xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 };
101 
102 struct nvme_rdma_ctrl {
103 	/* read only in the hot path */
104 	struct nvme_rdma_queue	*queues;
105 
106 	/* other member variables */
107 	struct blk_mq_tag_set	tag_set;
108 	struct work_struct	err_work;
109 
110 	struct nvme_rdma_qe	async_event_sqe;
111 
112 	struct delayed_work	reconnect_work;
113 
114 	struct list_head	list;
115 
116 	struct blk_mq_tag_set	admin_tag_set;
117 	struct nvme_rdma_device	*device;
118 
119 	u32			max_fr_pages;
120 
121 	struct sockaddr_storage addr;
122 	struct sockaddr_storage src_addr;
123 
124 	struct nvme_ctrl	ctrl;
125 	bool			use_inline_data;
126 	u32			io_queues[HCTX_MAX_TYPES];
127 };
128 
129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
130 {
131 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
132 }
133 
134 static LIST_HEAD(device_list);
135 static DEFINE_MUTEX(device_list_mutex);
136 
137 static LIST_HEAD(nvme_rdma_ctrl_list);
138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
139 
140 /*
141  * Disabling this option makes small I/O goes faster, but is fundamentally
142  * unsafe.  With it turned off we will have to register a global rkey that
143  * allows read and write access to all physical memory.
144  */
145 static bool register_always = true;
146 module_param(register_always, bool, 0444);
147 MODULE_PARM_DESC(register_always,
148 	 "Use memory registration even for contiguous memory regions");
149 
150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
151 		struct rdma_cm_event *event);
152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
153 static void nvme_rdma_complete_rq(struct request *rq);
154 
155 static const struct blk_mq_ops nvme_rdma_mq_ops;
156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
157 
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160 	return queue - queue->ctrl->queues;
161 }
162 
163 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
164 {
165 	return nvme_rdma_queue_idx(queue) >
166 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
167 		queue->ctrl->io_queues[HCTX_TYPE_READ];
168 }
169 
170 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
175 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176 		size_t capsule_size, enum dma_data_direction dir)
177 {
178 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
179 	kfree(qe->data);
180 }
181 
182 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
183 		size_t capsule_size, enum dma_data_direction dir)
184 {
185 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
186 	if (!qe->data)
187 		return -ENOMEM;
188 
189 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
190 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
191 		kfree(qe->data);
192 		qe->data = NULL;
193 		return -ENOMEM;
194 	}
195 
196 	return 0;
197 }
198 
199 static void nvme_rdma_free_ring(struct ib_device *ibdev,
200 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
201 		size_t capsule_size, enum dma_data_direction dir)
202 {
203 	int i;
204 
205 	for (i = 0; i < ib_queue_size; i++)
206 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
207 	kfree(ring);
208 }
209 
210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
211 		size_t ib_queue_size, size_t capsule_size,
212 		enum dma_data_direction dir)
213 {
214 	struct nvme_rdma_qe *ring;
215 	int i;
216 
217 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
218 	if (!ring)
219 		return NULL;
220 
221 	/*
222 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
223 	 * lifetime. It's safe, since any chage in the underlying RDMA device
224 	 * will issue error recovery and queue re-creation.
225 	 */
226 	for (i = 0; i < ib_queue_size; i++) {
227 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
228 			goto out_free_ring;
229 	}
230 
231 	return ring;
232 
233 out_free_ring:
234 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
235 	return NULL;
236 }
237 
238 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
239 {
240 	pr_debug("QP event %s (%d)\n",
241 		 ib_event_msg(event->event), event->event);
242 
243 }
244 
245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
246 {
247 	int ret;
248 
249 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
250 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
251 	if (ret < 0)
252 		return ret;
253 	if (ret == 0)
254 		return -ETIMEDOUT;
255 	WARN_ON_ONCE(queue->cm_error > 0);
256 	return queue->cm_error;
257 }
258 
259 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
260 {
261 	struct nvme_rdma_device *dev = queue->device;
262 	struct ib_qp_init_attr init_attr;
263 	int ret;
264 
265 	memset(&init_attr, 0, sizeof(init_attr));
266 	init_attr.event_handler = nvme_rdma_qp_event;
267 	/* +1 for drain */
268 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
269 	/* +1 for drain */
270 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
271 	init_attr.cap.max_recv_sge = 1;
272 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
273 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
274 	init_attr.qp_type = IB_QPT_RC;
275 	init_attr.send_cq = queue->ib_cq;
276 	init_attr.recv_cq = queue->ib_cq;
277 	if (queue->pi_support)
278 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
279 	init_attr.qp_context = queue;
280 
281 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
282 
283 	queue->qp = queue->cm_id->qp;
284 	return ret;
285 }
286 
287 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
288 		struct request *rq, unsigned int hctx_idx)
289 {
290 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
291 
292 	kfree(req->sqe.data);
293 }
294 
295 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
296 		struct request *rq, unsigned int hctx_idx,
297 		unsigned int numa_node)
298 {
299 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
300 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
301 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
302 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
303 
304 	nvme_req(rq)->ctrl = &ctrl->ctrl;
305 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
306 	if (!req->sqe.data)
307 		return -ENOMEM;
308 
309 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
310 	if (queue->pi_support)
311 		req->metadata_sgl = (void *)nvme_req(rq) +
312 			sizeof(struct nvme_rdma_request) +
313 			NVME_RDMA_DATA_SGL_SIZE;
314 
315 	req->queue = queue;
316 
317 	return 0;
318 }
319 
320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
321 		unsigned int hctx_idx)
322 {
323 	struct nvme_rdma_ctrl *ctrl = data;
324 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
325 
326 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
327 
328 	hctx->driver_data = queue;
329 	return 0;
330 }
331 
332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
333 		unsigned int hctx_idx)
334 {
335 	struct nvme_rdma_ctrl *ctrl = data;
336 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
337 
338 	BUG_ON(hctx_idx != 0);
339 
340 	hctx->driver_data = queue;
341 	return 0;
342 }
343 
344 static void nvme_rdma_free_dev(struct kref *ref)
345 {
346 	struct nvme_rdma_device *ndev =
347 		container_of(ref, struct nvme_rdma_device, ref);
348 
349 	mutex_lock(&device_list_mutex);
350 	list_del(&ndev->entry);
351 	mutex_unlock(&device_list_mutex);
352 
353 	ib_dealloc_pd(ndev->pd);
354 	kfree(ndev);
355 }
356 
357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
358 {
359 	kref_put(&dev->ref, nvme_rdma_free_dev);
360 }
361 
362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
363 {
364 	return kref_get_unless_zero(&dev->ref);
365 }
366 
367 static struct nvme_rdma_device *
368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
369 {
370 	struct nvme_rdma_device *ndev;
371 
372 	mutex_lock(&device_list_mutex);
373 	list_for_each_entry(ndev, &device_list, entry) {
374 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
375 		    nvme_rdma_dev_get(ndev))
376 			goto out_unlock;
377 	}
378 
379 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
380 	if (!ndev)
381 		goto out_err;
382 
383 	ndev->dev = cm_id->device;
384 	kref_init(&ndev->ref);
385 
386 	ndev->pd = ib_alloc_pd(ndev->dev,
387 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
388 	if (IS_ERR(ndev->pd))
389 		goto out_free_dev;
390 
391 	if (!(ndev->dev->attrs.device_cap_flags &
392 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
393 		dev_err(&ndev->dev->dev,
394 			"Memory registrations not supported.\n");
395 		goto out_free_pd;
396 	}
397 
398 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
399 					ndev->dev->attrs.max_send_sge - 1);
400 	list_add(&ndev->entry, &device_list);
401 out_unlock:
402 	mutex_unlock(&device_list_mutex);
403 	return ndev;
404 
405 out_free_pd:
406 	ib_dealloc_pd(ndev->pd);
407 out_free_dev:
408 	kfree(ndev);
409 out_err:
410 	mutex_unlock(&device_list_mutex);
411 	return NULL;
412 }
413 
414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
415 {
416 	if (nvme_rdma_poll_queue(queue))
417 		ib_free_cq(queue->ib_cq);
418 	else
419 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
420 }
421 
422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
423 {
424 	struct nvme_rdma_device *dev;
425 	struct ib_device *ibdev;
426 
427 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
428 		return;
429 
430 	dev = queue->device;
431 	ibdev = dev->dev;
432 
433 	if (queue->pi_support)
434 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
435 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
436 
437 	/*
438 	 * The cm_id object might have been destroyed during RDMA connection
439 	 * establishment error flow to avoid getting other cma events, thus
440 	 * the destruction of the QP shouldn't use rdma_cm API.
441 	 */
442 	ib_destroy_qp(queue->qp);
443 	nvme_rdma_free_cq(queue);
444 
445 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 
448 	nvme_rdma_dev_put(dev);
449 }
450 
451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
452 {
453 	u32 max_page_list_len;
454 
455 	if (pi_support)
456 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
457 	else
458 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
459 
460 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
461 }
462 
463 static int nvme_rdma_create_cq(struct ib_device *ibdev,
464 		struct nvme_rdma_queue *queue)
465 {
466 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
467 	enum ib_poll_context poll_ctx;
468 
469 	/*
470 	 * Spread I/O queues completion vectors according their queue index.
471 	 * Admin queues can always go on completion vector 0.
472 	 */
473 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
474 
475 	/* Polling queues need direct cq polling context */
476 	if (nvme_rdma_poll_queue(queue)) {
477 		poll_ctx = IB_POLL_DIRECT;
478 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
479 					   comp_vector, poll_ctx);
480 	} else {
481 		poll_ctx = IB_POLL_SOFTIRQ;
482 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
483 					      comp_vector, poll_ctx);
484 	}
485 
486 	if (IS_ERR(queue->ib_cq)) {
487 		ret = PTR_ERR(queue->ib_cq);
488 		return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
495 {
496 	struct ib_device *ibdev;
497 	const int send_wr_factor = 3;			/* MR, SEND, INV */
498 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
499 	int ret, pages_per_mr;
500 
501 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
502 	if (!queue->device) {
503 		dev_err(queue->cm_id->device->dev.parent,
504 			"no client data found!\n");
505 		return -ECONNREFUSED;
506 	}
507 	ibdev = queue->device->dev;
508 
509 	/* +1 for ib_stop_cq */
510 	queue->cq_size = cq_factor * queue->queue_size + 1;
511 
512 	ret = nvme_rdma_create_cq(ibdev, queue);
513 	if (ret)
514 		goto out_put_dev;
515 
516 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
517 	if (ret)
518 		goto out_destroy_ib_cq;
519 
520 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
521 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
522 	if (!queue->rsp_ring) {
523 		ret = -ENOMEM;
524 		goto out_destroy_qp;
525 	}
526 
527 	/*
528 	 * Currently we don't use SG_GAPS MR's so if the first entry is
529 	 * misaligned we'll end up using two entries for a single data page,
530 	 * so one additional entry is required.
531 	 */
532 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
533 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
534 			      queue->queue_size,
535 			      IB_MR_TYPE_MEM_REG,
536 			      pages_per_mr, 0);
537 	if (ret) {
538 		dev_err(queue->ctrl->ctrl.device,
539 			"failed to initialize MR pool sized %d for QID %d\n",
540 			queue->queue_size, nvme_rdma_queue_idx(queue));
541 		goto out_destroy_ring;
542 	}
543 
544 	if (queue->pi_support) {
545 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
546 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
547 				      pages_per_mr, pages_per_mr);
548 		if (ret) {
549 			dev_err(queue->ctrl->ctrl.device,
550 				"failed to initialize PI MR pool sized %d for QID %d\n",
551 				queue->queue_size, nvme_rdma_queue_idx(queue));
552 			goto out_destroy_mr_pool;
553 		}
554 	}
555 
556 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
557 
558 	return 0;
559 
560 out_destroy_mr_pool:
561 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
562 out_destroy_ring:
563 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
564 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
565 out_destroy_qp:
566 	rdma_destroy_qp(queue->cm_id);
567 out_destroy_ib_cq:
568 	nvme_rdma_free_cq(queue);
569 out_put_dev:
570 	nvme_rdma_dev_put(queue->device);
571 	return ret;
572 }
573 
574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
575 		int idx, size_t queue_size)
576 {
577 	struct nvme_rdma_queue *queue;
578 	struct sockaddr *src_addr = NULL;
579 	int ret;
580 
581 	queue = &ctrl->queues[idx];
582 	queue->ctrl = ctrl;
583 	if (idx && ctrl->ctrl.max_integrity_segments)
584 		queue->pi_support = true;
585 	else
586 		queue->pi_support = false;
587 	init_completion(&queue->cm_done);
588 
589 	if (idx > 0)
590 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
591 	else
592 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
593 
594 	queue->queue_size = queue_size;
595 
596 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
597 			RDMA_PS_TCP, IB_QPT_RC);
598 	if (IS_ERR(queue->cm_id)) {
599 		dev_info(ctrl->ctrl.device,
600 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
601 		return PTR_ERR(queue->cm_id);
602 	}
603 
604 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
605 		src_addr = (struct sockaddr *)&ctrl->src_addr;
606 
607 	queue->cm_error = -ETIMEDOUT;
608 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
609 			(struct sockaddr *)&ctrl->addr,
610 			NVME_RDMA_CONNECT_TIMEOUT_MS);
611 	if (ret) {
612 		dev_info(ctrl->ctrl.device,
613 			"rdma_resolve_addr failed (%d).\n", ret);
614 		goto out_destroy_cm_id;
615 	}
616 
617 	ret = nvme_rdma_wait_for_cm(queue);
618 	if (ret) {
619 		dev_info(ctrl->ctrl.device,
620 			"rdma connection establishment failed (%d)\n", ret);
621 		goto out_destroy_cm_id;
622 	}
623 
624 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
625 
626 	return 0;
627 
628 out_destroy_cm_id:
629 	rdma_destroy_id(queue->cm_id);
630 	nvme_rdma_destroy_queue_ib(queue);
631 	return ret;
632 }
633 
634 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
635 {
636 	rdma_disconnect(queue->cm_id);
637 	ib_drain_qp(queue->qp);
638 }
639 
640 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 {
642 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
643 		return;
644 	__nvme_rdma_stop_queue(queue);
645 }
646 
647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
648 {
649 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
650 		return;
651 
652 	nvme_rdma_destroy_queue_ib(queue);
653 	rdma_destroy_id(queue->cm_id);
654 }
655 
656 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
657 {
658 	int i;
659 
660 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
661 		nvme_rdma_free_queue(&ctrl->queues[i]);
662 }
663 
664 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
665 {
666 	int i;
667 
668 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
669 		nvme_rdma_stop_queue(&ctrl->queues[i]);
670 }
671 
672 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
673 {
674 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
675 	bool poll = nvme_rdma_poll_queue(queue);
676 	int ret;
677 
678 	if (idx)
679 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
680 	else
681 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
682 
683 	if (!ret) {
684 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
685 	} else {
686 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
687 			__nvme_rdma_stop_queue(queue);
688 		dev_info(ctrl->ctrl.device,
689 			"failed to connect queue: %d ret=%d\n", idx, ret);
690 	}
691 	return ret;
692 }
693 
694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
695 {
696 	int i, ret = 0;
697 
698 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
699 		ret = nvme_rdma_start_queue(ctrl, i);
700 		if (ret)
701 			goto out_stop_queues;
702 	}
703 
704 	return 0;
705 
706 out_stop_queues:
707 	for (i--; i >= 1; i--)
708 		nvme_rdma_stop_queue(&ctrl->queues[i]);
709 	return ret;
710 }
711 
712 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
713 {
714 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
715 	struct ib_device *ibdev = ctrl->device->dev;
716 	unsigned int nr_io_queues, nr_default_queues;
717 	unsigned int nr_read_queues, nr_poll_queues;
718 	int i, ret;
719 
720 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
721 				min(opts->nr_io_queues, num_online_cpus()));
722 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
723 				min(opts->nr_write_queues, num_online_cpus()));
724 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
725 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
726 
727 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
728 	if (ret)
729 		return ret;
730 
731 	ctrl->ctrl.queue_count = nr_io_queues + 1;
732 	if (ctrl->ctrl.queue_count < 2)
733 		return 0;
734 
735 	dev_info(ctrl->ctrl.device,
736 		"creating %d I/O queues.\n", nr_io_queues);
737 
738 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
739 		/*
740 		 * separate read/write queues
741 		 * hand out dedicated default queues only after we have
742 		 * sufficient read queues.
743 		 */
744 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
745 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
746 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
747 			min(nr_default_queues, nr_io_queues);
748 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
749 	} else {
750 		/*
751 		 * shared read/write queues
752 		 * either no write queues were requested, or we don't have
753 		 * sufficient queue count to have dedicated default queues.
754 		 */
755 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
756 			min(nr_read_queues, nr_io_queues);
757 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
758 	}
759 
760 	if (opts->nr_poll_queues && nr_io_queues) {
761 		/* map dedicated poll queues only if we have queues left */
762 		ctrl->io_queues[HCTX_TYPE_POLL] =
763 			min(nr_poll_queues, nr_io_queues);
764 	}
765 
766 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
767 		ret = nvme_rdma_alloc_queue(ctrl, i,
768 				ctrl->ctrl.sqsize + 1);
769 		if (ret)
770 			goto out_free_queues;
771 	}
772 
773 	return 0;
774 
775 out_free_queues:
776 	for (i--; i >= 1; i--)
777 		nvme_rdma_free_queue(&ctrl->queues[i]);
778 
779 	return ret;
780 }
781 
782 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
783 		bool admin)
784 {
785 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
786 	struct blk_mq_tag_set *set;
787 	int ret;
788 
789 	if (admin) {
790 		set = &ctrl->admin_tag_set;
791 		memset(set, 0, sizeof(*set));
792 		set->ops = &nvme_rdma_admin_mq_ops;
793 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
794 		set->reserved_tags = 2; /* connect + keep-alive */
795 		set->numa_node = nctrl->numa_node;
796 		set->cmd_size = sizeof(struct nvme_rdma_request) +
797 				NVME_RDMA_DATA_SGL_SIZE;
798 		set->driver_data = ctrl;
799 		set->nr_hw_queues = 1;
800 		set->timeout = ADMIN_TIMEOUT;
801 		set->flags = BLK_MQ_F_NO_SCHED;
802 	} else {
803 		set = &ctrl->tag_set;
804 		memset(set, 0, sizeof(*set));
805 		set->ops = &nvme_rdma_mq_ops;
806 		set->queue_depth = nctrl->sqsize + 1;
807 		set->reserved_tags = 1; /* fabric connect */
808 		set->numa_node = nctrl->numa_node;
809 		set->flags = BLK_MQ_F_SHOULD_MERGE;
810 		set->cmd_size = sizeof(struct nvme_rdma_request) +
811 				NVME_RDMA_DATA_SGL_SIZE;
812 		if (nctrl->max_integrity_segments)
813 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
814 					 NVME_RDMA_METADATA_SGL_SIZE;
815 		set->driver_data = ctrl;
816 		set->nr_hw_queues = nctrl->queue_count - 1;
817 		set->timeout = NVME_IO_TIMEOUT;
818 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
819 	}
820 
821 	ret = blk_mq_alloc_tag_set(set);
822 	if (ret)
823 		return ERR_PTR(ret);
824 
825 	return set;
826 }
827 
828 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
829 		bool remove)
830 {
831 	if (remove) {
832 		blk_cleanup_queue(ctrl->ctrl.admin_q);
833 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
834 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
835 	}
836 	if (ctrl->async_event_sqe.data) {
837 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
838 				sizeof(struct nvme_command), DMA_TO_DEVICE);
839 		ctrl->async_event_sqe.data = NULL;
840 	}
841 	nvme_rdma_free_queue(&ctrl->queues[0]);
842 }
843 
844 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
845 		bool new)
846 {
847 	bool pi_capable = false;
848 	int error;
849 
850 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
851 	if (error)
852 		return error;
853 
854 	ctrl->device = ctrl->queues[0].device;
855 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
856 
857 	/* T10-PI support */
858 	if (ctrl->device->dev->attrs.device_cap_flags &
859 	    IB_DEVICE_INTEGRITY_HANDOVER)
860 		pi_capable = true;
861 
862 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
863 							pi_capable);
864 
865 	/*
866 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
867 	 * It's safe, since any chage in the underlying RDMA device will issue
868 	 * error recovery and queue re-creation.
869 	 */
870 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
871 			sizeof(struct nvme_command), DMA_TO_DEVICE);
872 	if (error)
873 		goto out_free_queue;
874 
875 	if (new) {
876 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
877 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
878 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
879 			goto out_free_async_qe;
880 		}
881 
882 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
883 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
884 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
885 			goto out_free_tagset;
886 		}
887 
888 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
889 		if (IS_ERR(ctrl->ctrl.admin_q)) {
890 			error = PTR_ERR(ctrl->ctrl.admin_q);
891 			goto out_cleanup_fabrics_q;
892 		}
893 	}
894 
895 	error = nvme_rdma_start_queue(ctrl, 0);
896 	if (error)
897 		goto out_cleanup_queue;
898 
899 	error = nvme_enable_ctrl(&ctrl->ctrl);
900 	if (error)
901 		goto out_stop_queue;
902 
903 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
904 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
905 	if (pi_capable)
906 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
907 	else
908 		ctrl->ctrl.max_integrity_segments = 0;
909 
910 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
911 
912 	error = nvme_init_identify(&ctrl->ctrl);
913 	if (error)
914 		goto out_stop_queue;
915 
916 	return 0;
917 
918 out_stop_queue:
919 	nvme_rdma_stop_queue(&ctrl->queues[0]);
920 out_cleanup_queue:
921 	if (new)
922 		blk_cleanup_queue(ctrl->ctrl.admin_q);
923 out_cleanup_fabrics_q:
924 	if (new)
925 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
926 out_free_tagset:
927 	if (new)
928 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
929 out_free_async_qe:
930 	if (ctrl->async_event_sqe.data) {
931 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
932 			sizeof(struct nvme_command), DMA_TO_DEVICE);
933 		ctrl->async_event_sqe.data = NULL;
934 	}
935 out_free_queue:
936 	nvme_rdma_free_queue(&ctrl->queues[0]);
937 	return error;
938 }
939 
940 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
941 		bool remove)
942 {
943 	if (remove) {
944 		blk_cleanup_queue(ctrl->ctrl.connect_q);
945 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
946 	}
947 	nvme_rdma_free_io_queues(ctrl);
948 }
949 
950 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
951 {
952 	int ret;
953 
954 	ret = nvme_rdma_alloc_io_queues(ctrl);
955 	if (ret)
956 		return ret;
957 
958 	if (new) {
959 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
960 		if (IS_ERR(ctrl->ctrl.tagset)) {
961 			ret = PTR_ERR(ctrl->ctrl.tagset);
962 			goto out_free_io_queues;
963 		}
964 
965 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
966 		if (IS_ERR(ctrl->ctrl.connect_q)) {
967 			ret = PTR_ERR(ctrl->ctrl.connect_q);
968 			goto out_free_tag_set;
969 		}
970 	}
971 
972 	ret = nvme_rdma_start_io_queues(ctrl);
973 	if (ret)
974 		goto out_cleanup_connect_q;
975 
976 	if (!new) {
977 		nvme_start_queues(&ctrl->ctrl);
978 		nvme_wait_freeze(&ctrl->ctrl);
979 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
980 			ctrl->ctrl.queue_count - 1);
981 		nvme_unfreeze(&ctrl->ctrl);
982 	}
983 
984 	return 0;
985 
986 out_cleanup_connect_q:
987 	if (new)
988 		blk_cleanup_queue(ctrl->ctrl.connect_q);
989 out_free_tag_set:
990 	if (new)
991 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
992 out_free_io_queues:
993 	nvme_rdma_free_io_queues(ctrl);
994 	return ret;
995 }
996 
997 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
998 		bool remove)
999 {
1000 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1001 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1002 	if (ctrl->ctrl.admin_tagset) {
1003 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1004 			nvme_cancel_request, &ctrl->ctrl);
1005 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1006 	}
1007 	if (remove)
1008 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1009 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1010 }
1011 
1012 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1013 		bool remove)
1014 {
1015 	if (ctrl->ctrl.queue_count > 1) {
1016 		nvme_start_freeze(&ctrl->ctrl);
1017 		nvme_stop_queues(&ctrl->ctrl);
1018 		nvme_rdma_stop_io_queues(ctrl);
1019 		if (ctrl->ctrl.tagset) {
1020 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1021 				nvme_cancel_request, &ctrl->ctrl);
1022 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1023 		}
1024 		if (remove)
1025 			nvme_start_queues(&ctrl->ctrl);
1026 		nvme_rdma_destroy_io_queues(ctrl, remove);
1027 	}
1028 }
1029 
1030 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1031 {
1032 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1033 
1034 	if (list_empty(&ctrl->list))
1035 		goto free_ctrl;
1036 
1037 	mutex_lock(&nvme_rdma_ctrl_mutex);
1038 	list_del(&ctrl->list);
1039 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1040 
1041 	nvmf_free_options(nctrl->opts);
1042 free_ctrl:
1043 	kfree(ctrl->queues);
1044 	kfree(ctrl);
1045 }
1046 
1047 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1048 {
1049 	/* If we are resetting/deleting then do nothing */
1050 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1051 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1052 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1053 		return;
1054 	}
1055 
1056 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1057 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1058 			ctrl->ctrl.opts->reconnect_delay);
1059 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1060 				ctrl->ctrl.opts->reconnect_delay * HZ);
1061 	} else {
1062 		nvme_delete_ctrl(&ctrl->ctrl);
1063 	}
1064 }
1065 
1066 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1067 {
1068 	int ret = -EINVAL;
1069 	bool changed;
1070 
1071 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1072 	if (ret)
1073 		return ret;
1074 
1075 	if (ctrl->ctrl.icdoff) {
1076 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1077 		goto destroy_admin;
1078 	}
1079 
1080 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1081 		dev_err(ctrl->ctrl.device,
1082 			"Mandatory keyed sgls are not supported!\n");
1083 		goto destroy_admin;
1084 	}
1085 
1086 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1087 		dev_warn(ctrl->ctrl.device,
1088 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1089 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1090 	}
1091 
1092 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1093 		dev_warn(ctrl->ctrl.device,
1094 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1095 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1096 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1097 	}
1098 
1099 	if (ctrl->ctrl.sgls & (1 << 20))
1100 		ctrl->use_inline_data = true;
1101 
1102 	if (ctrl->ctrl.queue_count > 1) {
1103 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1104 		if (ret)
1105 			goto destroy_admin;
1106 	}
1107 
1108 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1109 	if (!changed) {
1110 		/*
1111 		 * state change failure is ok if we started ctrl delete,
1112 		 * unless we're during creation of a new controller to
1113 		 * avoid races with teardown flow.
1114 		 */
1115 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1116 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1117 		WARN_ON_ONCE(new);
1118 		ret = -EINVAL;
1119 		goto destroy_io;
1120 	}
1121 
1122 	nvme_start_ctrl(&ctrl->ctrl);
1123 	return 0;
1124 
1125 destroy_io:
1126 	if (ctrl->ctrl.queue_count > 1)
1127 		nvme_rdma_destroy_io_queues(ctrl, new);
1128 destroy_admin:
1129 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1130 	nvme_rdma_destroy_admin_queue(ctrl, new);
1131 	return ret;
1132 }
1133 
1134 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1135 {
1136 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1137 			struct nvme_rdma_ctrl, reconnect_work);
1138 
1139 	++ctrl->ctrl.nr_reconnects;
1140 
1141 	if (nvme_rdma_setup_ctrl(ctrl, false))
1142 		goto requeue;
1143 
1144 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1145 			ctrl->ctrl.nr_reconnects);
1146 
1147 	ctrl->ctrl.nr_reconnects = 0;
1148 
1149 	return;
1150 
1151 requeue:
1152 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1153 			ctrl->ctrl.nr_reconnects);
1154 	nvme_rdma_reconnect_or_remove(ctrl);
1155 }
1156 
1157 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1158 {
1159 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1160 			struct nvme_rdma_ctrl, err_work);
1161 
1162 	nvme_stop_keep_alive(&ctrl->ctrl);
1163 	nvme_rdma_teardown_io_queues(ctrl, false);
1164 	nvme_start_queues(&ctrl->ctrl);
1165 	nvme_rdma_teardown_admin_queue(ctrl, false);
1166 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1167 
1168 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1169 		/* state change failure is ok if we started ctrl delete */
1170 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1171 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1172 		return;
1173 	}
1174 
1175 	nvme_rdma_reconnect_or_remove(ctrl);
1176 }
1177 
1178 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1179 {
1180 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1181 		return;
1182 
1183 	queue_work(nvme_reset_wq, &ctrl->err_work);
1184 }
1185 
1186 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1187 {
1188 	struct request *rq = blk_mq_rq_from_pdu(req);
1189 
1190 	if (!refcount_dec_and_test(&req->ref))
1191 		return;
1192 	if (!nvme_try_complete_req(rq, req->status, req->result))
1193 		nvme_rdma_complete_rq(rq);
1194 }
1195 
1196 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1197 		const char *op)
1198 {
1199 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1200 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1201 
1202 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1203 		dev_info(ctrl->ctrl.device,
1204 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1205 			     op, wc->wr_cqe,
1206 			     ib_wc_status_msg(wc->status), wc->status);
1207 	nvme_rdma_error_recovery(ctrl);
1208 }
1209 
1210 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1211 {
1212 	if (unlikely(wc->status != IB_WC_SUCCESS))
1213 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1214 }
1215 
1216 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1217 {
1218 	struct nvme_rdma_request *req =
1219 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1220 
1221 	if (unlikely(wc->status != IB_WC_SUCCESS))
1222 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1223 	else
1224 		nvme_rdma_end_request(req);
1225 }
1226 
1227 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1228 		struct nvme_rdma_request *req)
1229 {
1230 	struct ib_send_wr wr = {
1231 		.opcode		    = IB_WR_LOCAL_INV,
1232 		.next		    = NULL,
1233 		.num_sge	    = 0,
1234 		.send_flags	    = IB_SEND_SIGNALED,
1235 		.ex.invalidate_rkey = req->mr->rkey,
1236 	};
1237 
1238 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1239 	wr.wr_cqe = &req->reg_cqe;
1240 
1241 	return ib_post_send(queue->qp, &wr, NULL);
1242 }
1243 
1244 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1245 		struct request *rq)
1246 {
1247 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1248 	struct nvme_rdma_device *dev = queue->device;
1249 	struct ib_device *ibdev = dev->dev;
1250 	struct list_head *pool = &queue->qp->rdma_mrs;
1251 
1252 	if (!blk_rq_nr_phys_segments(rq))
1253 		return;
1254 
1255 	if (blk_integrity_rq(rq)) {
1256 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1257 				req->metadata_sgl->nents, rq_dma_dir(rq));
1258 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1259 				      NVME_INLINE_METADATA_SG_CNT);
1260 	}
1261 
1262 	if (req->use_sig_mr)
1263 		pool = &queue->qp->sig_mrs;
1264 
1265 	if (req->mr) {
1266 		ib_mr_pool_put(queue->qp, pool, req->mr);
1267 		req->mr = NULL;
1268 	}
1269 
1270 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1271 			rq_dma_dir(rq));
1272 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1273 }
1274 
1275 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1276 {
1277 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1278 
1279 	sg->addr = 0;
1280 	put_unaligned_le24(0, sg->length);
1281 	put_unaligned_le32(0, sg->key);
1282 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1283 	return 0;
1284 }
1285 
1286 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1287 		struct nvme_rdma_request *req, struct nvme_command *c,
1288 		int count)
1289 {
1290 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1291 	struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1292 	struct ib_sge *sge = &req->sge[1];
1293 	u32 len = 0;
1294 	int i;
1295 
1296 	for (i = 0; i < count; i++, sgl++, sge++) {
1297 		sge->addr = sg_dma_address(sgl);
1298 		sge->length = sg_dma_len(sgl);
1299 		sge->lkey = queue->device->pd->local_dma_lkey;
1300 		len += sge->length;
1301 	}
1302 
1303 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1304 	sg->length = cpu_to_le32(len);
1305 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1306 
1307 	req->num_sge += count;
1308 	return 0;
1309 }
1310 
1311 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1312 		struct nvme_rdma_request *req, struct nvme_command *c)
1313 {
1314 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1315 
1316 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1317 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1318 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1319 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1320 	return 0;
1321 }
1322 
1323 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1324 		struct nvme_rdma_request *req, struct nvme_command *c,
1325 		int count)
1326 {
1327 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1328 	int nr;
1329 
1330 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1331 	if (WARN_ON_ONCE(!req->mr))
1332 		return -EAGAIN;
1333 
1334 	/*
1335 	 * Align the MR to a 4K page size to match the ctrl page size and
1336 	 * the block virtual boundary.
1337 	 */
1338 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1339 			  SZ_4K);
1340 	if (unlikely(nr < count)) {
1341 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1342 		req->mr = NULL;
1343 		if (nr < 0)
1344 			return nr;
1345 		return -EINVAL;
1346 	}
1347 
1348 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1349 
1350 	req->reg_cqe.done = nvme_rdma_memreg_done;
1351 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1352 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1353 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1354 	req->reg_wr.wr.num_sge = 0;
1355 	req->reg_wr.mr = req->mr;
1356 	req->reg_wr.key = req->mr->rkey;
1357 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1358 			     IB_ACCESS_REMOTE_READ |
1359 			     IB_ACCESS_REMOTE_WRITE;
1360 
1361 	sg->addr = cpu_to_le64(req->mr->iova);
1362 	put_unaligned_le24(req->mr->length, sg->length);
1363 	put_unaligned_le32(req->mr->rkey, sg->key);
1364 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1365 			NVME_SGL_FMT_INVALIDATE;
1366 
1367 	return 0;
1368 }
1369 
1370 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1371 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1372 		u16 control, u8 pi_type)
1373 {
1374 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1375 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1376 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1377 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1378 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1379 		domain->sig.dif.ref_remap = true;
1380 
1381 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1382 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1383 	domain->sig.dif.app_escape = true;
1384 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1385 		domain->sig.dif.ref_escape = true;
1386 }
1387 
1388 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1389 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1390 		u8 pi_type)
1391 {
1392 	u16 control = le16_to_cpu(cmd->rw.control);
1393 
1394 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1395 	if (control & NVME_RW_PRINFO_PRACT) {
1396 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1397 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1398 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1399 					 pi_type);
1400 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1401 		control &= ~NVME_RW_PRINFO_PRACT;
1402 		cmd->rw.control = cpu_to_le16(control);
1403 	} else {
1404 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1405 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1406 					 pi_type);
1407 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1408 					 pi_type);
1409 	}
1410 }
1411 
1412 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1413 {
1414 	*mask = 0;
1415 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1416 		*mask |= IB_SIG_CHECK_REFTAG;
1417 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1418 		*mask |= IB_SIG_CHECK_GUARD;
1419 }
1420 
1421 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1422 {
1423 	if (unlikely(wc->status != IB_WC_SUCCESS))
1424 		nvme_rdma_wr_error(cq, wc, "SIG");
1425 }
1426 
1427 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1428 		struct nvme_rdma_request *req, struct nvme_command *c,
1429 		int count, int pi_count)
1430 {
1431 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1432 	struct ib_reg_wr *wr = &req->reg_wr;
1433 	struct request *rq = blk_mq_rq_from_pdu(req);
1434 	struct nvme_ns *ns = rq->q->queuedata;
1435 	struct bio *bio = rq->bio;
1436 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1437 	int nr;
1438 
1439 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1440 	if (WARN_ON_ONCE(!req->mr))
1441 		return -EAGAIN;
1442 
1443 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1444 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1445 			     SZ_4K);
1446 	if (unlikely(nr))
1447 		goto mr_put;
1448 
1449 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1450 				req->mr->sig_attrs, ns->pi_type);
1451 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1452 
1453 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1454 
1455 	req->reg_cqe.done = nvme_rdma_sig_done;
1456 	memset(wr, 0, sizeof(*wr));
1457 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1458 	wr->wr.wr_cqe = &req->reg_cqe;
1459 	wr->wr.num_sge = 0;
1460 	wr->wr.send_flags = 0;
1461 	wr->mr = req->mr;
1462 	wr->key = req->mr->rkey;
1463 	wr->access = IB_ACCESS_LOCAL_WRITE |
1464 		     IB_ACCESS_REMOTE_READ |
1465 		     IB_ACCESS_REMOTE_WRITE;
1466 
1467 	sg->addr = cpu_to_le64(req->mr->iova);
1468 	put_unaligned_le24(req->mr->length, sg->length);
1469 	put_unaligned_le32(req->mr->rkey, sg->key);
1470 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1471 
1472 	return 0;
1473 
1474 mr_put:
1475 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1476 	req->mr = NULL;
1477 	if (nr < 0)
1478 		return nr;
1479 	return -EINVAL;
1480 }
1481 
1482 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1483 		struct request *rq, struct nvme_command *c)
1484 {
1485 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1486 	struct nvme_rdma_device *dev = queue->device;
1487 	struct ib_device *ibdev = dev->dev;
1488 	int pi_count = 0;
1489 	int count, ret;
1490 
1491 	req->num_sge = 1;
1492 	refcount_set(&req->ref, 2); /* send and recv completions */
1493 
1494 	c->common.flags |= NVME_CMD_SGL_METABUF;
1495 
1496 	if (!blk_rq_nr_phys_segments(rq))
1497 		return nvme_rdma_set_sg_null(c);
1498 
1499 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1500 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1501 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1502 			NVME_INLINE_SG_CNT);
1503 	if (ret)
1504 		return -ENOMEM;
1505 
1506 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1507 					    req->data_sgl.sg_table.sgl);
1508 
1509 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1510 			      req->data_sgl.nents, rq_dma_dir(rq));
1511 	if (unlikely(count <= 0)) {
1512 		ret = -EIO;
1513 		goto out_free_table;
1514 	}
1515 
1516 	if (blk_integrity_rq(rq)) {
1517 		req->metadata_sgl->sg_table.sgl =
1518 			(struct scatterlist *)(req->metadata_sgl + 1);
1519 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1520 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1521 				req->metadata_sgl->sg_table.sgl,
1522 				NVME_INLINE_METADATA_SG_CNT);
1523 		if (unlikely(ret)) {
1524 			ret = -ENOMEM;
1525 			goto out_unmap_sg;
1526 		}
1527 
1528 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1529 				rq->bio, req->metadata_sgl->sg_table.sgl);
1530 		pi_count = ib_dma_map_sg(ibdev,
1531 					 req->metadata_sgl->sg_table.sgl,
1532 					 req->metadata_sgl->nents,
1533 					 rq_dma_dir(rq));
1534 		if (unlikely(pi_count <= 0)) {
1535 			ret = -EIO;
1536 			goto out_free_pi_table;
1537 		}
1538 	}
1539 
1540 	if (req->use_sig_mr) {
1541 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1542 		goto out;
1543 	}
1544 
1545 	if (count <= dev->num_inline_segments) {
1546 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1547 		    queue->ctrl->use_inline_data &&
1548 		    blk_rq_payload_bytes(rq) <=
1549 				nvme_rdma_inline_data_size(queue)) {
1550 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1551 			goto out;
1552 		}
1553 
1554 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1555 			ret = nvme_rdma_map_sg_single(queue, req, c);
1556 			goto out;
1557 		}
1558 	}
1559 
1560 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1561 out:
1562 	if (unlikely(ret))
1563 		goto out_unmap_pi_sg;
1564 
1565 	return 0;
1566 
1567 out_unmap_pi_sg:
1568 	if (blk_integrity_rq(rq))
1569 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1570 				req->metadata_sgl->nents, rq_dma_dir(rq));
1571 out_free_pi_table:
1572 	if (blk_integrity_rq(rq))
1573 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1574 				      NVME_INLINE_METADATA_SG_CNT);
1575 out_unmap_sg:
1576 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1577 			rq_dma_dir(rq));
1578 out_free_table:
1579 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1580 	return ret;
1581 }
1582 
1583 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1584 {
1585 	struct nvme_rdma_qe *qe =
1586 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1587 	struct nvme_rdma_request *req =
1588 		container_of(qe, struct nvme_rdma_request, sqe);
1589 
1590 	if (unlikely(wc->status != IB_WC_SUCCESS))
1591 		nvme_rdma_wr_error(cq, wc, "SEND");
1592 	else
1593 		nvme_rdma_end_request(req);
1594 }
1595 
1596 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1597 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1598 		struct ib_send_wr *first)
1599 {
1600 	struct ib_send_wr wr;
1601 	int ret;
1602 
1603 	sge->addr   = qe->dma;
1604 	sge->length = sizeof(struct nvme_command);
1605 	sge->lkey   = queue->device->pd->local_dma_lkey;
1606 
1607 	wr.next       = NULL;
1608 	wr.wr_cqe     = &qe->cqe;
1609 	wr.sg_list    = sge;
1610 	wr.num_sge    = num_sge;
1611 	wr.opcode     = IB_WR_SEND;
1612 	wr.send_flags = IB_SEND_SIGNALED;
1613 
1614 	if (first)
1615 		first->next = &wr;
1616 	else
1617 		first = &wr;
1618 
1619 	ret = ib_post_send(queue->qp, first, NULL);
1620 	if (unlikely(ret)) {
1621 		dev_err(queue->ctrl->ctrl.device,
1622 			     "%s failed with error code %d\n", __func__, ret);
1623 	}
1624 	return ret;
1625 }
1626 
1627 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1628 		struct nvme_rdma_qe *qe)
1629 {
1630 	struct ib_recv_wr wr;
1631 	struct ib_sge list;
1632 	int ret;
1633 
1634 	list.addr   = qe->dma;
1635 	list.length = sizeof(struct nvme_completion);
1636 	list.lkey   = queue->device->pd->local_dma_lkey;
1637 
1638 	qe->cqe.done = nvme_rdma_recv_done;
1639 
1640 	wr.next     = NULL;
1641 	wr.wr_cqe   = &qe->cqe;
1642 	wr.sg_list  = &list;
1643 	wr.num_sge  = 1;
1644 
1645 	ret = ib_post_recv(queue->qp, &wr, NULL);
1646 	if (unlikely(ret)) {
1647 		dev_err(queue->ctrl->ctrl.device,
1648 			"%s failed with error code %d\n", __func__, ret);
1649 	}
1650 	return ret;
1651 }
1652 
1653 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1654 {
1655 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1656 
1657 	if (queue_idx == 0)
1658 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1659 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1660 }
1661 
1662 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1663 {
1664 	if (unlikely(wc->status != IB_WC_SUCCESS))
1665 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1666 }
1667 
1668 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1669 {
1670 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1671 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1672 	struct ib_device *dev = queue->device->dev;
1673 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1674 	struct nvme_command *cmd = sqe->data;
1675 	struct ib_sge sge;
1676 	int ret;
1677 
1678 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1679 
1680 	memset(cmd, 0, sizeof(*cmd));
1681 	cmd->common.opcode = nvme_admin_async_event;
1682 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1683 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1684 	nvme_rdma_set_sg_null(cmd);
1685 
1686 	sqe->cqe.done = nvme_rdma_async_done;
1687 
1688 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1689 			DMA_TO_DEVICE);
1690 
1691 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1692 	WARN_ON_ONCE(ret);
1693 }
1694 
1695 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1696 		struct nvme_completion *cqe, struct ib_wc *wc)
1697 {
1698 	struct request *rq;
1699 	struct nvme_rdma_request *req;
1700 
1701 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1702 	if (!rq) {
1703 		dev_err(queue->ctrl->ctrl.device,
1704 			"tag 0x%x on QP %#x not found\n",
1705 			cqe->command_id, queue->qp->qp_num);
1706 		nvme_rdma_error_recovery(queue->ctrl);
1707 		return;
1708 	}
1709 	req = blk_mq_rq_to_pdu(rq);
1710 
1711 	req->status = cqe->status;
1712 	req->result = cqe->result;
1713 
1714 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1715 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1716 			dev_err(queue->ctrl->ctrl.device,
1717 				"Bogus remote invalidation for rkey %#x\n",
1718 				req->mr->rkey);
1719 			nvme_rdma_error_recovery(queue->ctrl);
1720 		}
1721 	} else if (req->mr) {
1722 		int ret;
1723 
1724 		ret = nvme_rdma_inv_rkey(queue, req);
1725 		if (unlikely(ret < 0)) {
1726 			dev_err(queue->ctrl->ctrl.device,
1727 				"Queueing INV WR for rkey %#x failed (%d)\n",
1728 				req->mr->rkey, ret);
1729 			nvme_rdma_error_recovery(queue->ctrl);
1730 		}
1731 		/* the local invalidation completion will end the request */
1732 		return;
1733 	}
1734 
1735 	nvme_rdma_end_request(req);
1736 }
1737 
1738 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1739 {
1740 	struct nvme_rdma_qe *qe =
1741 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1742 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1743 	struct ib_device *ibdev = queue->device->dev;
1744 	struct nvme_completion *cqe = qe->data;
1745 	const size_t len = sizeof(struct nvme_completion);
1746 
1747 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1748 		nvme_rdma_wr_error(cq, wc, "RECV");
1749 		return;
1750 	}
1751 
1752 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1753 	/*
1754 	 * AEN requests are special as they don't time out and can
1755 	 * survive any kind of queue freeze and often don't respond to
1756 	 * aborts.  We don't even bother to allocate a struct request
1757 	 * for them but rather special case them here.
1758 	 */
1759 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1760 				     cqe->command_id)))
1761 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1762 				&cqe->result);
1763 	else
1764 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1765 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1766 
1767 	nvme_rdma_post_recv(queue, qe);
1768 }
1769 
1770 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1771 {
1772 	int ret, i;
1773 
1774 	for (i = 0; i < queue->queue_size; i++) {
1775 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1776 		if (ret)
1777 			goto out_destroy_queue_ib;
1778 	}
1779 
1780 	return 0;
1781 
1782 out_destroy_queue_ib:
1783 	nvme_rdma_destroy_queue_ib(queue);
1784 	return ret;
1785 }
1786 
1787 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1788 		struct rdma_cm_event *ev)
1789 {
1790 	struct rdma_cm_id *cm_id = queue->cm_id;
1791 	int status = ev->status;
1792 	const char *rej_msg;
1793 	const struct nvme_rdma_cm_rej *rej_data;
1794 	u8 rej_data_len;
1795 
1796 	rej_msg = rdma_reject_msg(cm_id, status);
1797 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1798 
1799 	if (rej_data && rej_data_len >= sizeof(u16)) {
1800 		u16 sts = le16_to_cpu(rej_data->sts);
1801 
1802 		dev_err(queue->ctrl->ctrl.device,
1803 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1804 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1805 	} else {
1806 		dev_err(queue->ctrl->ctrl.device,
1807 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1808 	}
1809 
1810 	return -ECONNRESET;
1811 }
1812 
1813 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1814 {
1815 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1816 	int ret;
1817 
1818 	ret = nvme_rdma_create_queue_ib(queue);
1819 	if (ret)
1820 		return ret;
1821 
1822 	if (ctrl->opts->tos >= 0)
1823 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1824 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1825 	if (ret) {
1826 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1827 			queue->cm_error);
1828 		goto out_destroy_queue;
1829 	}
1830 
1831 	return 0;
1832 
1833 out_destroy_queue:
1834 	nvme_rdma_destroy_queue_ib(queue);
1835 	return ret;
1836 }
1837 
1838 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1839 {
1840 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1841 	struct rdma_conn_param param = { };
1842 	struct nvme_rdma_cm_req priv = { };
1843 	int ret;
1844 
1845 	param.qp_num = queue->qp->qp_num;
1846 	param.flow_control = 1;
1847 
1848 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1849 	/* maximum retry count */
1850 	param.retry_count = 7;
1851 	param.rnr_retry_count = 7;
1852 	param.private_data = &priv;
1853 	param.private_data_len = sizeof(priv);
1854 
1855 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1856 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1857 	/*
1858 	 * set the admin queue depth to the minimum size
1859 	 * specified by the Fabrics standard.
1860 	 */
1861 	if (priv.qid == 0) {
1862 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1863 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1864 	} else {
1865 		/*
1866 		 * current interpretation of the fabrics spec
1867 		 * is at minimum you make hrqsize sqsize+1, or a
1868 		 * 1's based representation of sqsize.
1869 		 */
1870 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1871 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1872 	}
1873 
1874 	ret = rdma_connect(queue->cm_id, &param);
1875 	if (ret) {
1876 		dev_err(ctrl->ctrl.device,
1877 			"rdma_connect failed (%d).\n", ret);
1878 		goto out_destroy_queue_ib;
1879 	}
1880 
1881 	return 0;
1882 
1883 out_destroy_queue_ib:
1884 	nvme_rdma_destroy_queue_ib(queue);
1885 	return ret;
1886 }
1887 
1888 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1889 		struct rdma_cm_event *ev)
1890 {
1891 	struct nvme_rdma_queue *queue = cm_id->context;
1892 	int cm_error = 0;
1893 
1894 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1895 		rdma_event_msg(ev->event), ev->event,
1896 		ev->status, cm_id);
1897 
1898 	switch (ev->event) {
1899 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1900 		cm_error = nvme_rdma_addr_resolved(queue);
1901 		break;
1902 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1903 		cm_error = nvme_rdma_route_resolved(queue);
1904 		break;
1905 	case RDMA_CM_EVENT_ESTABLISHED:
1906 		queue->cm_error = nvme_rdma_conn_established(queue);
1907 		/* complete cm_done regardless of success/failure */
1908 		complete(&queue->cm_done);
1909 		return 0;
1910 	case RDMA_CM_EVENT_REJECTED:
1911 		nvme_rdma_destroy_queue_ib(queue);
1912 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1913 		break;
1914 	case RDMA_CM_EVENT_ROUTE_ERROR:
1915 	case RDMA_CM_EVENT_CONNECT_ERROR:
1916 	case RDMA_CM_EVENT_UNREACHABLE:
1917 		nvme_rdma_destroy_queue_ib(queue);
1918 		fallthrough;
1919 	case RDMA_CM_EVENT_ADDR_ERROR:
1920 		dev_dbg(queue->ctrl->ctrl.device,
1921 			"CM error event %d\n", ev->event);
1922 		cm_error = -ECONNRESET;
1923 		break;
1924 	case RDMA_CM_EVENT_DISCONNECTED:
1925 	case RDMA_CM_EVENT_ADDR_CHANGE:
1926 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1927 		dev_dbg(queue->ctrl->ctrl.device,
1928 			"disconnect received - connection closed\n");
1929 		nvme_rdma_error_recovery(queue->ctrl);
1930 		break;
1931 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1932 		/* device removal is handled via the ib_client API */
1933 		break;
1934 	default:
1935 		dev_err(queue->ctrl->ctrl.device,
1936 			"Unexpected RDMA CM event (%d)\n", ev->event);
1937 		nvme_rdma_error_recovery(queue->ctrl);
1938 		break;
1939 	}
1940 
1941 	if (cm_error) {
1942 		queue->cm_error = cm_error;
1943 		complete(&queue->cm_done);
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static enum blk_eh_timer_return
1950 nvme_rdma_timeout(struct request *rq, bool reserved)
1951 {
1952 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1953 	struct nvme_rdma_queue *queue = req->queue;
1954 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1955 
1956 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1957 		 rq->tag, nvme_rdma_queue_idx(queue));
1958 
1959 	/*
1960 	 * Restart the timer if a controller reset is already scheduled. Any
1961 	 * timed out commands would be handled before entering the connecting
1962 	 * state.
1963 	 */
1964 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1965 		return BLK_EH_RESET_TIMER;
1966 
1967 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1968 		/*
1969 		 * Teardown immediately if controller times out while starting
1970 		 * or we are already started error recovery. all outstanding
1971 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1972 		 */
1973 		flush_work(&ctrl->err_work);
1974 		nvme_rdma_teardown_io_queues(ctrl, false);
1975 		nvme_rdma_teardown_admin_queue(ctrl, false);
1976 		return BLK_EH_DONE;
1977 	}
1978 
1979 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1980 	nvme_rdma_error_recovery(ctrl);
1981 
1982 	return BLK_EH_RESET_TIMER;
1983 }
1984 
1985 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1986 		const struct blk_mq_queue_data *bd)
1987 {
1988 	struct nvme_ns *ns = hctx->queue->queuedata;
1989 	struct nvme_rdma_queue *queue = hctx->driver_data;
1990 	struct request *rq = bd->rq;
1991 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1992 	struct nvme_rdma_qe *sqe = &req->sqe;
1993 	struct nvme_command *c = sqe->data;
1994 	struct ib_device *dev;
1995 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1996 	blk_status_t ret;
1997 	int err;
1998 
1999 	WARN_ON_ONCE(rq->tag < 0);
2000 
2001 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2002 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2003 
2004 	dev = queue->device->dev;
2005 
2006 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2007 					 sizeof(struct nvme_command),
2008 					 DMA_TO_DEVICE);
2009 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2010 	if (unlikely(err))
2011 		return BLK_STS_RESOURCE;
2012 
2013 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2014 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2015 
2016 	ret = nvme_setup_cmd(ns, rq, c);
2017 	if (ret)
2018 		goto unmap_qe;
2019 
2020 	blk_mq_start_request(rq);
2021 
2022 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2023 	    queue->pi_support &&
2024 	    (c->common.opcode == nvme_cmd_write ||
2025 	     c->common.opcode == nvme_cmd_read) &&
2026 	    nvme_ns_has_pi(ns))
2027 		req->use_sig_mr = true;
2028 	else
2029 		req->use_sig_mr = false;
2030 
2031 	err = nvme_rdma_map_data(queue, rq, c);
2032 	if (unlikely(err < 0)) {
2033 		dev_err(queue->ctrl->ctrl.device,
2034 			     "Failed to map data (%d)\n", err);
2035 		goto err;
2036 	}
2037 
2038 	sqe->cqe.done = nvme_rdma_send_done;
2039 
2040 	ib_dma_sync_single_for_device(dev, sqe->dma,
2041 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2042 
2043 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2044 			req->mr ? &req->reg_wr.wr : NULL);
2045 	if (unlikely(err))
2046 		goto err_unmap;
2047 
2048 	return BLK_STS_OK;
2049 
2050 err_unmap:
2051 	nvme_rdma_unmap_data(queue, rq);
2052 err:
2053 	if (err == -ENOMEM || err == -EAGAIN)
2054 		ret = BLK_STS_RESOURCE;
2055 	else
2056 		ret = BLK_STS_IOERR;
2057 	nvme_cleanup_cmd(rq);
2058 unmap_qe:
2059 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2060 			    DMA_TO_DEVICE);
2061 	return ret;
2062 }
2063 
2064 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2065 {
2066 	struct nvme_rdma_queue *queue = hctx->driver_data;
2067 
2068 	return ib_process_cq_direct(queue->ib_cq, -1);
2069 }
2070 
2071 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2072 {
2073 	struct request *rq = blk_mq_rq_from_pdu(req);
2074 	struct ib_mr_status mr_status;
2075 	int ret;
2076 
2077 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2078 	if (ret) {
2079 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2080 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2081 		return;
2082 	}
2083 
2084 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2085 		switch (mr_status.sig_err.err_type) {
2086 		case IB_SIG_BAD_GUARD:
2087 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2088 			break;
2089 		case IB_SIG_BAD_REFTAG:
2090 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2091 			break;
2092 		case IB_SIG_BAD_APPTAG:
2093 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2094 			break;
2095 		}
2096 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2097 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2098 		       mr_status.sig_err.actual);
2099 	}
2100 }
2101 
2102 static void nvme_rdma_complete_rq(struct request *rq)
2103 {
2104 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2105 	struct nvme_rdma_queue *queue = req->queue;
2106 	struct ib_device *ibdev = queue->device->dev;
2107 
2108 	if (req->use_sig_mr)
2109 		nvme_rdma_check_pi_status(req);
2110 
2111 	nvme_rdma_unmap_data(queue, rq);
2112 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2113 			    DMA_TO_DEVICE);
2114 	nvme_complete_rq(rq);
2115 }
2116 
2117 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2118 {
2119 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2120 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2121 
2122 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2123 		/* separate read/write queues */
2124 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2125 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2126 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2127 		set->map[HCTX_TYPE_READ].nr_queues =
2128 			ctrl->io_queues[HCTX_TYPE_READ];
2129 		set->map[HCTX_TYPE_READ].queue_offset =
2130 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2131 	} else {
2132 		/* shared read/write queues */
2133 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2134 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2135 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2136 		set->map[HCTX_TYPE_READ].nr_queues =
2137 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2138 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2139 	}
2140 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2141 			ctrl->device->dev, 0);
2142 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2143 			ctrl->device->dev, 0);
2144 
2145 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2146 		/* map dedicated poll queues only if we have queues left */
2147 		set->map[HCTX_TYPE_POLL].nr_queues =
2148 				ctrl->io_queues[HCTX_TYPE_POLL];
2149 		set->map[HCTX_TYPE_POLL].queue_offset =
2150 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2151 			ctrl->io_queues[HCTX_TYPE_READ];
2152 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2153 	}
2154 
2155 	dev_info(ctrl->ctrl.device,
2156 		"mapped %d/%d/%d default/read/poll queues.\n",
2157 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2158 		ctrl->io_queues[HCTX_TYPE_READ],
2159 		ctrl->io_queues[HCTX_TYPE_POLL]);
2160 
2161 	return 0;
2162 }
2163 
2164 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2165 	.queue_rq	= nvme_rdma_queue_rq,
2166 	.complete	= nvme_rdma_complete_rq,
2167 	.init_request	= nvme_rdma_init_request,
2168 	.exit_request	= nvme_rdma_exit_request,
2169 	.init_hctx	= nvme_rdma_init_hctx,
2170 	.timeout	= nvme_rdma_timeout,
2171 	.map_queues	= nvme_rdma_map_queues,
2172 	.poll		= nvme_rdma_poll,
2173 };
2174 
2175 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2176 	.queue_rq	= nvme_rdma_queue_rq,
2177 	.complete	= nvme_rdma_complete_rq,
2178 	.init_request	= nvme_rdma_init_request,
2179 	.exit_request	= nvme_rdma_exit_request,
2180 	.init_hctx	= nvme_rdma_init_admin_hctx,
2181 	.timeout	= nvme_rdma_timeout,
2182 };
2183 
2184 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2185 {
2186 	cancel_work_sync(&ctrl->err_work);
2187 	cancel_delayed_work_sync(&ctrl->reconnect_work);
2188 
2189 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2190 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2191 	if (shutdown)
2192 		nvme_shutdown_ctrl(&ctrl->ctrl);
2193 	else
2194 		nvme_disable_ctrl(&ctrl->ctrl);
2195 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2196 }
2197 
2198 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2199 {
2200 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2201 }
2202 
2203 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2204 {
2205 	struct nvme_rdma_ctrl *ctrl =
2206 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2207 
2208 	nvme_stop_ctrl(&ctrl->ctrl);
2209 	nvme_rdma_shutdown_ctrl(ctrl, false);
2210 
2211 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2212 		/* state change failure should never happen */
2213 		WARN_ON_ONCE(1);
2214 		return;
2215 	}
2216 
2217 	if (nvme_rdma_setup_ctrl(ctrl, false))
2218 		goto out_fail;
2219 
2220 	return;
2221 
2222 out_fail:
2223 	++ctrl->ctrl.nr_reconnects;
2224 	nvme_rdma_reconnect_or_remove(ctrl);
2225 }
2226 
2227 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2228 	.name			= "rdma",
2229 	.module			= THIS_MODULE,
2230 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2231 	.reg_read32		= nvmf_reg_read32,
2232 	.reg_read64		= nvmf_reg_read64,
2233 	.reg_write32		= nvmf_reg_write32,
2234 	.free_ctrl		= nvme_rdma_free_ctrl,
2235 	.submit_async_event	= nvme_rdma_submit_async_event,
2236 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2237 	.get_address		= nvmf_get_address,
2238 };
2239 
2240 /*
2241  * Fails a connection request if it matches an existing controller
2242  * (association) with the same tuple:
2243  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2244  *
2245  * if local address is not specified in the request, it will match an
2246  * existing controller with all the other parameters the same and no
2247  * local port address specified as well.
2248  *
2249  * The ports don't need to be compared as they are intrinsically
2250  * already matched by the port pointers supplied.
2251  */
2252 static bool
2253 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2254 {
2255 	struct nvme_rdma_ctrl *ctrl;
2256 	bool found = false;
2257 
2258 	mutex_lock(&nvme_rdma_ctrl_mutex);
2259 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2260 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2261 		if (found)
2262 			break;
2263 	}
2264 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2265 
2266 	return found;
2267 }
2268 
2269 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2270 		struct nvmf_ctrl_options *opts)
2271 {
2272 	struct nvme_rdma_ctrl *ctrl;
2273 	int ret;
2274 	bool changed;
2275 
2276 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2277 	if (!ctrl)
2278 		return ERR_PTR(-ENOMEM);
2279 	ctrl->ctrl.opts = opts;
2280 	INIT_LIST_HEAD(&ctrl->list);
2281 
2282 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2283 		opts->trsvcid =
2284 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2285 		if (!opts->trsvcid) {
2286 			ret = -ENOMEM;
2287 			goto out_free_ctrl;
2288 		}
2289 		opts->mask |= NVMF_OPT_TRSVCID;
2290 	}
2291 
2292 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2293 			opts->traddr, opts->trsvcid, &ctrl->addr);
2294 	if (ret) {
2295 		pr_err("malformed address passed: %s:%s\n",
2296 			opts->traddr, opts->trsvcid);
2297 		goto out_free_ctrl;
2298 	}
2299 
2300 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2301 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2302 			opts->host_traddr, NULL, &ctrl->src_addr);
2303 		if (ret) {
2304 			pr_err("malformed src address passed: %s\n",
2305 			       opts->host_traddr);
2306 			goto out_free_ctrl;
2307 		}
2308 	}
2309 
2310 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2311 		ret = -EALREADY;
2312 		goto out_free_ctrl;
2313 	}
2314 
2315 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2316 			nvme_rdma_reconnect_ctrl_work);
2317 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2318 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2319 
2320 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2321 				opts->nr_poll_queues + 1;
2322 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2323 	ctrl->ctrl.kato = opts->kato;
2324 
2325 	ret = -ENOMEM;
2326 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2327 				GFP_KERNEL);
2328 	if (!ctrl->queues)
2329 		goto out_free_ctrl;
2330 
2331 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2332 				0 /* no quirks, we're perfect! */);
2333 	if (ret)
2334 		goto out_kfree_queues;
2335 
2336 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2337 	WARN_ON_ONCE(!changed);
2338 
2339 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2340 	if (ret)
2341 		goto out_uninit_ctrl;
2342 
2343 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2344 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2345 
2346 	mutex_lock(&nvme_rdma_ctrl_mutex);
2347 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2348 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2349 
2350 	return &ctrl->ctrl;
2351 
2352 out_uninit_ctrl:
2353 	nvme_uninit_ctrl(&ctrl->ctrl);
2354 	nvme_put_ctrl(&ctrl->ctrl);
2355 	if (ret > 0)
2356 		ret = -EIO;
2357 	return ERR_PTR(ret);
2358 out_kfree_queues:
2359 	kfree(ctrl->queues);
2360 out_free_ctrl:
2361 	kfree(ctrl);
2362 	return ERR_PTR(ret);
2363 }
2364 
2365 static struct nvmf_transport_ops nvme_rdma_transport = {
2366 	.name		= "rdma",
2367 	.module		= THIS_MODULE,
2368 	.required_opts	= NVMF_OPT_TRADDR,
2369 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2370 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2371 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2372 			  NVMF_OPT_TOS,
2373 	.create_ctrl	= nvme_rdma_create_ctrl,
2374 };
2375 
2376 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2377 {
2378 	struct nvme_rdma_ctrl *ctrl;
2379 	struct nvme_rdma_device *ndev;
2380 	bool found = false;
2381 
2382 	mutex_lock(&device_list_mutex);
2383 	list_for_each_entry(ndev, &device_list, entry) {
2384 		if (ndev->dev == ib_device) {
2385 			found = true;
2386 			break;
2387 		}
2388 	}
2389 	mutex_unlock(&device_list_mutex);
2390 
2391 	if (!found)
2392 		return;
2393 
2394 	/* Delete all controllers using this device */
2395 	mutex_lock(&nvme_rdma_ctrl_mutex);
2396 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2397 		if (ctrl->device->dev != ib_device)
2398 			continue;
2399 		nvme_delete_ctrl(&ctrl->ctrl);
2400 	}
2401 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2402 
2403 	flush_workqueue(nvme_delete_wq);
2404 }
2405 
2406 static struct ib_client nvme_rdma_ib_client = {
2407 	.name   = "nvme_rdma",
2408 	.remove = nvme_rdma_remove_one
2409 };
2410 
2411 static int __init nvme_rdma_init_module(void)
2412 {
2413 	int ret;
2414 
2415 	ret = ib_register_client(&nvme_rdma_ib_client);
2416 	if (ret)
2417 		return ret;
2418 
2419 	ret = nvmf_register_transport(&nvme_rdma_transport);
2420 	if (ret)
2421 		goto err_unreg_client;
2422 
2423 	return 0;
2424 
2425 err_unreg_client:
2426 	ib_unregister_client(&nvme_rdma_ib_client);
2427 	return ret;
2428 }
2429 
2430 static void __exit nvme_rdma_cleanup_module(void)
2431 {
2432 	struct nvme_rdma_ctrl *ctrl;
2433 
2434 	nvmf_unregister_transport(&nvme_rdma_transport);
2435 	ib_unregister_client(&nvme_rdma_ib_client);
2436 
2437 	mutex_lock(&nvme_rdma_ctrl_mutex);
2438 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2439 		nvme_delete_ctrl(&ctrl->ctrl);
2440 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2441 	flush_workqueue(nvme_delete_wq);
2442 }
2443 
2444 module_init(nvme_rdma_init_module);
2445 module_exit(nvme_rdma_cleanup_module);
2446 
2447 MODULE_LICENSE("GPL v2");
2448