xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision bc5aa3a0)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33 
34 #include "nvme.h"
35 #include "fabrics.h"
36 
37 
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS	1000		/* 1 second */
39 
40 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
41 
42 #define NVME_RDMA_MAX_SEGMENTS		256
43 
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
45 
46 /*
47  * We handle AEN commands ourselves and don't even let the
48  * block layer know about them.
49  */
50 #define NVME_RDMA_NR_AEN_COMMANDS      1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
52 	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53 
54 struct nvme_rdma_device {
55 	struct ib_device       *dev;
56 	struct ib_pd	       *pd;
57 	struct ib_mr	       *mr;
58 	struct kref		ref;
59 	struct list_head	entry;
60 };
61 
62 struct nvme_rdma_qe {
63 	struct ib_cqe		cqe;
64 	void			*data;
65 	u64			dma;
66 };
67 
68 struct nvme_rdma_queue;
69 struct nvme_rdma_request {
70 	struct ib_mr		*mr;
71 	struct nvme_rdma_qe	sqe;
72 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73 	u32			num_sge;
74 	int			nents;
75 	bool			inline_data;
76 	struct ib_reg_wr	reg_wr;
77 	struct ib_cqe		reg_cqe;
78 	struct nvme_rdma_queue  *queue;
79 	struct sg_table		sg_table;
80 	struct scatterlist	first_sgl[];
81 };
82 
83 enum nvme_rdma_queue_flags {
84 	NVME_RDMA_Q_CONNECTED = (1 << 0),
85 };
86 
87 struct nvme_rdma_queue {
88 	struct nvme_rdma_qe	*rsp_ring;
89 	u8			sig_count;
90 	int			queue_size;
91 	size_t			cmnd_capsule_len;
92 	struct nvme_rdma_ctrl	*ctrl;
93 	struct nvme_rdma_device	*device;
94 	struct ib_cq		*ib_cq;
95 	struct ib_qp		*qp;
96 
97 	unsigned long		flags;
98 	struct rdma_cm_id	*cm_id;
99 	int			cm_error;
100 	struct completion	cm_done;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read and written in the hot path */
105 	spinlock_t		lock;
106 
107 	/* read only in the hot path */
108 	struct nvme_rdma_queue	*queues;
109 	u32			queue_count;
110 
111 	/* other member variables */
112 	struct blk_mq_tag_set	tag_set;
113 	struct work_struct	delete_work;
114 	struct work_struct	reset_work;
115 	struct work_struct	err_work;
116 
117 	struct nvme_rdma_qe	async_event_sqe;
118 
119 	int			reconnect_delay;
120 	struct delayed_work	reconnect_work;
121 
122 	struct list_head	list;
123 
124 	struct blk_mq_tag_set	admin_tag_set;
125 	struct nvme_rdma_device	*device;
126 
127 	u64			cap;
128 	u32			max_fr_pages;
129 
130 	union {
131 		struct sockaddr addr;
132 		struct sockaddr_in addr_in;
133 	};
134 
135 	struct nvme_ctrl	ctrl;
136 };
137 
138 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
139 {
140 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
141 }
142 
143 static LIST_HEAD(device_list);
144 static DEFINE_MUTEX(device_list_mutex);
145 
146 static LIST_HEAD(nvme_rdma_ctrl_list);
147 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
148 
149 static struct workqueue_struct *nvme_rdma_wq;
150 
151 /*
152  * Disabling this option makes small I/O goes faster, but is fundamentally
153  * unsafe.  With it turned off we will have to register a global rkey that
154  * allows read and write access to all physical memory.
155  */
156 static bool register_always = true;
157 module_param(register_always, bool, 0444);
158 MODULE_PARM_DESC(register_always,
159 	 "Use memory registration even for contiguous memory regions");
160 
161 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
162 		struct rdma_cm_event *event);
163 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
164 
165 /* XXX: really should move to a generic header sooner or later.. */
166 static inline void put_unaligned_le24(u32 val, u8 *p)
167 {
168 	*p++ = val;
169 	*p++ = val >> 8;
170 	*p++ = val >> 16;
171 }
172 
173 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
174 {
175 	return queue - queue->ctrl->queues;
176 }
177 
178 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
179 {
180 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
181 }
182 
183 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
187 	kfree(qe->data);
188 }
189 
190 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
191 		size_t capsule_size, enum dma_data_direction dir)
192 {
193 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
194 	if (!qe->data)
195 		return -ENOMEM;
196 
197 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
198 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
199 		kfree(qe->data);
200 		return -ENOMEM;
201 	}
202 
203 	return 0;
204 }
205 
206 static void nvme_rdma_free_ring(struct ib_device *ibdev,
207 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
208 		size_t capsule_size, enum dma_data_direction dir)
209 {
210 	int i;
211 
212 	for (i = 0; i < ib_queue_size; i++)
213 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
214 	kfree(ring);
215 }
216 
217 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
218 		size_t ib_queue_size, size_t capsule_size,
219 		enum dma_data_direction dir)
220 {
221 	struct nvme_rdma_qe *ring;
222 	int i;
223 
224 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
225 	if (!ring)
226 		return NULL;
227 
228 	for (i = 0; i < ib_queue_size; i++) {
229 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230 			goto out_free_ring;
231 	}
232 
233 	return ring;
234 
235 out_free_ring:
236 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237 	return NULL;
238 }
239 
240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242 	pr_debug("QP event %d\n", event->event);
243 }
244 
245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
246 {
247 	wait_for_completion_interruptible_timeout(&queue->cm_done,
248 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
249 	return queue->cm_error;
250 }
251 
252 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
253 {
254 	struct nvme_rdma_device *dev = queue->device;
255 	struct ib_qp_init_attr init_attr;
256 	int ret;
257 
258 	memset(&init_attr, 0, sizeof(init_attr));
259 	init_attr.event_handler = nvme_rdma_qp_event;
260 	/* +1 for drain */
261 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
262 	/* +1 for drain */
263 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
264 	init_attr.cap.max_recv_sge = 1;
265 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
266 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
267 	init_attr.qp_type = IB_QPT_RC;
268 	init_attr.send_cq = queue->ib_cq;
269 	init_attr.recv_cq = queue->ib_cq;
270 
271 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
272 
273 	queue->qp = queue->cm_id->qp;
274 	return ret;
275 }
276 
277 static int nvme_rdma_reinit_request(void *data, struct request *rq)
278 {
279 	struct nvme_rdma_ctrl *ctrl = data;
280 	struct nvme_rdma_device *dev = ctrl->device;
281 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
282 	int ret = 0;
283 
284 	if (!req->mr->need_inval)
285 		goto out;
286 
287 	ib_dereg_mr(req->mr);
288 
289 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
290 			ctrl->max_fr_pages);
291 	if (IS_ERR(req->mr)) {
292 		ret = PTR_ERR(req->mr);
293 		req->mr = NULL;
294 	}
295 
296 	req->mr->need_inval = false;
297 
298 out:
299 	return ret;
300 }
301 
302 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
303 		struct request *rq, unsigned int queue_idx)
304 {
305 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
306 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
307 	struct nvme_rdma_device *dev = queue->device;
308 
309 	if (req->mr)
310 		ib_dereg_mr(req->mr);
311 
312 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
313 			DMA_TO_DEVICE);
314 }
315 
316 static void nvme_rdma_exit_request(void *data, struct request *rq,
317 				unsigned int hctx_idx, unsigned int rq_idx)
318 {
319 	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
320 }
321 
322 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
323 				unsigned int hctx_idx, unsigned int rq_idx)
324 {
325 	return __nvme_rdma_exit_request(data, rq, 0);
326 }
327 
328 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
329 		struct request *rq, unsigned int queue_idx)
330 {
331 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
332 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
333 	struct nvme_rdma_device *dev = queue->device;
334 	struct ib_device *ibdev = dev->dev;
335 	int ret;
336 
337 	BUG_ON(queue_idx >= ctrl->queue_count);
338 
339 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
340 			DMA_TO_DEVICE);
341 	if (ret)
342 		return ret;
343 
344 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
345 			ctrl->max_fr_pages);
346 	if (IS_ERR(req->mr)) {
347 		ret = PTR_ERR(req->mr);
348 		goto out_free_qe;
349 	}
350 
351 	req->queue = queue;
352 
353 	return 0;
354 
355 out_free_qe:
356 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
357 			DMA_TO_DEVICE);
358 	return -ENOMEM;
359 }
360 
361 static int nvme_rdma_init_request(void *data, struct request *rq,
362 				unsigned int hctx_idx, unsigned int rq_idx,
363 				unsigned int numa_node)
364 {
365 	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
366 }
367 
368 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
369 				unsigned int hctx_idx, unsigned int rq_idx,
370 				unsigned int numa_node)
371 {
372 	return __nvme_rdma_init_request(data, rq, 0);
373 }
374 
375 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376 		unsigned int hctx_idx)
377 {
378 	struct nvme_rdma_ctrl *ctrl = data;
379 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
380 
381 	BUG_ON(hctx_idx >= ctrl->queue_count);
382 
383 	hctx->driver_data = queue;
384 	return 0;
385 }
386 
387 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388 		unsigned int hctx_idx)
389 {
390 	struct nvme_rdma_ctrl *ctrl = data;
391 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
392 
393 	BUG_ON(hctx_idx != 0);
394 
395 	hctx->driver_data = queue;
396 	return 0;
397 }
398 
399 static void nvme_rdma_free_dev(struct kref *ref)
400 {
401 	struct nvme_rdma_device *ndev =
402 		container_of(ref, struct nvme_rdma_device, ref);
403 
404 	mutex_lock(&device_list_mutex);
405 	list_del(&ndev->entry);
406 	mutex_unlock(&device_list_mutex);
407 
408 	if (!register_always)
409 		ib_dereg_mr(ndev->mr);
410 	ib_dealloc_pd(ndev->pd);
411 
412 	kfree(ndev);
413 }
414 
415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
416 {
417 	kref_put(&dev->ref, nvme_rdma_free_dev);
418 }
419 
420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
421 {
422 	return kref_get_unless_zero(&dev->ref);
423 }
424 
425 static struct nvme_rdma_device *
426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
427 {
428 	struct nvme_rdma_device *ndev;
429 
430 	mutex_lock(&device_list_mutex);
431 	list_for_each_entry(ndev, &device_list, entry) {
432 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
433 		    nvme_rdma_dev_get(ndev))
434 			goto out_unlock;
435 	}
436 
437 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
438 	if (!ndev)
439 		goto out_err;
440 
441 	ndev->dev = cm_id->device;
442 	kref_init(&ndev->ref);
443 
444 	ndev->pd = ib_alloc_pd(ndev->dev);
445 	if (IS_ERR(ndev->pd))
446 		goto out_free_dev;
447 
448 	if (!register_always) {
449 		ndev->mr = ib_get_dma_mr(ndev->pd,
450 					    IB_ACCESS_LOCAL_WRITE |
451 					    IB_ACCESS_REMOTE_READ |
452 					    IB_ACCESS_REMOTE_WRITE);
453 		if (IS_ERR(ndev->mr))
454 			goto out_free_pd;
455 	}
456 
457 	if (!(ndev->dev->attrs.device_cap_flags &
458 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
459 		dev_err(&ndev->dev->dev,
460 			"Memory registrations not supported.\n");
461 		goto out_free_mr;
462 	}
463 
464 	list_add(&ndev->entry, &device_list);
465 out_unlock:
466 	mutex_unlock(&device_list_mutex);
467 	return ndev;
468 
469 out_free_mr:
470 	if (!register_always)
471 		ib_dereg_mr(ndev->mr);
472 out_free_pd:
473 	ib_dealloc_pd(ndev->pd);
474 out_free_dev:
475 	kfree(ndev);
476 out_err:
477 	mutex_unlock(&device_list_mutex);
478 	return NULL;
479 }
480 
481 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
482 {
483 	struct nvme_rdma_device *dev = queue->device;
484 	struct ib_device *ibdev = dev->dev;
485 
486 	rdma_destroy_qp(queue->cm_id);
487 	ib_free_cq(queue->ib_cq);
488 
489 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
490 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491 
492 	nvme_rdma_dev_put(dev);
493 }
494 
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
496 		struct nvme_rdma_device *dev)
497 {
498 	struct ib_device *ibdev = dev->dev;
499 	const int send_wr_factor = 3;			/* MR, SEND, INV */
500 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
501 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
502 
503 	int ret;
504 
505 	queue->device = dev;
506 
507 	/*
508 	 * The admin queue is barely used once the controller is live, so don't
509 	 * bother to spread it out.
510 	 */
511 	if (idx == 0)
512 		comp_vector = 0;
513 	else
514 		comp_vector = idx % ibdev->num_comp_vectors;
515 
516 
517 	/* +1 for ib_stop_cq */
518 	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
519 				cq_factor * queue->queue_size + 1, comp_vector,
520 				IB_POLL_SOFTIRQ);
521 	if (IS_ERR(queue->ib_cq)) {
522 		ret = PTR_ERR(queue->ib_cq);
523 		goto out;
524 	}
525 
526 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
527 	if (ret)
528 		goto out_destroy_ib_cq;
529 
530 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
531 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
532 	if (!queue->rsp_ring) {
533 		ret = -ENOMEM;
534 		goto out_destroy_qp;
535 	}
536 
537 	return 0;
538 
539 out_destroy_qp:
540 	ib_destroy_qp(queue->qp);
541 out_destroy_ib_cq:
542 	ib_free_cq(queue->ib_cq);
543 out:
544 	return ret;
545 }
546 
547 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
548 		int idx, size_t queue_size)
549 {
550 	struct nvme_rdma_queue *queue;
551 	int ret;
552 
553 	queue = &ctrl->queues[idx];
554 	queue->ctrl = ctrl;
555 	init_completion(&queue->cm_done);
556 
557 	if (idx > 0)
558 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
559 	else
560 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
561 
562 	queue->queue_size = queue_size;
563 
564 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
565 			RDMA_PS_TCP, IB_QPT_RC);
566 	if (IS_ERR(queue->cm_id)) {
567 		dev_info(ctrl->ctrl.device,
568 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
569 		return PTR_ERR(queue->cm_id);
570 	}
571 
572 	queue->cm_error = -ETIMEDOUT;
573 	ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
574 			NVME_RDMA_CONNECT_TIMEOUT_MS);
575 	if (ret) {
576 		dev_info(ctrl->ctrl.device,
577 			"rdma_resolve_addr failed (%d).\n", ret);
578 		goto out_destroy_cm_id;
579 	}
580 
581 	ret = nvme_rdma_wait_for_cm(queue);
582 	if (ret) {
583 		dev_info(ctrl->ctrl.device,
584 			"rdma_resolve_addr wait failed (%d).\n", ret);
585 		goto out_destroy_cm_id;
586 	}
587 
588 	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
589 
590 	return 0;
591 
592 out_destroy_cm_id:
593 	rdma_destroy_id(queue->cm_id);
594 	return ret;
595 }
596 
597 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
598 {
599 	rdma_disconnect(queue->cm_id);
600 	ib_drain_qp(queue->qp);
601 }
602 
603 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
604 {
605 	nvme_rdma_destroy_queue_ib(queue);
606 	rdma_destroy_id(queue->cm_id);
607 }
608 
609 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
610 {
611 	if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
612 		return;
613 	nvme_rdma_stop_queue(queue);
614 	nvme_rdma_free_queue(queue);
615 }
616 
617 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
618 {
619 	int i;
620 
621 	for (i = 1; i < ctrl->queue_count; i++)
622 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
623 }
624 
625 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627 	int i, ret = 0;
628 
629 	for (i = 1; i < ctrl->queue_count; i++) {
630 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
631 		if (ret)
632 			break;
633 	}
634 
635 	return ret;
636 }
637 
638 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
639 {
640 	int i, ret;
641 
642 	for (i = 1; i < ctrl->queue_count; i++) {
643 		ret = nvme_rdma_init_queue(ctrl, i,
644 					   ctrl->ctrl.opts->queue_size);
645 		if (ret) {
646 			dev_info(ctrl->ctrl.device,
647 				"failed to initialize i/o queue: %d\n", ret);
648 			goto out_free_queues;
649 		}
650 	}
651 
652 	return 0;
653 
654 out_free_queues:
655 	for (; i >= 1; i--)
656 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
657 
658 	return ret;
659 }
660 
661 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
662 {
663 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
664 			sizeof(struct nvme_command), DMA_TO_DEVICE);
665 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
666 	blk_cleanup_queue(ctrl->ctrl.admin_q);
667 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
668 	nvme_rdma_dev_put(ctrl->device);
669 }
670 
671 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
672 {
673 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
674 
675 	if (list_empty(&ctrl->list))
676 		goto free_ctrl;
677 
678 	mutex_lock(&nvme_rdma_ctrl_mutex);
679 	list_del(&ctrl->list);
680 	mutex_unlock(&nvme_rdma_ctrl_mutex);
681 
682 	kfree(ctrl->queues);
683 	nvmf_free_options(nctrl->opts);
684 free_ctrl:
685 	kfree(ctrl);
686 }
687 
688 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
689 {
690 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
691 			struct nvme_rdma_ctrl, reconnect_work);
692 	bool changed;
693 	int ret;
694 
695 	if (ctrl->queue_count > 1) {
696 		nvme_rdma_free_io_queues(ctrl);
697 
698 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
699 		if (ret)
700 			goto requeue;
701 	}
702 
703 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
704 
705 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
706 	if (ret)
707 		goto requeue;
708 
709 	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
710 	if (ret)
711 		goto requeue;
712 
713 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
714 
715 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
716 	if (ret)
717 		goto stop_admin_q;
718 
719 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
720 	if (ret)
721 		goto stop_admin_q;
722 
723 	nvme_start_keep_alive(&ctrl->ctrl);
724 
725 	if (ctrl->queue_count > 1) {
726 		ret = nvme_rdma_init_io_queues(ctrl);
727 		if (ret)
728 			goto stop_admin_q;
729 
730 		ret = nvme_rdma_connect_io_queues(ctrl);
731 		if (ret)
732 			goto stop_admin_q;
733 	}
734 
735 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
736 	WARN_ON_ONCE(!changed);
737 
738 	if (ctrl->queue_count > 1) {
739 		nvme_start_queues(&ctrl->ctrl);
740 		nvme_queue_scan(&ctrl->ctrl);
741 		nvme_queue_async_events(&ctrl->ctrl);
742 	}
743 
744 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
745 
746 	return;
747 
748 stop_admin_q:
749 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
750 requeue:
751 	/* Make sure we are not resetting/deleting */
752 	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
753 		dev_info(ctrl->ctrl.device,
754 			"Failed reconnect attempt, requeueing...\n");
755 		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
756 					ctrl->reconnect_delay * HZ);
757 	}
758 }
759 
760 static void nvme_rdma_error_recovery_work(struct work_struct *work)
761 {
762 	struct nvme_rdma_ctrl *ctrl = container_of(work,
763 			struct nvme_rdma_ctrl, err_work);
764 
765 	nvme_stop_keep_alive(&ctrl->ctrl);
766 	if (ctrl->queue_count > 1)
767 		nvme_stop_queues(&ctrl->ctrl);
768 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
769 
770 	/* We must take care of fastfail/requeue all our inflight requests */
771 	if (ctrl->queue_count > 1)
772 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
773 					nvme_cancel_request, &ctrl->ctrl);
774 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
775 				nvme_cancel_request, &ctrl->ctrl);
776 
777 	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
778 		ctrl->reconnect_delay);
779 
780 	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
781 				ctrl->reconnect_delay * HZ);
782 }
783 
784 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
785 {
786 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
787 		return;
788 
789 	queue_work(nvme_rdma_wq, &ctrl->err_work);
790 }
791 
792 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
793 		const char *op)
794 {
795 	struct nvme_rdma_queue *queue = cq->cq_context;
796 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
797 
798 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
799 		dev_info(ctrl->ctrl.device,
800 			     "%s for CQE 0x%p failed with status %s (%d)\n",
801 			     op, wc->wr_cqe,
802 			     ib_wc_status_msg(wc->status), wc->status);
803 	nvme_rdma_error_recovery(ctrl);
804 }
805 
806 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
807 {
808 	if (unlikely(wc->status != IB_WC_SUCCESS))
809 		nvme_rdma_wr_error(cq, wc, "MEMREG");
810 }
811 
812 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
813 {
814 	if (unlikely(wc->status != IB_WC_SUCCESS))
815 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
816 }
817 
818 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
819 		struct nvme_rdma_request *req)
820 {
821 	struct ib_send_wr *bad_wr;
822 	struct ib_send_wr wr = {
823 		.opcode		    = IB_WR_LOCAL_INV,
824 		.next		    = NULL,
825 		.num_sge	    = 0,
826 		.send_flags	    = 0,
827 		.ex.invalidate_rkey = req->mr->rkey,
828 	};
829 
830 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
831 	wr.wr_cqe = &req->reg_cqe;
832 
833 	return ib_post_send(queue->qp, &wr, &bad_wr);
834 }
835 
836 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
837 		struct request *rq)
838 {
839 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
840 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
841 	struct nvme_rdma_device *dev = queue->device;
842 	struct ib_device *ibdev = dev->dev;
843 	int res;
844 
845 	if (!blk_rq_bytes(rq))
846 		return;
847 
848 	if (req->mr->need_inval) {
849 		res = nvme_rdma_inv_rkey(queue, req);
850 		if (res < 0) {
851 			dev_err(ctrl->ctrl.device,
852 				"Queueing INV WR for rkey %#x failed (%d)\n",
853 				req->mr->rkey, res);
854 			nvme_rdma_error_recovery(queue->ctrl);
855 		}
856 	}
857 
858 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
859 			req->nents, rq_data_dir(rq) ==
860 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
861 
862 	nvme_cleanup_cmd(rq);
863 	sg_free_table_chained(&req->sg_table, true);
864 }
865 
866 static int nvme_rdma_set_sg_null(struct nvme_command *c)
867 {
868 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
869 
870 	sg->addr = 0;
871 	put_unaligned_le24(0, sg->length);
872 	put_unaligned_le32(0, sg->key);
873 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
874 	return 0;
875 }
876 
877 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
878 		struct nvme_rdma_request *req, struct nvme_command *c)
879 {
880 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
881 
882 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
883 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
884 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
885 
886 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
887 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
888 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
889 
890 	req->inline_data = true;
891 	req->num_sge++;
892 	return 0;
893 }
894 
895 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
896 		struct nvme_rdma_request *req, struct nvme_command *c)
897 {
898 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
899 
900 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
901 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
902 	put_unaligned_le32(queue->device->mr->rkey, sg->key);
903 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
904 	return 0;
905 }
906 
907 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
908 		struct nvme_rdma_request *req, struct nvme_command *c,
909 		int count)
910 {
911 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
912 	int nr;
913 
914 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
915 	if (nr < count) {
916 		if (nr < 0)
917 			return nr;
918 		return -EINVAL;
919 	}
920 
921 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
922 
923 	req->reg_cqe.done = nvme_rdma_memreg_done;
924 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
925 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
926 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
927 	req->reg_wr.wr.num_sge = 0;
928 	req->reg_wr.mr = req->mr;
929 	req->reg_wr.key = req->mr->rkey;
930 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
931 			     IB_ACCESS_REMOTE_READ |
932 			     IB_ACCESS_REMOTE_WRITE;
933 
934 	req->mr->need_inval = true;
935 
936 	sg->addr = cpu_to_le64(req->mr->iova);
937 	put_unaligned_le24(req->mr->length, sg->length);
938 	put_unaligned_le32(req->mr->rkey, sg->key);
939 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
940 			NVME_SGL_FMT_INVALIDATE;
941 
942 	return 0;
943 }
944 
945 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
946 		struct request *rq, unsigned int map_len,
947 		struct nvme_command *c)
948 {
949 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
950 	struct nvme_rdma_device *dev = queue->device;
951 	struct ib_device *ibdev = dev->dev;
952 	int nents, count;
953 	int ret;
954 
955 	req->num_sge = 1;
956 	req->inline_data = false;
957 	req->mr->need_inval = false;
958 
959 	c->common.flags |= NVME_CMD_SGL_METABUF;
960 
961 	if (!blk_rq_bytes(rq))
962 		return nvme_rdma_set_sg_null(c);
963 
964 	req->sg_table.sgl = req->first_sgl;
965 	ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
966 				req->sg_table.sgl);
967 	if (ret)
968 		return -ENOMEM;
969 
970 	nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
971 	BUG_ON(nents > rq->nr_phys_segments);
972 	req->nents = nents;
973 
974 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
975 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
976 	if (unlikely(count <= 0)) {
977 		sg_free_table_chained(&req->sg_table, true);
978 		return -EIO;
979 	}
980 
981 	if (count == 1) {
982 		if (rq_data_dir(rq) == WRITE &&
983 		    map_len <= nvme_rdma_inline_data_size(queue) &&
984 		    nvme_rdma_queue_idx(queue))
985 			return nvme_rdma_map_sg_inline(queue, req, c);
986 
987 		if (!register_always)
988 			return nvme_rdma_map_sg_single(queue, req, c);
989 	}
990 
991 	return nvme_rdma_map_sg_fr(queue, req, c, count);
992 }
993 
994 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
995 {
996 	if (unlikely(wc->status != IB_WC_SUCCESS))
997 		nvme_rdma_wr_error(cq, wc, "SEND");
998 }
999 
1000 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1001 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1002 		struct ib_send_wr *first, bool flush)
1003 {
1004 	struct ib_send_wr wr, *bad_wr;
1005 	int ret;
1006 
1007 	sge->addr   = qe->dma;
1008 	sge->length = sizeof(struct nvme_command),
1009 	sge->lkey   = queue->device->pd->local_dma_lkey;
1010 
1011 	qe->cqe.done = nvme_rdma_send_done;
1012 
1013 	wr.next       = NULL;
1014 	wr.wr_cqe     = &qe->cqe;
1015 	wr.sg_list    = sge;
1016 	wr.num_sge    = num_sge;
1017 	wr.opcode     = IB_WR_SEND;
1018 	wr.send_flags = 0;
1019 
1020 	/*
1021 	 * Unsignalled send completions are another giant desaster in the
1022 	 * IB Verbs spec:  If we don't regularly post signalled sends
1023 	 * the send queue will fill up and only a QP reset will rescue us.
1024 	 * Would have been way to obvious to handle this in hardware or
1025 	 * at least the RDMA stack..
1026 	 *
1027 	 * This messy and racy code sniplet is copy and pasted from the iSER
1028 	 * initiator, and the magic '32' comes from there as well.
1029 	 *
1030 	 * Always signal the flushes. The magic request used for the flush
1031 	 * sequencer is not allocated in our driver's tagset and it's
1032 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1033 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1034 	 * embeded in request's payload, is not freed when __ib_process_cq()
1035 	 * calls wr_cqe->done().
1036 	 */
1037 	if ((++queue->sig_count % 32) == 0 || flush)
1038 		wr.send_flags |= IB_SEND_SIGNALED;
1039 
1040 	if (first)
1041 		first->next = &wr;
1042 	else
1043 		first = &wr;
1044 
1045 	ret = ib_post_send(queue->qp, first, &bad_wr);
1046 	if (ret) {
1047 		dev_err(queue->ctrl->ctrl.device,
1048 			     "%s failed with error code %d\n", __func__, ret);
1049 	}
1050 	return ret;
1051 }
1052 
1053 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1054 		struct nvme_rdma_qe *qe)
1055 {
1056 	struct ib_recv_wr wr, *bad_wr;
1057 	struct ib_sge list;
1058 	int ret;
1059 
1060 	list.addr   = qe->dma;
1061 	list.length = sizeof(struct nvme_completion);
1062 	list.lkey   = queue->device->pd->local_dma_lkey;
1063 
1064 	qe->cqe.done = nvme_rdma_recv_done;
1065 
1066 	wr.next     = NULL;
1067 	wr.wr_cqe   = &qe->cqe;
1068 	wr.sg_list  = &list;
1069 	wr.num_sge  = 1;
1070 
1071 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1072 	if (ret) {
1073 		dev_err(queue->ctrl->ctrl.device,
1074 			"%s failed with error code %d\n", __func__, ret);
1075 	}
1076 	return ret;
1077 }
1078 
1079 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1080 {
1081 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1082 
1083 	if (queue_idx == 0)
1084 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1085 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1086 }
1087 
1088 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1089 {
1090 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1091 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1092 	struct ib_device *dev = queue->device->dev;
1093 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1094 	struct nvme_command *cmd = sqe->data;
1095 	struct ib_sge sge;
1096 	int ret;
1097 
1098 	if (WARN_ON_ONCE(aer_idx != 0))
1099 		return;
1100 
1101 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1102 
1103 	memset(cmd, 0, sizeof(*cmd));
1104 	cmd->common.opcode = nvme_admin_async_event;
1105 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1106 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1107 	nvme_rdma_set_sg_null(cmd);
1108 
1109 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1110 			DMA_TO_DEVICE);
1111 
1112 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1113 	WARN_ON_ONCE(ret);
1114 }
1115 
1116 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1117 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1118 {
1119 	u16 status = le16_to_cpu(cqe->status);
1120 	struct request *rq;
1121 	struct nvme_rdma_request *req;
1122 	int ret = 0;
1123 
1124 	status >>= 1;
1125 
1126 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1127 	if (!rq) {
1128 		dev_err(queue->ctrl->ctrl.device,
1129 			"tag 0x%x on QP %#x not found\n",
1130 			cqe->command_id, queue->qp->qp_num);
1131 		nvme_rdma_error_recovery(queue->ctrl);
1132 		return ret;
1133 	}
1134 	req = blk_mq_rq_to_pdu(rq);
1135 
1136 	if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1137 		memcpy(rq->special, cqe, sizeof(*cqe));
1138 
1139 	if (rq->tag == tag)
1140 		ret = 1;
1141 
1142 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1143 	    wc->ex.invalidate_rkey == req->mr->rkey)
1144 		req->mr->need_inval = false;
1145 
1146 	blk_mq_complete_request(rq, status);
1147 
1148 	return ret;
1149 }
1150 
1151 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1152 {
1153 	struct nvme_rdma_qe *qe =
1154 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1155 	struct nvme_rdma_queue *queue = cq->cq_context;
1156 	struct ib_device *ibdev = queue->device->dev;
1157 	struct nvme_completion *cqe = qe->data;
1158 	const size_t len = sizeof(struct nvme_completion);
1159 	int ret = 0;
1160 
1161 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1162 		nvme_rdma_wr_error(cq, wc, "RECV");
1163 		return 0;
1164 	}
1165 
1166 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1167 	/*
1168 	 * AEN requests are special as they don't time out and can
1169 	 * survive any kind of queue freeze and often don't respond to
1170 	 * aborts.  We don't even bother to allocate a struct request
1171 	 * for them but rather special case them here.
1172 	 */
1173 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1174 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1175 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1176 	else
1177 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1178 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1179 
1180 	nvme_rdma_post_recv(queue, qe);
1181 	return ret;
1182 }
1183 
1184 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1185 {
1186 	__nvme_rdma_recv_done(cq, wc, -1);
1187 }
1188 
1189 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1190 {
1191 	int ret, i;
1192 
1193 	for (i = 0; i < queue->queue_size; i++) {
1194 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1195 		if (ret)
1196 			goto out_destroy_queue_ib;
1197 	}
1198 
1199 	return 0;
1200 
1201 out_destroy_queue_ib:
1202 	nvme_rdma_destroy_queue_ib(queue);
1203 	return ret;
1204 }
1205 
1206 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1207 		struct rdma_cm_event *ev)
1208 {
1209 	if (ev->param.conn.private_data_len) {
1210 		struct nvme_rdma_cm_rej *rej =
1211 			(struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1212 
1213 		dev_err(queue->ctrl->ctrl.device,
1214 			"Connect rejected, status %d.", le16_to_cpu(rej->sts));
1215 		/* XXX: Think of something clever to do here... */
1216 	} else {
1217 		dev_err(queue->ctrl->ctrl.device,
1218 			"Connect rejected, no private data.\n");
1219 	}
1220 
1221 	return -ECONNRESET;
1222 }
1223 
1224 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1225 {
1226 	struct nvme_rdma_device *dev;
1227 	int ret;
1228 
1229 	dev = nvme_rdma_find_get_device(queue->cm_id);
1230 	if (!dev) {
1231 		dev_err(queue->cm_id->device->dma_device,
1232 			"no client data found!\n");
1233 		return -ECONNREFUSED;
1234 	}
1235 
1236 	ret = nvme_rdma_create_queue_ib(queue, dev);
1237 	if (ret) {
1238 		nvme_rdma_dev_put(dev);
1239 		goto out;
1240 	}
1241 
1242 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1243 	if (ret) {
1244 		dev_err(queue->ctrl->ctrl.device,
1245 			"rdma_resolve_route failed (%d).\n",
1246 			queue->cm_error);
1247 		goto out_destroy_queue;
1248 	}
1249 
1250 	return 0;
1251 
1252 out_destroy_queue:
1253 	nvme_rdma_destroy_queue_ib(queue);
1254 out:
1255 	return ret;
1256 }
1257 
1258 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1259 {
1260 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1261 	struct rdma_conn_param param = { };
1262 	struct nvme_rdma_cm_req priv = { };
1263 	int ret;
1264 
1265 	param.qp_num = queue->qp->qp_num;
1266 	param.flow_control = 1;
1267 
1268 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1269 	/* maximum retry count */
1270 	param.retry_count = 7;
1271 	param.rnr_retry_count = 7;
1272 	param.private_data = &priv;
1273 	param.private_data_len = sizeof(priv);
1274 
1275 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1276 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1277 	/*
1278 	 * set the admin queue depth to the minimum size
1279 	 * specified by the Fabrics standard.
1280 	 */
1281 	if (priv.qid == 0) {
1282 		priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1283 		priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1284 	} else {
1285 		/*
1286 		 * current interpretation of the fabrics spec
1287 		 * is at minimum you make hrqsize sqsize+1, or a
1288 		 * 1's based representation of sqsize.
1289 		 */
1290 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1291 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1292 	}
1293 
1294 	ret = rdma_connect(queue->cm_id, &param);
1295 	if (ret) {
1296 		dev_err(ctrl->ctrl.device,
1297 			"rdma_connect failed (%d).\n", ret);
1298 		goto out_destroy_queue_ib;
1299 	}
1300 
1301 	return 0;
1302 
1303 out_destroy_queue_ib:
1304 	nvme_rdma_destroy_queue_ib(queue);
1305 	return ret;
1306 }
1307 
1308 /**
1309  * nvme_rdma_device_unplug() - Handle RDMA device unplug
1310  * @queue:      Queue that owns the cm_id that caught the event
1311  *
1312  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1313  * to unplug so we should take care of destroying our RDMA resources.
1314  * This event will be generated for each allocated cm_id.
1315  *
1316  * In our case, the RDMA resources are managed per controller and not
1317  * only per queue. So the way we handle this is we trigger an implicit
1318  * controller deletion upon the first DEVICE_REMOVAL event we see, and
1319  * hold the event inflight until the controller deletion is completed.
1320  *
1321  * One exception that we need to handle is the destruction of the cm_id
1322  * that caught the event. Since we hold the callout until the controller
1323  * deletion is completed, we'll deadlock if the controller deletion will
1324  * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1325  * of destroying this queue before-hand, destroy the queue resources,
1326  * then queue the controller deletion which won't destroy this queue and
1327  * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
1328  */
1329 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1330 {
1331 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1332 	int ret = 0;
1333 
1334 	/* Own the controller deletion */
1335 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1336 		return 0;
1337 
1338 	dev_warn(ctrl->ctrl.device,
1339 		"Got rdma device removal event, deleting ctrl\n");
1340 
1341 	/* Get rid of reconnect work if its running */
1342 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1343 
1344 	/* Disable the queue so ctrl delete won't free it */
1345 	if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1346 		/* Free this queue ourselves */
1347 		nvme_rdma_stop_queue(queue);
1348 		nvme_rdma_destroy_queue_ib(queue);
1349 
1350 		/* Return non-zero so the cm_id will destroy implicitly */
1351 		ret = 1;
1352 	}
1353 
1354 	/* Queue controller deletion */
1355 	queue_work(nvme_rdma_wq, &ctrl->delete_work);
1356 	flush_work(&ctrl->delete_work);
1357 	return ret;
1358 }
1359 
1360 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1361 		struct rdma_cm_event *ev)
1362 {
1363 	struct nvme_rdma_queue *queue = cm_id->context;
1364 	int cm_error = 0;
1365 
1366 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1367 		rdma_event_msg(ev->event), ev->event,
1368 		ev->status, cm_id);
1369 
1370 	switch (ev->event) {
1371 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1372 		cm_error = nvme_rdma_addr_resolved(queue);
1373 		break;
1374 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1375 		cm_error = nvme_rdma_route_resolved(queue);
1376 		break;
1377 	case RDMA_CM_EVENT_ESTABLISHED:
1378 		queue->cm_error = nvme_rdma_conn_established(queue);
1379 		/* complete cm_done regardless of success/failure */
1380 		complete(&queue->cm_done);
1381 		return 0;
1382 	case RDMA_CM_EVENT_REJECTED:
1383 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1384 		break;
1385 	case RDMA_CM_EVENT_ADDR_ERROR:
1386 	case RDMA_CM_EVENT_ROUTE_ERROR:
1387 	case RDMA_CM_EVENT_CONNECT_ERROR:
1388 	case RDMA_CM_EVENT_UNREACHABLE:
1389 		dev_dbg(queue->ctrl->ctrl.device,
1390 			"CM error event %d\n", ev->event);
1391 		cm_error = -ECONNRESET;
1392 		break;
1393 	case RDMA_CM_EVENT_DISCONNECTED:
1394 	case RDMA_CM_EVENT_ADDR_CHANGE:
1395 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1396 		dev_dbg(queue->ctrl->ctrl.device,
1397 			"disconnect received - connection closed\n");
1398 		nvme_rdma_error_recovery(queue->ctrl);
1399 		break;
1400 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1401 		/* return 1 means impliciy CM ID destroy */
1402 		return nvme_rdma_device_unplug(queue);
1403 	default:
1404 		dev_err(queue->ctrl->ctrl.device,
1405 			"Unexpected RDMA CM event (%d)\n", ev->event);
1406 		nvme_rdma_error_recovery(queue->ctrl);
1407 		break;
1408 	}
1409 
1410 	if (cm_error) {
1411 		queue->cm_error = cm_error;
1412 		complete(&queue->cm_done);
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static enum blk_eh_timer_return
1419 nvme_rdma_timeout(struct request *rq, bool reserved)
1420 {
1421 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1422 
1423 	/* queue error recovery */
1424 	nvme_rdma_error_recovery(req->queue->ctrl);
1425 
1426 	/* fail with DNR on cmd timeout */
1427 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1428 
1429 	return BLK_EH_HANDLED;
1430 }
1431 
1432 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1433 		const struct blk_mq_queue_data *bd)
1434 {
1435 	struct nvme_ns *ns = hctx->queue->queuedata;
1436 	struct nvme_rdma_queue *queue = hctx->driver_data;
1437 	struct request *rq = bd->rq;
1438 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1439 	struct nvme_rdma_qe *sqe = &req->sqe;
1440 	struct nvme_command *c = sqe->data;
1441 	bool flush = false;
1442 	struct ib_device *dev;
1443 	unsigned int map_len;
1444 	int ret;
1445 
1446 	WARN_ON_ONCE(rq->tag < 0);
1447 
1448 	dev = queue->device->dev;
1449 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1450 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1451 
1452 	ret = nvme_setup_cmd(ns, rq, c);
1453 	if (ret)
1454 		return ret;
1455 
1456 	c->common.command_id = rq->tag;
1457 	blk_mq_start_request(rq);
1458 
1459 	map_len = nvme_map_len(rq);
1460 	ret = nvme_rdma_map_data(queue, rq, map_len, c);
1461 	if (ret < 0) {
1462 		dev_err(queue->ctrl->ctrl.device,
1463 			     "Failed to map data (%d)\n", ret);
1464 		nvme_cleanup_cmd(rq);
1465 		goto err;
1466 	}
1467 
1468 	ib_dma_sync_single_for_device(dev, sqe->dma,
1469 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1470 
1471 	if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1472 		flush = true;
1473 	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1474 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1475 	if (ret) {
1476 		nvme_rdma_unmap_data(queue, rq);
1477 		goto err;
1478 	}
1479 
1480 	return BLK_MQ_RQ_QUEUE_OK;
1481 err:
1482 	return (ret == -ENOMEM || ret == -EAGAIN) ?
1483 		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1484 }
1485 
1486 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1487 {
1488 	struct nvme_rdma_queue *queue = hctx->driver_data;
1489 	struct ib_cq *cq = queue->ib_cq;
1490 	struct ib_wc wc;
1491 	int found = 0;
1492 
1493 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1494 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1495 		struct ib_cqe *cqe = wc.wr_cqe;
1496 
1497 		if (cqe) {
1498 			if (cqe->done == nvme_rdma_recv_done)
1499 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1500 			else
1501 				cqe->done(cq, &wc);
1502 		}
1503 	}
1504 
1505 	return found;
1506 }
1507 
1508 static void nvme_rdma_complete_rq(struct request *rq)
1509 {
1510 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1511 	struct nvme_rdma_queue *queue = req->queue;
1512 	int error = 0;
1513 
1514 	nvme_rdma_unmap_data(queue, rq);
1515 
1516 	if (unlikely(rq->errors)) {
1517 		if (nvme_req_needs_retry(rq, rq->errors)) {
1518 			nvme_requeue_req(rq);
1519 			return;
1520 		}
1521 
1522 		if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1523 			error = rq->errors;
1524 		else
1525 			error = nvme_error_status(rq->errors);
1526 	}
1527 
1528 	blk_mq_end_request(rq, error);
1529 }
1530 
1531 static struct blk_mq_ops nvme_rdma_mq_ops = {
1532 	.queue_rq	= nvme_rdma_queue_rq,
1533 	.complete	= nvme_rdma_complete_rq,
1534 	.map_queue	= blk_mq_map_queue,
1535 	.init_request	= nvme_rdma_init_request,
1536 	.exit_request	= nvme_rdma_exit_request,
1537 	.reinit_request	= nvme_rdma_reinit_request,
1538 	.init_hctx	= nvme_rdma_init_hctx,
1539 	.poll		= nvme_rdma_poll,
1540 	.timeout	= nvme_rdma_timeout,
1541 };
1542 
1543 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1544 	.queue_rq	= nvme_rdma_queue_rq,
1545 	.complete	= nvme_rdma_complete_rq,
1546 	.map_queue	= blk_mq_map_queue,
1547 	.init_request	= nvme_rdma_init_admin_request,
1548 	.exit_request	= nvme_rdma_exit_admin_request,
1549 	.reinit_request	= nvme_rdma_reinit_request,
1550 	.init_hctx	= nvme_rdma_init_admin_hctx,
1551 	.timeout	= nvme_rdma_timeout,
1552 };
1553 
1554 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1555 {
1556 	int error;
1557 
1558 	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1559 	if (error)
1560 		return error;
1561 
1562 	ctrl->device = ctrl->queues[0].device;
1563 
1564 	/*
1565 	 * We need a reference on the device as long as the tag_set is alive,
1566 	 * as the MRs in the request structures need a valid ib_device.
1567 	 */
1568 	error = -EINVAL;
1569 	if (!nvme_rdma_dev_get(ctrl->device))
1570 		goto out_free_queue;
1571 
1572 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1573 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1574 
1575 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1576 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1577 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1578 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1579 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1580 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1581 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1582 	ctrl->admin_tag_set.driver_data = ctrl;
1583 	ctrl->admin_tag_set.nr_hw_queues = 1;
1584 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1585 
1586 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1587 	if (error)
1588 		goto out_put_dev;
1589 
1590 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1591 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1592 		error = PTR_ERR(ctrl->ctrl.admin_q);
1593 		goto out_free_tagset;
1594 	}
1595 
1596 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1597 	if (error)
1598 		goto out_cleanup_queue;
1599 
1600 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1601 	if (error) {
1602 		dev_err(ctrl->ctrl.device,
1603 			"prop_get NVME_REG_CAP failed\n");
1604 		goto out_cleanup_queue;
1605 	}
1606 
1607 	ctrl->ctrl.sqsize =
1608 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1609 
1610 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1611 	if (error)
1612 		goto out_cleanup_queue;
1613 
1614 	ctrl->ctrl.max_hw_sectors =
1615 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1616 
1617 	error = nvme_init_identify(&ctrl->ctrl);
1618 	if (error)
1619 		goto out_cleanup_queue;
1620 
1621 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1622 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1623 			DMA_TO_DEVICE);
1624 	if (error)
1625 		goto out_cleanup_queue;
1626 
1627 	nvme_start_keep_alive(&ctrl->ctrl);
1628 
1629 	return 0;
1630 
1631 out_cleanup_queue:
1632 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1633 out_free_tagset:
1634 	/* disconnect and drain the queue before freeing the tagset */
1635 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1636 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1637 out_put_dev:
1638 	nvme_rdma_dev_put(ctrl->device);
1639 out_free_queue:
1640 	nvme_rdma_free_queue(&ctrl->queues[0]);
1641 	return error;
1642 }
1643 
1644 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1645 {
1646 	nvme_stop_keep_alive(&ctrl->ctrl);
1647 	cancel_work_sync(&ctrl->err_work);
1648 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1649 
1650 	if (ctrl->queue_count > 1) {
1651 		nvme_stop_queues(&ctrl->ctrl);
1652 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1653 					nvme_cancel_request, &ctrl->ctrl);
1654 		nvme_rdma_free_io_queues(ctrl);
1655 	}
1656 
1657 	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1658 		nvme_shutdown_ctrl(&ctrl->ctrl);
1659 
1660 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1661 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1662 				nvme_cancel_request, &ctrl->ctrl);
1663 	nvme_rdma_destroy_admin_queue(ctrl);
1664 }
1665 
1666 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1667 {
1668 	nvme_uninit_ctrl(&ctrl->ctrl);
1669 	if (shutdown)
1670 		nvme_rdma_shutdown_ctrl(ctrl);
1671 
1672 	if (ctrl->ctrl.tagset) {
1673 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1674 		blk_mq_free_tag_set(&ctrl->tag_set);
1675 		nvme_rdma_dev_put(ctrl->device);
1676 	}
1677 
1678 	nvme_put_ctrl(&ctrl->ctrl);
1679 }
1680 
1681 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1682 {
1683 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1684 				struct nvme_rdma_ctrl, delete_work);
1685 
1686 	__nvme_rdma_remove_ctrl(ctrl, true);
1687 }
1688 
1689 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1690 {
1691 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1692 		return -EBUSY;
1693 
1694 	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1695 		return -EBUSY;
1696 
1697 	return 0;
1698 }
1699 
1700 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1701 {
1702 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1703 	int ret;
1704 
1705 	ret = __nvme_rdma_del_ctrl(ctrl);
1706 	if (ret)
1707 		return ret;
1708 
1709 	flush_work(&ctrl->delete_work);
1710 
1711 	return 0;
1712 }
1713 
1714 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1715 {
1716 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1717 				struct nvme_rdma_ctrl, delete_work);
1718 
1719 	__nvme_rdma_remove_ctrl(ctrl, false);
1720 }
1721 
1722 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1723 {
1724 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1725 					struct nvme_rdma_ctrl, reset_work);
1726 	int ret;
1727 	bool changed;
1728 
1729 	nvme_rdma_shutdown_ctrl(ctrl);
1730 
1731 	ret = nvme_rdma_configure_admin_queue(ctrl);
1732 	if (ret) {
1733 		/* ctrl is already shutdown, just remove the ctrl */
1734 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1735 		goto del_dead_ctrl;
1736 	}
1737 
1738 	if (ctrl->queue_count > 1) {
1739 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1740 		if (ret)
1741 			goto del_dead_ctrl;
1742 
1743 		ret = nvme_rdma_init_io_queues(ctrl);
1744 		if (ret)
1745 			goto del_dead_ctrl;
1746 
1747 		ret = nvme_rdma_connect_io_queues(ctrl);
1748 		if (ret)
1749 			goto del_dead_ctrl;
1750 	}
1751 
1752 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1753 	WARN_ON_ONCE(!changed);
1754 
1755 	if (ctrl->queue_count > 1) {
1756 		nvme_start_queues(&ctrl->ctrl);
1757 		nvme_queue_scan(&ctrl->ctrl);
1758 		nvme_queue_async_events(&ctrl->ctrl);
1759 	}
1760 
1761 	return;
1762 
1763 del_dead_ctrl:
1764 	/* Deleting this dead controller... */
1765 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1766 	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1767 }
1768 
1769 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1770 {
1771 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1772 
1773 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1774 		return -EBUSY;
1775 
1776 	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1777 		return -EBUSY;
1778 
1779 	flush_work(&ctrl->reset_work);
1780 
1781 	return 0;
1782 }
1783 
1784 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1785 	.name			= "rdma",
1786 	.module			= THIS_MODULE,
1787 	.is_fabrics		= true,
1788 	.reg_read32		= nvmf_reg_read32,
1789 	.reg_read64		= nvmf_reg_read64,
1790 	.reg_write32		= nvmf_reg_write32,
1791 	.reset_ctrl		= nvme_rdma_reset_ctrl,
1792 	.free_ctrl		= nvme_rdma_free_ctrl,
1793 	.submit_async_event	= nvme_rdma_submit_async_event,
1794 	.delete_ctrl		= nvme_rdma_del_ctrl,
1795 	.get_subsysnqn		= nvmf_get_subsysnqn,
1796 	.get_address		= nvmf_get_address,
1797 };
1798 
1799 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1800 {
1801 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1802 	int ret;
1803 
1804 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1805 	if (ret)
1806 		return ret;
1807 
1808 	ctrl->queue_count = opts->nr_io_queues + 1;
1809 	if (ctrl->queue_count < 2)
1810 		return 0;
1811 
1812 	dev_info(ctrl->ctrl.device,
1813 		"creating %d I/O queues.\n", opts->nr_io_queues);
1814 
1815 	ret = nvme_rdma_init_io_queues(ctrl);
1816 	if (ret)
1817 		return ret;
1818 
1819 	/*
1820 	 * We need a reference on the device as long as the tag_set is alive,
1821 	 * as the MRs in the request structures need a valid ib_device.
1822 	 */
1823 	ret = -EINVAL;
1824 	if (!nvme_rdma_dev_get(ctrl->device))
1825 		goto out_free_io_queues;
1826 
1827 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1828 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1829 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1830 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1831 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1832 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1833 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1834 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1835 	ctrl->tag_set.driver_data = ctrl;
1836 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1837 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1838 
1839 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1840 	if (ret)
1841 		goto out_put_dev;
1842 	ctrl->ctrl.tagset = &ctrl->tag_set;
1843 
1844 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1845 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1846 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1847 		goto out_free_tag_set;
1848 	}
1849 
1850 	ret = nvme_rdma_connect_io_queues(ctrl);
1851 	if (ret)
1852 		goto out_cleanup_connect_q;
1853 
1854 	return 0;
1855 
1856 out_cleanup_connect_q:
1857 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1858 out_free_tag_set:
1859 	blk_mq_free_tag_set(&ctrl->tag_set);
1860 out_put_dev:
1861 	nvme_rdma_dev_put(ctrl->device);
1862 out_free_io_queues:
1863 	nvme_rdma_free_io_queues(ctrl);
1864 	return ret;
1865 }
1866 
1867 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1868 {
1869 	u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1870 	size_t buflen = strlen(p);
1871 
1872 	/* XXX: handle IPv6 addresses */
1873 
1874 	if (buflen > INET_ADDRSTRLEN)
1875 		return -EINVAL;
1876 	if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1877 		return -EINVAL;
1878 	in_addr->sin_family = AF_INET;
1879 	return 0;
1880 }
1881 
1882 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1883 		struct nvmf_ctrl_options *opts)
1884 {
1885 	struct nvme_rdma_ctrl *ctrl;
1886 	int ret;
1887 	bool changed;
1888 
1889 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1890 	if (!ctrl)
1891 		return ERR_PTR(-ENOMEM);
1892 	ctrl->ctrl.opts = opts;
1893 	INIT_LIST_HEAD(&ctrl->list);
1894 
1895 	ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1896 	if (ret) {
1897 		pr_err("malformed IP address passed: %s\n", opts->traddr);
1898 		goto out_free_ctrl;
1899 	}
1900 
1901 	if (opts->mask & NVMF_OPT_TRSVCID) {
1902 		u16 port;
1903 
1904 		ret = kstrtou16(opts->trsvcid, 0, &port);
1905 		if (ret)
1906 			goto out_free_ctrl;
1907 
1908 		ctrl->addr_in.sin_port = cpu_to_be16(port);
1909 	} else {
1910 		ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1911 	}
1912 
1913 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1914 				0 /* no quirks, we're perfect! */);
1915 	if (ret)
1916 		goto out_free_ctrl;
1917 
1918 	ctrl->reconnect_delay = opts->reconnect_delay;
1919 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1920 			nvme_rdma_reconnect_ctrl_work);
1921 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1922 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1923 	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1924 	spin_lock_init(&ctrl->lock);
1925 
1926 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1927 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1928 	ctrl->ctrl.kato = opts->kato;
1929 
1930 	ret = -ENOMEM;
1931 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1932 				GFP_KERNEL);
1933 	if (!ctrl->queues)
1934 		goto out_uninit_ctrl;
1935 
1936 	ret = nvme_rdma_configure_admin_queue(ctrl);
1937 	if (ret)
1938 		goto out_kfree_queues;
1939 
1940 	/* sanity check icdoff */
1941 	if (ctrl->ctrl.icdoff) {
1942 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1943 		goto out_remove_admin_queue;
1944 	}
1945 
1946 	/* sanity check keyed sgls */
1947 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1948 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1949 		goto out_remove_admin_queue;
1950 	}
1951 
1952 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1953 		/* warn if maxcmd is lower than queue_size */
1954 		dev_warn(ctrl->ctrl.device,
1955 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1956 			opts->queue_size, ctrl->ctrl.maxcmd);
1957 		opts->queue_size = ctrl->ctrl.maxcmd;
1958 	}
1959 
1960 	if (opts->nr_io_queues) {
1961 		ret = nvme_rdma_create_io_queues(ctrl);
1962 		if (ret)
1963 			goto out_remove_admin_queue;
1964 	}
1965 
1966 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1967 	WARN_ON_ONCE(!changed);
1968 
1969 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1970 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1971 
1972 	kref_get(&ctrl->ctrl.kref);
1973 
1974 	mutex_lock(&nvme_rdma_ctrl_mutex);
1975 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1976 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1977 
1978 	if (opts->nr_io_queues) {
1979 		nvme_queue_scan(&ctrl->ctrl);
1980 		nvme_queue_async_events(&ctrl->ctrl);
1981 	}
1982 
1983 	return &ctrl->ctrl;
1984 
1985 out_remove_admin_queue:
1986 	nvme_stop_keep_alive(&ctrl->ctrl);
1987 	nvme_rdma_destroy_admin_queue(ctrl);
1988 out_kfree_queues:
1989 	kfree(ctrl->queues);
1990 out_uninit_ctrl:
1991 	nvme_uninit_ctrl(&ctrl->ctrl);
1992 	nvme_put_ctrl(&ctrl->ctrl);
1993 	if (ret > 0)
1994 		ret = -EIO;
1995 	return ERR_PTR(ret);
1996 out_free_ctrl:
1997 	kfree(ctrl);
1998 	return ERR_PTR(ret);
1999 }
2000 
2001 static struct nvmf_transport_ops nvme_rdma_transport = {
2002 	.name		= "rdma",
2003 	.required_opts	= NVMF_OPT_TRADDR,
2004 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
2005 	.create_ctrl	= nvme_rdma_create_ctrl,
2006 };
2007 
2008 static int __init nvme_rdma_init_module(void)
2009 {
2010 	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2011 	if (!nvme_rdma_wq)
2012 		return -ENOMEM;
2013 
2014 	nvmf_register_transport(&nvme_rdma_transport);
2015 	return 0;
2016 }
2017 
2018 static void __exit nvme_rdma_cleanup_module(void)
2019 {
2020 	struct nvme_rdma_ctrl *ctrl;
2021 
2022 	nvmf_unregister_transport(&nvme_rdma_transport);
2023 
2024 	mutex_lock(&nvme_rdma_ctrl_mutex);
2025 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2026 		__nvme_rdma_del_ctrl(ctrl);
2027 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2028 
2029 	destroy_workqueue(nvme_rdma_wq);
2030 }
2031 
2032 module_init(nvme_rdma_init_module);
2033 module_exit(nvme_rdma_cleanup_module);
2034 
2035 MODULE_LICENSE("GPL v2");
2036