1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <rdma/ib_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 39 40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 41 42 #define NVME_RDMA_MAX_SEGMENTS 256 43 44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 45 46 /* 47 * We handle AEN commands ourselves and don't even let the 48 * block layer know about them. 49 */ 50 #define NVME_RDMA_NR_AEN_COMMANDS 1 51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 53 54 struct nvme_rdma_device { 55 struct ib_device *dev; 56 struct ib_pd *pd; 57 struct kref ref; 58 struct list_head entry; 59 }; 60 61 struct nvme_rdma_qe { 62 struct ib_cqe cqe; 63 void *data; 64 u64 dma; 65 }; 66 67 struct nvme_rdma_queue; 68 struct nvme_rdma_request { 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_CONNECTED = (1 << 0), 84 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 85 NVME_RDMA_Q_DELETING = (1 << 2), 86 NVME_RDMA_Q_LIVE = (1 << 3), 87 }; 88 89 struct nvme_rdma_queue { 90 struct nvme_rdma_qe *rsp_ring; 91 u8 sig_count; 92 int queue_size; 93 size_t cmnd_capsule_len; 94 struct nvme_rdma_ctrl *ctrl; 95 struct nvme_rdma_device *device; 96 struct ib_cq *ib_cq; 97 struct ib_qp *qp; 98 99 unsigned long flags; 100 struct rdma_cm_id *cm_id; 101 int cm_error; 102 struct completion cm_done; 103 }; 104 105 struct nvme_rdma_ctrl { 106 /* read and written in the hot path */ 107 spinlock_t lock; 108 109 /* read only in the hot path */ 110 struct nvme_rdma_queue *queues; 111 u32 queue_count; 112 113 /* other member variables */ 114 struct blk_mq_tag_set tag_set; 115 struct work_struct delete_work; 116 struct work_struct reset_work; 117 struct work_struct err_work; 118 119 struct nvme_rdma_qe async_event_sqe; 120 121 int reconnect_delay; 122 struct delayed_work reconnect_work; 123 124 struct list_head list; 125 126 struct blk_mq_tag_set admin_tag_set; 127 struct nvme_rdma_device *device; 128 129 u64 cap; 130 u32 max_fr_pages; 131 132 union { 133 struct sockaddr addr; 134 struct sockaddr_in addr_in; 135 }; 136 137 struct nvme_ctrl ctrl; 138 }; 139 140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 141 { 142 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 143 } 144 145 static LIST_HEAD(device_list); 146 static DEFINE_MUTEX(device_list_mutex); 147 148 static LIST_HEAD(nvme_rdma_ctrl_list); 149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 150 151 static struct workqueue_struct *nvme_rdma_wq; 152 153 /* 154 * Disabling this option makes small I/O goes faster, but is fundamentally 155 * unsafe. With it turned off we will have to register a global rkey that 156 * allows read and write access to all physical memory. 157 */ 158 static bool register_always = true; 159 module_param(register_always, bool, 0444); 160 MODULE_PARM_DESC(register_always, 161 "Use memory registration even for contiguous memory regions"); 162 163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 164 struct rdma_cm_event *event); 165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 166 167 /* XXX: really should move to a generic header sooner or later.. */ 168 static inline void put_unaligned_le24(u32 val, u8 *p) 169 { 170 *p++ = val; 171 *p++ = val >> 8; 172 *p++ = val >> 16; 173 } 174 175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 176 { 177 return queue - queue->ctrl->queues; 178 } 179 180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 181 { 182 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 183 } 184 185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 186 size_t capsule_size, enum dma_data_direction dir) 187 { 188 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 189 kfree(qe->data); 190 } 191 192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 qe->data = kzalloc(capsule_size, GFP_KERNEL); 196 if (!qe->data) 197 return -ENOMEM; 198 199 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 200 if (ib_dma_mapping_error(ibdev, qe->dma)) { 201 kfree(qe->data); 202 return -ENOMEM; 203 } 204 205 return 0; 206 } 207 208 static void nvme_rdma_free_ring(struct ib_device *ibdev, 209 struct nvme_rdma_qe *ring, size_t ib_queue_size, 210 size_t capsule_size, enum dma_data_direction dir) 211 { 212 int i; 213 214 for (i = 0; i < ib_queue_size; i++) 215 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 216 kfree(ring); 217 } 218 219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 220 size_t ib_queue_size, size_t capsule_size, 221 enum dma_data_direction dir) 222 { 223 struct nvme_rdma_qe *ring; 224 int i; 225 226 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 227 if (!ring) 228 return NULL; 229 230 for (i = 0; i < ib_queue_size; i++) { 231 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 232 goto out_free_ring; 233 } 234 235 return ring; 236 237 out_free_ring: 238 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 239 return NULL; 240 } 241 242 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 243 { 244 pr_debug("QP event %d\n", event->event); 245 } 246 247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 248 { 249 wait_for_completion_interruptible_timeout(&queue->cm_done, 250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static int nvme_rdma_reinit_request(void *data, struct request *rq) 280 { 281 struct nvme_rdma_ctrl *ctrl = data; 282 struct nvme_rdma_device *dev = ctrl->device; 283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 284 int ret = 0; 285 286 if (!req->mr->need_inval) 287 goto out; 288 289 ib_dereg_mr(req->mr); 290 291 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 292 ctrl->max_fr_pages); 293 if (IS_ERR(req->mr)) { 294 ret = PTR_ERR(req->mr); 295 req->mr = NULL; 296 goto out; 297 } 298 299 req->mr->need_inval = false; 300 301 out: 302 return ret; 303 } 304 305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 306 struct request *rq, unsigned int queue_idx) 307 { 308 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 309 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 310 struct nvme_rdma_device *dev = queue->device; 311 312 if (req->mr) 313 ib_dereg_mr(req->mr); 314 315 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 316 DMA_TO_DEVICE); 317 } 318 319 static void nvme_rdma_exit_request(void *data, struct request *rq, 320 unsigned int hctx_idx, unsigned int rq_idx) 321 { 322 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 323 } 324 325 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 326 unsigned int hctx_idx, unsigned int rq_idx) 327 { 328 return __nvme_rdma_exit_request(data, rq, 0); 329 } 330 331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 332 struct request *rq, unsigned int queue_idx) 333 { 334 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 335 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 336 struct nvme_rdma_device *dev = queue->device; 337 struct ib_device *ibdev = dev->dev; 338 int ret; 339 340 BUG_ON(queue_idx >= ctrl->queue_count); 341 342 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 343 DMA_TO_DEVICE); 344 if (ret) 345 return ret; 346 347 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 348 ctrl->max_fr_pages); 349 if (IS_ERR(req->mr)) { 350 ret = PTR_ERR(req->mr); 351 goto out_free_qe; 352 } 353 354 req->queue = queue; 355 356 return 0; 357 358 out_free_qe: 359 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 360 DMA_TO_DEVICE); 361 return -ENOMEM; 362 } 363 364 static int nvme_rdma_init_request(void *data, struct request *rq, 365 unsigned int hctx_idx, unsigned int rq_idx, 366 unsigned int numa_node) 367 { 368 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 369 } 370 371 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 372 unsigned int hctx_idx, unsigned int rq_idx, 373 unsigned int numa_node) 374 { 375 return __nvme_rdma_init_request(data, rq, 0); 376 } 377 378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 379 unsigned int hctx_idx) 380 { 381 struct nvme_rdma_ctrl *ctrl = data; 382 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 383 384 BUG_ON(hctx_idx >= ctrl->queue_count); 385 386 hctx->driver_data = queue; 387 return 0; 388 } 389 390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 391 unsigned int hctx_idx) 392 { 393 struct nvme_rdma_ctrl *ctrl = data; 394 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 395 396 BUG_ON(hctx_idx != 0); 397 398 hctx->driver_data = queue; 399 return 0; 400 } 401 402 static void nvme_rdma_free_dev(struct kref *ref) 403 { 404 struct nvme_rdma_device *ndev = 405 container_of(ref, struct nvme_rdma_device, ref); 406 407 mutex_lock(&device_list_mutex); 408 list_del(&ndev->entry); 409 mutex_unlock(&device_list_mutex); 410 411 ib_dealloc_pd(ndev->pd); 412 kfree(ndev); 413 } 414 415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 416 { 417 kref_put(&dev->ref, nvme_rdma_free_dev); 418 } 419 420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 421 { 422 return kref_get_unless_zero(&dev->ref); 423 } 424 425 static struct nvme_rdma_device * 426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 427 { 428 struct nvme_rdma_device *ndev; 429 430 mutex_lock(&device_list_mutex); 431 list_for_each_entry(ndev, &device_list, entry) { 432 if (ndev->dev->node_guid == cm_id->device->node_guid && 433 nvme_rdma_dev_get(ndev)) 434 goto out_unlock; 435 } 436 437 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 438 if (!ndev) 439 goto out_err; 440 441 ndev->dev = cm_id->device; 442 kref_init(&ndev->ref); 443 444 ndev->pd = ib_alloc_pd(ndev->dev, 445 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 446 if (IS_ERR(ndev->pd)) 447 goto out_free_dev; 448 449 if (!(ndev->dev->attrs.device_cap_flags & 450 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 451 dev_err(&ndev->dev->dev, 452 "Memory registrations not supported.\n"); 453 goto out_free_pd; 454 } 455 456 list_add(&ndev->entry, &device_list); 457 out_unlock: 458 mutex_unlock(&device_list_mutex); 459 return ndev; 460 461 out_free_pd: 462 ib_dealloc_pd(ndev->pd); 463 out_free_dev: 464 kfree(ndev); 465 out_err: 466 mutex_unlock(&device_list_mutex); 467 return NULL; 468 } 469 470 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 471 { 472 struct nvme_rdma_device *dev; 473 struct ib_device *ibdev; 474 475 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 476 return; 477 478 dev = queue->device; 479 ibdev = dev->dev; 480 rdma_destroy_qp(queue->cm_id); 481 ib_free_cq(queue->ib_cq); 482 483 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 484 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 485 486 nvme_rdma_dev_put(dev); 487 } 488 489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 490 struct nvme_rdma_device *dev) 491 { 492 struct ib_device *ibdev = dev->dev; 493 const int send_wr_factor = 3; /* MR, SEND, INV */ 494 const int cq_factor = send_wr_factor + 1; /* + RECV */ 495 int comp_vector, idx = nvme_rdma_queue_idx(queue); 496 497 int ret; 498 499 queue->device = dev; 500 501 /* 502 * The admin queue is barely used once the controller is live, so don't 503 * bother to spread it out. 504 */ 505 if (idx == 0) 506 comp_vector = 0; 507 else 508 comp_vector = idx % ibdev->num_comp_vectors; 509 510 511 /* +1 for ib_stop_cq */ 512 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 513 cq_factor * queue->queue_size + 1, comp_vector, 514 IB_POLL_SOFTIRQ); 515 if (IS_ERR(queue->ib_cq)) { 516 ret = PTR_ERR(queue->ib_cq); 517 goto out; 518 } 519 520 ret = nvme_rdma_create_qp(queue, send_wr_factor); 521 if (ret) 522 goto out_destroy_ib_cq; 523 524 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 525 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 526 if (!queue->rsp_ring) { 527 ret = -ENOMEM; 528 goto out_destroy_qp; 529 } 530 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 531 532 return 0; 533 534 out_destroy_qp: 535 ib_destroy_qp(queue->qp); 536 out_destroy_ib_cq: 537 ib_free_cq(queue->ib_cq); 538 out: 539 return ret; 540 } 541 542 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 543 int idx, size_t queue_size) 544 { 545 struct nvme_rdma_queue *queue; 546 int ret; 547 548 queue = &ctrl->queues[idx]; 549 queue->ctrl = ctrl; 550 init_completion(&queue->cm_done); 551 552 if (idx > 0) 553 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 554 else 555 queue->cmnd_capsule_len = sizeof(struct nvme_command); 556 557 queue->queue_size = queue_size; 558 559 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 560 RDMA_PS_TCP, IB_QPT_RC); 561 if (IS_ERR(queue->cm_id)) { 562 dev_info(ctrl->ctrl.device, 563 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 564 return PTR_ERR(queue->cm_id); 565 } 566 567 queue->cm_error = -ETIMEDOUT; 568 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 569 NVME_RDMA_CONNECT_TIMEOUT_MS); 570 if (ret) { 571 dev_info(ctrl->ctrl.device, 572 "rdma_resolve_addr failed (%d).\n", ret); 573 goto out_destroy_cm_id; 574 } 575 576 ret = nvme_rdma_wait_for_cm(queue); 577 if (ret) { 578 dev_info(ctrl->ctrl.device, 579 "rdma_resolve_addr wait failed (%d).\n", ret); 580 goto out_destroy_cm_id; 581 } 582 583 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 584 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 585 586 return 0; 587 588 out_destroy_cm_id: 589 nvme_rdma_destroy_queue_ib(queue); 590 rdma_destroy_id(queue->cm_id); 591 return ret; 592 } 593 594 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 595 { 596 rdma_disconnect(queue->cm_id); 597 ib_drain_qp(queue->qp); 598 } 599 600 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 601 { 602 nvme_rdma_destroy_queue_ib(queue); 603 rdma_destroy_id(queue->cm_id); 604 } 605 606 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 607 { 608 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 609 return; 610 nvme_rdma_stop_queue(queue); 611 nvme_rdma_free_queue(queue); 612 } 613 614 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 615 { 616 int i; 617 618 for (i = 1; i < ctrl->queue_count; i++) 619 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 620 } 621 622 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 623 { 624 int i, ret = 0; 625 626 for (i = 1; i < ctrl->queue_count; i++) { 627 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 628 if (ret) { 629 dev_info(ctrl->ctrl.device, 630 "failed to connect i/o queue: %d\n", ret); 631 goto out_free_queues; 632 } 633 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 634 } 635 636 return 0; 637 638 out_free_queues: 639 nvme_rdma_free_io_queues(ctrl); 640 return ret; 641 } 642 643 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 644 { 645 int i, ret; 646 647 for (i = 1; i < ctrl->queue_count; i++) { 648 ret = nvme_rdma_init_queue(ctrl, i, 649 ctrl->ctrl.opts->queue_size); 650 if (ret) { 651 dev_info(ctrl->ctrl.device, 652 "failed to initialize i/o queue: %d\n", ret); 653 goto out_free_queues; 654 } 655 } 656 657 return 0; 658 659 out_free_queues: 660 for (i--; i >= 1; i--) 661 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 662 663 return ret; 664 } 665 666 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 667 { 668 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 669 sizeof(struct nvme_command), DMA_TO_DEVICE); 670 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 671 blk_cleanup_queue(ctrl->ctrl.admin_q); 672 blk_mq_free_tag_set(&ctrl->admin_tag_set); 673 nvme_rdma_dev_put(ctrl->device); 674 } 675 676 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 677 { 678 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 679 680 if (list_empty(&ctrl->list)) 681 goto free_ctrl; 682 683 mutex_lock(&nvme_rdma_ctrl_mutex); 684 list_del(&ctrl->list); 685 mutex_unlock(&nvme_rdma_ctrl_mutex); 686 687 kfree(ctrl->queues); 688 nvmf_free_options(nctrl->opts); 689 free_ctrl: 690 kfree(ctrl); 691 } 692 693 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 694 { 695 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 696 struct nvme_rdma_ctrl, reconnect_work); 697 bool changed; 698 int ret; 699 700 if (ctrl->queue_count > 1) { 701 nvme_rdma_free_io_queues(ctrl); 702 703 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 704 if (ret) 705 goto requeue; 706 } 707 708 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 709 710 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 711 if (ret) 712 goto requeue; 713 714 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 715 if (ret) 716 goto requeue; 717 718 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 719 720 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 721 if (ret) 722 goto stop_admin_q; 723 724 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 725 726 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 727 if (ret) 728 goto stop_admin_q; 729 730 nvme_start_keep_alive(&ctrl->ctrl); 731 732 if (ctrl->queue_count > 1) { 733 ret = nvme_rdma_init_io_queues(ctrl); 734 if (ret) 735 goto stop_admin_q; 736 737 ret = nvme_rdma_connect_io_queues(ctrl); 738 if (ret) 739 goto stop_admin_q; 740 } 741 742 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 743 WARN_ON_ONCE(!changed); 744 745 if (ctrl->queue_count > 1) { 746 nvme_start_queues(&ctrl->ctrl); 747 nvme_queue_scan(&ctrl->ctrl); 748 nvme_queue_async_events(&ctrl->ctrl); 749 } 750 751 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 752 753 return; 754 755 stop_admin_q: 756 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 757 requeue: 758 /* Make sure we are not resetting/deleting */ 759 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 760 dev_info(ctrl->ctrl.device, 761 "Failed reconnect attempt, requeueing...\n"); 762 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 763 ctrl->reconnect_delay * HZ); 764 } 765 } 766 767 static void nvme_rdma_error_recovery_work(struct work_struct *work) 768 { 769 struct nvme_rdma_ctrl *ctrl = container_of(work, 770 struct nvme_rdma_ctrl, err_work); 771 int i; 772 773 nvme_stop_keep_alive(&ctrl->ctrl); 774 775 for (i = 0; i < ctrl->queue_count; i++) { 776 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 777 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 778 } 779 780 if (ctrl->queue_count > 1) 781 nvme_stop_queues(&ctrl->ctrl); 782 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 783 784 /* We must take care of fastfail/requeue all our inflight requests */ 785 if (ctrl->queue_count > 1) 786 blk_mq_tagset_busy_iter(&ctrl->tag_set, 787 nvme_cancel_request, &ctrl->ctrl); 788 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 789 nvme_cancel_request, &ctrl->ctrl); 790 791 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 792 ctrl->reconnect_delay); 793 794 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 795 ctrl->reconnect_delay * HZ); 796 } 797 798 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 799 { 800 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 801 return; 802 803 queue_work(nvme_rdma_wq, &ctrl->err_work); 804 } 805 806 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 807 const char *op) 808 { 809 struct nvme_rdma_queue *queue = cq->cq_context; 810 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 811 812 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 813 dev_info(ctrl->ctrl.device, 814 "%s for CQE 0x%p failed with status %s (%d)\n", 815 op, wc->wr_cqe, 816 ib_wc_status_msg(wc->status), wc->status); 817 nvme_rdma_error_recovery(ctrl); 818 } 819 820 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 821 { 822 if (unlikely(wc->status != IB_WC_SUCCESS)) 823 nvme_rdma_wr_error(cq, wc, "MEMREG"); 824 } 825 826 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 827 { 828 if (unlikely(wc->status != IB_WC_SUCCESS)) 829 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 830 } 831 832 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 833 struct nvme_rdma_request *req) 834 { 835 struct ib_send_wr *bad_wr; 836 struct ib_send_wr wr = { 837 .opcode = IB_WR_LOCAL_INV, 838 .next = NULL, 839 .num_sge = 0, 840 .send_flags = 0, 841 .ex.invalidate_rkey = req->mr->rkey, 842 }; 843 844 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 845 wr.wr_cqe = &req->reg_cqe; 846 847 return ib_post_send(queue->qp, &wr, &bad_wr); 848 } 849 850 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 851 struct request *rq) 852 { 853 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 854 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 855 struct nvme_rdma_device *dev = queue->device; 856 struct ib_device *ibdev = dev->dev; 857 int res; 858 859 if (!blk_rq_bytes(rq)) 860 return; 861 862 if (req->mr->need_inval) { 863 res = nvme_rdma_inv_rkey(queue, req); 864 if (res < 0) { 865 dev_err(ctrl->ctrl.device, 866 "Queueing INV WR for rkey %#x failed (%d)\n", 867 req->mr->rkey, res); 868 nvme_rdma_error_recovery(queue->ctrl); 869 } 870 } 871 872 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 873 req->nents, rq_data_dir(rq) == 874 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 875 876 nvme_cleanup_cmd(rq); 877 sg_free_table_chained(&req->sg_table, true); 878 } 879 880 static int nvme_rdma_set_sg_null(struct nvme_command *c) 881 { 882 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 883 884 sg->addr = 0; 885 put_unaligned_le24(0, sg->length); 886 put_unaligned_le32(0, sg->key); 887 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 888 return 0; 889 } 890 891 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 892 struct nvme_rdma_request *req, struct nvme_command *c) 893 { 894 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 895 896 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 897 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 898 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 899 900 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 901 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 902 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 903 904 req->inline_data = true; 905 req->num_sge++; 906 return 0; 907 } 908 909 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 910 struct nvme_rdma_request *req, struct nvme_command *c) 911 { 912 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 913 914 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 915 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 916 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 917 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 918 return 0; 919 } 920 921 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 922 struct nvme_rdma_request *req, struct nvme_command *c, 923 int count) 924 { 925 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 926 int nr; 927 928 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 929 if (nr < count) { 930 if (nr < 0) 931 return nr; 932 return -EINVAL; 933 } 934 935 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 936 937 req->reg_cqe.done = nvme_rdma_memreg_done; 938 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 939 req->reg_wr.wr.opcode = IB_WR_REG_MR; 940 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 941 req->reg_wr.wr.num_sge = 0; 942 req->reg_wr.mr = req->mr; 943 req->reg_wr.key = req->mr->rkey; 944 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 945 IB_ACCESS_REMOTE_READ | 946 IB_ACCESS_REMOTE_WRITE; 947 948 req->mr->need_inval = true; 949 950 sg->addr = cpu_to_le64(req->mr->iova); 951 put_unaligned_le24(req->mr->length, sg->length); 952 put_unaligned_le32(req->mr->rkey, sg->key); 953 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 954 NVME_SGL_FMT_INVALIDATE; 955 956 return 0; 957 } 958 959 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 960 struct request *rq, unsigned int map_len, 961 struct nvme_command *c) 962 { 963 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 964 struct nvme_rdma_device *dev = queue->device; 965 struct ib_device *ibdev = dev->dev; 966 int nents, count; 967 int ret; 968 969 req->num_sge = 1; 970 req->inline_data = false; 971 req->mr->need_inval = false; 972 973 c->common.flags |= NVME_CMD_SGL_METABUF; 974 975 if (!blk_rq_bytes(rq)) 976 return nvme_rdma_set_sg_null(c); 977 978 req->sg_table.sgl = req->first_sgl; 979 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments, 980 req->sg_table.sgl); 981 if (ret) 982 return -ENOMEM; 983 984 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 985 BUG_ON(nents > rq->nr_phys_segments); 986 req->nents = nents; 987 988 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents, 989 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 990 if (unlikely(count <= 0)) { 991 sg_free_table_chained(&req->sg_table, true); 992 return -EIO; 993 } 994 995 if (count == 1) { 996 if (rq_data_dir(rq) == WRITE && 997 map_len <= nvme_rdma_inline_data_size(queue) && 998 nvme_rdma_queue_idx(queue)) 999 return nvme_rdma_map_sg_inline(queue, req, c); 1000 1001 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1002 return nvme_rdma_map_sg_single(queue, req, c); 1003 } 1004 1005 return nvme_rdma_map_sg_fr(queue, req, c, count); 1006 } 1007 1008 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1009 { 1010 if (unlikely(wc->status != IB_WC_SUCCESS)) 1011 nvme_rdma_wr_error(cq, wc, "SEND"); 1012 } 1013 1014 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1015 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1016 struct ib_send_wr *first, bool flush) 1017 { 1018 struct ib_send_wr wr, *bad_wr; 1019 int ret; 1020 1021 sge->addr = qe->dma; 1022 sge->length = sizeof(struct nvme_command), 1023 sge->lkey = queue->device->pd->local_dma_lkey; 1024 1025 qe->cqe.done = nvme_rdma_send_done; 1026 1027 wr.next = NULL; 1028 wr.wr_cqe = &qe->cqe; 1029 wr.sg_list = sge; 1030 wr.num_sge = num_sge; 1031 wr.opcode = IB_WR_SEND; 1032 wr.send_flags = 0; 1033 1034 /* 1035 * Unsignalled send completions are another giant desaster in the 1036 * IB Verbs spec: If we don't regularly post signalled sends 1037 * the send queue will fill up and only a QP reset will rescue us. 1038 * Would have been way to obvious to handle this in hardware or 1039 * at least the RDMA stack.. 1040 * 1041 * This messy and racy code sniplet is copy and pasted from the iSER 1042 * initiator, and the magic '32' comes from there as well. 1043 * 1044 * Always signal the flushes. The magic request used for the flush 1045 * sequencer is not allocated in our driver's tagset and it's 1046 * triggered to be freed by blk_cleanup_queue(). So we need to 1047 * always mark it as signaled to ensure that the "wr_cqe", which is 1048 * embeded in request's payload, is not freed when __ib_process_cq() 1049 * calls wr_cqe->done(). 1050 */ 1051 if ((++queue->sig_count % 32) == 0 || flush) 1052 wr.send_flags |= IB_SEND_SIGNALED; 1053 1054 if (first) 1055 first->next = ≀ 1056 else 1057 first = ≀ 1058 1059 ret = ib_post_send(queue->qp, first, &bad_wr); 1060 if (ret) { 1061 dev_err(queue->ctrl->ctrl.device, 1062 "%s failed with error code %d\n", __func__, ret); 1063 } 1064 return ret; 1065 } 1066 1067 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1068 struct nvme_rdma_qe *qe) 1069 { 1070 struct ib_recv_wr wr, *bad_wr; 1071 struct ib_sge list; 1072 int ret; 1073 1074 list.addr = qe->dma; 1075 list.length = sizeof(struct nvme_completion); 1076 list.lkey = queue->device->pd->local_dma_lkey; 1077 1078 qe->cqe.done = nvme_rdma_recv_done; 1079 1080 wr.next = NULL; 1081 wr.wr_cqe = &qe->cqe; 1082 wr.sg_list = &list; 1083 wr.num_sge = 1; 1084 1085 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1086 if (ret) { 1087 dev_err(queue->ctrl->ctrl.device, 1088 "%s failed with error code %d\n", __func__, ret); 1089 } 1090 return ret; 1091 } 1092 1093 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1094 { 1095 u32 queue_idx = nvme_rdma_queue_idx(queue); 1096 1097 if (queue_idx == 0) 1098 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1099 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1100 } 1101 1102 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1103 { 1104 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1105 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1106 struct ib_device *dev = queue->device->dev; 1107 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1108 struct nvme_command *cmd = sqe->data; 1109 struct ib_sge sge; 1110 int ret; 1111 1112 if (WARN_ON_ONCE(aer_idx != 0)) 1113 return; 1114 1115 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1116 1117 memset(cmd, 0, sizeof(*cmd)); 1118 cmd->common.opcode = nvme_admin_async_event; 1119 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1120 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1121 nvme_rdma_set_sg_null(cmd); 1122 1123 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1124 DMA_TO_DEVICE); 1125 1126 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1127 WARN_ON_ONCE(ret); 1128 } 1129 1130 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1131 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1132 { 1133 u16 status = le16_to_cpu(cqe->status); 1134 struct request *rq; 1135 struct nvme_rdma_request *req; 1136 int ret = 0; 1137 1138 status >>= 1; 1139 1140 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1141 if (!rq) { 1142 dev_err(queue->ctrl->ctrl.device, 1143 "tag 0x%x on QP %#x not found\n", 1144 cqe->command_id, queue->qp->qp_num); 1145 nvme_rdma_error_recovery(queue->ctrl); 1146 return ret; 1147 } 1148 req = blk_mq_rq_to_pdu(rq); 1149 1150 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special) 1151 memcpy(rq->special, cqe, sizeof(*cqe)); 1152 1153 if (rq->tag == tag) 1154 ret = 1; 1155 1156 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1157 wc->ex.invalidate_rkey == req->mr->rkey) 1158 req->mr->need_inval = false; 1159 1160 blk_mq_complete_request(rq, status); 1161 1162 return ret; 1163 } 1164 1165 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1166 { 1167 struct nvme_rdma_qe *qe = 1168 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1169 struct nvme_rdma_queue *queue = cq->cq_context; 1170 struct ib_device *ibdev = queue->device->dev; 1171 struct nvme_completion *cqe = qe->data; 1172 const size_t len = sizeof(struct nvme_completion); 1173 int ret = 0; 1174 1175 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1176 nvme_rdma_wr_error(cq, wc, "RECV"); 1177 return 0; 1178 } 1179 1180 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1181 /* 1182 * AEN requests are special as they don't time out and can 1183 * survive any kind of queue freeze and often don't respond to 1184 * aborts. We don't even bother to allocate a struct request 1185 * for them but rather special case them here. 1186 */ 1187 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1188 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1189 nvme_complete_async_event(&queue->ctrl->ctrl, cqe); 1190 else 1191 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1192 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1193 1194 nvme_rdma_post_recv(queue, qe); 1195 return ret; 1196 } 1197 1198 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1199 { 1200 __nvme_rdma_recv_done(cq, wc, -1); 1201 } 1202 1203 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1204 { 1205 int ret, i; 1206 1207 for (i = 0; i < queue->queue_size; i++) { 1208 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1209 if (ret) 1210 goto out_destroy_queue_ib; 1211 } 1212 1213 return 0; 1214 1215 out_destroy_queue_ib: 1216 nvme_rdma_destroy_queue_ib(queue); 1217 return ret; 1218 } 1219 1220 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1221 struct rdma_cm_event *ev) 1222 { 1223 if (ev->param.conn.private_data_len) { 1224 struct nvme_rdma_cm_rej *rej = 1225 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; 1226 1227 dev_err(queue->ctrl->ctrl.device, 1228 "Connect rejected, status %d.", le16_to_cpu(rej->sts)); 1229 /* XXX: Think of something clever to do here... */ 1230 } else { 1231 dev_err(queue->ctrl->ctrl.device, 1232 "Connect rejected, no private data.\n"); 1233 } 1234 1235 return -ECONNRESET; 1236 } 1237 1238 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1239 { 1240 struct nvme_rdma_device *dev; 1241 int ret; 1242 1243 dev = nvme_rdma_find_get_device(queue->cm_id); 1244 if (!dev) { 1245 dev_err(queue->cm_id->device->dma_device, 1246 "no client data found!\n"); 1247 return -ECONNREFUSED; 1248 } 1249 1250 ret = nvme_rdma_create_queue_ib(queue, dev); 1251 if (ret) { 1252 nvme_rdma_dev_put(dev); 1253 goto out; 1254 } 1255 1256 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1257 if (ret) { 1258 dev_err(queue->ctrl->ctrl.device, 1259 "rdma_resolve_route failed (%d).\n", 1260 queue->cm_error); 1261 goto out_destroy_queue; 1262 } 1263 1264 return 0; 1265 1266 out_destroy_queue: 1267 nvme_rdma_destroy_queue_ib(queue); 1268 out: 1269 return ret; 1270 } 1271 1272 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1273 { 1274 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1275 struct rdma_conn_param param = { }; 1276 struct nvme_rdma_cm_req priv = { }; 1277 int ret; 1278 1279 param.qp_num = queue->qp->qp_num; 1280 param.flow_control = 1; 1281 1282 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1283 /* maximum retry count */ 1284 param.retry_count = 7; 1285 param.rnr_retry_count = 7; 1286 param.private_data = &priv; 1287 param.private_data_len = sizeof(priv); 1288 1289 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1290 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1291 /* 1292 * set the admin queue depth to the minimum size 1293 * specified by the Fabrics standard. 1294 */ 1295 if (priv.qid == 0) { 1296 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1297 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1298 } else { 1299 /* 1300 * current interpretation of the fabrics spec 1301 * is at minimum you make hrqsize sqsize+1, or a 1302 * 1's based representation of sqsize. 1303 */ 1304 priv.hrqsize = cpu_to_le16(queue->queue_size); 1305 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1306 } 1307 1308 ret = rdma_connect(queue->cm_id, ¶m); 1309 if (ret) { 1310 dev_err(ctrl->ctrl.device, 1311 "rdma_connect failed (%d).\n", ret); 1312 goto out_destroy_queue_ib; 1313 } 1314 1315 return 0; 1316 1317 out_destroy_queue_ib: 1318 nvme_rdma_destroy_queue_ib(queue); 1319 return ret; 1320 } 1321 1322 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1323 struct rdma_cm_event *ev) 1324 { 1325 struct nvme_rdma_queue *queue = cm_id->context; 1326 int cm_error = 0; 1327 1328 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1329 rdma_event_msg(ev->event), ev->event, 1330 ev->status, cm_id); 1331 1332 switch (ev->event) { 1333 case RDMA_CM_EVENT_ADDR_RESOLVED: 1334 cm_error = nvme_rdma_addr_resolved(queue); 1335 break; 1336 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1337 cm_error = nvme_rdma_route_resolved(queue); 1338 break; 1339 case RDMA_CM_EVENT_ESTABLISHED: 1340 queue->cm_error = nvme_rdma_conn_established(queue); 1341 /* complete cm_done regardless of success/failure */ 1342 complete(&queue->cm_done); 1343 return 0; 1344 case RDMA_CM_EVENT_REJECTED: 1345 cm_error = nvme_rdma_conn_rejected(queue, ev); 1346 break; 1347 case RDMA_CM_EVENT_ADDR_ERROR: 1348 case RDMA_CM_EVENT_ROUTE_ERROR: 1349 case RDMA_CM_EVENT_CONNECT_ERROR: 1350 case RDMA_CM_EVENT_UNREACHABLE: 1351 dev_dbg(queue->ctrl->ctrl.device, 1352 "CM error event %d\n", ev->event); 1353 cm_error = -ECONNRESET; 1354 break; 1355 case RDMA_CM_EVENT_DISCONNECTED: 1356 case RDMA_CM_EVENT_ADDR_CHANGE: 1357 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1358 dev_dbg(queue->ctrl->ctrl.device, 1359 "disconnect received - connection closed\n"); 1360 nvme_rdma_error_recovery(queue->ctrl); 1361 break; 1362 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1363 /* device removal is handled via the ib_client API */ 1364 break; 1365 default: 1366 dev_err(queue->ctrl->ctrl.device, 1367 "Unexpected RDMA CM event (%d)\n", ev->event); 1368 nvme_rdma_error_recovery(queue->ctrl); 1369 break; 1370 } 1371 1372 if (cm_error) { 1373 queue->cm_error = cm_error; 1374 complete(&queue->cm_done); 1375 } 1376 1377 return 0; 1378 } 1379 1380 static enum blk_eh_timer_return 1381 nvme_rdma_timeout(struct request *rq, bool reserved) 1382 { 1383 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1384 1385 /* queue error recovery */ 1386 nvme_rdma_error_recovery(req->queue->ctrl); 1387 1388 /* fail with DNR on cmd timeout */ 1389 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1390 1391 return BLK_EH_HANDLED; 1392 } 1393 1394 /* 1395 * We cannot accept any other command until the Connect command has completed. 1396 */ 1397 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, 1398 struct request *rq) 1399 { 1400 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1401 struct nvme_command *cmd = (struct nvme_command *)rq->cmd; 1402 1403 if (rq->cmd_type != REQ_TYPE_DRV_PRIV || 1404 cmd->common.opcode != nvme_fabrics_command || 1405 cmd->fabrics.fctype != nvme_fabrics_type_connect) 1406 return false; 1407 } 1408 1409 return true; 1410 } 1411 1412 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1413 const struct blk_mq_queue_data *bd) 1414 { 1415 struct nvme_ns *ns = hctx->queue->queuedata; 1416 struct nvme_rdma_queue *queue = hctx->driver_data; 1417 struct request *rq = bd->rq; 1418 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1419 struct nvme_rdma_qe *sqe = &req->sqe; 1420 struct nvme_command *c = sqe->data; 1421 bool flush = false; 1422 struct ib_device *dev; 1423 unsigned int map_len; 1424 int ret; 1425 1426 WARN_ON_ONCE(rq->tag < 0); 1427 1428 if (!nvme_rdma_queue_is_ready(queue, rq)) 1429 return BLK_MQ_RQ_QUEUE_BUSY; 1430 1431 dev = queue->device->dev; 1432 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1433 sizeof(struct nvme_command), DMA_TO_DEVICE); 1434 1435 ret = nvme_setup_cmd(ns, rq, c); 1436 if (ret) 1437 return ret; 1438 1439 c->common.command_id = rq->tag; 1440 blk_mq_start_request(rq); 1441 1442 map_len = nvme_map_len(rq); 1443 ret = nvme_rdma_map_data(queue, rq, map_len, c); 1444 if (ret < 0) { 1445 dev_err(queue->ctrl->ctrl.device, 1446 "Failed to map data (%d)\n", ret); 1447 nvme_cleanup_cmd(rq); 1448 goto err; 1449 } 1450 1451 ib_dma_sync_single_for_device(dev, sqe->dma, 1452 sizeof(struct nvme_command), DMA_TO_DEVICE); 1453 1454 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1455 flush = true; 1456 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1457 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1458 if (ret) { 1459 nvme_rdma_unmap_data(queue, rq); 1460 goto err; 1461 } 1462 1463 return BLK_MQ_RQ_QUEUE_OK; 1464 err: 1465 return (ret == -ENOMEM || ret == -EAGAIN) ? 1466 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1467 } 1468 1469 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1470 { 1471 struct nvme_rdma_queue *queue = hctx->driver_data; 1472 struct ib_cq *cq = queue->ib_cq; 1473 struct ib_wc wc; 1474 int found = 0; 1475 1476 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1477 while (ib_poll_cq(cq, 1, &wc) > 0) { 1478 struct ib_cqe *cqe = wc.wr_cqe; 1479 1480 if (cqe) { 1481 if (cqe->done == nvme_rdma_recv_done) 1482 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1483 else 1484 cqe->done(cq, &wc); 1485 } 1486 } 1487 1488 return found; 1489 } 1490 1491 static void nvme_rdma_complete_rq(struct request *rq) 1492 { 1493 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1494 struct nvme_rdma_queue *queue = req->queue; 1495 int error = 0; 1496 1497 nvme_rdma_unmap_data(queue, rq); 1498 1499 if (unlikely(rq->errors)) { 1500 if (nvme_req_needs_retry(rq, rq->errors)) { 1501 nvme_requeue_req(rq); 1502 return; 1503 } 1504 1505 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1506 error = rq->errors; 1507 else 1508 error = nvme_error_status(rq->errors); 1509 } 1510 1511 blk_mq_end_request(rq, error); 1512 } 1513 1514 static struct blk_mq_ops nvme_rdma_mq_ops = { 1515 .queue_rq = nvme_rdma_queue_rq, 1516 .complete = nvme_rdma_complete_rq, 1517 .init_request = nvme_rdma_init_request, 1518 .exit_request = nvme_rdma_exit_request, 1519 .reinit_request = nvme_rdma_reinit_request, 1520 .init_hctx = nvme_rdma_init_hctx, 1521 .poll = nvme_rdma_poll, 1522 .timeout = nvme_rdma_timeout, 1523 }; 1524 1525 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1526 .queue_rq = nvme_rdma_queue_rq, 1527 .complete = nvme_rdma_complete_rq, 1528 .init_request = nvme_rdma_init_admin_request, 1529 .exit_request = nvme_rdma_exit_admin_request, 1530 .reinit_request = nvme_rdma_reinit_request, 1531 .init_hctx = nvme_rdma_init_admin_hctx, 1532 .timeout = nvme_rdma_timeout, 1533 }; 1534 1535 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1536 { 1537 int error; 1538 1539 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1540 if (error) 1541 return error; 1542 1543 ctrl->device = ctrl->queues[0].device; 1544 1545 /* 1546 * We need a reference on the device as long as the tag_set is alive, 1547 * as the MRs in the request structures need a valid ib_device. 1548 */ 1549 error = -EINVAL; 1550 if (!nvme_rdma_dev_get(ctrl->device)) 1551 goto out_free_queue; 1552 1553 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1554 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1555 1556 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1557 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1558 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1559 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1560 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1561 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1562 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1563 ctrl->admin_tag_set.driver_data = ctrl; 1564 ctrl->admin_tag_set.nr_hw_queues = 1; 1565 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1566 1567 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1568 if (error) 1569 goto out_put_dev; 1570 1571 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1572 if (IS_ERR(ctrl->ctrl.admin_q)) { 1573 error = PTR_ERR(ctrl->ctrl.admin_q); 1574 goto out_free_tagset; 1575 } 1576 1577 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1578 if (error) 1579 goto out_cleanup_queue; 1580 1581 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1582 1583 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1584 if (error) { 1585 dev_err(ctrl->ctrl.device, 1586 "prop_get NVME_REG_CAP failed\n"); 1587 goto out_cleanup_queue; 1588 } 1589 1590 ctrl->ctrl.sqsize = 1591 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1592 1593 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1594 if (error) 1595 goto out_cleanup_queue; 1596 1597 ctrl->ctrl.max_hw_sectors = 1598 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1599 1600 error = nvme_init_identify(&ctrl->ctrl); 1601 if (error) 1602 goto out_cleanup_queue; 1603 1604 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1605 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1606 DMA_TO_DEVICE); 1607 if (error) 1608 goto out_cleanup_queue; 1609 1610 nvme_start_keep_alive(&ctrl->ctrl); 1611 1612 return 0; 1613 1614 out_cleanup_queue: 1615 blk_cleanup_queue(ctrl->ctrl.admin_q); 1616 out_free_tagset: 1617 /* disconnect and drain the queue before freeing the tagset */ 1618 nvme_rdma_stop_queue(&ctrl->queues[0]); 1619 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1620 out_put_dev: 1621 nvme_rdma_dev_put(ctrl->device); 1622 out_free_queue: 1623 nvme_rdma_free_queue(&ctrl->queues[0]); 1624 return error; 1625 } 1626 1627 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1628 { 1629 nvme_stop_keep_alive(&ctrl->ctrl); 1630 cancel_work_sync(&ctrl->err_work); 1631 cancel_delayed_work_sync(&ctrl->reconnect_work); 1632 1633 if (ctrl->queue_count > 1) { 1634 nvme_stop_queues(&ctrl->ctrl); 1635 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1636 nvme_cancel_request, &ctrl->ctrl); 1637 nvme_rdma_free_io_queues(ctrl); 1638 } 1639 1640 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1641 nvme_shutdown_ctrl(&ctrl->ctrl); 1642 1643 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1644 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1645 nvme_cancel_request, &ctrl->ctrl); 1646 nvme_rdma_destroy_admin_queue(ctrl); 1647 } 1648 1649 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1650 { 1651 nvme_uninit_ctrl(&ctrl->ctrl); 1652 if (shutdown) 1653 nvme_rdma_shutdown_ctrl(ctrl); 1654 1655 if (ctrl->ctrl.tagset) { 1656 blk_cleanup_queue(ctrl->ctrl.connect_q); 1657 blk_mq_free_tag_set(&ctrl->tag_set); 1658 nvme_rdma_dev_put(ctrl->device); 1659 } 1660 1661 nvme_put_ctrl(&ctrl->ctrl); 1662 } 1663 1664 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1665 { 1666 struct nvme_rdma_ctrl *ctrl = container_of(work, 1667 struct nvme_rdma_ctrl, delete_work); 1668 1669 __nvme_rdma_remove_ctrl(ctrl, true); 1670 } 1671 1672 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1673 { 1674 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1675 return -EBUSY; 1676 1677 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1678 return -EBUSY; 1679 1680 return 0; 1681 } 1682 1683 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1684 { 1685 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1686 int ret = 0; 1687 1688 /* 1689 * Keep a reference until all work is flushed since 1690 * __nvme_rdma_del_ctrl can free the ctrl mem 1691 */ 1692 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1693 return -EBUSY; 1694 ret = __nvme_rdma_del_ctrl(ctrl); 1695 if (!ret) 1696 flush_work(&ctrl->delete_work); 1697 nvme_put_ctrl(&ctrl->ctrl); 1698 return ret; 1699 } 1700 1701 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1702 { 1703 struct nvme_rdma_ctrl *ctrl = container_of(work, 1704 struct nvme_rdma_ctrl, delete_work); 1705 1706 __nvme_rdma_remove_ctrl(ctrl, false); 1707 } 1708 1709 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1710 { 1711 struct nvme_rdma_ctrl *ctrl = container_of(work, 1712 struct nvme_rdma_ctrl, reset_work); 1713 int ret; 1714 bool changed; 1715 1716 nvme_rdma_shutdown_ctrl(ctrl); 1717 1718 ret = nvme_rdma_configure_admin_queue(ctrl); 1719 if (ret) { 1720 /* ctrl is already shutdown, just remove the ctrl */ 1721 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1722 goto del_dead_ctrl; 1723 } 1724 1725 if (ctrl->queue_count > 1) { 1726 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1727 if (ret) 1728 goto del_dead_ctrl; 1729 1730 ret = nvme_rdma_init_io_queues(ctrl); 1731 if (ret) 1732 goto del_dead_ctrl; 1733 1734 ret = nvme_rdma_connect_io_queues(ctrl); 1735 if (ret) 1736 goto del_dead_ctrl; 1737 } 1738 1739 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1740 WARN_ON_ONCE(!changed); 1741 1742 if (ctrl->queue_count > 1) { 1743 nvme_start_queues(&ctrl->ctrl); 1744 nvme_queue_scan(&ctrl->ctrl); 1745 nvme_queue_async_events(&ctrl->ctrl); 1746 } 1747 1748 return; 1749 1750 del_dead_ctrl: 1751 /* Deleting this dead controller... */ 1752 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1753 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1754 } 1755 1756 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1757 { 1758 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1759 1760 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1761 return -EBUSY; 1762 1763 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1764 return -EBUSY; 1765 1766 flush_work(&ctrl->reset_work); 1767 1768 return 0; 1769 } 1770 1771 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1772 .name = "rdma", 1773 .module = THIS_MODULE, 1774 .is_fabrics = true, 1775 .reg_read32 = nvmf_reg_read32, 1776 .reg_read64 = nvmf_reg_read64, 1777 .reg_write32 = nvmf_reg_write32, 1778 .reset_ctrl = nvme_rdma_reset_ctrl, 1779 .free_ctrl = nvme_rdma_free_ctrl, 1780 .submit_async_event = nvme_rdma_submit_async_event, 1781 .delete_ctrl = nvme_rdma_del_ctrl, 1782 .get_subsysnqn = nvmf_get_subsysnqn, 1783 .get_address = nvmf_get_address, 1784 }; 1785 1786 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1787 { 1788 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1789 int ret; 1790 1791 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1792 if (ret) 1793 return ret; 1794 1795 ctrl->queue_count = opts->nr_io_queues + 1; 1796 if (ctrl->queue_count < 2) 1797 return 0; 1798 1799 dev_info(ctrl->ctrl.device, 1800 "creating %d I/O queues.\n", opts->nr_io_queues); 1801 1802 ret = nvme_rdma_init_io_queues(ctrl); 1803 if (ret) 1804 return ret; 1805 1806 /* 1807 * We need a reference on the device as long as the tag_set is alive, 1808 * as the MRs in the request structures need a valid ib_device. 1809 */ 1810 ret = -EINVAL; 1811 if (!nvme_rdma_dev_get(ctrl->device)) 1812 goto out_free_io_queues; 1813 1814 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1815 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1816 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1817 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1818 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1819 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1820 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1821 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1822 ctrl->tag_set.driver_data = ctrl; 1823 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1824 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1825 1826 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1827 if (ret) 1828 goto out_put_dev; 1829 ctrl->ctrl.tagset = &ctrl->tag_set; 1830 1831 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1832 if (IS_ERR(ctrl->ctrl.connect_q)) { 1833 ret = PTR_ERR(ctrl->ctrl.connect_q); 1834 goto out_free_tag_set; 1835 } 1836 1837 ret = nvme_rdma_connect_io_queues(ctrl); 1838 if (ret) 1839 goto out_cleanup_connect_q; 1840 1841 return 0; 1842 1843 out_cleanup_connect_q: 1844 blk_cleanup_queue(ctrl->ctrl.connect_q); 1845 out_free_tag_set: 1846 blk_mq_free_tag_set(&ctrl->tag_set); 1847 out_put_dev: 1848 nvme_rdma_dev_put(ctrl->device); 1849 out_free_io_queues: 1850 nvme_rdma_free_io_queues(ctrl); 1851 return ret; 1852 } 1853 1854 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1855 { 1856 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1857 size_t buflen = strlen(p); 1858 1859 /* XXX: handle IPv6 addresses */ 1860 1861 if (buflen > INET_ADDRSTRLEN) 1862 return -EINVAL; 1863 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1864 return -EINVAL; 1865 in_addr->sin_family = AF_INET; 1866 return 0; 1867 } 1868 1869 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1870 struct nvmf_ctrl_options *opts) 1871 { 1872 struct nvme_rdma_ctrl *ctrl; 1873 int ret; 1874 bool changed; 1875 1876 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1877 if (!ctrl) 1878 return ERR_PTR(-ENOMEM); 1879 ctrl->ctrl.opts = opts; 1880 INIT_LIST_HEAD(&ctrl->list); 1881 1882 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1883 if (ret) { 1884 pr_err("malformed IP address passed: %s\n", opts->traddr); 1885 goto out_free_ctrl; 1886 } 1887 1888 if (opts->mask & NVMF_OPT_TRSVCID) { 1889 u16 port; 1890 1891 ret = kstrtou16(opts->trsvcid, 0, &port); 1892 if (ret) 1893 goto out_free_ctrl; 1894 1895 ctrl->addr_in.sin_port = cpu_to_be16(port); 1896 } else { 1897 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1898 } 1899 1900 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1901 0 /* no quirks, we're perfect! */); 1902 if (ret) 1903 goto out_free_ctrl; 1904 1905 ctrl->reconnect_delay = opts->reconnect_delay; 1906 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1907 nvme_rdma_reconnect_ctrl_work); 1908 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1909 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1910 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1911 spin_lock_init(&ctrl->lock); 1912 1913 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1914 ctrl->ctrl.sqsize = opts->queue_size - 1; 1915 ctrl->ctrl.kato = opts->kato; 1916 1917 ret = -ENOMEM; 1918 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1919 GFP_KERNEL); 1920 if (!ctrl->queues) 1921 goto out_uninit_ctrl; 1922 1923 ret = nvme_rdma_configure_admin_queue(ctrl); 1924 if (ret) 1925 goto out_kfree_queues; 1926 1927 /* sanity check icdoff */ 1928 if (ctrl->ctrl.icdoff) { 1929 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1930 goto out_remove_admin_queue; 1931 } 1932 1933 /* sanity check keyed sgls */ 1934 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1935 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1936 goto out_remove_admin_queue; 1937 } 1938 1939 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1940 /* warn if maxcmd is lower than queue_size */ 1941 dev_warn(ctrl->ctrl.device, 1942 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1943 opts->queue_size, ctrl->ctrl.maxcmd); 1944 opts->queue_size = ctrl->ctrl.maxcmd; 1945 } 1946 1947 if (opts->nr_io_queues) { 1948 ret = nvme_rdma_create_io_queues(ctrl); 1949 if (ret) 1950 goto out_remove_admin_queue; 1951 } 1952 1953 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1954 WARN_ON_ONCE(!changed); 1955 1956 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1957 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1958 1959 kref_get(&ctrl->ctrl.kref); 1960 1961 mutex_lock(&nvme_rdma_ctrl_mutex); 1962 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1963 mutex_unlock(&nvme_rdma_ctrl_mutex); 1964 1965 if (opts->nr_io_queues) { 1966 nvme_queue_scan(&ctrl->ctrl); 1967 nvme_queue_async_events(&ctrl->ctrl); 1968 } 1969 1970 return &ctrl->ctrl; 1971 1972 out_remove_admin_queue: 1973 nvme_stop_keep_alive(&ctrl->ctrl); 1974 nvme_rdma_destroy_admin_queue(ctrl); 1975 out_kfree_queues: 1976 kfree(ctrl->queues); 1977 out_uninit_ctrl: 1978 nvme_uninit_ctrl(&ctrl->ctrl); 1979 nvme_put_ctrl(&ctrl->ctrl); 1980 if (ret > 0) 1981 ret = -EIO; 1982 return ERR_PTR(ret); 1983 out_free_ctrl: 1984 kfree(ctrl); 1985 return ERR_PTR(ret); 1986 } 1987 1988 static struct nvmf_transport_ops nvme_rdma_transport = { 1989 .name = "rdma", 1990 .required_opts = NVMF_OPT_TRADDR, 1991 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 1992 .create_ctrl = nvme_rdma_create_ctrl, 1993 }; 1994 1995 static void nvme_rdma_add_one(struct ib_device *ib_device) 1996 { 1997 } 1998 1999 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2000 { 2001 struct nvme_rdma_ctrl *ctrl; 2002 2003 /* Delete all controllers using this device */ 2004 mutex_lock(&nvme_rdma_ctrl_mutex); 2005 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2006 if (ctrl->device->dev != ib_device) 2007 continue; 2008 dev_info(ctrl->ctrl.device, 2009 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2010 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2011 __nvme_rdma_del_ctrl(ctrl); 2012 } 2013 mutex_unlock(&nvme_rdma_ctrl_mutex); 2014 2015 flush_workqueue(nvme_rdma_wq); 2016 } 2017 2018 static struct ib_client nvme_rdma_ib_client = { 2019 .name = "nvme_rdma", 2020 .add = nvme_rdma_add_one, 2021 .remove = nvme_rdma_remove_one 2022 }; 2023 2024 static int __init nvme_rdma_init_module(void) 2025 { 2026 int ret; 2027 2028 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2029 if (!nvme_rdma_wq) 2030 return -ENOMEM; 2031 2032 ret = ib_register_client(&nvme_rdma_ib_client); 2033 if (ret) { 2034 destroy_workqueue(nvme_rdma_wq); 2035 return ret; 2036 } 2037 2038 nvmf_register_transport(&nvme_rdma_transport); 2039 return 0; 2040 } 2041 2042 static void __exit nvme_rdma_cleanup_module(void) 2043 { 2044 nvmf_unregister_transport(&nvme_rdma_transport); 2045 ib_unregister_client(&nvme_rdma_ib_client); 2046 destroy_workqueue(nvme_rdma_wq); 2047 } 2048 2049 module_init(nvme_rdma_init_module); 2050 module_exit(nvme_rdma_cleanup_module); 2051 2052 MODULE_LICENSE("GPL v2"); 2053