xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 	nvme_req(rq)->cmd = req->sqe.data;
318 
319 	return 0;
320 }
321 
322 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 		unsigned int hctx_idx)
324 {
325 	struct nvme_rdma_ctrl *ctrl = data;
326 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
327 
328 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
329 
330 	hctx->driver_data = queue;
331 	return 0;
332 }
333 
334 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
335 		unsigned int hctx_idx)
336 {
337 	struct nvme_rdma_ctrl *ctrl = data;
338 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
339 
340 	BUG_ON(hctx_idx != 0);
341 
342 	hctx->driver_data = queue;
343 	return 0;
344 }
345 
346 static void nvme_rdma_free_dev(struct kref *ref)
347 {
348 	struct nvme_rdma_device *ndev =
349 		container_of(ref, struct nvme_rdma_device, ref);
350 
351 	mutex_lock(&device_list_mutex);
352 	list_del(&ndev->entry);
353 	mutex_unlock(&device_list_mutex);
354 
355 	ib_dealloc_pd(ndev->pd);
356 	kfree(ndev);
357 }
358 
359 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
360 {
361 	kref_put(&dev->ref, nvme_rdma_free_dev);
362 }
363 
364 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
365 {
366 	return kref_get_unless_zero(&dev->ref);
367 }
368 
369 static struct nvme_rdma_device *
370 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
371 {
372 	struct nvme_rdma_device *ndev;
373 
374 	mutex_lock(&device_list_mutex);
375 	list_for_each_entry(ndev, &device_list, entry) {
376 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
377 		    nvme_rdma_dev_get(ndev))
378 			goto out_unlock;
379 	}
380 
381 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
382 	if (!ndev)
383 		goto out_err;
384 
385 	ndev->dev = cm_id->device;
386 	kref_init(&ndev->ref);
387 
388 	ndev->pd = ib_alloc_pd(ndev->dev,
389 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
390 	if (IS_ERR(ndev->pd))
391 		goto out_free_dev;
392 
393 	if (!(ndev->dev->attrs.device_cap_flags &
394 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
395 		dev_err(&ndev->dev->dev,
396 			"Memory registrations not supported.\n");
397 		goto out_free_pd;
398 	}
399 
400 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
401 					ndev->dev->attrs.max_send_sge - 1);
402 	list_add(&ndev->entry, &device_list);
403 out_unlock:
404 	mutex_unlock(&device_list_mutex);
405 	return ndev;
406 
407 out_free_pd:
408 	ib_dealloc_pd(ndev->pd);
409 out_free_dev:
410 	kfree(ndev);
411 out_err:
412 	mutex_unlock(&device_list_mutex);
413 	return NULL;
414 }
415 
416 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
417 {
418 	if (nvme_rdma_poll_queue(queue))
419 		ib_free_cq(queue->ib_cq);
420 	else
421 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
422 }
423 
424 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 	struct nvme_rdma_device *dev;
427 	struct ib_device *ibdev;
428 
429 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
430 		return;
431 
432 	dev = queue->device;
433 	ibdev = dev->dev;
434 
435 	if (queue->pi_support)
436 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
437 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
438 
439 	/*
440 	 * The cm_id object might have been destroyed during RDMA connection
441 	 * establishment error flow to avoid getting other cma events, thus
442 	 * the destruction of the QP shouldn't use rdma_cm API.
443 	 */
444 	ib_destroy_qp(queue->qp);
445 	nvme_rdma_free_cq(queue);
446 
447 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449 
450 	nvme_rdma_dev_put(dev);
451 }
452 
453 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
454 {
455 	u32 max_page_list_len;
456 
457 	if (pi_support)
458 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
459 	else
460 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
461 
462 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
463 }
464 
465 static int nvme_rdma_create_cq(struct ib_device *ibdev,
466 		struct nvme_rdma_queue *queue)
467 {
468 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
469 	enum ib_poll_context poll_ctx;
470 
471 	/*
472 	 * Spread I/O queues completion vectors according their queue index.
473 	 * Admin queues can always go on completion vector 0.
474 	 */
475 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
476 
477 	/* Polling queues need direct cq polling context */
478 	if (nvme_rdma_poll_queue(queue)) {
479 		poll_ctx = IB_POLL_DIRECT;
480 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
481 					   comp_vector, poll_ctx);
482 	} else {
483 		poll_ctx = IB_POLL_SOFTIRQ;
484 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
485 					      comp_vector, poll_ctx);
486 	}
487 
488 	if (IS_ERR(queue->ib_cq)) {
489 		ret = PTR_ERR(queue->ib_cq);
490 		return ret;
491 	}
492 
493 	return 0;
494 }
495 
496 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
497 {
498 	struct ib_device *ibdev;
499 	const int send_wr_factor = 3;			/* MR, SEND, INV */
500 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
501 	int ret, pages_per_mr;
502 
503 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
504 	if (!queue->device) {
505 		dev_err(queue->cm_id->device->dev.parent,
506 			"no client data found!\n");
507 		return -ECONNREFUSED;
508 	}
509 	ibdev = queue->device->dev;
510 
511 	/* +1 for ib_stop_cq */
512 	queue->cq_size = cq_factor * queue->queue_size + 1;
513 
514 	ret = nvme_rdma_create_cq(ibdev, queue);
515 	if (ret)
516 		goto out_put_dev;
517 
518 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
519 	if (ret)
520 		goto out_destroy_ib_cq;
521 
522 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
523 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
524 	if (!queue->rsp_ring) {
525 		ret = -ENOMEM;
526 		goto out_destroy_qp;
527 	}
528 
529 	/*
530 	 * Currently we don't use SG_GAPS MR's so if the first entry is
531 	 * misaligned we'll end up using two entries for a single data page,
532 	 * so one additional entry is required.
533 	 */
534 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
535 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
536 			      queue->queue_size,
537 			      IB_MR_TYPE_MEM_REG,
538 			      pages_per_mr, 0);
539 	if (ret) {
540 		dev_err(queue->ctrl->ctrl.device,
541 			"failed to initialize MR pool sized %d for QID %d\n",
542 			queue->queue_size, nvme_rdma_queue_idx(queue));
543 		goto out_destroy_ring;
544 	}
545 
546 	if (queue->pi_support) {
547 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
548 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
549 				      pages_per_mr, pages_per_mr);
550 		if (ret) {
551 			dev_err(queue->ctrl->ctrl.device,
552 				"failed to initialize PI MR pool sized %d for QID %d\n",
553 				queue->queue_size, nvme_rdma_queue_idx(queue));
554 			goto out_destroy_mr_pool;
555 		}
556 	}
557 
558 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
559 
560 	return 0;
561 
562 out_destroy_mr_pool:
563 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
564 out_destroy_ring:
565 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
566 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
567 out_destroy_qp:
568 	rdma_destroy_qp(queue->cm_id);
569 out_destroy_ib_cq:
570 	nvme_rdma_free_cq(queue);
571 out_put_dev:
572 	nvme_rdma_dev_put(queue->device);
573 	return ret;
574 }
575 
576 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
577 		int idx, size_t queue_size)
578 {
579 	struct nvme_rdma_queue *queue;
580 	struct sockaddr *src_addr = NULL;
581 	int ret;
582 
583 	queue = &ctrl->queues[idx];
584 	mutex_init(&queue->queue_lock);
585 	queue->ctrl = ctrl;
586 	if (idx && ctrl->ctrl.max_integrity_segments)
587 		queue->pi_support = true;
588 	else
589 		queue->pi_support = false;
590 	init_completion(&queue->cm_done);
591 
592 	if (idx > 0)
593 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
594 	else
595 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
596 
597 	queue->queue_size = queue_size;
598 
599 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
600 			RDMA_PS_TCP, IB_QPT_RC);
601 	if (IS_ERR(queue->cm_id)) {
602 		dev_info(ctrl->ctrl.device,
603 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
604 		ret = PTR_ERR(queue->cm_id);
605 		goto out_destroy_mutex;
606 	}
607 
608 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
609 		src_addr = (struct sockaddr *)&ctrl->src_addr;
610 
611 	queue->cm_error = -ETIMEDOUT;
612 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
613 			(struct sockaddr *)&ctrl->addr,
614 			NVME_RDMA_CONNECT_TIMEOUT_MS);
615 	if (ret) {
616 		dev_info(ctrl->ctrl.device,
617 			"rdma_resolve_addr failed (%d).\n", ret);
618 		goto out_destroy_cm_id;
619 	}
620 
621 	ret = nvme_rdma_wait_for_cm(queue);
622 	if (ret) {
623 		dev_info(ctrl->ctrl.device,
624 			"rdma connection establishment failed (%d)\n", ret);
625 		goto out_destroy_cm_id;
626 	}
627 
628 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
629 
630 	return 0;
631 
632 out_destroy_cm_id:
633 	rdma_destroy_id(queue->cm_id);
634 	nvme_rdma_destroy_queue_ib(queue);
635 out_destroy_mutex:
636 	mutex_destroy(&queue->queue_lock);
637 	return ret;
638 }
639 
640 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 {
642 	rdma_disconnect(queue->cm_id);
643 	ib_drain_qp(queue->qp);
644 }
645 
646 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
647 {
648 	mutex_lock(&queue->queue_lock);
649 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
650 		__nvme_rdma_stop_queue(queue);
651 	mutex_unlock(&queue->queue_lock);
652 }
653 
654 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
655 {
656 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
657 		return;
658 
659 	nvme_rdma_destroy_queue_ib(queue);
660 	rdma_destroy_id(queue->cm_id);
661 	mutex_destroy(&queue->queue_lock);
662 }
663 
664 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
665 {
666 	int i;
667 
668 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
669 		nvme_rdma_free_queue(&ctrl->queues[i]);
670 }
671 
672 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
673 {
674 	int i;
675 
676 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
677 		nvme_rdma_stop_queue(&ctrl->queues[i]);
678 }
679 
680 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
681 {
682 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
683 	bool poll = nvme_rdma_poll_queue(queue);
684 	int ret;
685 
686 	if (idx)
687 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
688 	else
689 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
690 
691 	if (!ret) {
692 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
693 	} else {
694 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
695 			__nvme_rdma_stop_queue(queue);
696 		dev_info(ctrl->ctrl.device,
697 			"failed to connect queue: %d ret=%d\n", idx, ret);
698 	}
699 	return ret;
700 }
701 
702 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
703 {
704 	int i, ret = 0;
705 
706 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
707 		ret = nvme_rdma_start_queue(ctrl, i);
708 		if (ret)
709 			goto out_stop_queues;
710 	}
711 
712 	return 0;
713 
714 out_stop_queues:
715 	for (i--; i >= 1; i--)
716 		nvme_rdma_stop_queue(&ctrl->queues[i]);
717 	return ret;
718 }
719 
720 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
721 {
722 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
723 	struct ib_device *ibdev = ctrl->device->dev;
724 	unsigned int nr_io_queues, nr_default_queues;
725 	unsigned int nr_read_queues, nr_poll_queues;
726 	int i, ret;
727 
728 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
729 				min(opts->nr_io_queues, num_online_cpus()));
730 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
731 				min(opts->nr_write_queues, num_online_cpus()));
732 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
733 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
734 
735 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
736 	if (ret)
737 		return ret;
738 
739 	ctrl->ctrl.queue_count = nr_io_queues + 1;
740 	if (ctrl->ctrl.queue_count < 2) {
741 		dev_err(ctrl->ctrl.device,
742 			"unable to set any I/O queues\n");
743 		return -ENOMEM;
744 	}
745 
746 	dev_info(ctrl->ctrl.device,
747 		"creating %d I/O queues.\n", nr_io_queues);
748 
749 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
750 		/*
751 		 * separate read/write queues
752 		 * hand out dedicated default queues only after we have
753 		 * sufficient read queues.
754 		 */
755 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
756 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
757 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
758 			min(nr_default_queues, nr_io_queues);
759 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
760 	} else {
761 		/*
762 		 * shared read/write queues
763 		 * either no write queues were requested, or we don't have
764 		 * sufficient queue count to have dedicated default queues.
765 		 */
766 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
767 			min(nr_read_queues, nr_io_queues);
768 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
769 	}
770 
771 	if (opts->nr_poll_queues && nr_io_queues) {
772 		/* map dedicated poll queues only if we have queues left */
773 		ctrl->io_queues[HCTX_TYPE_POLL] =
774 			min(nr_poll_queues, nr_io_queues);
775 	}
776 
777 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
778 		ret = nvme_rdma_alloc_queue(ctrl, i,
779 				ctrl->ctrl.sqsize + 1);
780 		if (ret)
781 			goto out_free_queues;
782 	}
783 
784 	return 0;
785 
786 out_free_queues:
787 	for (i--; i >= 1; i--)
788 		nvme_rdma_free_queue(&ctrl->queues[i]);
789 
790 	return ret;
791 }
792 
793 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
794 		bool admin)
795 {
796 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
797 	struct blk_mq_tag_set *set;
798 	int ret;
799 
800 	if (admin) {
801 		set = &ctrl->admin_tag_set;
802 		memset(set, 0, sizeof(*set));
803 		set->ops = &nvme_rdma_admin_mq_ops;
804 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
805 		set->reserved_tags = NVMF_RESERVED_TAGS;
806 		set->numa_node = nctrl->numa_node;
807 		set->cmd_size = sizeof(struct nvme_rdma_request) +
808 				NVME_RDMA_DATA_SGL_SIZE;
809 		set->driver_data = ctrl;
810 		set->nr_hw_queues = 1;
811 		set->timeout = NVME_ADMIN_TIMEOUT;
812 		set->flags = BLK_MQ_F_NO_SCHED;
813 	} else {
814 		set = &ctrl->tag_set;
815 		memset(set, 0, sizeof(*set));
816 		set->ops = &nvme_rdma_mq_ops;
817 		set->queue_depth = nctrl->sqsize + 1;
818 		set->reserved_tags = NVMF_RESERVED_TAGS;
819 		set->numa_node = nctrl->numa_node;
820 		set->flags = BLK_MQ_F_SHOULD_MERGE;
821 		set->cmd_size = sizeof(struct nvme_rdma_request) +
822 				NVME_RDMA_DATA_SGL_SIZE;
823 		if (nctrl->max_integrity_segments)
824 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
825 					 NVME_RDMA_METADATA_SGL_SIZE;
826 		set->driver_data = ctrl;
827 		set->nr_hw_queues = nctrl->queue_count - 1;
828 		set->timeout = NVME_IO_TIMEOUT;
829 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
830 	}
831 
832 	ret = blk_mq_alloc_tag_set(set);
833 	if (ret)
834 		return ERR_PTR(ret);
835 
836 	return set;
837 }
838 
839 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
840 		bool remove)
841 {
842 	if (remove) {
843 		blk_cleanup_queue(ctrl->ctrl.admin_q);
844 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
845 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
846 	}
847 	if (ctrl->async_event_sqe.data) {
848 		cancel_work_sync(&ctrl->ctrl.async_event_work);
849 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
850 				sizeof(struct nvme_command), DMA_TO_DEVICE);
851 		ctrl->async_event_sqe.data = NULL;
852 	}
853 	nvme_rdma_free_queue(&ctrl->queues[0]);
854 }
855 
856 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
857 		bool new)
858 {
859 	bool pi_capable = false;
860 	int error;
861 
862 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
863 	if (error)
864 		return error;
865 
866 	ctrl->device = ctrl->queues[0].device;
867 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
868 
869 	/* T10-PI support */
870 	if (ctrl->device->dev->attrs.device_cap_flags &
871 	    IB_DEVICE_INTEGRITY_HANDOVER)
872 		pi_capable = true;
873 
874 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
875 							pi_capable);
876 
877 	/*
878 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
879 	 * It's safe, since any chage in the underlying RDMA device will issue
880 	 * error recovery and queue re-creation.
881 	 */
882 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
883 			sizeof(struct nvme_command), DMA_TO_DEVICE);
884 	if (error)
885 		goto out_free_queue;
886 
887 	if (new) {
888 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
889 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
890 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
891 			goto out_free_async_qe;
892 		}
893 
894 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
895 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
896 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
897 			goto out_free_tagset;
898 		}
899 
900 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
901 		if (IS_ERR(ctrl->ctrl.admin_q)) {
902 			error = PTR_ERR(ctrl->ctrl.admin_q);
903 			goto out_cleanup_fabrics_q;
904 		}
905 	}
906 
907 	error = nvme_rdma_start_queue(ctrl, 0);
908 	if (error)
909 		goto out_cleanup_queue;
910 
911 	error = nvme_enable_ctrl(&ctrl->ctrl);
912 	if (error)
913 		goto out_stop_queue;
914 
915 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
916 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
917 	if (pi_capable)
918 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
919 	else
920 		ctrl->ctrl.max_integrity_segments = 0;
921 
922 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
923 
924 	error = nvme_init_ctrl_finish(&ctrl->ctrl);
925 	if (error)
926 		goto out_quiesce_queue;
927 
928 	return 0;
929 
930 out_quiesce_queue:
931 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
932 	blk_sync_queue(ctrl->ctrl.admin_q);
933 out_stop_queue:
934 	nvme_rdma_stop_queue(&ctrl->queues[0]);
935 	nvme_cancel_admin_tagset(&ctrl->ctrl);
936 out_cleanup_queue:
937 	if (new)
938 		blk_cleanup_queue(ctrl->ctrl.admin_q);
939 out_cleanup_fabrics_q:
940 	if (new)
941 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
942 out_free_tagset:
943 	if (new)
944 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
945 out_free_async_qe:
946 	if (ctrl->async_event_sqe.data) {
947 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
948 			sizeof(struct nvme_command), DMA_TO_DEVICE);
949 		ctrl->async_event_sqe.data = NULL;
950 	}
951 out_free_queue:
952 	nvme_rdma_free_queue(&ctrl->queues[0]);
953 	return error;
954 }
955 
956 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
957 		bool remove)
958 {
959 	if (remove) {
960 		blk_cleanup_queue(ctrl->ctrl.connect_q);
961 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
962 	}
963 	nvme_rdma_free_io_queues(ctrl);
964 }
965 
966 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
967 {
968 	int ret;
969 
970 	ret = nvme_rdma_alloc_io_queues(ctrl);
971 	if (ret)
972 		return ret;
973 
974 	if (new) {
975 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
976 		if (IS_ERR(ctrl->ctrl.tagset)) {
977 			ret = PTR_ERR(ctrl->ctrl.tagset);
978 			goto out_free_io_queues;
979 		}
980 
981 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
982 		if (IS_ERR(ctrl->ctrl.connect_q)) {
983 			ret = PTR_ERR(ctrl->ctrl.connect_q);
984 			goto out_free_tag_set;
985 		}
986 	}
987 
988 	ret = nvme_rdma_start_io_queues(ctrl);
989 	if (ret)
990 		goto out_cleanup_connect_q;
991 
992 	if (!new) {
993 		nvme_start_queues(&ctrl->ctrl);
994 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
995 			/*
996 			 * If we timed out waiting for freeze we are likely to
997 			 * be stuck.  Fail the controller initialization just
998 			 * to be safe.
999 			 */
1000 			ret = -ENODEV;
1001 			goto out_wait_freeze_timed_out;
1002 		}
1003 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1004 			ctrl->ctrl.queue_count - 1);
1005 		nvme_unfreeze(&ctrl->ctrl);
1006 	}
1007 
1008 	return 0;
1009 
1010 out_wait_freeze_timed_out:
1011 	nvme_stop_queues(&ctrl->ctrl);
1012 	nvme_sync_io_queues(&ctrl->ctrl);
1013 	nvme_rdma_stop_io_queues(ctrl);
1014 out_cleanup_connect_q:
1015 	nvme_cancel_tagset(&ctrl->ctrl);
1016 	if (new)
1017 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1018 out_free_tag_set:
1019 	if (new)
1020 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1021 out_free_io_queues:
1022 	nvme_rdma_free_io_queues(ctrl);
1023 	return ret;
1024 }
1025 
1026 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1027 		bool remove)
1028 {
1029 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1030 	blk_sync_queue(ctrl->ctrl.admin_q);
1031 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1032 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1033 	if (remove)
1034 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1035 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1036 }
1037 
1038 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1039 		bool remove)
1040 {
1041 	if (ctrl->ctrl.queue_count > 1) {
1042 		nvme_start_freeze(&ctrl->ctrl);
1043 		nvme_stop_queues(&ctrl->ctrl);
1044 		nvme_sync_io_queues(&ctrl->ctrl);
1045 		nvme_rdma_stop_io_queues(ctrl);
1046 		nvme_cancel_tagset(&ctrl->ctrl);
1047 		if (remove)
1048 			nvme_start_queues(&ctrl->ctrl);
1049 		nvme_rdma_destroy_io_queues(ctrl, remove);
1050 	}
1051 }
1052 
1053 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1054 {
1055 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1056 
1057 	if (list_empty(&ctrl->list))
1058 		goto free_ctrl;
1059 
1060 	mutex_lock(&nvme_rdma_ctrl_mutex);
1061 	list_del(&ctrl->list);
1062 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1063 
1064 	nvmf_free_options(nctrl->opts);
1065 free_ctrl:
1066 	kfree(ctrl->queues);
1067 	kfree(ctrl);
1068 }
1069 
1070 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1071 {
1072 	/* If we are resetting/deleting then do nothing */
1073 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1074 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1075 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1076 		return;
1077 	}
1078 
1079 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1080 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1081 			ctrl->ctrl.opts->reconnect_delay);
1082 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1083 				ctrl->ctrl.opts->reconnect_delay * HZ);
1084 	} else {
1085 		nvme_delete_ctrl(&ctrl->ctrl);
1086 	}
1087 }
1088 
1089 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1090 {
1091 	int ret = -EINVAL;
1092 	bool changed;
1093 
1094 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1095 	if (ret)
1096 		return ret;
1097 
1098 	if (ctrl->ctrl.icdoff) {
1099 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1100 		goto destroy_admin;
1101 	}
1102 
1103 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1104 		dev_err(ctrl->ctrl.device,
1105 			"Mandatory keyed sgls are not supported!\n");
1106 		goto destroy_admin;
1107 	}
1108 
1109 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1110 		dev_warn(ctrl->ctrl.device,
1111 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1112 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1113 	}
1114 
1115 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1116 		dev_warn(ctrl->ctrl.device,
1117 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1118 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1119 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1120 	}
1121 
1122 	if (ctrl->ctrl.sgls & (1 << 20))
1123 		ctrl->use_inline_data = true;
1124 
1125 	if (ctrl->ctrl.queue_count > 1) {
1126 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1127 		if (ret)
1128 			goto destroy_admin;
1129 	}
1130 
1131 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1132 	if (!changed) {
1133 		/*
1134 		 * state change failure is ok if we started ctrl delete,
1135 		 * unless we're during creation of a new controller to
1136 		 * avoid races with teardown flow.
1137 		 */
1138 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1139 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1140 		WARN_ON_ONCE(new);
1141 		ret = -EINVAL;
1142 		goto destroy_io;
1143 	}
1144 
1145 	nvme_start_ctrl(&ctrl->ctrl);
1146 	return 0;
1147 
1148 destroy_io:
1149 	if (ctrl->ctrl.queue_count > 1) {
1150 		nvme_stop_queues(&ctrl->ctrl);
1151 		nvme_sync_io_queues(&ctrl->ctrl);
1152 		nvme_rdma_stop_io_queues(ctrl);
1153 		nvme_cancel_tagset(&ctrl->ctrl);
1154 		nvme_rdma_destroy_io_queues(ctrl, new);
1155 	}
1156 destroy_admin:
1157 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1158 	blk_sync_queue(ctrl->ctrl.admin_q);
1159 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1160 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1161 	nvme_rdma_destroy_admin_queue(ctrl, new);
1162 	return ret;
1163 }
1164 
1165 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1166 {
1167 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1168 			struct nvme_rdma_ctrl, reconnect_work);
1169 
1170 	++ctrl->ctrl.nr_reconnects;
1171 
1172 	if (nvme_rdma_setup_ctrl(ctrl, false))
1173 		goto requeue;
1174 
1175 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1176 			ctrl->ctrl.nr_reconnects);
1177 
1178 	ctrl->ctrl.nr_reconnects = 0;
1179 
1180 	return;
1181 
1182 requeue:
1183 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1184 			ctrl->ctrl.nr_reconnects);
1185 	nvme_rdma_reconnect_or_remove(ctrl);
1186 }
1187 
1188 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1189 {
1190 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1191 			struct nvme_rdma_ctrl, err_work);
1192 
1193 	nvme_stop_keep_alive(&ctrl->ctrl);
1194 	nvme_rdma_teardown_io_queues(ctrl, false);
1195 	nvme_start_queues(&ctrl->ctrl);
1196 	nvme_rdma_teardown_admin_queue(ctrl, false);
1197 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1198 
1199 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1200 		/* state change failure is ok if we started ctrl delete */
1201 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1202 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1203 		return;
1204 	}
1205 
1206 	nvme_rdma_reconnect_or_remove(ctrl);
1207 }
1208 
1209 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1210 {
1211 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1212 		return;
1213 
1214 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1215 	queue_work(nvme_reset_wq, &ctrl->err_work);
1216 }
1217 
1218 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1219 {
1220 	struct request *rq = blk_mq_rq_from_pdu(req);
1221 
1222 	if (!refcount_dec_and_test(&req->ref))
1223 		return;
1224 	if (!nvme_try_complete_req(rq, req->status, req->result))
1225 		nvme_rdma_complete_rq(rq);
1226 }
1227 
1228 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1229 		const char *op)
1230 {
1231 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1232 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1233 
1234 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1235 		dev_info(ctrl->ctrl.device,
1236 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1237 			     op, wc->wr_cqe,
1238 			     ib_wc_status_msg(wc->status), wc->status);
1239 	nvme_rdma_error_recovery(ctrl);
1240 }
1241 
1242 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1243 {
1244 	if (unlikely(wc->status != IB_WC_SUCCESS))
1245 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1246 }
1247 
1248 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1249 {
1250 	struct nvme_rdma_request *req =
1251 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1252 
1253 	if (unlikely(wc->status != IB_WC_SUCCESS))
1254 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1255 	else
1256 		nvme_rdma_end_request(req);
1257 }
1258 
1259 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1260 		struct nvme_rdma_request *req)
1261 {
1262 	struct ib_send_wr wr = {
1263 		.opcode		    = IB_WR_LOCAL_INV,
1264 		.next		    = NULL,
1265 		.num_sge	    = 0,
1266 		.send_flags	    = IB_SEND_SIGNALED,
1267 		.ex.invalidate_rkey = req->mr->rkey,
1268 	};
1269 
1270 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1271 	wr.wr_cqe = &req->reg_cqe;
1272 
1273 	return ib_post_send(queue->qp, &wr, NULL);
1274 }
1275 
1276 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1277 		struct request *rq)
1278 {
1279 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1280 	struct nvme_rdma_device *dev = queue->device;
1281 	struct ib_device *ibdev = dev->dev;
1282 	struct list_head *pool = &queue->qp->rdma_mrs;
1283 
1284 	if (!blk_rq_nr_phys_segments(rq))
1285 		return;
1286 
1287 	if (blk_integrity_rq(rq)) {
1288 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1289 				req->metadata_sgl->nents, rq_dma_dir(rq));
1290 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1291 				      NVME_INLINE_METADATA_SG_CNT);
1292 	}
1293 
1294 	if (req->use_sig_mr)
1295 		pool = &queue->qp->sig_mrs;
1296 
1297 	if (req->mr) {
1298 		ib_mr_pool_put(queue->qp, pool, req->mr);
1299 		req->mr = NULL;
1300 	}
1301 
1302 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1303 			rq_dma_dir(rq));
1304 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1305 }
1306 
1307 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1308 {
1309 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1310 
1311 	sg->addr = 0;
1312 	put_unaligned_le24(0, sg->length);
1313 	put_unaligned_le32(0, sg->key);
1314 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1315 	return 0;
1316 }
1317 
1318 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1319 		struct nvme_rdma_request *req, struct nvme_command *c,
1320 		int count)
1321 {
1322 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1323 	struct ib_sge *sge = &req->sge[1];
1324 	struct scatterlist *sgl;
1325 	u32 len = 0;
1326 	int i;
1327 
1328 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1329 		sge->addr = sg_dma_address(sgl);
1330 		sge->length = sg_dma_len(sgl);
1331 		sge->lkey = queue->device->pd->local_dma_lkey;
1332 		len += sge->length;
1333 		sge++;
1334 	}
1335 
1336 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1337 	sg->length = cpu_to_le32(len);
1338 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1339 
1340 	req->num_sge += count;
1341 	return 0;
1342 }
1343 
1344 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1345 		struct nvme_rdma_request *req, struct nvme_command *c)
1346 {
1347 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1348 
1349 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1350 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1351 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1352 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1353 	return 0;
1354 }
1355 
1356 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1357 		struct nvme_rdma_request *req, struct nvme_command *c,
1358 		int count)
1359 {
1360 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1361 	int nr;
1362 
1363 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1364 	if (WARN_ON_ONCE(!req->mr))
1365 		return -EAGAIN;
1366 
1367 	/*
1368 	 * Align the MR to a 4K page size to match the ctrl page size and
1369 	 * the block virtual boundary.
1370 	 */
1371 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1372 			  SZ_4K);
1373 	if (unlikely(nr < count)) {
1374 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1375 		req->mr = NULL;
1376 		if (nr < 0)
1377 			return nr;
1378 		return -EINVAL;
1379 	}
1380 
1381 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1382 
1383 	req->reg_cqe.done = nvme_rdma_memreg_done;
1384 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1385 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1386 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1387 	req->reg_wr.wr.num_sge = 0;
1388 	req->reg_wr.mr = req->mr;
1389 	req->reg_wr.key = req->mr->rkey;
1390 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1391 			     IB_ACCESS_REMOTE_READ |
1392 			     IB_ACCESS_REMOTE_WRITE;
1393 
1394 	sg->addr = cpu_to_le64(req->mr->iova);
1395 	put_unaligned_le24(req->mr->length, sg->length);
1396 	put_unaligned_le32(req->mr->rkey, sg->key);
1397 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1398 			NVME_SGL_FMT_INVALIDATE;
1399 
1400 	return 0;
1401 }
1402 
1403 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1404 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1405 		u16 control, u8 pi_type)
1406 {
1407 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1408 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1409 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1410 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1411 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1412 		domain->sig.dif.ref_remap = true;
1413 
1414 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1415 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1416 	domain->sig.dif.app_escape = true;
1417 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1418 		domain->sig.dif.ref_escape = true;
1419 }
1420 
1421 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1422 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1423 		u8 pi_type)
1424 {
1425 	u16 control = le16_to_cpu(cmd->rw.control);
1426 
1427 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1428 	if (control & NVME_RW_PRINFO_PRACT) {
1429 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1430 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1431 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1432 					 pi_type);
1433 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1434 		control &= ~NVME_RW_PRINFO_PRACT;
1435 		cmd->rw.control = cpu_to_le16(control);
1436 	} else {
1437 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1438 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1439 					 pi_type);
1440 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1441 					 pi_type);
1442 	}
1443 }
1444 
1445 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1446 {
1447 	*mask = 0;
1448 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1449 		*mask |= IB_SIG_CHECK_REFTAG;
1450 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1451 		*mask |= IB_SIG_CHECK_GUARD;
1452 }
1453 
1454 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1455 {
1456 	if (unlikely(wc->status != IB_WC_SUCCESS))
1457 		nvme_rdma_wr_error(cq, wc, "SIG");
1458 }
1459 
1460 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1461 		struct nvme_rdma_request *req, struct nvme_command *c,
1462 		int count, int pi_count)
1463 {
1464 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1465 	struct ib_reg_wr *wr = &req->reg_wr;
1466 	struct request *rq = blk_mq_rq_from_pdu(req);
1467 	struct nvme_ns *ns = rq->q->queuedata;
1468 	struct bio *bio = rq->bio;
1469 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1470 	int nr;
1471 
1472 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1473 	if (WARN_ON_ONCE(!req->mr))
1474 		return -EAGAIN;
1475 
1476 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1477 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1478 			     SZ_4K);
1479 	if (unlikely(nr))
1480 		goto mr_put;
1481 
1482 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1483 				req->mr->sig_attrs, ns->pi_type);
1484 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1485 
1486 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1487 
1488 	req->reg_cqe.done = nvme_rdma_sig_done;
1489 	memset(wr, 0, sizeof(*wr));
1490 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1491 	wr->wr.wr_cqe = &req->reg_cqe;
1492 	wr->wr.num_sge = 0;
1493 	wr->wr.send_flags = 0;
1494 	wr->mr = req->mr;
1495 	wr->key = req->mr->rkey;
1496 	wr->access = IB_ACCESS_LOCAL_WRITE |
1497 		     IB_ACCESS_REMOTE_READ |
1498 		     IB_ACCESS_REMOTE_WRITE;
1499 
1500 	sg->addr = cpu_to_le64(req->mr->iova);
1501 	put_unaligned_le24(req->mr->length, sg->length);
1502 	put_unaligned_le32(req->mr->rkey, sg->key);
1503 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1504 
1505 	return 0;
1506 
1507 mr_put:
1508 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1509 	req->mr = NULL;
1510 	if (nr < 0)
1511 		return nr;
1512 	return -EINVAL;
1513 }
1514 
1515 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1516 		struct request *rq, struct nvme_command *c)
1517 {
1518 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1519 	struct nvme_rdma_device *dev = queue->device;
1520 	struct ib_device *ibdev = dev->dev;
1521 	int pi_count = 0;
1522 	int count, ret;
1523 
1524 	req->num_sge = 1;
1525 	refcount_set(&req->ref, 2); /* send and recv completions */
1526 
1527 	c->common.flags |= NVME_CMD_SGL_METABUF;
1528 
1529 	if (!blk_rq_nr_phys_segments(rq))
1530 		return nvme_rdma_set_sg_null(c);
1531 
1532 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1533 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1534 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1535 			NVME_INLINE_SG_CNT);
1536 	if (ret)
1537 		return -ENOMEM;
1538 
1539 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1540 					    req->data_sgl.sg_table.sgl);
1541 
1542 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1543 			      req->data_sgl.nents, rq_dma_dir(rq));
1544 	if (unlikely(count <= 0)) {
1545 		ret = -EIO;
1546 		goto out_free_table;
1547 	}
1548 
1549 	if (blk_integrity_rq(rq)) {
1550 		req->metadata_sgl->sg_table.sgl =
1551 			(struct scatterlist *)(req->metadata_sgl + 1);
1552 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1553 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1554 				req->metadata_sgl->sg_table.sgl,
1555 				NVME_INLINE_METADATA_SG_CNT);
1556 		if (unlikely(ret)) {
1557 			ret = -ENOMEM;
1558 			goto out_unmap_sg;
1559 		}
1560 
1561 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1562 				rq->bio, req->metadata_sgl->sg_table.sgl);
1563 		pi_count = ib_dma_map_sg(ibdev,
1564 					 req->metadata_sgl->sg_table.sgl,
1565 					 req->metadata_sgl->nents,
1566 					 rq_dma_dir(rq));
1567 		if (unlikely(pi_count <= 0)) {
1568 			ret = -EIO;
1569 			goto out_free_pi_table;
1570 		}
1571 	}
1572 
1573 	if (req->use_sig_mr) {
1574 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1575 		goto out;
1576 	}
1577 
1578 	if (count <= dev->num_inline_segments) {
1579 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1580 		    queue->ctrl->use_inline_data &&
1581 		    blk_rq_payload_bytes(rq) <=
1582 				nvme_rdma_inline_data_size(queue)) {
1583 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1584 			goto out;
1585 		}
1586 
1587 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1588 			ret = nvme_rdma_map_sg_single(queue, req, c);
1589 			goto out;
1590 		}
1591 	}
1592 
1593 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1594 out:
1595 	if (unlikely(ret))
1596 		goto out_unmap_pi_sg;
1597 
1598 	return 0;
1599 
1600 out_unmap_pi_sg:
1601 	if (blk_integrity_rq(rq))
1602 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1603 				req->metadata_sgl->nents, rq_dma_dir(rq));
1604 out_free_pi_table:
1605 	if (blk_integrity_rq(rq))
1606 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1607 				      NVME_INLINE_METADATA_SG_CNT);
1608 out_unmap_sg:
1609 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1610 			rq_dma_dir(rq));
1611 out_free_table:
1612 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1613 	return ret;
1614 }
1615 
1616 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1617 {
1618 	struct nvme_rdma_qe *qe =
1619 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1620 	struct nvme_rdma_request *req =
1621 		container_of(qe, struct nvme_rdma_request, sqe);
1622 
1623 	if (unlikely(wc->status != IB_WC_SUCCESS))
1624 		nvme_rdma_wr_error(cq, wc, "SEND");
1625 	else
1626 		nvme_rdma_end_request(req);
1627 }
1628 
1629 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1630 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1631 		struct ib_send_wr *first)
1632 {
1633 	struct ib_send_wr wr;
1634 	int ret;
1635 
1636 	sge->addr   = qe->dma;
1637 	sge->length = sizeof(struct nvme_command);
1638 	sge->lkey   = queue->device->pd->local_dma_lkey;
1639 
1640 	wr.next       = NULL;
1641 	wr.wr_cqe     = &qe->cqe;
1642 	wr.sg_list    = sge;
1643 	wr.num_sge    = num_sge;
1644 	wr.opcode     = IB_WR_SEND;
1645 	wr.send_flags = IB_SEND_SIGNALED;
1646 
1647 	if (first)
1648 		first->next = &wr;
1649 	else
1650 		first = &wr;
1651 
1652 	ret = ib_post_send(queue->qp, first, NULL);
1653 	if (unlikely(ret)) {
1654 		dev_err(queue->ctrl->ctrl.device,
1655 			     "%s failed with error code %d\n", __func__, ret);
1656 	}
1657 	return ret;
1658 }
1659 
1660 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1661 		struct nvme_rdma_qe *qe)
1662 {
1663 	struct ib_recv_wr wr;
1664 	struct ib_sge list;
1665 	int ret;
1666 
1667 	list.addr   = qe->dma;
1668 	list.length = sizeof(struct nvme_completion);
1669 	list.lkey   = queue->device->pd->local_dma_lkey;
1670 
1671 	qe->cqe.done = nvme_rdma_recv_done;
1672 
1673 	wr.next     = NULL;
1674 	wr.wr_cqe   = &qe->cqe;
1675 	wr.sg_list  = &list;
1676 	wr.num_sge  = 1;
1677 
1678 	ret = ib_post_recv(queue->qp, &wr, NULL);
1679 	if (unlikely(ret)) {
1680 		dev_err(queue->ctrl->ctrl.device,
1681 			"%s failed with error code %d\n", __func__, ret);
1682 	}
1683 	return ret;
1684 }
1685 
1686 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1687 {
1688 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1689 
1690 	if (queue_idx == 0)
1691 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1692 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1693 }
1694 
1695 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1696 {
1697 	if (unlikely(wc->status != IB_WC_SUCCESS))
1698 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1699 }
1700 
1701 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1702 {
1703 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1704 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1705 	struct ib_device *dev = queue->device->dev;
1706 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1707 	struct nvme_command *cmd = sqe->data;
1708 	struct ib_sge sge;
1709 	int ret;
1710 
1711 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1712 
1713 	memset(cmd, 0, sizeof(*cmd));
1714 	cmd->common.opcode = nvme_admin_async_event;
1715 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1716 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1717 	nvme_rdma_set_sg_null(cmd);
1718 
1719 	sqe->cqe.done = nvme_rdma_async_done;
1720 
1721 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1722 			DMA_TO_DEVICE);
1723 
1724 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1725 	WARN_ON_ONCE(ret);
1726 }
1727 
1728 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1729 		struct nvme_completion *cqe, struct ib_wc *wc)
1730 {
1731 	struct request *rq;
1732 	struct nvme_rdma_request *req;
1733 
1734 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1735 	if (!rq) {
1736 		dev_err(queue->ctrl->ctrl.device,
1737 			"tag 0x%x on QP %#x not found\n",
1738 			cqe->command_id, queue->qp->qp_num);
1739 		nvme_rdma_error_recovery(queue->ctrl);
1740 		return;
1741 	}
1742 	req = blk_mq_rq_to_pdu(rq);
1743 
1744 	req->status = cqe->status;
1745 	req->result = cqe->result;
1746 
1747 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1748 		if (unlikely(!req->mr ||
1749 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1750 			dev_err(queue->ctrl->ctrl.device,
1751 				"Bogus remote invalidation for rkey %#x\n",
1752 				req->mr ? req->mr->rkey : 0);
1753 			nvme_rdma_error_recovery(queue->ctrl);
1754 		}
1755 	} else if (req->mr) {
1756 		int ret;
1757 
1758 		ret = nvme_rdma_inv_rkey(queue, req);
1759 		if (unlikely(ret < 0)) {
1760 			dev_err(queue->ctrl->ctrl.device,
1761 				"Queueing INV WR for rkey %#x failed (%d)\n",
1762 				req->mr->rkey, ret);
1763 			nvme_rdma_error_recovery(queue->ctrl);
1764 		}
1765 		/* the local invalidation completion will end the request */
1766 		return;
1767 	}
1768 
1769 	nvme_rdma_end_request(req);
1770 }
1771 
1772 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1773 {
1774 	struct nvme_rdma_qe *qe =
1775 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1776 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1777 	struct ib_device *ibdev = queue->device->dev;
1778 	struct nvme_completion *cqe = qe->data;
1779 	const size_t len = sizeof(struct nvme_completion);
1780 
1781 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1782 		nvme_rdma_wr_error(cq, wc, "RECV");
1783 		return;
1784 	}
1785 
1786 	/* sanity checking for received data length */
1787 	if (unlikely(wc->byte_len < len)) {
1788 		dev_err(queue->ctrl->ctrl.device,
1789 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1790 		nvme_rdma_error_recovery(queue->ctrl);
1791 		return;
1792 	}
1793 
1794 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1795 	/*
1796 	 * AEN requests are special as they don't time out and can
1797 	 * survive any kind of queue freeze and often don't respond to
1798 	 * aborts.  We don't even bother to allocate a struct request
1799 	 * for them but rather special case them here.
1800 	 */
1801 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1802 				     cqe->command_id)))
1803 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1804 				&cqe->result);
1805 	else
1806 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1807 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1808 
1809 	nvme_rdma_post_recv(queue, qe);
1810 }
1811 
1812 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1813 {
1814 	int ret, i;
1815 
1816 	for (i = 0; i < queue->queue_size; i++) {
1817 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1818 		if (ret)
1819 			goto out_destroy_queue_ib;
1820 	}
1821 
1822 	return 0;
1823 
1824 out_destroy_queue_ib:
1825 	nvme_rdma_destroy_queue_ib(queue);
1826 	return ret;
1827 }
1828 
1829 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1830 		struct rdma_cm_event *ev)
1831 {
1832 	struct rdma_cm_id *cm_id = queue->cm_id;
1833 	int status = ev->status;
1834 	const char *rej_msg;
1835 	const struct nvme_rdma_cm_rej *rej_data;
1836 	u8 rej_data_len;
1837 
1838 	rej_msg = rdma_reject_msg(cm_id, status);
1839 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1840 
1841 	if (rej_data && rej_data_len >= sizeof(u16)) {
1842 		u16 sts = le16_to_cpu(rej_data->sts);
1843 
1844 		dev_err(queue->ctrl->ctrl.device,
1845 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1846 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1847 	} else {
1848 		dev_err(queue->ctrl->ctrl.device,
1849 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1850 	}
1851 
1852 	return -ECONNRESET;
1853 }
1854 
1855 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1856 {
1857 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1858 	int ret;
1859 
1860 	ret = nvme_rdma_create_queue_ib(queue);
1861 	if (ret)
1862 		return ret;
1863 
1864 	if (ctrl->opts->tos >= 0)
1865 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1866 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1867 	if (ret) {
1868 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1869 			queue->cm_error);
1870 		goto out_destroy_queue;
1871 	}
1872 
1873 	return 0;
1874 
1875 out_destroy_queue:
1876 	nvme_rdma_destroy_queue_ib(queue);
1877 	return ret;
1878 }
1879 
1880 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1881 {
1882 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1883 	struct rdma_conn_param param = { };
1884 	struct nvme_rdma_cm_req priv = { };
1885 	int ret;
1886 
1887 	param.qp_num = queue->qp->qp_num;
1888 	param.flow_control = 1;
1889 
1890 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1891 	/* maximum retry count */
1892 	param.retry_count = 7;
1893 	param.rnr_retry_count = 7;
1894 	param.private_data = &priv;
1895 	param.private_data_len = sizeof(priv);
1896 
1897 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1898 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1899 	/*
1900 	 * set the admin queue depth to the minimum size
1901 	 * specified by the Fabrics standard.
1902 	 */
1903 	if (priv.qid == 0) {
1904 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1905 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1906 	} else {
1907 		/*
1908 		 * current interpretation of the fabrics spec
1909 		 * is at minimum you make hrqsize sqsize+1, or a
1910 		 * 1's based representation of sqsize.
1911 		 */
1912 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1913 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1914 	}
1915 
1916 	ret = rdma_connect_locked(queue->cm_id, &param);
1917 	if (ret) {
1918 		dev_err(ctrl->ctrl.device,
1919 			"rdma_connect_locked failed (%d).\n", ret);
1920 		goto out_destroy_queue_ib;
1921 	}
1922 
1923 	return 0;
1924 
1925 out_destroy_queue_ib:
1926 	nvme_rdma_destroy_queue_ib(queue);
1927 	return ret;
1928 }
1929 
1930 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1931 		struct rdma_cm_event *ev)
1932 {
1933 	struct nvme_rdma_queue *queue = cm_id->context;
1934 	int cm_error = 0;
1935 
1936 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1937 		rdma_event_msg(ev->event), ev->event,
1938 		ev->status, cm_id);
1939 
1940 	switch (ev->event) {
1941 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1942 		cm_error = nvme_rdma_addr_resolved(queue);
1943 		break;
1944 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1945 		cm_error = nvme_rdma_route_resolved(queue);
1946 		break;
1947 	case RDMA_CM_EVENT_ESTABLISHED:
1948 		queue->cm_error = nvme_rdma_conn_established(queue);
1949 		/* complete cm_done regardless of success/failure */
1950 		complete(&queue->cm_done);
1951 		return 0;
1952 	case RDMA_CM_EVENT_REJECTED:
1953 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1954 		break;
1955 	case RDMA_CM_EVENT_ROUTE_ERROR:
1956 	case RDMA_CM_EVENT_CONNECT_ERROR:
1957 	case RDMA_CM_EVENT_UNREACHABLE:
1958 		nvme_rdma_destroy_queue_ib(queue);
1959 		fallthrough;
1960 	case RDMA_CM_EVENT_ADDR_ERROR:
1961 		dev_dbg(queue->ctrl->ctrl.device,
1962 			"CM error event %d\n", ev->event);
1963 		cm_error = -ECONNRESET;
1964 		break;
1965 	case RDMA_CM_EVENT_DISCONNECTED:
1966 	case RDMA_CM_EVENT_ADDR_CHANGE:
1967 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1968 		dev_dbg(queue->ctrl->ctrl.device,
1969 			"disconnect received - connection closed\n");
1970 		nvme_rdma_error_recovery(queue->ctrl);
1971 		break;
1972 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1973 		/* device removal is handled via the ib_client API */
1974 		break;
1975 	default:
1976 		dev_err(queue->ctrl->ctrl.device,
1977 			"Unexpected RDMA CM event (%d)\n", ev->event);
1978 		nvme_rdma_error_recovery(queue->ctrl);
1979 		break;
1980 	}
1981 
1982 	if (cm_error) {
1983 		queue->cm_error = cm_error;
1984 		complete(&queue->cm_done);
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static void nvme_rdma_complete_timed_out(struct request *rq)
1991 {
1992 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1993 	struct nvme_rdma_queue *queue = req->queue;
1994 
1995 	nvme_rdma_stop_queue(queue);
1996 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
1997 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1998 		blk_mq_complete_request(rq);
1999 	}
2000 }
2001 
2002 static enum blk_eh_timer_return
2003 nvme_rdma_timeout(struct request *rq, bool reserved)
2004 {
2005 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2006 	struct nvme_rdma_queue *queue = req->queue;
2007 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2008 
2009 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2010 		 rq->tag, nvme_rdma_queue_idx(queue));
2011 
2012 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2013 		/*
2014 		 * If we are resetting, connecting or deleting we should
2015 		 * complete immediately because we may block controller
2016 		 * teardown or setup sequence
2017 		 * - ctrl disable/shutdown fabrics requests
2018 		 * - connect requests
2019 		 * - initialization admin requests
2020 		 * - I/O requests that entered after unquiescing and
2021 		 *   the controller stopped responding
2022 		 *
2023 		 * All other requests should be cancelled by the error
2024 		 * recovery work, so it's fine that we fail it here.
2025 		 */
2026 		nvme_rdma_complete_timed_out(rq);
2027 		return BLK_EH_DONE;
2028 	}
2029 
2030 	/*
2031 	 * LIVE state should trigger the normal error recovery which will
2032 	 * handle completing this request.
2033 	 */
2034 	nvme_rdma_error_recovery(ctrl);
2035 	return BLK_EH_RESET_TIMER;
2036 }
2037 
2038 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2039 		const struct blk_mq_queue_data *bd)
2040 {
2041 	struct nvme_ns *ns = hctx->queue->queuedata;
2042 	struct nvme_rdma_queue *queue = hctx->driver_data;
2043 	struct request *rq = bd->rq;
2044 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2045 	struct nvme_rdma_qe *sqe = &req->sqe;
2046 	struct nvme_command *c = nvme_req(rq)->cmd;
2047 	struct ib_device *dev;
2048 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2049 	blk_status_t ret;
2050 	int err;
2051 
2052 	WARN_ON_ONCE(rq->tag < 0);
2053 
2054 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2055 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2056 
2057 	dev = queue->device->dev;
2058 
2059 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2060 					 sizeof(struct nvme_command),
2061 					 DMA_TO_DEVICE);
2062 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2063 	if (unlikely(err))
2064 		return BLK_STS_RESOURCE;
2065 
2066 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2067 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2068 
2069 	ret = nvme_setup_cmd(ns, rq);
2070 	if (ret)
2071 		goto unmap_qe;
2072 
2073 	blk_mq_start_request(rq);
2074 
2075 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2076 	    queue->pi_support &&
2077 	    (c->common.opcode == nvme_cmd_write ||
2078 	     c->common.opcode == nvme_cmd_read) &&
2079 	    nvme_ns_has_pi(ns))
2080 		req->use_sig_mr = true;
2081 	else
2082 		req->use_sig_mr = false;
2083 
2084 	err = nvme_rdma_map_data(queue, rq, c);
2085 	if (unlikely(err < 0)) {
2086 		dev_err(queue->ctrl->ctrl.device,
2087 			     "Failed to map data (%d)\n", err);
2088 		goto err;
2089 	}
2090 
2091 	sqe->cqe.done = nvme_rdma_send_done;
2092 
2093 	ib_dma_sync_single_for_device(dev, sqe->dma,
2094 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2095 
2096 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2097 			req->mr ? &req->reg_wr.wr : NULL);
2098 	if (unlikely(err))
2099 		goto err_unmap;
2100 
2101 	return BLK_STS_OK;
2102 
2103 err_unmap:
2104 	nvme_rdma_unmap_data(queue, rq);
2105 err:
2106 	if (err == -EIO)
2107 		ret = nvme_host_path_error(rq);
2108 	else if (err == -ENOMEM || err == -EAGAIN)
2109 		ret = BLK_STS_RESOURCE;
2110 	else
2111 		ret = BLK_STS_IOERR;
2112 	nvme_cleanup_cmd(rq);
2113 unmap_qe:
2114 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2115 			    DMA_TO_DEVICE);
2116 	return ret;
2117 }
2118 
2119 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2120 {
2121 	struct nvme_rdma_queue *queue = hctx->driver_data;
2122 
2123 	return ib_process_cq_direct(queue->ib_cq, -1);
2124 }
2125 
2126 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2127 {
2128 	struct request *rq = blk_mq_rq_from_pdu(req);
2129 	struct ib_mr_status mr_status;
2130 	int ret;
2131 
2132 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2133 	if (ret) {
2134 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2135 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2136 		return;
2137 	}
2138 
2139 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2140 		switch (mr_status.sig_err.err_type) {
2141 		case IB_SIG_BAD_GUARD:
2142 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2143 			break;
2144 		case IB_SIG_BAD_REFTAG:
2145 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2146 			break;
2147 		case IB_SIG_BAD_APPTAG:
2148 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2149 			break;
2150 		}
2151 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2152 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2153 		       mr_status.sig_err.actual);
2154 	}
2155 }
2156 
2157 static void nvme_rdma_complete_rq(struct request *rq)
2158 {
2159 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2160 	struct nvme_rdma_queue *queue = req->queue;
2161 	struct ib_device *ibdev = queue->device->dev;
2162 
2163 	if (req->use_sig_mr)
2164 		nvme_rdma_check_pi_status(req);
2165 
2166 	nvme_rdma_unmap_data(queue, rq);
2167 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2168 			    DMA_TO_DEVICE);
2169 	nvme_complete_rq(rq);
2170 }
2171 
2172 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2173 {
2174 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2175 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2176 
2177 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2178 		/* separate read/write queues */
2179 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2180 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2181 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2182 		set->map[HCTX_TYPE_READ].nr_queues =
2183 			ctrl->io_queues[HCTX_TYPE_READ];
2184 		set->map[HCTX_TYPE_READ].queue_offset =
2185 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2186 	} else {
2187 		/* shared read/write queues */
2188 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2189 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2190 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2191 		set->map[HCTX_TYPE_READ].nr_queues =
2192 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2193 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2194 	}
2195 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2196 			ctrl->device->dev, 0);
2197 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2198 			ctrl->device->dev, 0);
2199 
2200 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2201 		/* map dedicated poll queues only if we have queues left */
2202 		set->map[HCTX_TYPE_POLL].nr_queues =
2203 				ctrl->io_queues[HCTX_TYPE_POLL];
2204 		set->map[HCTX_TYPE_POLL].queue_offset =
2205 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2206 			ctrl->io_queues[HCTX_TYPE_READ];
2207 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2208 	}
2209 
2210 	dev_info(ctrl->ctrl.device,
2211 		"mapped %d/%d/%d default/read/poll queues.\n",
2212 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2213 		ctrl->io_queues[HCTX_TYPE_READ],
2214 		ctrl->io_queues[HCTX_TYPE_POLL]);
2215 
2216 	return 0;
2217 }
2218 
2219 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2220 	.queue_rq	= nvme_rdma_queue_rq,
2221 	.complete	= nvme_rdma_complete_rq,
2222 	.init_request	= nvme_rdma_init_request,
2223 	.exit_request	= nvme_rdma_exit_request,
2224 	.init_hctx	= nvme_rdma_init_hctx,
2225 	.timeout	= nvme_rdma_timeout,
2226 	.map_queues	= nvme_rdma_map_queues,
2227 	.poll		= nvme_rdma_poll,
2228 };
2229 
2230 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2231 	.queue_rq	= nvme_rdma_queue_rq,
2232 	.complete	= nvme_rdma_complete_rq,
2233 	.init_request	= nvme_rdma_init_request,
2234 	.exit_request	= nvme_rdma_exit_request,
2235 	.init_hctx	= nvme_rdma_init_admin_hctx,
2236 	.timeout	= nvme_rdma_timeout,
2237 };
2238 
2239 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2240 {
2241 	cancel_work_sync(&ctrl->err_work);
2242 	cancel_delayed_work_sync(&ctrl->reconnect_work);
2243 
2244 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2245 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2246 	if (shutdown)
2247 		nvme_shutdown_ctrl(&ctrl->ctrl);
2248 	else
2249 		nvme_disable_ctrl(&ctrl->ctrl);
2250 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2251 }
2252 
2253 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2254 {
2255 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2256 }
2257 
2258 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2259 {
2260 	struct nvme_rdma_ctrl *ctrl =
2261 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2262 
2263 	nvme_stop_ctrl(&ctrl->ctrl);
2264 	nvme_rdma_shutdown_ctrl(ctrl, false);
2265 
2266 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2267 		/* state change failure should never happen */
2268 		WARN_ON_ONCE(1);
2269 		return;
2270 	}
2271 
2272 	if (nvme_rdma_setup_ctrl(ctrl, false))
2273 		goto out_fail;
2274 
2275 	return;
2276 
2277 out_fail:
2278 	++ctrl->ctrl.nr_reconnects;
2279 	nvme_rdma_reconnect_or_remove(ctrl);
2280 }
2281 
2282 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2283 	.name			= "rdma",
2284 	.module			= THIS_MODULE,
2285 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2286 	.reg_read32		= nvmf_reg_read32,
2287 	.reg_read64		= nvmf_reg_read64,
2288 	.reg_write32		= nvmf_reg_write32,
2289 	.free_ctrl		= nvme_rdma_free_ctrl,
2290 	.submit_async_event	= nvme_rdma_submit_async_event,
2291 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2292 	.get_address		= nvmf_get_address,
2293 };
2294 
2295 /*
2296  * Fails a connection request if it matches an existing controller
2297  * (association) with the same tuple:
2298  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2299  *
2300  * if local address is not specified in the request, it will match an
2301  * existing controller with all the other parameters the same and no
2302  * local port address specified as well.
2303  *
2304  * The ports don't need to be compared as they are intrinsically
2305  * already matched by the port pointers supplied.
2306  */
2307 static bool
2308 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2309 {
2310 	struct nvme_rdma_ctrl *ctrl;
2311 	bool found = false;
2312 
2313 	mutex_lock(&nvme_rdma_ctrl_mutex);
2314 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2315 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2316 		if (found)
2317 			break;
2318 	}
2319 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2320 
2321 	return found;
2322 }
2323 
2324 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2325 		struct nvmf_ctrl_options *opts)
2326 {
2327 	struct nvme_rdma_ctrl *ctrl;
2328 	int ret;
2329 	bool changed;
2330 
2331 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2332 	if (!ctrl)
2333 		return ERR_PTR(-ENOMEM);
2334 	ctrl->ctrl.opts = opts;
2335 	INIT_LIST_HEAD(&ctrl->list);
2336 
2337 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2338 		opts->trsvcid =
2339 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2340 		if (!opts->trsvcid) {
2341 			ret = -ENOMEM;
2342 			goto out_free_ctrl;
2343 		}
2344 		opts->mask |= NVMF_OPT_TRSVCID;
2345 	}
2346 
2347 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2348 			opts->traddr, opts->trsvcid, &ctrl->addr);
2349 	if (ret) {
2350 		pr_err("malformed address passed: %s:%s\n",
2351 			opts->traddr, opts->trsvcid);
2352 		goto out_free_ctrl;
2353 	}
2354 
2355 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2356 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2357 			opts->host_traddr, NULL, &ctrl->src_addr);
2358 		if (ret) {
2359 			pr_err("malformed src address passed: %s\n",
2360 			       opts->host_traddr);
2361 			goto out_free_ctrl;
2362 		}
2363 	}
2364 
2365 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2366 		ret = -EALREADY;
2367 		goto out_free_ctrl;
2368 	}
2369 
2370 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2371 			nvme_rdma_reconnect_ctrl_work);
2372 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2373 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2374 
2375 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2376 				opts->nr_poll_queues + 1;
2377 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2378 	ctrl->ctrl.kato = opts->kato;
2379 
2380 	ret = -ENOMEM;
2381 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2382 				GFP_KERNEL);
2383 	if (!ctrl->queues)
2384 		goto out_free_ctrl;
2385 
2386 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2387 				0 /* no quirks, we're perfect! */);
2388 	if (ret)
2389 		goto out_kfree_queues;
2390 
2391 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2392 	WARN_ON_ONCE(!changed);
2393 
2394 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2395 	if (ret)
2396 		goto out_uninit_ctrl;
2397 
2398 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2399 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2400 
2401 	mutex_lock(&nvme_rdma_ctrl_mutex);
2402 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2403 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2404 
2405 	return &ctrl->ctrl;
2406 
2407 out_uninit_ctrl:
2408 	nvme_uninit_ctrl(&ctrl->ctrl);
2409 	nvme_put_ctrl(&ctrl->ctrl);
2410 	if (ret > 0)
2411 		ret = -EIO;
2412 	return ERR_PTR(ret);
2413 out_kfree_queues:
2414 	kfree(ctrl->queues);
2415 out_free_ctrl:
2416 	kfree(ctrl);
2417 	return ERR_PTR(ret);
2418 }
2419 
2420 static struct nvmf_transport_ops nvme_rdma_transport = {
2421 	.name		= "rdma",
2422 	.module		= THIS_MODULE,
2423 	.required_opts	= NVMF_OPT_TRADDR,
2424 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2425 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2426 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2427 			  NVMF_OPT_TOS,
2428 	.create_ctrl	= nvme_rdma_create_ctrl,
2429 };
2430 
2431 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2432 {
2433 	struct nvme_rdma_ctrl *ctrl;
2434 	struct nvme_rdma_device *ndev;
2435 	bool found = false;
2436 
2437 	mutex_lock(&device_list_mutex);
2438 	list_for_each_entry(ndev, &device_list, entry) {
2439 		if (ndev->dev == ib_device) {
2440 			found = true;
2441 			break;
2442 		}
2443 	}
2444 	mutex_unlock(&device_list_mutex);
2445 
2446 	if (!found)
2447 		return;
2448 
2449 	/* Delete all controllers using this device */
2450 	mutex_lock(&nvme_rdma_ctrl_mutex);
2451 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2452 		if (ctrl->device->dev != ib_device)
2453 			continue;
2454 		nvme_delete_ctrl(&ctrl->ctrl);
2455 	}
2456 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2457 
2458 	flush_workqueue(nvme_delete_wq);
2459 }
2460 
2461 static struct ib_client nvme_rdma_ib_client = {
2462 	.name   = "nvme_rdma",
2463 	.remove = nvme_rdma_remove_one
2464 };
2465 
2466 static int __init nvme_rdma_init_module(void)
2467 {
2468 	int ret;
2469 
2470 	ret = ib_register_client(&nvme_rdma_ib_client);
2471 	if (ret)
2472 		return ret;
2473 
2474 	ret = nvmf_register_transport(&nvme_rdma_transport);
2475 	if (ret)
2476 		goto err_unreg_client;
2477 
2478 	return 0;
2479 
2480 err_unreg_client:
2481 	ib_unregister_client(&nvme_rdma_ib_client);
2482 	return ret;
2483 }
2484 
2485 static void __exit nvme_rdma_cleanup_module(void)
2486 {
2487 	struct nvme_rdma_ctrl *ctrl;
2488 
2489 	nvmf_unregister_transport(&nvme_rdma_transport);
2490 	ib_unregister_client(&nvme_rdma_ib_client);
2491 
2492 	mutex_lock(&nvme_rdma_ctrl_mutex);
2493 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2494 		nvme_delete_ctrl(&ctrl->ctrl);
2495 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2496 	flush_workqueue(nvme_delete_wq);
2497 }
2498 
2499 module_init(nvme_rdma_init_module);
2500 module_exit(nvme_rdma_cleanup_module);
2501 
2502 MODULE_LICENSE("GPL v2");
2503