1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <rdma/ib_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 39 40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 41 42 #define NVME_RDMA_MAX_SEGMENTS 256 43 44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 45 46 /* 47 * We handle AEN commands ourselves and don't even let the 48 * block layer know about them. 49 */ 50 #define NVME_RDMA_NR_AEN_COMMANDS 1 51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 53 54 struct nvme_rdma_device { 55 struct ib_device *dev; 56 struct ib_pd *pd; 57 struct ib_mr *mr; 58 struct kref ref; 59 struct list_head entry; 60 }; 61 62 struct nvme_rdma_qe { 63 struct ib_cqe cqe; 64 void *data; 65 u64 dma; 66 }; 67 68 struct nvme_rdma_queue; 69 struct nvme_rdma_request { 70 struct ib_mr *mr; 71 struct nvme_rdma_qe sqe; 72 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 73 u32 num_sge; 74 int nents; 75 bool inline_data; 76 struct ib_reg_wr reg_wr; 77 struct ib_cqe reg_cqe; 78 struct nvme_rdma_queue *queue; 79 struct sg_table sg_table; 80 struct scatterlist first_sgl[]; 81 }; 82 83 enum nvme_rdma_queue_flags { 84 NVME_RDMA_Q_CONNECTED = (1 << 0), 85 }; 86 87 struct nvme_rdma_queue { 88 struct nvme_rdma_qe *rsp_ring; 89 u8 sig_count; 90 int queue_size; 91 size_t cmnd_capsule_len; 92 struct nvme_rdma_ctrl *ctrl; 93 struct nvme_rdma_device *device; 94 struct ib_cq *ib_cq; 95 struct ib_qp *qp; 96 97 unsigned long flags; 98 struct rdma_cm_id *cm_id; 99 int cm_error; 100 struct completion cm_done; 101 }; 102 103 struct nvme_rdma_ctrl { 104 /* read and written in the hot path */ 105 spinlock_t lock; 106 107 /* read only in the hot path */ 108 struct nvme_rdma_queue *queues; 109 u32 queue_count; 110 111 /* other member variables */ 112 struct blk_mq_tag_set tag_set; 113 struct work_struct delete_work; 114 struct work_struct reset_work; 115 struct work_struct err_work; 116 117 struct nvme_rdma_qe async_event_sqe; 118 119 int reconnect_delay; 120 struct delayed_work reconnect_work; 121 122 struct list_head list; 123 124 struct blk_mq_tag_set admin_tag_set; 125 struct nvme_rdma_device *device; 126 127 u64 cap; 128 u32 max_fr_pages; 129 130 union { 131 struct sockaddr addr; 132 struct sockaddr_in addr_in; 133 }; 134 135 struct nvme_ctrl ctrl; 136 }; 137 138 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 139 { 140 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 141 } 142 143 static LIST_HEAD(device_list); 144 static DEFINE_MUTEX(device_list_mutex); 145 146 static LIST_HEAD(nvme_rdma_ctrl_list); 147 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 148 149 static struct workqueue_struct *nvme_rdma_wq; 150 151 /* 152 * Disabling this option makes small I/O goes faster, but is fundamentally 153 * unsafe. With it turned off we will have to register a global rkey that 154 * allows read and write access to all physical memory. 155 */ 156 static bool register_always = true; 157 module_param(register_always, bool, 0444); 158 MODULE_PARM_DESC(register_always, 159 "Use memory registration even for contiguous memory regions"); 160 161 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 162 struct rdma_cm_event *event); 163 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 164 165 /* XXX: really should move to a generic header sooner or later.. */ 166 static inline void put_unaligned_le24(u32 val, u8 *p) 167 { 168 *p++ = val; 169 *p++ = val >> 8; 170 *p++ = val >> 16; 171 } 172 173 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 174 { 175 return queue - queue->ctrl->queues; 176 } 177 178 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 179 { 180 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 181 } 182 183 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 184 size_t capsule_size, enum dma_data_direction dir) 185 { 186 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 187 kfree(qe->data); 188 } 189 190 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 191 size_t capsule_size, enum dma_data_direction dir) 192 { 193 qe->data = kzalloc(capsule_size, GFP_KERNEL); 194 if (!qe->data) 195 return -ENOMEM; 196 197 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 198 if (ib_dma_mapping_error(ibdev, qe->dma)) { 199 kfree(qe->data); 200 return -ENOMEM; 201 } 202 203 return 0; 204 } 205 206 static void nvme_rdma_free_ring(struct ib_device *ibdev, 207 struct nvme_rdma_qe *ring, size_t ib_queue_size, 208 size_t capsule_size, enum dma_data_direction dir) 209 { 210 int i; 211 212 for (i = 0; i < ib_queue_size; i++) 213 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 214 kfree(ring); 215 } 216 217 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 218 size_t ib_queue_size, size_t capsule_size, 219 enum dma_data_direction dir) 220 { 221 struct nvme_rdma_qe *ring; 222 int i; 223 224 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 225 if (!ring) 226 return NULL; 227 228 for (i = 0; i < ib_queue_size; i++) { 229 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 230 goto out_free_ring; 231 } 232 233 return ring; 234 235 out_free_ring: 236 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 237 return NULL; 238 } 239 240 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 241 { 242 pr_debug("QP event %d\n", event->event); 243 } 244 245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 246 { 247 wait_for_completion_interruptible_timeout(&queue->cm_done, 248 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 249 return queue->cm_error; 250 } 251 252 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 253 { 254 struct nvme_rdma_device *dev = queue->device; 255 struct ib_qp_init_attr init_attr; 256 int ret; 257 258 memset(&init_attr, 0, sizeof(init_attr)); 259 init_attr.event_handler = nvme_rdma_qp_event; 260 /* +1 for drain */ 261 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 262 /* +1 for drain */ 263 init_attr.cap.max_recv_wr = queue->queue_size + 1; 264 init_attr.cap.max_recv_sge = 1; 265 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 266 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 267 init_attr.qp_type = IB_QPT_RC; 268 init_attr.send_cq = queue->ib_cq; 269 init_attr.recv_cq = queue->ib_cq; 270 271 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 272 273 queue->qp = queue->cm_id->qp; 274 return ret; 275 } 276 277 static int nvme_rdma_reinit_request(void *data, struct request *rq) 278 { 279 struct nvme_rdma_ctrl *ctrl = data; 280 struct nvme_rdma_device *dev = ctrl->device; 281 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 282 int ret = 0; 283 284 if (!req->mr->need_inval) 285 goto out; 286 287 ib_dereg_mr(req->mr); 288 289 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 290 ctrl->max_fr_pages); 291 if (IS_ERR(req->mr)) { 292 ret = PTR_ERR(req->mr); 293 req->mr = NULL; 294 } 295 296 req->mr->need_inval = false; 297 298 out: 299 return ret; 300 } 301 302 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 303 struct request *rq, unsigned int queue_idx) 304 { 305 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 306 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 307 struct nvme_rdma_device *dev = queue->device; 308 309 if (req->mr) 310 ib_dereg_mr(req->mr); 311 312 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 313 DMA_TO_DEVICE); 314 } 315 316 static void nvme_rdma_exit_request(void *data, struct request *rq, 317 unsigned int hctx_idx, unsigned int rq_idx) 318 { 319 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 320 } 321 322 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 323 unsigned int hctx_idx, unsigned int rq_idx) 324 { 325 return __nvme_rdma_exit_request(data, rq, 0); 326 } 327 328 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 329 struct request *rq, unsigned int queue_idx) 330 { 331 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 332 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 333 struct nvme_rdma_device *dev = queue->device; 334 struct ib_device *ibdev = dev->dev; 335 int ret; 336 337 BUG_ON(queue_idx >= ctrl->queue_count); 338 339 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 340 DMA_TO_DEVICE); 341 if (ret) 342 return ret; 343 344 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 345 ctrl->max_fr_pages); 346 if (IS_ERR(req->mr)) { 347 ret = PTR_ERR(req->mr); 348 goto out_free_qe; 349 } 350 351 req->queue = queue; 352 353 return 0; 354 355 out_free_qe: 356 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 357 DMA_TO_DEVICE); 358 return -ENOMEM; 359 } 360 361 static int nvme_rdma_init_request(void *data, struct request *rq, 362 unsigned int hctx_idx, unsigned int rq_idx, 363 unsigned int numa_node) 364 { 365 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 366 } 367 368 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 369 unsigned int hctx_idx, unsigned int rq_idx, 370 unsigned int numa_node) 371 { 372 return __nvme_rdma_init_request(data, rq, 0); 373 } 374 375 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 376 unsigned int hctx_idx) 377 { 378 struct nvme_rdma_ctrl *ctrl = data; 379 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 380 381 BUG_ON(hctx_idx >= ctrl->queue_count); 382 383 hctx->driver_data = queue; 384 return 0; 385 } 386 387 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 388 unsigned int hctx_idx) 389 { 390 struct nvme_rdma_ctrl *ctrl = data; 391 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 392 393 BUG_ON(hctx_idx != 0); 394 395 hctx->driver_data = queue; 396 return 0; 397 } 398 399 static void nvme_rdma_free_dev(struct kref *ref) 400 { 401 struct nvme_rdma_device *ndev = 402 container_of(ref, struct nvme_rdma_device, ref); 403 404 mutex_lock(&device_list_mutex); 405 list_del(&ndev->entry); 406 mutex_unlock(&device_list_mutex); 407 408 if (!register_always) 409 ib_dereg_mr(ndev->mr); 410 ib_dealloc_pd(ndev->pd); 411 412 kfree(ndev); 413 } 414 415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 416 { 417 kref_put(&dev->ref, nvme_rdma_free_dev); 418 } 419 420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 421 { 422 return kref_get_unless_zero(&dev->ref); 423 } 424 425 static struct nvme_rdma_device * 426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 427 { 428 struct nvme_rdma_device *ndev; 429 430 mutex_lock(&device_list_mutex); 431 list_for_each_entry(ndev, &device_list, entry) { 432 if (ndev->dev->node_guid == cm_id->device->node_guid && 433 nvme_rdma_dev_get(ndev)) 434 goto out_unlock; 435 } 436 437 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 438 if (!ndev) 439 goto out_err; 440 441 ndev->dev = cm_id->device; 442 kref_init(&ndev->ref); 443 444 ndev->pd = ib_alloc_pd(ndev->dev); 445 if (IS_ERR(ndev->pd)) 446 goto out_free_dev; 447 448 if (!register_always) { 449 ndev->mr = ib_get_dma_mr(ndev->pd, 450 IB_ACCESS_LOCAL_WRITE | 451 IB_ACCESS_REMOTE_READ | 452 IB_ACCESS_REMOTE_WRITE); 453 if (IS_ERR(ndev->mr)) 454 goto out_free_pd; 455 } 456 457 if (!(ndev->dev->attrs.device_cap_flags & 458 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 459 dev_err(&ndev->dev->dev, 460 "Memory registrations not supported.\n"); 461 goto out_free_mr; 462 } 463 464 list_add(&ndev->entry, &device_list); 465 out_unlock: 466 mutex_unlock(&device_list_mutex); 467 return ndev; 468 469 out_free_mr: 470 if (!register_always) 471 ib_dereg_mr(ndev->mr); 472 out_free_pd: 473 ib_dealloc_pd(ndev->pd); 474 out_free_dev: 475 kfree(ndev); 476 out_err: 477 mutex_unlock(&device_list_mutex); 478 return NULL; 479 } 480 481 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 482 { 483 struct nvme_rdma_device *dev = queue->device; 484 struct ib_device *ibdev = dev->dev; 485 486 rdma_destroy_qp(queue->cm_id); 487 ib_free_cq(queue->ib_cq); 488 489 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 490 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 491 492 nvme_rdma_dev_put(dev); 493 } 494 495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 496 struct nvme_rdma_device *dev) 497 { 498 struct ib_device *ibdev = dev->dev; 499 const int send_wr_factor = 3; /* MR, SEND, INV */ 500 const int cq_factor = send_wr_factor + 1; /* + RECV */ 501 int comp_vector, idx = nvme_rdma_queue_idx(queue); 502 503 int ret; 504 505 queue->device = dev; 506 507 /* 508 * The admin queue is barely used once the controller is live, so don't 509 * bother to spread it out. 510 */ 511 if (idx == 0) 512 comp_vector = 0; 513 else 514 comp_vector = idx % ibdev->num_comp_vectors; 515 516 517 /* +1 for ib_stop_cq */ 518 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 519 cq_factor * queue->queue_size + 1, comp_vector, 520 IB_POLL_SOFTIRQ); 521 if (IS_ERR(queue->ib_cq)) { 522 ret = PTR_ERR(queue->ib_cq); 523 goto out; 524 } 525 526 ret = nvme_rdma_create_qp(queue, send_wr_factor); 527 if (ret) 528 goto out_destroy_ib_cq; 529 530 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 531 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 532 if (!queue->rsp_ring) { 533 ret = -ENOMEM; 534 goto out_destroy_qp; 535 } 536 537 return 0; 538 539 out_destroy_qp: 540 ib_destroy_qp(queue->qp); 541 out_destroy_ib_cq: 542 ib_free_cq(queue->ib_cq); 543 out: 544 return ret; 545 } 546 547 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 548 int idx, size_t queue_size) 549 { 550 struct nvme_rdma_queue *queue; 551 int ret; 552 553 queue = &ctrl->queues[idx]; 554 queue->ctrl = ctrl; 555 init_completion(&queue->cm_done); 556 557 if (idx > 0) 558 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 559 else 560 queue->cmnd_capsule_len = sizeof(struct nvme_command); 561 562 queue->queue_size = queue_size; 563 564 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 565 RDMA_PS_TCP, IB_QPT_RC); 566 if (IS_ERR(queue->cm_id)) { 567 dev_info(ctrl->ctrl.device, 568 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 569 return PTR_ERR(queue->cm_id); 570 } 571 572 queue->cm_error = -ETIMEDOUT; 573 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 574 NVME_RDMA_CONNECT_TIMEOUT_MS); 575 if (ret) { 576 dev_info(ctrl->ctrl.device, 577 "rdma_resolve_addr failed (%d).\n", ret); 578 goto out_destroy_cm_id; 579 } 580 581 ret = nvme_rdma_wait_for_cm(queue); 582 if (ret) { 583 dev_info(ctrl->ctrl.device, 584 "rdma_resolve_addr wait failed (%d).\n", ret); 585 goto out_destroy_cm_id; 586 } 587 588 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 589 590 return 0; 591 592 out_destroy_cm_id: 593 rdma_destroy_id(queue->cm_id); 594 return ret; 595 } 596 597 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 598 { 599 rdma_disconnect(queue->cm_id); 600 ib_drain_qp(queue->qp); 601 } 602 603 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 604 { 605 nvme_rdma_destroy_queue_ib(queue); 606 rdma_destroy_id(queue->cm_id); 607 } 608 609 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 610 { 611 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) 612 return; 613 nvme_rdma_stop_queue(queue); 614 nvme_rdma_free_queue(queue); 615 } 616 617 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 618 { 619 int i; 620 621 for (i = 1; i < ctrl->queue_count; i++) 622 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 623 } 624 625 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 626 { 627 int i, ret = 0; 628 629 for (i = 1; i < ctrl->queue_count; i++) { 630 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 631 if (ret) 632 break; 633 } 634 635 return ret; 636 } 637 638 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 639 { 640 int i, ret; 641 642 for (i = 1; i < ctrl->queue_count; i++) { 643 ret = nvme_rdma_init_queue(ctrl, i, 644 ctrl->ctrl.opts->queue_size); 645 if (ret) { 646 dev_info(ctrl->ctrl.device, 647 "failed to initialize i/o queue: %d\n", ret); 648 goto out_free_queues; 649 } 650 } 651 652 return 0; 653 654 out_free_queues: 655 for (; i >= 1; i--) 656 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 657 658 return ret; 659 } 660 661 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 662 { 663 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 664 sizeof(struct nvme_command), DMA_TO_DEVICE); 665 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 666 blk_cleanup_queue(ctrl->ctrl.admin_q); 667 blk_mq_free_tag_set(&ctrl->admin_tag_set); 668 nvme_rdma_dev_put(ctrl->device); 669 } 670 671 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 672 { 673 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 674 675 if (list_empty(&ctrl->list)) 676 goto free_ctrl; 677 678 mutex_lock(&nvme_rdma_ctrl_mutex); 679 list_del(&ctrl->list); 680 mutex_unlock(&nvme_rdma_ctrl_mutex); 681 682 kfree(ctrl->queues); 683 nvmf_free_options(nctrl->opts); 684 free_ctrl: 685 kfree(ctrl); 686 } 687 688 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 689 { 690 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 691 struct nvme_rdma_ctrl, reconnect_work); 692 bool changed; 693 int ret; 694 695 if (ctrl->queue_count > 1) { 696 nvme_rdma_free_io_queues(ctrl); 697 698 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 699 if (ret) 700 goto requeue; 701 } 702 703 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 704 705 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 706 if (ret) 707 goto requeue; 708 709 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 710 if (ret) 711 goto requeue; 712 713 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 714 715 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 716 if (ret) 717 goto stop_admin_q; 718 719 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 720 if (ret) 721 goto stop_admin_q; 722 723 nvme_start_keep_alive(&ctrl->ctrl); 724 725 if (ctrl->queue_count > 1) { 726 ret = nvme_rdma_init_io_queues(ctrl); 727 if (ret) 728 goto stop_admin_q; 729 730 ret = nvme_rdma_connect_io_queues(ctrl); 731 if (ret) 732 goto stop_admin_q; 733 } 734 735 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 736 WARN_ON_ONCE(!changed); 737 738 if (ctrl->queue_count > 1) { 739 nvme_start_queues(&ctrl->ctrl); 740 nvme_queue_scan(&ctrl->ctrl); 741 nvme_queue_async_events(&ctrl->ctrl); 742 } 743 744 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 745 746 return; 747 748 stop_admin_q: 749 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 750 requeue: 751 /* Make sure we are not resetting/deleting */ 752 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 753 dev_info(ctrl->ctrl.device, 754 "Failed reconnect attempt, requeueing...\n"); 755 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 756 ctrl->reconnect_delay * HZ); 757 } 758 } 759 760 static void nvme_rdma_error_recovery_work(struct work_struct *work) 761 { 762 struct nvme_rdma_ctrl *ctrl = container_of(work, 763 struct nvme_rdma_ctrl, err_work); 764 765 nvme_stop_keep_alive(&ctrl->ctrl); 766 if (ctrl->queue_count > 1) 767 nvme_stop_queues(&ctrl->ctrl); 768 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 769 770 /* We must take care of fastfail/requeue all our inflight requests */ 771 if (ctrl->queue_count > 1) 772 blk_mq_tagset_busy_iter(&ctrl->tag_set, 773 nvme_cancel_request, &ctrl->ctrl); 774 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 775 nvme_cancel_request, &ctrl->ctrl); 776 777 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 778 ctrl->reconnect_delay); 779 780 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 781 ctrl->reconnect_delay * HZ); 782 } 783 784 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 785 { 786 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 787 return; 788 789 queue_work(nvme_rdma_wq, &ctrl->err_work); 790 } 791 792 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 793 const char *op) 794 { 795 struct nvme_rdma_queue *queue = cq->cq_context; 796 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 797 798 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 799 dev_info(ctrl->ctrl.device, 800 "%s for CQE 0x%p failed with status %s (%d)\n", 801 op, wc->wr_cqe, 802 ib_wc_status_msg(wc->status), wc->status); 803 nvme_rdma_error_recovery(ctrl); 804 } 805 806 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 807 { 808 if (unlikely(wc->status != IB_WC_SUCCESS)) 809 nvme_rdma_wr_error(cq, wc, "MEMREG"); 810 } 811 812 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 813 { 814 if (unlikely(wc->status != IB_WC_SUCCESS)) 815 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 816 } 817 818 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 819 struct nvme_rdma_request *req) 820 { 821 struct ib_send_wr *bad_wr; 822 struct ib_send_wr wr = { 823 .opcode = IB_WR_LOCAL_INV, 824 .next = NULL, 825 .num_sge = 0, 826 .send_flags = 0, 827 .ex.invalidate_rkey = req->mr->rkey, 828 }; 829 830 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 831 wr.wr_cqe = &req->reg_cqe; 832 833 return ib_post_send(queue->qp, &wr, &bad_wr); 834 } 835 836 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 837 struct request *rq) 838 { 839 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 840 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 841 struct nvme_rdma_device *dev = queue->device; 842 struct ib_device *ibdev = dev->dev; 843 int res; 844 845 if (!blk_rq_bytes(rq)) 846 return; 847 848 if (req->mr->need_inval) { 849 res = nvme_rdma_inv_rkey(queue, req); 850 if (res < 0) { 851 dev_err(ctrl->ctrl.device, 852 "Queueing INV WR for rkey %#x failed (%d)\n", 853 req->mr->rkey, res); 854 nvme_rdma_error_recovery(queue->ctrl); 855 } 856 } 857 858 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 859 req->nents, rq_data_dir(rq) == 860 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 861 862 nvme_cleanup_cmd(rq); 863 sg_free_table_chained(&req->sg_table, true); 864 } 865 866 static int nvme_rdma_set_sg_null(struct nvme_command *c) 867 { 868 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 869 870 sg->addr = 0; 871 put_unaligned_le24(0, sg->length); 872 put_unaligned_le32(0, sg->key); 873 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 874 return 0; 875 } 876 877 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 878 struct nvme_rdma_request *req, struct nvme_command *c) 879 { 880 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 881 882 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 883 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 884 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 885 886 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 887 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 888 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 889 890 req->inline_data = true; 891 req->num_sge++; 892 return 0; 893 } 894 895 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 896 struct nvme_rdma_request *req, struct nvme_command *c) 897 { 898 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 899 900 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 901 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 902 put_unaligned_le32(queue->device->mr->rkey, sg->key); 903 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 904 return 0; 905 } 906 907 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 908 struct nvme_rdma_request *req, struct nvme_command *c, 909 int count) 910 { 911 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 912 int nr; 913 914 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 915 if (nr < count) { 916 if (nr < 0) 917 return nr; 918 return -EINVAL; 919 } 920 921 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 922 923 req->reg_cqe.done = nvme_rdma_memreg_done; 924 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 925 req->reg_wr.wr.opcode = IB_WR_REG_MR; 926 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 927 req->reg_wr.wr.num_sge = 0; 928 req->reg_wr.mr = req->mr; 929 req->reg_wr.key = req->mr->rkey; 930 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 931 IB_ACCESS_REMOTE_READ | 932 IB_ACCESS_REMOTE_WRITE; 933 934 req->mr->need_inval = true; 935 936 sg->addr = cpu_to_le64(req->mr->iova); 937 put_unaligned_le24(req->mr->length, sg->length); 938 put_unaligned_le32(req->mr->rkey, sg->key); 939 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 940 NVME_SGL_FMT_INVALIDATE; 941 942 return 0; 943 } 944 945 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 946 struct request *rq, unsigned int map_len, 947 struct nvme_command *c) 948 { 949 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 950 struct nvme_rdma_device *dev = queue->device; 951 struct ib_device *ibdev = dev->dev; 952 int nents, count; 953 int ret; 954 955 req->num_sge = 1; 956 req->inline_data = false; 957 req->mr->need_inval = false; 958 959 c->common.flags |= NVME_CMD_SGL_METABUF; 960 961 if (!blk_rq_bytes(rq)) 962 return nvme_rdma_set_sg_null(c); 963 964 req->sg_table.sgl = req->first_sgl; 965 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments, 966 req->sg_table.sgl); 967 if (ret) 968 return -ENOMEM; 969 970 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 971 BUG_ON(nents > rq->nr_phys_segments); 972 req->nents = nents; 973 974 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents, 975 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 976 if (unlikely(count <= 0)) { 977 sg_free_table_chained(&req->sg_table, true); 978 return -EIO; 979 } 980 981 if (count == 1) { 982 if (rq_data_dir(rq) == WRITE && 983 map_len <= nvme_rdma_inline_data_size(queue) && 984 nvme_rdma_queue_idx(queue)) 985 return nvme_rdma_map_sg_inline(queue, req, c); 986 987 if (!register_always) 988 return nvme_rdma_map_sg_single(queue, req, c); 989 } 990 991 return nvme_rdma_map_sg_fr(queue, req, c, count); 992 } 993 994 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 995 { 996 if (unlikely(wc->status != IB_WC_SUCCESS)) 997 nvme_rdma_wr_error(cq, wc, "SEND"); 998 } 999 1000 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1001 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1002 struct ib_send_wr *first, bool flush) 1003 { 1004 struct ib_send_wr wr, *bad_wr; 1005 int ret; 1006 1007 sge->addr = qe->dma; 1008 sge->length = sizeof(struct nvme_command), 1009 sge->lkey = queue->device->pd->local_dma_lkey; 1010 1011 qe->cqe.done = nvme_rdma_send_done; 1012 1013 wr.next = NULL; 1014 wr.wr_cqe = &qe->cqe; 1015 wr.sg_list = sge; 1016 wr.num_sge = num_sge; 1017 wr.opcode = IB_WR_SEND; 1018 wr.send_flags = 0; 1019 1020 /* 1021 * Unsignalled send completions are another giant desaster in the 1022 * IB Verbs spec: If we don't regularly post signalled sends 1023 * the send queue will fill up and only a QP reset will rescue us. 1024 * Would have been way to obvious to handle this in hardware or 1025 * at least the RDMA stack.. 1026 * 1027 * This messy and racy code sniplet is copy and pasted from the iSER 1028 * initiator, and the magic '32' comes from there as well. 1029 * 1030 * Always signal the flushes. The magic request used for the flush 1031 * sequencer is not allocated in our driver's tagset and it's 1032 * triggered to be freed by blk_cleanup_queue(). So we need to 1033 * always mark it as signaled to ensure that the "wr_cqe", which is 1034 * embeded in request's payload, is not freed when __ib_process_cq() 1035 * calls wr_cqe->done(). 1036 */ 1037 if ((++queue->sig_count % 32) == 0 || flush) 1038 wr.send_flags |= IB_SEND_SIGNALED; 1039 1040 if (first) 1041 first->next = ≀ 1042 else 1043 first = ≀ 1044 1045 ret = ib_post_send(queue->qp, first, &bad_wr); 1046 if (ret) { 1047 dev_err(queue->ctrl->ctrl.device, 1048 "%s failed with error code %d\n", __func__, ret); 1049 } 1050 return ret; 1051 } 1052 1053 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1054 struct nvme_rdma_qe *qe) 1055 { 1056 struct ib_recv_wr wr, *bad_wr; 1057 struct ib_sge list; 1058 int ret; 1059 1060 list.addr = qe->dma; 1061 list.length = sizeof(struct nvme_completion); 1062 list.lkey = queue->device->pd->local_dma_lkey; 1063 1064 qe->cqe.done = nvme_rdma_recv_done; 1065 1066 wr.next = NULL; 1067 wr.wr_cqe = &qe->cqe; 1068 wr.sg_list = &list; 1069 wr.num_sge = 1; 1070 1071 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1072 if (ret) { 1073 dev_err(queue->ctrl->ctrl.device, 1074 "%s failed with error code %d\n", __func__, ret); 1075 } 1076 return ret; 1077 } 1078 1079 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1080 { 1081 u32 queue_idx = nvme_rdma_queue_idx(queue); 1082 1083 if (queue_idx == 0) 1084 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1085 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1086 } 1087 1088 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1089 { 1090 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1091 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1092 struct ib_device *dev = queue->device->dev; 1093 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1094 struct nvme_command *cmd = sqe->data; 1095 struct ib_sge sge; 1096 int ret; 1097 1098 if (WARN_ON_ONCE(aer_idx != 0)) 1099 return; 1100 1101 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1102 1103 memset(cmd, 0, sizeof(*cmd)); 1104 cmd->common.opcode = nvme_admin_async_event; 1105 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1106 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1107 nvme_rdma_set_sg_null(cmd); 1108 1109 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1110 DMA_TO_DEVICE); 1111 1112 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1113 WARN_ON_ONCE(ret); 1114 } 1115 1116 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1117 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1118 { 1119 u16 status = le16_to_cpu(cqe->status); 1120 struct request *rq; 1121 struct nvme_rdma_request *req; 1122 int ret = 0; 1123 1124 status >>= 1; 1125 1126 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1127 if (!rq) { 1128 dev_err(queue->ctrl->ctrl.device, 1129 "tag 0x%x on QP %#x not found\n", 1130 cqe->command_id, queue->qp->qp_num); 1131 nvme_rdma_error_recovery(queue->ctrl); 1132 return ret; 1133 } 1134 req = blk_mq_rq_to_pdu(rq); 1135 1136 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special) 1137 memcpy(rq->special, cqe, sizeof(*cqe)); 1138 1139 if (rq->tag == tag) 1140 ret = 1; 1141 1142 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1143 wc->ex.invalidate_rkey == req->mr->rkey) 1144 req->mr->need_inval = false; 1145 1146 blk_mq_complete_request(rq, status); 1147 1148 return ret; 1149 } 1150 1151 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1152 { 1153 struct nvme_rdma_qe *qe = 1154 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1155 struct nvme_rdma_queue *queue = cq->cq_context; 1156 struct ib_device *ibdev = queue->device->dev; 1157 struct nvme_completion *cqe = qe->data; 1158 const size_t len = sizeof(struct nvme_completion); 1159 int ret = 0; 1160 1161 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1162 nvme_rdma_wr_error(cq, wc, "RECV"); 1163 return 0; 1164 } 1165 1166 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1167 /* 1168 * AEN requests are special as they don't time out and can 1169 * survive any kind of queue freeze and often don't respond to 1170 * aborts. We don't even bother to allocate a struct request 1171 * for them but rather special case them here. 1172 */ 1173 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1174 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1175 nvme_complete_async_event(&queue->ctrl->ctrl, cqe); 1176 else 1177 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1178 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1179 1180 nvme_rdma_post_recv(queue, qe); 1181 return ret; 1182 } 1183 1184 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1185 { 1186 __nvme_rdma_recv_done(cq, wc, -1); 1187 } 1188 1189 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1190 { 1191 int ret, i; 1192 1193 for (i = 0; i < queue->queue_size; i++) { 1194 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1195 if (ret) 1196 goto out_destroy_queue_ib; 1197 } 1198 1199 return 0; 1200 1201 out_destroy_queue_ib: 1202 nvme_rdma_destroy_queue_ib(queue); 1203 return ret; 1204 } 1205 1206 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1207 struct rdma_cm_event *ev) 1208 { 1209 if (ev->param.conn.private_data_len) { 1210 struct nvme_rdma_cm_rej *rej = 1211 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; 1212 1213 dev_err(queue->ctrl->ctrl.device, 1214 "Connect rejected, status %d.", le16_to_cpu(rej->sts)); 1215 /* XXX: Think of something clever to do here... */ 1216 } else { 1217 dev_err(queue->ctrl->ctrl.device, 1218 "Connect rejected, no private data.\n"); 1219 } 1220 1221 return -ECONNRESET; 1222 } 1223 1224 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1225 { 1226 struct nvme_rdma_device *dev; 1227 int ret; 1228 1229 dev = nvme_rdma_find_get_device(queue->cm_id); 1230 if (!dev) { 1231 dev_err(queue->cm_id->device->dma_device, 1232 "no client data found!\n"); 1233 return -ECONNREFUSED; 1234 } 1235 1236 ret = nvme_rdma_create_queue_ib(queue, dev); 1237 if (ret) { 1238 nvme_rdma_dev_put(dev); 1239 goto out; 1240 } 1241 1242 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1243 if (ret) { 1244 dev_err(queue->ctrl->ctrl.device, 1245 "rdma_resolve_route failed (%d).\n", 1246 queue->cm_error); 1247 goto out_destroy_queue; 1248 } 1249 1250 return 0; 1251 1252 out_destroy_queue: 1253 nvme_rdma_destroy_queue_ib(queue); 1254 out: 1255 return ret; 1256 } 1257 1258 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1259 { 1260 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1261 struct rdma_conn_param param = { }; 1262 struct nvme_rdma_cm_req priv = { }; 1263 int ret; 1264 1265 param.qp_num = queue->qp->qp_num; 1266 param.flow_control = 1; 1267 1268 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1269 /* maximum retry count */ 1270 param.retry_count = 7; 1271 param.rnr_retry_count = 7; 1272 param.private_data = &priv; 1273 param.private_data_len = sizeof(priv); 1274 1275 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1276 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1277 /* 1278 * set the admin queue depth to the minimum size 1279 * specified by the Fabrics standard. 1280 */ 1281 if (priv.qid == 0) { 1282 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1283 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1284 } else { 1285 /* 1286 * current interpretation of the fabrics spec 1287 * is at minimum you make hrqsize sqsize+1, or a 1288 * 1's based representation of sqsize. 1289 */ 1290 priv.hrqsize = cpu_to_le16(queue->queue_size); 1291 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1292 } 1293 1294 ret = rdma_connect(queue->cm_id, ¶m); 1295 if (ret) { 1296 dev_err(ctrl->ctrl.device, 1297 "rdma_connect failed (%d).\n", ret); 1298 goto out_destroy_queue_ib; 1299 } 1300 1301 return 0; 1302 1303 out_destroy_queue_ib: 1304 nvme_rdma_destroy_queue_ib(queue); 1305 return ret; 1306 } 1307 1308 /** 1309 * nvme_rdma_device_unplug() - Handle RDMA device unplug 1310 * @queue: Queue that owns the cm_id that caught the event 1311 * 1312 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1313 * to unplug so we should take care of destroying our RDMA resources. 1314 * This event will be generated for each allocated cm_id. 1315 * 1316 * In our case, the RDMA resources are managed per controller and not 1317 * only per queue. So the way we handle this is we trigger an implicit 1318 * controller deletion upon the first DEVICE_REMOVAL event we see, and 1319 * hold the event inflight until the controller deletion is completed. 1320 * 1321 * One exception that we need to handle is the destruction of the cm_id 1322 * that caught the event. Since we hold the callout until the controller 1323 * deletion is completed, we'll deadlock if the controller deletion will 1324 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership 1325 * of destroying this queue before-hand, destroy the queue resources, 1326 * then queue the controller deletion which won't destroy this queue and 1327 * we destroy the cm_id implicitely by returning a non-zero rc to the callout. 1328 */ 1329 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue) 1330 { 1331 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1332 int ret = 0; 1333 1334 /* Own the controller deletion */ 1335 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1336 return 0; 1337 1338 dev_warn(ctrl->ctrl.device, 1339 "Got rdma device removal event, deleting ctrl\n"); 1340 1341 /* Get rid of reconnect work if its running */ 1342 cancel_delayed_work_sync(&ctrl->reconnect_work); 1343 1344 /* Disable the queue so ctrl delete won't free it */ 1345 if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) { 1346 /* Free this queue ourselves */ 1347 nvme_rdma_stop_queue(queue); 1348 nvme_rdma_destroy_queue_ib(queue); 1349 1350 /* Return non-zero so the cm_id will destroy implicitly */ 1351 ret = 1; 1352 } 1353 1354 /* Queue controller deletion */ 1355 queue_work(nvme_rdma_wq, &ctrl->delete_work); 1356 flush_work(&ctrl->delete_work); 1357 return ret; 1358 } 1359 1360 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1361 struct rdma_cm_event *ev) 1362 { 1363 struct nvme_rdma_queue *queue = cm_id->context; 1364 int cm_error = 0; 1365 1366 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1367 rdma_event_msg(ev->event), ev->event, 1368 ev->status, cm_id); 1369 1370 switch (ev->event) { 1371 case RDMA_CM_EVENT_ADDR_RESOLVED: 1372 cm_error = nvme_rdma_addr_resolved(queue); 1373 break; 1374 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1375 cm_error = nvme_rdma_route_resolved(queue); 1376 break; 1377 case RDMA_CM_EVENT_ESTABLISHED: 1378 queue->cm_error = nvme_rdma_conn_established(queue); 1379 /* complete cm_done regardless of success/failure */ 1380 complete(&queue->cm_done); 1381 return 0; 1382 case RDMA_CM_EVENT_REJECTED: 1383 cm_error = nvme_rdma_conn_rejected(queue, ev); 1384 break; 1385 case RDMA_CM_EVENT_ADDR_ERROR: 1386 case RDMA_CM_EVENT_ROUTE_ERROR: 1387 case RDMA_CM_EVENT_CONNECT_ERROR: 1388 case RDMA_CM_EVENT_UNREACHABLE: 1389 dev_dbg(queue->ctrl->ctrl.device, 1390 "CM error event %d\n", ev->event); 1391 cm_error = -ECONNRESET; 1392 break; 1393 case RDMA_CM_EVENT_DISCONNECTED: 1394 case RDMA_CM_EVENT_ADDR_CHANGE: 1395 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1396 dev_dbg(queue->ctrl->ctrl.device, 1397 "disconnect received - connection closed\n"); 1398 nvme_rdma_error_recovery(queue->ctrl); 1399 break; 1400 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1401 /* return 1 means impliciy CM ID destroy */ 1402 return nvme_rdma_device_unplug(queue); 1403 default: 1404 dev_err(queue->ctrl->ctrl.device, 1405 "Unexpected RDMA CM event (%d)\n", ev->event); 1406 nvme_rdma_error_recovery(queue->ctrl); 1407 break; 1408 } 1409 1410 if (cm_error) { 1411 queue->cm_error = cm_error; 1412 complete(&queue->cm_done); 1413 } 1414 1415 return 0; 1416 } 1417 1418 static enum blk_eh_timer_return 1419 nvme_rdma_timeout(struct request *rq, bool reserved) 1420 { 1421 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1422 1423 /* queue error recovery */ 1424 nvme_rdma_error_recovery(req->queue->ctrl); 1425 1426 /* fail with DNR on cmd timeout */ 1427 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1428 1429 return BLK_EH_HANDLED; 1430 } 1431 1432 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1433 const struct blk_mq_queue_data *bd) 1434 { 1435 struct nvme_ns *ns = hctx->queue->queuedata; 1436 struct nvme_rdma_queue *queue = hctx->driver_data; 1437 struct request *rq = bd->rq; 1438 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1439 struct nvme_rdma_qe *sqe = &req->sqe; 1440 struct nvme_command *c = sqe->data; 1441 bool flush = false; 1442 struct ib_device *dev; 1443 unsigned int map_len; 1444 int ret; 1445 1446 WARN_ON_ONCE(rq->tag < 0); 1447 1448 dev = queue->device->dev; 1449 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1450 sizeof(struct nvme_command), DMA_TO_DEVICE); 1451 1452 ret = nvme_setup_cmd(ns, rq, c); 1453 if (ret) 1454 return ret; 1455 1456 c->common.command_id = rq->tag; 1457 blk_mq_start_request(rq); 1458 1459 map_len = nvme_map_len(rq); 1460 ret = nvme_rdma_map_data(queue, rq, map_len, c); 1461 if (ret < 0) { 1462 dev_err(queue->ctrl->ctrl.device, 1463 "Failed to map data (%d)\n", ret); 1464 nvme_cleanup_cmd(rq); 1465 goto err; 1466 } 1467 1468 ib_dma_sync_single_for_device(dev, sqe->dma, 1469 sizeof(struct nvme_command), DMA_TO_DEVICE); 1470 1471 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1472 flush = true; 1473 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1474 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1475 if (ret) { 1476 nvme_rdma_unmap_data(queue, rq); 1477 goto err; 1478 } 1479 1480 return BLK_MQ_RQ_QUEUE_OK; 1481 err: 1482 return (ret == -ENOMEM || ret == -EAGAIN) ? 1483 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1484 } 1485 1486 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1487 { 1488 struct nvme_rdma_queue *queue = hctx->driver_data; 1489 struct ib_cq *cq = queue->ib_cq; 1490 struct ib_wc wc; 1491 int found = 0; 1492 1493 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1494 while (ib_poll_cq(cq, 1, &wc) > 0) { 1495 struct ib_cqe *cqe = wc.wr_cqe; 1496 1497 if (cqe) { 1498 if (cqe->done == nvme_rdma_recv_done) 1499 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1500 else 1501 cqe->done(cq, &wc); 1502 } 1503 } 1504 1505 return found; 1506 } 1507 1508 static void nvme_rdma_complete_rq(struct request *rq) 1509 { 1510 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1511 struct nvme_rdma_queue *queue = req->queue; 1512 int error = 0; 1513 1514 nvme_rdma_unmap_data(queue, rq); 1515 1516 if (unlikely(rq->errors)) { 1517 if (nvme_req_needs_retry(rq, rq->errors)) { 1518 nvme_requeue_req(rq); 1519 return; 1520 } 1521 1522 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1523 error = rq->errors; 1524 else 1525 error = nvme_error_status(rq->errors); 1526 } 1527 1528 blk_mq_end_request(rq, error); 1529 } 1530 1531 static struct blk_mq_ops nvme_rdma_mq_ops = { 1532 .queue_rq = nvme_rdma_queue_rq, 1533 .complete = nvme_rdma_complete_rq, 1534 .map_queue = blk_mq_map_queue, 1535 .init_request = nvme_rdma_init_request, 1536 .exit_request = nvme_rdma_exit_request, 1537 .reinit_request = nvme_rdma_reinit_request, 1538 .init_hctx = nvme_rdma_init_hctx, 1539 .poll = nvme_rdma_poll, 1540 .timeout = nvme_rdma_timeout, 1541 }; 1542 1543 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1544 .queue_rq = nvme_rdma_queue_rq, 1545 .complete = nvme_rdma_complete_rq, 1546 .map_queue = blk_mq_map_queue, 1547 .init_request = nvme_rdma_init_admin_request, 1548 .exit_request = nvme_rdma_exit_admin_request, 1549 .reinit_request = nvme_rdma_reinit_request, 1550 .init_hctx = nvme_rdma_init_admin_hctx, 1551 .timeout = nvme_rdma_timeout, 1552 }; 1553 1554 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1555 { 1556 int error; 1557 1558 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1559 if (error) 1560 return error; 1561 1562 ctrl->device = ctrl->queues[0].device; 1563 1564 /* 1565 * We need a reference on the device as long as the tag_set is alive, 1566 * as the MRs in the request structures need a valid ib_device. 1567 */ 1568 error = -EINVAL; 1569 if (!nvme_rdma_dev_get(ctrl->device)) 1570 goto out_free_queue; 1571 1572 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1573 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1574 1575 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1576 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1577 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1578 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1579 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1580 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1581 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1582 ctrl->admin_tag_set.driver_data = ctrl; 1583 ctrl->admin_tag_set.nr_hw_queues = 1; 1584 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1585 1586 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1587 if (error) 1588 goto out_put_dev; 1589 1590 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1591 if (IS_ERR(ctrl->ctrl.admin_q)) { 1592 error = PTR_ERR(ctrl->ctrl.admin_q); 1593 goto out_free_tagset; 1594 } 1595 1596 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1597 if (error) 1598 goto out_cleanup_queue; 1599 1600 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1601 if (error) { 1602 dev_err(ctrl->ctrl.device, 1603 "prop_get NVME_REG_CAP failed\n"); 1604 goto out_cleanup_queue; 1605 } 1606 1607 ctrl->ctrl.sqsize = 1608 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1609 1610 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1611 if (error) 1612 goto out_cleanup_queue; 1613 1614 ctrl->ctrl.max_hw_sectors = 1615 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1616 1617 error = nvme_init_identify(&ctrl->ctrl); 1618 if (error) 1619 goto out_cleanup_queue; 1620 1621 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1622 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1623 DMA_TO_DEVICE); 1624 if (error) 1625 goto out_cleanup_queue; 1626 1627 nvme_start_keep_alive(&ctrl->ctrl); 1628 1629 return 0; 1630 1631 out_cleanup_queue: 1632 blk_cleanup_queue(ctrl->ctrl.admin_q); 1633 out_free_tagset: 1634 /* disconnect and drain the queue before freeing the tagset */ 1635 nvme_rdma_stop_queue(&ctrl->queues[0]); 1636 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1637 out_put_dev: 1638 nvme_rdma_dev_put(ctrl->device); 1639 out_free_queue: 1640 nvme_rdma_free_queue(&ctrl->queues[0]); 1641 return error; 1642 } 1643 1644 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1645 { 1646 nvme_stop_keep_alive(&ctrl->ctrl); 1647 cancel_work_sync(&ctrl->err_work); 1648 cancel_delayed_work_sync(&ctrl->reconnect_work); 1649 1650 if (ctrl->queue_count > 1) { 1651 nvme_stop_queues(&ctrl->ctrl); 1652 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1653 nvme_cancel_request, &ctrl->ctrl); 1654 nvme_rdma_free_io_queues(ctrl); 1655 } 1656 1657 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1658 nvme_shutdown_ctrl(&ctrl->ctrl); 1659 1660 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1661 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1662 nvme_cancel_request, &ctrl->ctrl); 1663 nvme_rdma_destroy_admin_queue(ctrl); 1664 } 1665 1666 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1667 { 1668 nvme_uninit_ctrl(&ctrl->ctrl); 1669 if (shutdown) 1670 nvme_rdma_shutdown_ctrl(ctrl); 1671 1672 if (ctrl->ctrl.tagset) { 1673 blk_cleanup_queue(ctrl->ctrl.connect_q); 1674 blk_mq_free_tag_set(&ctrl->tag_set); 1675 nvme_rdma_dev_put(ctrl->device); 1676 } 1677 1678 nvme_put_ctrl(&ctrl->ctrl); 1679 } 1680 1681 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1682 { 1683 struct nvme_rdma_ctrl *ctrl = container_of(work, 1684 struct nvme_rdma_ctrl, delete_work); 1685 1686 __nvme_rdma_remove_ctrl(ctrl, true); 1687 } 1688 1689 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1690 { 1691 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1692 return -EBUSY; 1693 1694 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1695 return -EBUSY; 1696 1697 return 0; 1698 } 1699 1700 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1701 { 1702 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1703 int ret; 1704 1705 ret = __nvme_rdma_del_ctrl(ctrl); 1706 if (ret) 1707 return ret; 1708 1709 flush_work(&ctrl->delete_work); 1710 1711 return 0; 1712 } 1713 1714 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1715 { 1716 struct nvme_rdma_ctrl *ctrl = container_of(work, 1717 struct nvme_rdma_ctrl, delete_work); 1718 1719 __nvme_rdma_remove_ctrl(ctrl, false); 1720 } 1721 1722 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1723 { 1724 struct nvme_rdma_ctrl *ctrl = container_of(work, 1725 struct nvme_rdma_ctrl, reset_work); 1726 int ret; 1727 bool changed; 1728 1729 nvme_rdma_shutdown_ctrl(ctrl); 1730 1731 ret = nvme_rdma_configure_admin_queue(ctrl); 1732 if (ret) { 1733 /* ctrl is already shutdown, just remove the ctrl */ 1734 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1735 goto del_dead_ctrl; 1736 } 1737 1738 if (ctrl->queue_count > 1) { 1739 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1740 if (ret) 1741 goto del_dead_ctrl; 1742 1743 ret = nvme_rdma_init_io_queues(ctrl); 1744 if (ret) 1745 goto del_dead_ctrl; 1746 1747 ret = nvme_rdma_connect_io_queues(ctrl); 1748 if (ret) 1749 goto del_dead_ctrl; 1750 } 1751 1752 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1753 WARN_ON_ONCE(!changed); 1754 1755 if (ctrl->queue_count > 1) { 1756 nvme_start_queues(&ctrl->ctrl); 1757 nvme_queue_scan(&ctrl->ctrl); 1758 nvme_queue_async_events(&ctrl->ctrl); 1759 } 1760 1761 return; 1762 1763 del_dead_ctrl: 1764 /* Deleting this dead controller... */ 1765 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1766 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1767 } 1768 1769 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1770 { 1771 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1772 1773 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1774 return -EBUSY; 1775 1776 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1777 return -EBUSY; 1778 1779 flush_work(&ctrl->reset_work); 1780 1781 return 0; 1782 } 1783 1784 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1785 .name = "rdma", 1786 .module = THIS_MODULE, 1787 .is_fabrics = true, 1788 .reg_read32 = nvmf_reg_read32, 1789 .reg_read64 = nvmf_reg_read64, 1790 .reg_write32 = nvmf_reg_write32, 1791 .reset_ctrl = nvme_rdma_reset_ctrl, 1792 .free_ctrl = nvme_rdma_free_ctrl, 1793 .submit_async_event = nvme_rdma_submit_async_event, 1794 .delete_ctrl = nvme_rdma_del_ctrl, 1795 .get_subsysnqn = nvmf_get_subsysnqn, 1796 .get_address = nvmf_get_address, 1797 }; 1798 1799 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1800 { 1801 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1802 int ret; 1803 1804 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1805 if (ret) 1806 return ret; 1807 1808 ctrl->queue_count = opts->nr_io_queues + 1; 1809 if (ctrl->queue_count < 2) 1810 return 0; 1811 1812 dev_info(ctrl->ctrl.device, 1813 "creating %d I/O queues.\n", opts->nr_io_queues); 1814 1815 ret = nvme_rdma_init_io_queues(ctrl); 1816 if (ret) 1817 return ret; 1818 1819 /* 1820 * We need a reference on the device as long as the tag_set is alive, 1821 * as the MRs in the request structures need a valid ib_device. 1822 */ 1823 ret = -EINVAL; 1824 if (!nvme_rdma_dev_get(ctrl->device)) 1825 goto out_free_io_queues; 1826 1827 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1828 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1829 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1830 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1831 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1832 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1833 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1834 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1835 ctrl->tag_set.driver_data = ctrl; 1836 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1837 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1838 1839 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1840 if (ret) 1841 goto out_put_dev; 1842 ctrl->ctrl.tagset = &ctrl->tag_set; 1843 1844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1845 if (IS_ERR(ctrl->ctrl.connect_q)) { 1846 ret = PTR_ERR(ctrl->ctrl.connect_q); 1847 goto out_free_tag_set; 1848 } 1849 1850 ret = nvme_rdma_connect_io_queues(ctrl); 1851 if (ret) 1852 goto out_cleanup_connect_q; 1853 1854 return 0; 1855 1856 out_cleanup_connect_q: 1857 blk_cleanup_queue(ctrl->ctrl.connect_q); 1858 out_free_tag_set: 1859 blk_mq_free_tag_set(&ctrl->tag_set); 1860 out_put_dev: 1861 nvme_rdma_dev_put(ctrl->device); 1862 out_free_io_queues: 1863 nvme_rdma_free_io_queues(ctrl); 1864 return ret; 1865 } 1866 1867 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1868 { 1869 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1870 size_t buflen = strlen(p); 1871 1872 /* XXX: handle IPv6 addresses */ 1873 1874 if (buflen > INET_ADDRSTRLEN) 1875 return -EINVAL; 1876 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1877 return -EINVAL; 1878 in_addr->sin_family = AF_INET; 1879 return 0; 1880 } 1881 1882 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1883 struct nvmf_ctrl_options *opts) 1884 { 1885 struct nvme_rdma_ctrl *ctrl; 1886 int ret; 1887 bool changed; 1888 1889 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1890 if (!ctrl) 1891 return ERR_PTR(-ENOMEM); 1892 ctrl->ctrl.opts = opts; 1893 INIT_LIST_HEAD(&ctrl->list); 1894 1895 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1896 if (ret) { 1897 pr_err("malformed IP address passed: %s\n", opts->traddr); 1898 goto out_free_ctrl; 1899 } 1900 1901 if (opts->mask & NVMF_OPT_TRSVCID) { 1902 u16 port; 1903 1904 ret = kstrtou16(opts->trsvcid, 0, &port); 1905 if (ret) 1906 goto out_free_ctrl; 1907 1908 ctrl->addr_in.sin_port = cpu_to_be16(port); 1909 } else { 1910 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1911 } 1912 1913 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1914 0 /* no quirks, we're perfect! */); 1915 if (ret) 1916 goto out_free_ctrl; 1917 1918 ctrl->reconnect_delay = opts->reconnect_delay; 1919 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1920 nvme_rdma_reconnect_ctrl_work); 1921 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1922 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1923 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1924 spin_lock_init(&ctrl->lock); 1925 1926 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1927 ctrl->ctrl.sqsize = opts->queue_size - 1; 1928 ctrl->ctrl.kato = opts->kato; 1929 1930 ret = -ENOMEM; 1931 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1932 GFP_KERNEL); 1933 if (!ctrl->queues) 1934 goto out_uninit_ctrl; 1935 1936 ret = nvme_rdma_configure_admin_queue(ctrl); 1937 if (ret) 1938 goto out_kfree_queues; 1939 1940 /* sanity check icdoff */ 1941 if (ctrl->ctrl.icdoff) { 1942 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1943 goto out_remove_admin_queue; 1944 } 1945 1946 /* sanity check keyed sgls */ 1947 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1948 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1949 goto out_remove_admin_queue; 1950 } 1951 1952 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1953 /* warn if maxcmd is lower than queue_size */ 1954 dev_warn(ctrl->ctrl.device, 1955 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1956 opts->queue_size, ctrl->ctrl.maxcmd); 1957 opts->queue_size = ctrl->ctrl.maxcmd; 1958 } 1959 1960 if (opts->nr_io_queues) { 1961 ret = nvme_rdma_create_io_queues(ctrl); 1962 if (ret) 1963 goto out_remove_admin_queue; 1964 } 1965 1966 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1967 WARN_ON_ONCE(!changed); 1968 1969 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1970 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1971 1972 kref_get(&ctrl->ctrl.kref); 1973 1974 mutex_lock(&nvme_rdma_ctrl_mutex); 1975 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1976 mutex_unlock(&nvme_rdma_ctrl_mutex); 1977 1978 if (opts->nr_io_queues) { 1979 nvme_queue_scan(&ctrl->ctrl); 1980 nvme_queue_async_events(&ctrl->ctrl); 1981 } 1982 1983 return &ctrl->ctrl; 1984 1985 out_remove_admin_queue: 1986 nvme_stop_keep_alive(&ctrl->ctrl); 1987 nvme_rdma_destroy_admin_queue(ctrl); 1988 out_kfree_queues: 1989 kfree(ctrl->queues); 1990 out_uninit_ctrl: 1991 nvme_uninit_ctrl(&ctrl->ctrl); 1992 nvme_put_ctrl(&ctrl->ctrl); 1993 if (ret > 0) 1994 ret = -EIO; 1995 return ERR_PTR(ret); 1996 out_free_ctrl: 1997 kfree(ctrl); 1998 return ERR_PTR(ret); 1999 } 2000 2001 static struct nvmf_transport_ops nvme_rdma_transport = { 2002 .name = "rdma", 2003 .required_opts = NVMF_OPT_TRADDR, 2004 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 2005 .create_ctrl = nvme_rdma_create_ctrl, 2006 }; 2007 2008 static int __init nvme_rdma_init_module(void) 2009 { 2010 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2011 if (!nvme_rdma_wq) 2012 return -ENOMEM; 2013 2014 nvmf_register_transport(&nvme_rdma_transport); 2015 return 0; 2016 } 2017 2018 static void __exit nvme_rdma_cleanup_module(void) 2019 { 2020 struct nvme_rdma_ctrl *ctrl; 2021 2022 nvmf_unregister_transport(&nvme_rdma_transport); 2023 2024 mutex_lock(&nvme_rdma_ctrl_mutex); 2025 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2026 __nvme_rdma_del_ctrl(ctrl); 2027 mutex_unlock(&nvme_rdma_ctrl_mutex); 2028 2029 destroy_workqueue(nvme_rdma_wq); 2030 } 2031 2032 module_init(nvme_rdma_init_module); 2033 module_exit(nvme_rdma_cleanup_module); 2034 2035 MODULE_LICENSE("GPL v2"); 2036