async_event_sqe.data) {
741 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
742 				sizeof(struct nvme_command), DMA_TO_DEVICE);
743 		ctrl->async_event_sqe.data = NULL;
744 	}
745 	nvme_rdma_free_queue(&ctrl->queues[0]);
746 }
747 
748 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
749 		bool new)
750 {
751 	int error;
752 
753 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
754 	if (error)
755 		return error;
756 
757 	ctrl->device = ctrl->queues[0].device;
758 
759 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
760 
761 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
762 			sizeof(struct nvme_command), DMA_TO_DEVICE);
763 	if (error)
764 		goto out_free_queue;
765 
766 	if (new) {
767 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
768 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
769 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
770 			goto out_free_async_qe;
771 		}
772 
773 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
774 		if (IS_ERR(ctrl->ctrl.admin_q)) {
775 			error = PTR_ERR(ctrl->ctrl.admin_q);
776 			goto out_free_tagset;
777 		}
778 	}
779 
780 	error = nvme_rdma_start_queue(ctrl, 0);
781 	if (error)
782 		goto out_cleanup_queue;
783 
784 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
785 			&ctrl->ctrl.cap);
786 	if (error) {
787 		dev_err(ctrl->ctrl.device,
788 			"prop_get NVME_REG_CAP failed\n");
789 		goto out_stop_queue;
790 	}
791 
792 	ctrl->ctrl.sqsize =
793 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
794 
795 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
796 	if (error)
797 		goto out_stop_queue;
798 
799 	ctrl->ctrl.max_hw_sectors =
800 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
801 
802 	error = nvme_init_identify(&ctrl->ctrl);
803 	if (error)
804 		goto out_stop_queue;
805 
806 	return 0;
807 
808 out_stop_queue:
809 	nvme_rdma_stop_queue(&ctrl->queues[0]);
810 out_cleanup_queue:
811 	if (new)
812 		blk_cleanup_queue(ctrl->ctrl.admin_q);
813 out_free_tagset:
814 	if (new)
815 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
816 out_free_async_qe:
817 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
818 		sizeof(struct nvme_command), DMA_TO_DEVICE);
819 out_free_queue:
820 	nvme_rdma_free_queue(&ctrl->queues[0]);
821 	return error;
822 }
823 
824 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
825 		bool remove)
826 {
827 	if (remove) {
828 		blk_cleanup_queue(ctrl->ctrl.connect_q);
829 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
830 	}
831 	nvme_rdma_free_io_queues(ctrl);
832 }
833 
834 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
835 {
836 	int ret;
837 
838 	ret = nvme_rdma_alloc_io_queues(ctrl);
839 	if (ret)
840 		return ret;
841 
842 	if (new) {
843 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
844 		if (IS_ERR(ctrl->ctrl.tagset)) {
845 			ret = PTR_ERR(ctrl->ctrl.tagset);
846 			goto out_free_io_queues;
847 		}
848 
849 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
850 		if (IS_ERR(ctrl->ctrl.connect_q)) {
851 			ret = PTR_ERR(ctrl->ctrl.connect_q);
852 			goto out_free_tag_set;
853 		}
854 	} else {
855 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
856 			ctrl->ctrl.queue_count - 1);
857 	}
858 
859 	ret = nvme_rdma_start_io_queues(ctrl);
860 	if (ret)
861 		goto out_cleanup_connect_q;
862 
863 	return 0;
864 
865 out_cleanup_connect_q:
866 	if (new)
867 		blk_cleanup_queue(ctrl->ctrl.connect_q);
868 out_free_tag_set:
869 	if (new)
870 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
871 out_free_io_queues:
872 	nvme_rdma_free_io_queues(ctrl);
873 	return ret;
874 }
875 
876 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
877 		bool remove)
878 {
879 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
880 	nvme_rdma_stop_queue(&ctrl->queues[0]);
881 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
882 			&ctrl->ctrl);
883 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
884 	nvme_rdma_destroy_admin_queue(ctrl, remove);
885 }
886 
887 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
888 		bool remove)
889 {
890 	if (ctrl->ctrl.queue_count > 1) {
891 		nvme_stop_queues(&ctrl->ctrl);
892 		nvme_rdma_stop_io_queues(ctrl);
893 		blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
894 				&ctrl->ctrl);
895 		if (remove)
896 			nvme_start_queues(&ctrl->ctrl);
897 		nvme_rdma_destroy_io_queues(ctrl, remove);
898 	}
899 }
900 
901 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
902 {
903 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
904 
905 	cancel_work_sync(&ctrl->err_work);
906 	cancel_delayed_work_sync(&ctrl->reconnect_work);
907 }
908 
909 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
910 {
911 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
912 
913 	if (list_empty(&ctrl->list))
914 		goto free_ctrl;
915 
916 	mutex_lock(&nvme_rdma_ctrl_mutex);
917 	list_del(&ctrl->list);
918 	mutex_unlock(&nvme_rdma_ctrl_mutex);
919 
920 	nvmf_free_options(nctrl->opts);
921 free_ctrl:
922 	kfree(ctrl->queues);
923 	kfree(ctrl);
924 }
925 
926 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
927 {
928 	/* If we are resetting/deleting then do nothing */
929 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
930 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
931 			ctrl->ctrl.state == NVME_CTRL_LIVE);
932 		return;
933 	}
934 
935 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
936 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
937 			ctrl->ctrl.opts->reconnect_delay);
938 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
939 				ctrl->ctrl.opts->reconnect_delay * HZ);
940 	} else {
941 		nvme_delete_ctrl(&ctrl->ctrl);
942 	}
943 }
944 
945 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
946 {
947 	int ret = -EINVAL;
948 	bool changed;
949 
950 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
951 	if (ret)
952 		return ret;
953 
954 	if (ctrl->ctrl.icdoff) {
955 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
956 		goto destroy_admin;
957 	}
958 
959 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
960 		dev_err(ctrl->ctrl.device,
961 			"Mandatory keyed sgls are not supported!\n");
962 		goto destroy_admin;
963 	}
964 
965 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
966 		dev_warn(ctrl->ctrl.device,
967 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
968 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
969 	}
970 
971 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
972 		dev_warn(ctrl->ctrl.device,
973 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
974 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
975 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
976 	}
977 
978 	if (ctrl->ctrl.sgls & (1 << 20))
979 		ctrl->use_inline_data = true;
980 
981 	if (ctrl->ctrl.queue_count > 1) {
982 		ret = nvme_rdma_configure_io_queues(ctrl, new);
983 		if (ret)
984 			goto destroy_admin;
985 	}
986 
987 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
988 	if (!changed) {
989 		/* state change failure is ok if we're in DELETING state */
990 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
991 		ret = -EINVAL;
992 		goto destroy_io;
993 	}
994 
995 	nvme_start_ctrl(&ctrl->ctrl);
996 	return 0;
997 
998 destroy_io:
999 	if (ctrl->ctrl.queue_count > 1)
1000 		nvme_rdma_destroy_io_queues(ctrl, new);
1001 destroy_admin:
1002 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1003 	nvme_rdma_destroy_admin_queue(ctrl, new);
1004 	return ret;
1005 }
1006 
1007 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1008 {
1009 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1010 			struct nvme_rdma_ctrl, reconnect_work);
1011 
1012 	++ctrl->ctrl.nr_reconnects;
1013 
1014 	if (nvme_rdma_setup_ctrl(ctrl, false))
1015 		goto requeue;
1016 
1017 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1018 			ctrl->ctrl.nr_reconnects);
1019 
1020 	ctrl->ctrl.nr_reconnects = 0;
1021 
1022 	return;
1023 
1024 requeue:
1025 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1026 			ctrl->ctrl.nr_reconnects);
1027 	nvme_rdma_reconnect_or_remove(ctrl);
1028 }
1029 
1030 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1031 {
1032 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1033 			struct nvme_rdma_ctrl, err_work);
1034 
1035 	nvme_stop_keep_alive(&ctrl->ctrl);
1036 	nvme_rdma_teardown_io_queues(ctrl, false);
1037 	nvme_start_queues(&ctrl->ctrl);
1038 	nvme_rdma_teardown_admin_queue(ctrl, false);
1039 
1040 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1041 		/* state change failure is ok if we're in DELETING state */
1042 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1043 		return;
1044 	}
1045 
1046 	nvme_rdma_reconnect_or_remove(ctrl);
1047 }
1048 
1049 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1050 {
1051 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1052 		return;
1053 
1054 	queue_work(nvme_wq, &ctrl->err_work);
1055 }
1056 
1057 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1058 		const char *op)
1059 {
1060 	struct nvme_rdma_queue *queue = cq->cq_context;
1061 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1062 
1063 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1064 		dev_info(ctrl->ctrl.device,
1065 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1066 			     op, wc->wr_cqe,
1067 			     ib_wc_status_msg(wc->status), wc->status);
1068 	nvme_rdma_error_recovery(ctrl);
1069 }
1070 
1071 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1072 {
1073 	if (unlikely(wc->status != IB_WC_SUCCESS))
1074 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1075 }
1076 
1077 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1078 {
1079 	struct nvme_rdma_request *req =
1080 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1081 	struct request *rq = blk_mq_rq_from_pdu(req);
1082 
1083 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1084 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1085 		return;
1086 	}
1087 
1088 	if (refcount_dec_and_test(&req->ref))
1089 		nvme_end_request(rq, req->status, req->result);
1090 
1091 }
1092 
1093 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1094 		struct nvme_rdma_request *req)
1095 {
1096 	struct ib_send_wr wr = {
1097 		.opcode		    = IB_WR_LOCAL_INV,
1098 		.next		    = NULL,
1099 		.num_sge	    = 0,
1100 		.send_flags	    = IB_SEND_SIGNALED,
1101 		.ex.invalidate_rkey = req->mr->rkey,
1102 	};
1103 
1104 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1105 	wr.wr_cqe = &req->reg_cqe;
1106 
1107 	return ib_post_send(queue->qp, &wr, NULL);
1108 }
1109 
1110 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1111 		struct request *rq)
1112 {
1113 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1114 	struct nvme_rdma_device *dev = queue->device;
1115 	struct ib_device *ibdev = dev->dev;
1116 
1117 	if (!blk_rq_payload_bytes(rq))
1118 		return;
1119 
1120 	if (req->mr) {
1121 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1122 		req->mr = NULL;
1123 	}
1124 
1125 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1126 			req->nents, rq_data_dir(rq) ==
1127 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1128 
1129 	nvme_cleanup_cmd(rq);
1130 	sg_free_table_chained(&req->sg_table, true);
1131 }
1132 
1133 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1134 {
1135 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1136 
1137 	sg->addr = 0;
1138 	put_unaligned_le24(0, sg->length);
1139 	put_unaligned_le32(0, sg->key);
1140 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1141 	return 0;
1142 }
1143 
1144 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1145 		struct nvme_rdma_request *req, struct nvme_command *c,
1146 		int count)
1147 {
1148 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1149 	struct scatterlist *sgl = req->sg_table.sgl;
1150 	struct ib_sge *sge = &req->sge[1];
1151 	u32 len = 0;
1152 	int i;
1153 
1154 	for (i = 0; i < count; i++, sgl++, sge++) {
1155 		sge->addr = sg_dma_address(sgl);
1156 		sge->length = sg_dma_len(sgl);
1157 		sge->lkey = queue->device->pd->local_dma_lkey;
1158 		len += sge->length;
1159 	}
1160 
1161 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1162 	sg->length = cpu_to_le32(len);
1163 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1164 
1165 	req->num_sge += count;
1166 	return 0;
1167 }
1168 
1169 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1170 		struct nvme_rdma_request *req, struct nvme_command *c)
1171 {
1172 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1173 
1174 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1175 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1176 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1177 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1178 	return 0;
1179 }
1180 
1181 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1182 		struct nvme_rdma_request *req, struct nvme_command *c,
1183 		int count)
1184 {
1185 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1186 	int nr;
1187 
1188 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1189 	if (WARN_ON_ONCE(!req->mr))
1190 		return -EAGAIN;
1191 
1192 	/*
1193 	 * Align the MR to a 4K page size to match the ctrl page size and
1194 	 * the block virtual boundary.
1195 	 */
1196 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1197 	if (unlikely(nr < count)) {
1198 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1199 		req->mr = NULL;
1200 		if (nr < 0)
1201 			return nr;
1202 		return -EINVAL;
1203 	}
1204 
1205 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1206 
1207 	req->reg_cqe.done = nvme_rdma_memreg_done;
1208 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1209 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1210 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1211 	req->reg_wr.wr.num_sge = 0;
1212 	req->reg_wr.mr = req->mr;
1213 	req->reg_wr.key = req->mr->rkey;
1214 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1215 			     IB_ACCESS_REMOTE_READ |
1216 			     IB_ACCESS_REMOTE_WRITE;
1217 
1218 	sg->addr = cpu_to_le64(req->mr->iova);
1219 	put_unaligned_le24(req->mr->length, sg->length);
1220 	put_unaligned_le32(req->mr->rkey, sg->key);
1221 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1222 			NVME_SGL_FMT_INVALIDATE;
1223 
1224 	return 0;
1225 }
1226 
1227 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1228 		struct request *rq, struct nvme_command *c)
1229 {
1230 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1231 	struct nvme_rdma_device *dev = queue->device;
1232 	struct ib_device *ibdev = dev->dev;
1233 	int count, ret;
1234 
1235 	req->num_sge = 1;
1236 	refcount_set(&req->ref, 2); /* send and recv completions */
1237 
1238 	c->common.flags |= NVME_CMD_SGL_METABUF;
1239 
1240 	if (!blk_rq_payload_bytes(rq))
1241 		return nvme_rdma_set_sg_null(c);
1242 
1243 	req->sg_table.sgl = req->first_sgl;
1244 	ret = sg_alloc_table_chained(&req->sg_table,
1245 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1246 	if (ret)
1247 		return -ENOMEM;
1248 
1249 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1250 
1251 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1252 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1253 	if (unlikely(count <= 0)) {
1254 		ret = -EIO;
1255 		goto out_free_table;
1256 	}
1257 
1258 	if (count <= dev->num_inline_segments) {
1259 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1260 		    queue->ctrl->use_inline_data &&
1261 		    blk_rq_payload_bytes(rq) <=
1262 				nvme_rdma_inline_data_size(queue)) {
1263 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1264 			goto out;
1265 		}
1266 
1267 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1268 			ret = nvme_rdma_map_sg_single(queue, req, c);
1269 			goto out;
1270 		}
1271 	}
1272 
1273 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1274 out:
1275 	if (unlikely(ret))
1276 		goto out_unmap_sg;
1277 
1278 	return 0;
1279 
1280 out_unmap_sg:
1281 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1282 			req->nents, rq_data_dir(rq) ==
1283 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1284 out_free_table:
1285 	sg_free_table_chained(&req->sg_table, true);
1286 	return ret;
1287 }
1288 
1289 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1290 {
1291 	struct nvme_rdma_qe *qe =
1292 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1293 	struct nvme_rdma_request *req =
1294 		container_of(qe, struct nvme_rdma_request, sqe);
1295 	struct request *rq = blk_mq_rq_from_pdu(req);
1296 
1297 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1298 		nvme_rdma_wr_error(cq, wc, "SEND");
1299 		return;
1300 	}
1301 
1302 	if (refcount_dec_and_test(&req->ref))
1303 		nvme_end_request(rq, req->status, req->result);
1304 }
1305 
1306 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1307 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1308 		struct ib_send_wr *first)
1309 {
1310 	struct ib_send_wr wr;
1311 	int ret;
1312 
1313 	sge->addr   = qe->dma;
1314 	sge->length = sizeof(struct nvme_command),
1315 	sge->lkey   = queue->device->pd->local_dma_lkey;
1316 
1317 	wr.next       = NULL;
1318 	wr.wr_cqe     = &qe->cqe;
1319 	wr.sg_list    = sge;
1320 	wr.num_sge    = num_sge;
1321 	wr.opcode     = IB_WR_SEND;
1322 	wr.send_flags = IB_SEND_SIGNALED;
1323 
1324 	if (first)
1325 		first->next = &wr;
1326 	else
1327 		first = &wr;
1328 
1329 	ret = ib_post_send(queue->qp, first, NULL);
1330 	if (unlikely(ret)) {
1331 		dev_err(queue->ctrl->ctrl.device,
1332 			     "%s failed with error code %d\n", __func__, ret);
1333 	}
1334 	return ret;
1335 }
1336 
1337 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1338 		struct nvme_rdma_qe *qe)
1339 {
1340 	struct ib_recv_wr wr;
1341 	struct ib_sge list;
1342 	int ret;
1343 
1344 	list.addr   = qe->dma;
1345 	list.length = sizeof(struct nvme_completion);
1346 	list.lkey   = queue->device->pd->local_dma_lkey;
1347 
1348 	qe->cqe.done = nvme_rdma_recv_done;
1349 
1350 	wr.next     = NULL;
1351 	wr.wr_cqe   = &qe->cqe;
1352 	wr.sg_list  = &list;
1353 	wr.num_sge  = 1;
1354 
1355 	ret = ib_post_recv(queue->qp, &wr, NULL);
1356 	if (unlikely(ret)) {
1357 		dev_err(queue->ctrl->ctrl.device,
1358 			"%s failed with error code %d\n", __func__, ret);
1359 	}
1360 	return ret;
1361 }
1362 
1363 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1364 {
1365 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1366 
1367 	if (queue_idx == 0)
1368 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1369 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1370 }
1371 
1372 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1373 {
1374 	if (unlikely(wc->status != IB_WC_SUCCESS))
1375 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1376 }
1377 
1378 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1379 {
1380 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1381 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1382 	struct ib_device *dev = queue->device->dev;
1383 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1384 	struct nvme_command *cmd = sqe->data;
1385 	struct ib_sge sge;
1386 	int ret;
1387 
1388 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1389 
1390 	memset(cmd, 0, sizeof(*cmd));
1391 	cmd->common.opcode = nvme_admin_async_event;
1392 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1393 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1394 	nvme_rdma_set_sg_null(cmd);
1395 
1396 	sqe->cqe.done = nvme_rdma_async_done;
1397 
1398 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1399 			DMA_TO_DEVICE);
1400 
1401 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1402 	WARN_ON_ONCE(ret);
1403 }
1404 
1405 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1406 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1407 {
1408 	struct request *rq;
1409 	struct nvme_rdma_request *req;
1410 	int ret = 0;
1411 
1412 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1413 	if (!rq) {
1414 		dev_err(queue->ctrl->ctrl.device,
1415 			"tag 0x%x on QP %#x not found\n",
1416 			cqe->command_id, queue->qp->qp_num);
1417 		nvme_rdma_error_recovery(queue->ctrl);
1418 		return ret;
1419 	}
1420 	req = blk_mq_rq_to_pdu(rq);
1421 
1422 	req->status = cqe->status;
1423 	req->result = cqe->result;
1424 
1425 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1426 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1427 			dev_err(queue->ctrl->ctrl.device,
1428 				"Bogus remote invalidation for rkey %#x\n",
1429 				req->mr->rkey);
1430 			nvme_rdma_error_recovery(queue->ctrl);
1431 		}
1432 	} else if (req->mr) {
1433 		ret = nvme_rdma_inv_rkey(queue, req);
1434 		if (unlikely(ret < 0)) {
1435 			dev_err(queue->ctrl->ctrl.device,
1436 				"Queueing INV WR for rkey %#x failed (%d)\n",
1437 				req->mr->rkey, ret);
1438 			nvme_rdma_error_recovery(queue->ctrl);
1439 		}
1440 		/* the local invalidation completion will end the request */
1441 		return 0;
1442 	}
1443 
1444 	if (refcount_dec_and_test(&req->ref)) {
1445 		if (rq->tag == tag)
1446 			ret = 1;
1447 		nvme_end_request(rq, req->status, req->result);
1448 	}
1449 
1450 	return ret;
1451 }
1452 
1453 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1454 {
1455 	struct nvme_rdma_qe *qe =
1456 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1457 	struct nvme_rdma_queue *queue = cq->cq_context;
1458 	struct ib_device *ibdev = queue->device->dev;
1459 	struct nvme_completion *cqe = qe->data;
1460 	const size_t len = sizeof(struct nvme_completion);
1461 	int ret = 0;
1462 
1463 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1464 		nvme_rdma_wr_error(cq, wc, "RECV");
1465 		return 0;
1466 	}
1467 
1468 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1469 	/*
1470 	 * AEN requests are special as they don't time out and can
1471 	 * survive any kind of queue freeze and often don't respond to
1472 	 * aborts.  We don't even bother to allocate a struct request
1473 	 * for them but rather special case them here.
1474 	 */
1475 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1476 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1477 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1478 				&cqe->result);
1479 	else
1480 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1481 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1482 
1483 	nvme_rdma_post_recv(queue, qe);
1484 	return ret;
1485 }
1486 
1487 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1488 {
1489 	__nvme_rdma_recv_done(cq, wc, -1);
1490 }
1491 
1492 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1493 {
1494 	int ret, i;
1495 
1496 	for (i = 0; i < queue->queue_size; i++) {
1497 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1498 		if (ret)
1499 			goto out_destroy_queue_ib;
1500 	}
1501 
1502 	return 0;
1503 
1504 out_destroy_queue_ib:
1505 	nvme_rdma_destroy_queue_ib(queue);
1506 	return ret;
1507 }
1508 
1509 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1510 		struct rdma_cm_event *ev)
1511 {
1512 	struct rdma_cm_id *cm_id = queue->cm_id;
1513 	int status = ev->status;
1514 	const char *rej_msg;
1515 	const struct nvme_rdma_cm_rej *rej_data;
1516 	u8 rej_data_len;
1517 
1518 	rej_msg = rdma_reject_msg(cm_id, status);
1519 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1520 
1521 	if (rej_data && rej_data_len >= sizeof(u16)) {
1522 		u16 sts = le16_to_cpu(rej_data->sts);
1523 
1524 		dev_err(queue->ctrl->ctrl.device,
1525 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1526 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1527 	} else {
1528 		dev_err(queue->ctrl->ctrl.device,
1529 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1530 	}
1531 
1532 	return -ECONNRESET;
1533 }
1534 
1535 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1536 {
1537 	int ret;
1538 
1539 	ret = nvme_rdma_create_queue_ib(queue);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1544 	if (ret) {
1545 		dev_err(queue->ctrl->ctrl.device,
1546 			"rdma_resolve_route failed (%d).\n",
1547 			queue->cm_error);
1548 		goto out_destroy_queue;
1549 	}
1550 
1551 	return 0;
1552 
1553 out_destroy_queue:
1554 	nvme_rdma_destroy_queue_ib(queue);
1555 	return ret;
1556 }
1557 
1558 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1559 {
1560 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1561 	struct rdma_conn_param param = { };
1562 	struct nvme_rdma_cm_req priv = { };
1563 	int ret;
1564 
1565 	param.qp_num = queue->qp->qp_num;
1566 	param.flow_control = 1;
1567 
1568 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1569 	/* maximum retry count */
1570 	param.retry_count = 7;
1571 	param.rnr_retry_count = 7;
1572 	param.private_data = &priv;
1573 	param.private_data_len = sizeof(priv);
1574 
1575 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1576 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1577 	/*
1578 	 * set the admin queue depth to the minimum size
1579 	 * specified by the Fabrics standard.
1580 	 */
1581 	if (priv.qid == 0) {
1582 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1583 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1584 	} else {
1585 		/*
1586 		 * current interpretation of the fabrics spec
1587 		 * is at minimum you make hrqsize sqsize+1, or a
1588 		 * 1's based representation of sqsize.
1589 		 */
1590 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1591 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1592 	}
1593 
1594 	ret = rdma_connect(queue->cm_id, &param);
1595 	if (ret) {
1596 		dev_err(ctrl->ctrl.device,
1597 			"rdma_connect failed (%d).\n", ret);
1598 		goto out_destroy_queue_ib;
1599 	}
1600 
1601 	return 0;
1602 
1603 out_destroy_queue_ib:
1604 	nvme_rdma_destroy_queue_ib(queue);
1605 	return ret;
1606 }
1607 
1608 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1609 		struct rdma_cm_event *ev)
1610 {
1611 	struct nvme_rdma_queue *queue = cm_id->context;
1612 	int cm_error = 0;
1613 
1614 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1615 		rdma_event_msg(ev->event), ev->event,
1616 		ev->status, cm_id);
1617 
1618 	switch (ev->event) {
1619 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1620 		cm_error = nvme_rdma_addr_resolved(queue);
1621 		break;
1622 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1623 		cm_error = nvme_rdma_route_resolved(queue);
1624 		break;
1625 	case RDMA_CM_EVENT_ESTABLISHED:
1626 		queue->cm_error = nvme_rdma_conn_established(queue);
1627 		/* complete cm_done regardless of success/failure */
1628 		complete(&queue->cm_done);
1629 		return 0;
1630 	case RDMA_CM_EVENT_REJECTED:
1631 		nvme_rdma_destroy_queue_ib(queue);
1632 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1633 		break;
1634 	case RDMA_CM_EVENT_ROUTE_ERROR:
1635 	case RDMA_CM_EVENT_CONNECT_ERROR:
1636 	case RDMA_CM_EVENT_UNREACHABLE:
1637 		nvme_rdma_destroy_queue_ib(queue);
1638 		/* fall through */
1639 	case RDMA_CM_EVENT_ADDR_ERROR:
1640 		dev_dbg(queue->ctrl->ctrl.device,
1641 			"CM error event %d\n", ev->event);
1642 		cm_error = -ECONNRESET;
1643 		break;
1644 	case RDMA_CM_EVENT_DISCONNECTED:
1645 	case RDMA_CM_EVENT_ADDR_CHANGE:
1646 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1647 		dev_dbg(queue->ctrl->ctrl.device,
1648 			"disconnect received - connection closed\n");
1649 		nvme_rdma_error_recovery(queue->ctrl);
1650 		break;
1651 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1652 		/* device removal is handled via the ib_client API */
1653 		break;
1654 	default:
1655 		dev_err(queue->ctrl->ctrl.device,
1656 			"Unexpected RDMA CM event (%d)\n", ev->event);
1657 		nvme_rdma_error_recovery(queue->ctrl);
1658 		break;
1659 	}
1660 
1661 	if (cm_error) {
1662 		queue->cm_error = cm_error;
1663 		complete(&queue->cm_done);
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static enum blk_eh_timer_return
1670 nvme_rdma_timeout(struct request *rq, bool reserved)
1671 {
1672 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1673 
1674 	dev_warn(req->queue->ctrl->ctrl.device,
1675 		 "I/O %d QID %d timeout, reset controller\n",
1676 		 rq->tag, nvme_rdma_queue_idx(req->queue));
1677 
1678 	/* queue error recovery */
1679 	nvme_rdma_error_recovery(req->queue->ctrl);
1680 
1681 	/* fail with DNR on cmd timeout */
1682 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1683 
1684 	return BLK_EH_DONE;
1685 }
1686 
1687 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1688 		const struct blk_mq_queue_data *bd)
1689 {
1690 	struct nvme_ns *ns = hctx->queue->queuedata;
1691 	struct nvme_rdma_queue *queue = hctx->driver_data;
1692 	struct request *rq = bd->rq;
1693 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1694 	struct nvme_rdma_qe *sqe = &req->sqe;
1695 	struct nvme_command *c = sqe->data;
1696 	struct ib_device *dev;
1697 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1698 	blk_status_t ret;
1699 	int err;
1700 
1701 	WARN_ON_ONCE(rq->tag < 0);
1702 
1703 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1704 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1705 
1706 	dev = queue->device->dev;
1707 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1708 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1709 
1710 	ret = nvme_setup_cmd(ns, rq, c);
1711 	if (ret)
1712 		return ret;
1713 
1714 	blk_mq_start_request(rq);
1715 
1716 	err = nvme_rdma_map_data(queue, rq, c);
1717 	if (unlikely(err < 0)) {
1718 		dev_err(queue->ctrl->ctrl.device,
1719 			     "Failed to map data (%d)\n", err);
1720 		nvme_cleanup_cmd(rq);
1721 		goto err;
1722 	}
1723 
1724 	sqe->cqe.done = nvme_rdma_send_done;
1725 
1726 	ib_dma_sync_single_for_device(dev, sqe->dma,
1727 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1728 
1729 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1730 			req->mr ? &req->reg_wr.wr : NULL);
1731 	if (unlikely(err)) {
1732 		nvme_rdma_unmap_data(queue, rq);
1733 		goto err;
1734 	}
1735 
1736 	return BLK_STS_OK;
1737 err:
1738 	if (err == -ENOMEM || err == -EAGAIN)
1739 		return BLK_STS_RESOURCE;
1740 	return BLK_STS_IOERR;
1741 }
1742 
1743 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1744 {
1745 	struct nvme_rdma_queue *queue = hctx->driver_data;
1746 	struct ib_cq *cq = queue->ib_cq;
1747 	struct ib_wc wc;
1748 	int found = 0;
1749 
1750 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1751 		struct ib_cqe *cqe = wc.wr_cqe;
1752 
1753 		if (cqe) {
1754 			if (cqe->done == nvme_rdma_recv_done)
1755 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1756 			else
1757 				cqe->done(cq, &wc);
1758 		}
1759 	}
1760 
1761 	return found;
1762 }
1763 
1764 static void nvme_rdma_complete_rq(struct request *rq)
1765 {
1766 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1767 
1768 	nvme_rdma_unmap_data(req->queue, rq);
1769 	nvme_complete_rq(rq);
1770 }
1771 
1772 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1773 {
1774 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1775 
1776 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1777 }
1778 
1779 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1780 	.queue_rq	= nvme_rdma_queue_rq,
1781 	.complete	= nvme_rdma_complete_rq,
1782 	.init_request	= nvme_rdma_init_request,
1783 	.exit_request	= nvme_rdma_exit_request,
1784 	.init_hctx	= nvme_rdma_init_hctx,
1785 	.poll		= nvme_rdma_poll,
1786 	.timeout	= nvme_rdma_timeout,
1787 	.map_queues	= nvme_rdma_map_queues,
1788 };
1789 
1790 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1791 	.queue_rq	= nvme_rdma_queue_rq,
1792 	.complete	= nvme_rdma_complete_rq,
1793 	.init_request	= nvme_rdma_init_request,
1794 	.exit_request	= nvme_rdma_exit_request,
1795 	.init_hctx	= nvme_rdma_init_admin_hctx,
1796 	.timeout	= nvme_rdma_timeout,
1797 };
1798 
1799 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1800 {
1801 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1802 	if (shutdown)
1803 		nvme_shutdown_ctrl(&ctrl->ctrl);
1804 	else
1805 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1806 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1807 }
1808 
1809 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1810 {
1811 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1812 }
1813 
1814 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1815 {
1816 	struct nvme_rdma_ctrl *ctrl =
1817 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1818 
1819 	nvme_stop_ctrl(&ctrl->ctrl);
1820 	nvme_rdma_shutdown_ctrl(ctrl, false);
1821 
1822 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1823 		/* state change failure should never happen */
1824 		WARN_ON_ONCE(1);
1825 		return;
1826 	}
1827 
1828 	if (nvme_rdma_setup_ctrl(ctrl, false))
1829 		goto out_fail;
1830 
1831 	return;
1832 
1833 out_fail:
1834 	++ctrl->ctrl.nr_reconnects;
1835 	nvme_rdma_reconnect_or_remove(ctrl);
1836 }
1837 
1838 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1839 	.name			= "rdma",
1840 	.module			= THIS_MODULE,
1841 	.flags			= NVME_F_FABRICS,
1842 	.reg_read32		= nvmf_reg_read32,
1843 	.reg_read64		= nvmf_reg_read64,
1844 	.reg_write32		= nvmf_reg_write32,
1845 	.free_ctrl		= nvme_rdma_free_ctrl,
1846 	.submit_async_event	= nvme_rdma_submit_async_event,
1847 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1848 	.get_address		= nvmf_get_address,
1849 	.stop_ctrl		= nvme_rdma_stop_ctrl,
1850 };
1851 
1852 static inline bool
1853 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1854 	struct nvmf_ctrl_options *opts)
1855 {
1856 	char *stdport = __stringify(NVME_RDMA_IP_PORT);
1857 
1858 
1859 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1860 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1861 		return false;
1862 
1863 	if (opts->mask & NVMF_OPT_TRSVCID &&
1864 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1865 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1866 			return false;
1867 	} else if (opts->mask & NVMF_OPT_TRSVCID) {
1868 		if (strcmp(opts->trsvcid, stdport))
1869 			return false;
1870 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1871 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1872 			return false;
1873 	}
1874 	/* else, it's a match as both have stdport. Fall to next checks */
1875 
1876 	/*
1877 	 * checking the local address is rough. In most cases, one
1878 	 * is not specified and the host port is selected by the stack.
1879 	 *
1880 	 * Assume no match if:
1881 	 *  local address is specified and address is not the same
1882 	 *  local address is not specified but remote is, or vice versa
1883 	 *    (admin using specific host_traddr when it matters).
1884 	 */
1885 	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1886 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1887 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1888 			return false;
1889 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1890 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1891 		return false;
1892 	/*
1893 	 * if neither controller had an host port specified, assume it's
1894 	 * a match as everything else matched.
1895 	 */
1896 
1897 	return true;
1898 }
1899 
1900 /*
1901  * Fails a connection request if it matches an existing controller
1902  * (association) with the same tuple:
1903  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1904  *
1905  * if local address is not specified in the request, it will match an
1906  * existing controller with all the other parameters the same and no
1907  * local port address specified as well.
1908  *
1909  * The ports don't need to be compared as they are intrinsically
1910  * already matched by the port pointers supplied.
1911  */
1912 static bool
1913 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1914 {
1915 	struct nvme_rdma_ctrl *ctrl;
1916 	bool found = false;
1917 
1918 	mutex_lock(&nvme_rdma_ctrl_mutex);
1919 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1920 		found = __nvme_rdma_options_match(ctrl, opts);
1921 		if (found)
1922 			break;
1923 	}
1924 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1925 
1926 	return found;
1927 }
1928 
1929 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1930 		struct nvmf_ctrl_options *opts)
1931 {
1932 	struct nvme_rdma_ctrl *ctrl;
1933 	int ret;
1934 	bool changed;
1935 	char *port;
1936 
1937 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1938 	if (!ctrl)
1939 		return ERR_PTR(-ENOMEM);
1940 	ctrl->ctrl.opts = opts;
1941 	INIT_LIST_HEAD(&ctrl->list);
1942 
1943 	if (opts->mask & NVMF_OPT_TRSVCID)
1944 		port = opts->trsvcid;
1945 	else
1946 		port = __stringify(NVME_RDMA_IP_PORT);
1947 
1948 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1949 			opts->traddr, port, &ctrl->addr);
1950 	if (ret) {
1951 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1952 		goto out_free_ctrl;
1953 	}
1954 
1955 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1956 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1957 			opts->host_traddr, NULL, &ctrl->src_addr);
1958 		if (ret) {
1959 			pr_err("malformed src address passed: %s\n",
1960 			       opts->host_traddr);
1961 			goto out_free_ctrl;
1962 		}
1963 	}
1964 
1965 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1966 		ret = -EALREADY;
1967 		goto out_free_ctrl;
1968 	}
1969 
1970 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1971 			nvme_rdma_reconnect_ctrl_work);
1972 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1973 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1974 
1975 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1976 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1977 	ctrl->ctrl.kato = opts->kato;
1978 
1979 	ret = -ENOMEM;
1980 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1981 				GFP_KERNEL);
1982 	if (!ctrl->queues)
1983 		goto out_free_ctrl;
1984 
1985 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1986 				0 /* no quirks, we're perfect! */);
1987 	if (ret)
1988 		goto out_kfree_queues;
1989 
1990 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1991 	WARN_ON_ONCE(!changed);
1992 
1993 	ret = nvme_rdma_setup_ctrl(ctrl, true);
1994 	if (ret)
1995 		goto out_uninit_ctrl;
1996 
1997 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1998 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1999 
2000 	nvme_get_ctrl(&ctrl->ctrl);
2001 
2002 	mutex_lock(&nvme_rdma_ctrl_mutex);
2003 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2004 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2005 
2006 	return &ctrl->ctrl;
2007 
2008 out_uninit_ctrl:
2009 	nvme_uninit_ctrl(&ctrl->ctrl);
2010 	nvme_put_ctrl(&ctrl->ctrl);
2011 	if (ret > 0)
2012 		ret = -EIO;
2013 	return ERR_PTR(ret);
2014 out_kfree_queues:
2015 	kfree(ctrl->queues);
2016 out_free_ctrl:
2017 	kfree(ctrl);
2018 	return ERR_PTR(ret);
2019 }
2020 
2021 static struct nvmf_transport_ops nvme_rdma_transport = {
2022 	.name		= "rdma",
2023 	.module		= THIS_MODULE,
2024 	.required_opts	= NVMF_OPT_TRADDR,
2025 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2026 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2027 	.create_ctrl	= nvme_rdma_create_ctrl,
2028 };
2029 
2030 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2031 {
2032 	struct nvme_rdma_ctrl *ctrl;
2033 	struct nvme_rdma_device *ndev;
2034 	bool found = false;
2035 
2036 	mutex_lock(&device_list_mutex);
2037 	list_for_each_entry(ndev, &device_list, entry) {
2038 		if (ndev->dev == ib_device) {
2039 			found = true;
2040 			break;
2041 		}
2042 	}
2043 	mutex_unlock(&device_list_mutex);
2044 
2045 	if (!found)
2046 		return;
2047 
2048 	/* Delete all controllers using this device */
2049 	mutex_lock(&nvme_rdma_ctrl_mutex);
2050 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2051 		if (ctrl->device->dev != ib_device)
2052 			continue;
2053 		nvme_delete_ctrl(&ctrl->ctrl);
2054 	}
2055 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2056 
2057 	flush_workqueue(nvme_delete_wq);
2058 }
2059 
2060 static struct ib_client nvme_rdma_ib_client = {
2061 	.name   = "nvme_rdma",
2062 	.remove = nvme_rdma_remove_one
2063 };
2064 
2065 static int __init nvme_rdma_init_module(void)
2066 {
2067 	int ret;
2068 
2069 	ret = ib_register_client(&nvme_rdma_ib_client);
2070 	if (ret)
2071 		return ret;
2072 
2073 	ret = nvmf_register_transport(&nvme_rdma_transport);
2074 	if (ret)
2075 		goto err_unreg_client;
2076 
2077 	return 0;
2078 
2079 err_unreg_client:
2080 	ib_unregister_client(&nvme_rdma_ib_client);
2081 	return ret;
2082 }
2083 
2084 static void __exit nvme_rdma_cleanup_module(void)
2085 {
2086 	nvmf_unregister_transport(&nvme_rdma_transport);
2087 	ib_unregister_client(&nvme_rdma_ib_client);
2088 }
2089 
2090 module_init(nvme_rdma_init_module);
2091 module_exit(nvme_rdma_cleanup_module);
2092 
2093 MODULE_LICENSE("GPL v2");
2094