xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision b4646da0573fae9dfa2b8f1f10936cb6eedd7230)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible(&queue->cm_done);
251 	if (ret)
252 		return ret;
253 	WARN_ON_ONCE(queue->cm_error > 0);
254 	return queue->cm_error;
255 }
256 
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 	struct nvme_rdma_device *dev = queue->device;
260 	struct ib_qp_init_attr init_attr;
261 	int ret;
262 
263 	memset(&init_attr, 0, sizeof(init_attr));
264 	init_attr.event_handler = nvme_rdma_qp_event;
265 	/* +1 for drain */
266 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 	/* +1 for drain */
268 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 	init_attr.cap.max_recv_sge = 1;
270 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 	init_attr.qp_type = IB_QPT_RC;
273 	init_attr.send_cq = queue->ib_cq;
274 	init_attr.recv_cq = queue->ib_cq;
275 	if (queue->pi_support)
276 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 	init_attr.qp_context = queue;
278 
279 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280 
281 	queue->qp = queue->cm_id->qp;
282 	return ret;
283 }
284 
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 		struct request *rq, unsigned int hctx_idx)
287 {
288 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289 
290 	kfree(req->sqe.data);
291 }
292 
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 		struct request *rq, unsigned int hctx_idx,
295 		unsigned int numa_node)
296 {
297 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301 
302 	nvme_req(rq)->ctrl = &ctrl->ctrl;
303 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 	if (!req->sqe.data)
305 		return -ENOMEM;
306 
307 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 	if (queue->pi_support)
309 		req->metadata_sgl = (void *)nvme_req(rq) +
310 			sizeof(struct nvme_rdma_request) +
311 			NVME_RDMA_DATA_SGL_SIZE;
312 
313 	req->queue = queue;
314 	nvme_req(rq)->cmd = req->sqe.data;
315 
316 	return 0;
317 }
318 
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 		unsigned int hctx_idx)
321 {
322 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324 
325 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326 
327 	hctx->driver_data = queue;
328 	return 0;
329 }
330 
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 		unsigned int hctx_idx)
333 {
334 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
336 
337 	BUG_ON(hctx_idx != 0);
338 
339 	hctx->driver_data = queue;
340 	return 0;
341 }
342 
343 static void nvme_rdma_free_dev(struct kref *ref)
344 {
345 	struct nvme_rdma_device *ndev =
346 		container_of(ref, struct nvme_rdma_device, ref);
347 
348 	mutex_lock(&device_list_mutex);
349 	list_del(&ndev->entry);
350 	mutex_unlock(&device_list_mutex);
351 
352 	ib_dealloc_pd(ndev->pd);
353 	kfree(ndev);
354 }
355 
356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357 {
358 	kref_put(&dev->ref, nvme_rdma_free_dev);
359 }
360 
361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362 {
363 	return kref_get_unless_zero(&dev->ref);
364 }
365 
366 static struct nvme_rdma_device *
367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368 {
369 	struct nvme_rdma_device *ndev;
370 
371 	mutex_lock(&device_list_mutex);
372 	list_for_each_entry(ndev, &device_list, entry) {
373 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 		    nvme_rdma_dev_get(ndev))
375 			goto out_unlock;
376 	}
377 
378 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 	if (!ndev)
380 		goto out_err;
381 
382 	ndev->dev = cm_id->device;
383 	kref_init(&ndev->ref);
384 
385 	ndev->pd = ib_alloc_pd(ndev->dev,
386 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 	if (IS_ERR(ndev->pd))
388 		goto out_free_dev;
389 
390 	if (!(ndev->dev->attrs.device_cap_flags &
391 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 		dev_err(&ndev->dev->dev,
393 			"Memory registrations not supported.\n");
394 		goto out_free_pd;
395 	}
396 
397 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 					ndev->dev->attrs.max_send_sge - 1);
399 	list_add(&ndev->entry, &device_list);
400 out_unlock:
401 	mutex_unlock(&device_list_mutex);
402 	return ndev;
403 
404 out_free_pd:
405 	ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407 	kfree(ndev);
408 out_err:
409 	mutex_unlock(&device_list_mutex);
410 	return NULL;
411 }
412 
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414 {
415 	if (nvme_rdma_poll_queue(queue))
416 		ib_free_cq(queue->ib_cq);
417 	else
418 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419 }
420 
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422 {
423 	struct nvme_rdma_device *dev;
424 	struct ib_device *ibdev;
425 
426 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427 		return;
428 
429 	dev = queue->device;
430 	ibdev = dev->dev;
431 
432 	if (queue->pi_support)
433 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435 
436 	/*
437 	 * The cm_id object might have been destroyed during RDMA connection
438 	 * establishment error flow to avoid getting other cma events, thus
439 	 * the destruction of the QP shouldn't use rdma_cm API.
440 	 */
441 	ib_destroy_qp(queue->qp);
442 	nvme_rdma_free_cq(queue);
443 
444 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446 
447 	nvme_rdma_dev_put(dev);
448 }
449 
450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451 {
452 	u32 max_page_list_len;
453 
454 	if (pi_support)
455 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 	else
457 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458 
459 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460 }
461 
462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 		struct nvme_rdma_queue *queue)
464 {
465 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466 
467 	/*
468 	 * Spread I/O queues completion vectors according their queue index.
469 	 * Admin queues can always go on completion vector 0.
470 	 */
471 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472 
473 	/* Polling queues need direct cq polling context */
474 	if (nvme_rdma_poll_queue(queue))
475 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 					   comp_vector, IB_POLL_DIRECT);
477 	else
478 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 					      comp_vector, IB_POLL_SOFTIRQ);
480 
481 	if (IS_ERR(queue->ib_cq)) {
482 		ret = PTR_ERR(queue->ib_cq);
483 		return ret;
484 	}
485 
486 	return 0;
487 }
488 
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490 {
491 	struct ib_device *ibdev;
492 	const int send_wr_factor = 3;			/* MR, SEND, INV */
493 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494 	int ret, pages_per_mr;
495 
496 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 	if (!queue->device) {
498 		dev_err(queue->cm_id->device->dev.parent,
499 			"no client data found!\n");
500 		return -ECONNREFUSED;
501 	}
502 	ibdev = queue->device->dev;
503 
504 	/* +1 for ib_stop_cq */
505 	queue->cq_size = cq_factor * queue->queue_size + 1;
506 
507 	ret = nvme_rdma_create_cq(ibdev, queue);
508 	if (ret)
509 		goto out_put_dev;
510 
511 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
512 	if (ret)
513 		goto out_destroy_ib_cq;
514 
515 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 	if (!queue->rsp_ring) {
518 		ret = -ENOMEM;
519 		goto out_destroy_qp;
520 	}
521 
522 	/*
523 	 * Currently we don't use SG_GAPS MR's so if the first entry is
524 	 * misaligned we'll end up using two entries for a single data page,
525 	 * so one additional entry is required.
526 	 */
527 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529 			      queue->queue_size,
530 			      IB_MR_TYPE_MEM_REG,
531 			      pages_per_mr, 0);
532 	if (ret) {
533 		dev_err(queue->ctrl->ctrl.device,
534 			"failed to initialize MR pool sized %d for QID %d\n",
535 			queue->queue_size, nvme_rdma_queue_idx(queue));
536 		goto out_destroy_ring;
537 	}
538 
539 	if (queue->pi_support) {
540 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 				      pages_per_mr, pages_per_mr);
543 		if (ret) {
544 			dev_err(queue->ctrl->ctrl.device,
545 				"failed to initialize PI MR pool sized %d for QID %d\n",
546 				queue->queue_size, nvme_rdma_queue_idx(queue));
547 			goto out_destroy_mr_pool;
548 		}
549 	}
550 
551 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552 
553 	return 0;
554 
555 out_destroy_mr_pool:
556 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561 	rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563 	nvme_rdma_free_cq(queue);
564 out_put_dev:
565 	nvme_rdma_dev_put(queue->device);
566 	return ret;
567 }
568 
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 		int idx, size_t queue_size)
571 {
572 	struct nvme_rdma_queue *queue;
573 	struct sockaddr *src_addr = NULL;
574 	int ret;
575 
576 	queue = &ctrl->queues[idx];
577 	mutex_init(&queue->queue_lock);
578 	queue->ctrl = ctrl;
579 	if (idx && ctrl->ctrl.max_integrity_segments)
580 		queue->pi_support = true;
581 	else
582 		queue->pi_support = false;
583 	init_completion(&queue->cm_done);
584 
585 	if (idx > 0)
586 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 	else
588 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
589 
590 	queue->queue_size = queue_size;
591 
592 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 			RDMA_PS_TCP, IB_QPT_RC);
594 	if (IS_ERR(queue->cm_id)) {
595 		dev_info(ctrl->ctrl.device,
596 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 		ret = PTR_ERR(queue->cm_id);
598 		goto out_destroy_mutex;
599 	}
600 
601 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 		src_addr = (struct sockaddr *)&ctrl->src_addr;
603 
604 	queue->cm_error = -ETIMEDOUT;
605 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 			(struct sockaddr *)&ctrl->addr,
607 			NVME_RDMA_CM_TIMEOUT_MS);
608 	if (ret) {
609 		dev_info(ctrl->ctrl.device,
610 			"rdma_resolve_addr failed (%d).\n", ret);
611 		goto out_destroy_cm_id;
612 	}
613 
614 	ret = nvme_rdma_wait_for_cm(queue);
615 	if (ret) {
616 		dev_info(ctrl->ctrl.device,
617 			"rdma connection establishment failed (%d)\n", ret);
618 		goto out_destroy_cm_id;
619 	}
620 
621 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622 
623 	return 0;
624 
625 out_destroy_cm_id:
626 	rdma_destroy_id(queue->cm_id);
627 	nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629 	mutex_destroy(&queue->queue_lock);
630 	return ret;
631 }
632 
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634 {
635 	rdma_disconnect(queue->cm_id);
636 	ib_drain_qp(queue->qp);
637 }
638 
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 	mutex_lock(&queue->queue_lock);
642 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
643 		__nvme_rdma_stop_queue(queue);
644 	mutex_unlock(&queue->queue_lock);
645 }
646 
647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
648 {
649 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
650 		return;
651 
652 	rdma_destroy_id(queue->cm_id);
653 	nvme_rdma_destroy_queue_ib(queue);
654 	mutex_destroy(&queue->queue_lock);
655 }
656 
657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658 {
659 	int i;
660 
661 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
662 		nvme_rdma_free_queue(&ctrl->queues[i]);
663 }
664 
665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 {
667 	int i;
668 
669 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
670 		nvme_rdma_stop_queue(&ctrl->queues[i]);
671 }
672 
673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
674 {
675 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 	int ret;
677 
678 	if (idx)
679 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
680 	else
681 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
682 
683 	if (!ret) {
684 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
685 	} else {
686 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
687 			__nvme_rdma_stop_queue(queue);
688 		dev_info(ctrl->ctrl.device,
689 			"failed to connect queue: %d ret=%d\n", idx, ret);
690 	}
691 	return ret;
692 }
693 
694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
695 				     int first, int last)
696 {
697 	int i, ret = 0;
698 
699 	for (i = first; i < last; i++) {
700 		ret = nvme_rdma_start_queue(ctrl, i);
701 		if (ret)
702 			goto out_stop_queues;
703 	}
704 
705 	return 0;
706 
707 out_stop_queues:
708 	for (i--; i >= first; i--)
709 		nvme_rdma_stop_queue(&ctrl->queues[i]);
710 	return ret;
711 }
712 
713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714 {
715 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716 	struct ib_device *ibdev = ctrl->device->dev;
717 	unsigned int nr_io_queues, nr_default_queues;
718 	unsigned int nr_read_queues, nr_poll_queues;
719 	int i, ret;
720 
721 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
722 				min(opts->nr_io_queues, num_online_cpus()));
723 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
724 				min(opts->nr_write_queues, num_online_cpus()));
725 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
726 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
727 
728 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
729 	if (ret)
730 		return ret;
731 
732 	if (nr_io_queues == 0) {
733 		dev_err(ctrl->ctrl.device,
734 			"unable to set any I/O queues\n");
735 		return -ENOMEM;
736 	}
737 
738 	ctrl->ctrl.queue_count = nr_io_queues + 1;
739 	dev_info(ctrl->ctrl.device,
740 		"creating %d I/O queues.\n", nr_io_queues);
741 
742 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
743 		/*
744 		 * separate read/write queues
745 		 * hand out dedicated default queues only after we have
746 		 * sufficient read queues.
747 		 */
748 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
749 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
750 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
751 			min(nr_default_queues, nr_io_queues);
752 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
753 	} else {
754 		/*
755 		 * shared read/write queues
756 		 * either no write queues were requested, or we don't have
757 		 * sufficient queue count to have dedicated default queues.
758 		 */
759 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
760 			min(nr_read_queues, nr_io_queues);
761 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
762 	}
763 
764 	if (opts->nr_poll_queues && nr_io_queues) {
765 		/* map dedicated poll queues only if we have queues left */
766 		ctrl->io_queues[HCTX_TYPE_POLL] =
767 			min(nr_poll_queues, nr_io_queues);
768 	}
769 
770 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
771 		ret = nvme_rdma_alloc_queue(ctrl, i,
772 				ctrl->ctrl.sqsize + 1);
773 		if (ret)
774 			goto out_free_queues;
775 	}
776 
777 	return 0;
778 
779 out_free_queues:
780 	for (i--; i >= 1; i--)
781 		nvme_rdma_free_queue(&ctrl->queues[i]);
782 
783 	return ret;
784 }
785 
786 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
787 {
788 	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
789 				NVME_RDMA_DATA_SGL_SIZE;
790 
791 	if (ctrl->max_integrity_segments)
792 		cmd_size += sizeof(struct nvme_rdma_sgl) +
793 			    NVME_RDMA_METADATA_SGL_SIZE;
794 
795 	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
796 			&nvme_rdma_mq_ops,
797 			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
798 			cmd_size);
799 }
800 
801 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
802 {
803 	if (ctrl->async_event_sqe.data) {
804 		cancel_work_sync(&ctrl->ctrl.async_event_work);
805 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
806 				sizeof(struct nvme_command), DMA_TO_DEVICE);
807 		ctrl->async_event_sqe.data = NULL;
808 	}
809 	nvme_rdma_free_queue(&ctrl->queues[0]);
810 }
811 
812 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
813 		bool new)
814 {
815 	bool pi_capable = false;
816 	int error;
817 
818 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
819 	if (error)
820 		return error;
821 
822 	ctrl->device = ctrl->queues[0].device;
823 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
824 
825 	/* T10-PI support */
826 	if (ctrl->device->dev->attrs.kernel_cap_flags &
827 	    IBK_INTEGRITY_HANDOVER)
828 		pi_capable = true;
829 
830 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
831 							pi_capable);
832 
833 	/*
834 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
835 	 * It's safe, since any chage in the underlying RDMA device will issue
836 	 * error recovery and queue re-creation.
837 	 */
838 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
839 			sizeof(struct nvme_command), DMA_TO_DEVICE);
840 	if (error)
841 		goto out_free_queue;
842 
843 	if (new) {
844 		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
845 				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
846 				sizeof(struct nvme_rdma_request) +
847 				NVME_RDMA_DATA_SGL_SIZE);
848 		if (error)
849 			goto out_free_async_qe;
850 
851 	}
852 
853 	error = nvme_rdma_start_queue(ctrl, 0);
854 	if (error)
855 		goto out_remove_admin_tag_set;
856 
857 	error = nvme_enable_ctrl(&ctrl->ctrl);
858 	if (error)
859 		goto out_stop_queue;
860 
861 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
862 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
863 	if (pi_capable)
864 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
865 	else
866 		ctrl->ctrl.max_integrity_segments = 0;
867 
868 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
869 
870 	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
871 	if (error)
872 		goto out_quiesce_queue;
873 
874 	return 0;
875 
876 out_quiesce_queue:
877 	nvme_quiesce_admin_queue(&ctrl->ctrl);
878 	blk_sync_queue(ctrl->ctrl.admin_q);
879 out_stop_queue:
880 	nvme_rdma_stop_queue(&ctrl->queues[0]);
881 	nvme_cancel_admin_tagset(&ctrl->ctrl);
882 out_remove_admin_tag_set:
883 	if (new)
884 		nvme_remove_admin_tag_set(&ctrl->ctrl);
885 out_free_async_qe:
886 	if (ctrl->async_event_sqe.data) {
887 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
888 			sizeof(struct nvme_command), DMA_TO_DEVICE);
889 		ctrl->async_event_sqe.data = NULL;
890 	}
891 out_free_queue:
892 	nvme_rdma_free_queue(&ctrl->queues[0]);
893 	return error;
894 }
895 
896 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
897 {
898 	int ret, nr_queues;
899 
900 	ret = nvme_rdma_alloc_io_queues(ctrl);
901 	if (ret)
902 		return ret;
903 
904 	if (new) {
905 		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
906 		if (ret)
907 			goto out_free_io_queues;
908 	}
909 
910 	/*
911 	 * Only start IO queues for which we have allocated the tagset
912 	 * and limitted it to the available queues. On reconnects, the
913 	 * queue number might have changed.
914 	 */
915 	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
916 	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
917 	if (ret)
918 		goto out_cleanup_tagset;
919 
920 	if (!new) {
921 		nvme_unquiesce_io_queues(&ctrl->ctrl);
922 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
923 			/*
924 			 * If we timed out waiting for freeze we are likely to
925 			 * be stuck.  Fail the controller initialization just
926 			 * to be safe.
927 			 */
928 			ret = -ENODEV;
929 			goto out_wait_freeze_timed_out;
930 		}
931 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
932 			ctrl->ctrl.queue_count - 1);
933 		nvme_unfreeze(&ctrl->ctrl);
934 	}
935 
936 	/*
937 	 * If the number of queues has increased (reconnect case)
938 	 * start all new queues now.
939 	 */
940 	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
941 					ctrl->tag_set.nr_hw_queues + 1);
942 	if (ret)
943 		goto out_wait_freeze_timed_out;
944 
945 	return 0;
946 
947 out_wait_freeze_timed_out:
948 	nvme_quiesce_io_queues(&ctrl->ctrl);
949 	nvme_sync_io_queues(&ctrl->ctrl);
950 	nvme_rdma_stop_io_queues(ctrl);
951 out_cleanup_tagset:
952 	nvme_cancel_tagset(&ctrl->ctrl);
953 	if (new)
954 		nvme_remove_io_tag_set(&ctrl->ctrl);
955 out_free_io_queues:
956 	nvme_rdma_free_io_queues(ctrl);
957 	return ret;
958 }
959 
960 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
961 		bool remove)
962 {
963 	nvme_quiesce_admin_queue(&ctrl->ctrl);
964 	blk_sync_queue(ctrl->ctrl.admin_q);
965 	nvme_rdma_stop_queue(&ctrl->queues[0]);
966 	nvme_cancel_admin_tagset(&ctrl->ctrl);
967 	if (remove) {
968 		nvme_unquiesce_admin_queue(&ctrl->ctrl);
969 		nvme_remove_admin_tag_set(&ctrl->ctrl);
970 	}
971 	nvme_rdma_destroy_admin_queue(ctrl);
972 }
973 
974 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
975 		bool remove)
976 {
977 	if (ctrl->ctrl.queue_count > 1) {
978 		nvme_start_freeze(&ctrl->ctrl);
979 		nvme_quiesce_io_queues(&ctrl->ctrl);
980 		nvme_sync_io_queues(&ctrl->ctrl);
981 		nvme_rdma_stop_io_queues(ctrl);
982 		nvme_cancel_tagset(&ctrl->ctrl);
983 		if (remove) {
984 			nvme_unquiesce_io_queues(&ctrl->ctrl);
985 			nvme_remove_io_tag_set(&ctrl->ctrl);
986 		}
987 		nvme_rdma_free_io_queues(ctrl);
988 	}
989 }
990 
991 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
992 {
993 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
994 
995 	flush_work(&ctrl->err_work);
996 	cancel_delayed_work_sync(&ctrl->reconnect_work);
997 }
998 
999 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1000 {
1001 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1002 
1003 	if (list_empty(&ctrl->list))
1004 		goto free_ctrl;
1005 
1006 	mutex_lock(&nvme_rdma_ctrl_mutex);
1007 	list_del(&ctrl->list);
1008 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1009 
1010 	nvmf_free_options(nctrl->opts);
1011 free_ctrl:
1012 	kfree(ctrl->queues);
1013 	kfree(ctrl);
1014 }
1015 
1016 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1017 {
1018 	/* If we are resetting/deleting then do nothing */
1019 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1020 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1021 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1022 		return;
1023 	}
1024 
1025 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1026 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1027 			ctrl->ctrl.opts->reconnect_delay);
1028 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1029 				ctrl->ctrl.opts->reconnect_delay * HZ);
1030 	} else {
1031 		nvme_delete_ctrl(&ctrl->ctrl);
1032 	}
1033 }
1034 
1035 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1036 {
1037 	int ret;
1038 	bool changed;
1039 
1040 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1041 	if (ret)
1042 		return ret;
1043 
1044 	if (ctrl->ctrl.icdoff) {
1045 		ret = -EOPNOTSUPP;
1046 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1047 		goto destroy_admin;
1048 	}
1049 
1050 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1051 		ret = -EOPNOTSUPP;
1052 		dev_err(ctrl->ctrl.device,
1053 			"Mandatory keyed sgls are not supported!\n");
1054 		goto destroy_admin;
1055 	}
1056 
1057 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1058 		dev_warn(ctrl->ctrl.device,
1059 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1060 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1061 	}
1062 
1063 	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1064 		dev_warn(ctrl->ctrl.device,
1065 			"ctrl sqsize %u > max queue size %u, clamping down\n",
1066 			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1067 		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1068 	}
1069 
1070 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1071 		dev_warn(ctrl->ctrl.device,
1072 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1073 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1074 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1075 	}
1076 
1077 	if (ctrl->ctrl.sgls & (1 << 20))
1078 		ctrl->use_inline_data = true;
1079 
1080 	if (ctrl->ctrl.queue_count > 1) {
1081 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1082 		if (ret)
1083 			goto destroy_admin;
1084 	}
1085 
1086 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1087 	if (!changed) {
1088 		/*
1089 		 * state change failure is ok if we started ctrl delete,
1090 		 * unless we're during creation of a new controller to
1091 		 * avoid races with teardown flow.
1092 		 */
1093 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1094 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1095 		WARN_ON_ONCE(new);
1096 		ret = -EINVAL;
1097 		goto destroy_io;
1098 	}
1099 
1100 	nvme_start_ctrl(&ctrl->ctrl);
1101 	return 0;
1102 
1103 destroy_io:
1104 	if (ctrl->ctrl.queue_count > 1) {
1105 		nvme_quiesce_io_queues(&ctrl->ctrl);
1106 		nvme_sync_io_queues(&ctrl->ctrl);
1107 		nvme_rdma_stop_io_queues(ctrl);
1108 		nvme_cancel_tagset(&ctrl->ctrl);
1109 		if (new)
1110 			nvme_remove_io_tag_set(&ctrl->ctrl);
1111 		nvme_rdma_free_io_queues(ctrl);
1112 	}
1113 destroy_admin:
1114 	nvme_quiesce_admin_queue(&ctrl->ctrl);
1115 	blk_sync_queue(ctrl->ctrl.admin_q);
1116 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1117 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1118 	if (new)
1119 		nvme_remove_admin_tag_set(&ctrl->ctrl);
1120 	nvme_rdma_destroy_admin_queue(ctrl);
1121 	return ret;
1122 }
1123 
1124 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1125 {
1126 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1127 			struct nvme_rdma_ctrl, reconnect_work);
1128 
1129 	++ctrl->ctrl.nr_reconnects;
1130 
1131 	if (nvme_rdma_setup_ctrl(ctrl, false))
1132 		goto requeue;
1133 
1134 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1135 			ctrl->ctrl.nr_reconnects);
1136 
1137 	ctrl->ctrl.nr_reconnects = 0;
1138 
1139 	return;
1140 
1141 requeue:
1142 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1143 			ctrl->ctrl.nr_reconnects);
1144 	nvme_rdma_reconnect_or_remove(ctrl);
1145 }
1146 
1147 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1148 {
1149 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1150 			struct nvme_rdma_ctrl, err_work);
1151 
1152 	nvme_stop_keep_alive(&ctrl->ctrl);
1153 	flush_work(&ctrl->ctrl.async_event_work);
1154 	nvme_rdma_teardown_io_queues(ctrl, false);
1155 	nvme_unquiesce_io_queues(&ctrl->ctrl);
1156 	nvme_rdma_teardown_admin_queue(ctrl, false);
1157 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1158 	nvme_auth_stop(&ctrl->ctrl);
1159 
1160 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1161 		/* state change failure is ok if we started ctrl delete */
1162 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1163 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1164 		return;
1165 	}
1166 
1167 	nvme_rdma_reconnect_or_remove(ctrl);
1168 }
1169 
1170 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1171 {
1172 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1173 		return;
1174 
1175 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1176 	queue_work(nvme_reset_wq, &ctrl->err_work);
1177 }
1178 
1179 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1180 {
1181 	struct request *rq = blk_mq_rq_from_pdu(req);
1182 
1183 	if (!refcount_dec_and_test(&req->ref))
1184 		return;
1185 	if (!nvme_try_complete_req(rq, req->status, req->result))
1186 		nvme_rdma_complete_rq(rq);
1187 }
1188 
1189 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1190 		const char *op)
1191 {
1192 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1193 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1194 
1195 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1196 		dev_info(ctrl->ctrl.device,
1197 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1198 			     op, wc->wr_cqe,
1199 			     ib_wc_status_msg(wc->status), wc->status);
1200 	nvme_rdma_error_recovery(ctrl);
1201 }
1202 
1203 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1204 {
1205 	if (unlikely(wc->status != IB_WC_SUCCESS))
1206 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1207 }
1208 
1209 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1210 {
1211 	struct nvme_rdma_request *req =
1212 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1213 
1214 	if (unlikely(wc->status != IB_WC_SUCCESS))
1215 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1216 	else
1217 		nvme_rdma_end_request(req);
1218 }
1219 
1220 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1221 		struct nvme_rdma_request *req)
1222 {
1223 	struct ib_send_wr wr = {
1224 		.opcode		    = IB_WR_LOCAL_INV,
1225 		.next		    = NULL,
1226 		.num_sge	    = 0,
1227 		.send_flags	    = IB_SEND_SIGNALED,
1228 		.ex.invalidate_rkey = req->mr->rkey,
1229 	};
1230 
1231 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1232 	wr.wr_cqe = &req->reg_cqe;
1233 
1234 	return ib_post_send(queue->qp, &wr, NULL);
1235 }
1236 
1237 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1238 {
1239 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1240 
1241 	if (blk_integrity_rq(rq)) {
1242 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1243 				req->metadata_sgl->nents, rq_dma_dir(rq));
1244 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1245 				      NVME_INLINE_METADATA_SG_CNT);
1246 	}
1247 
1248 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1249 			rq_dma_dir(rq));
1250 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1251 }
1252 
1253 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1254 		struct request *rq)
1255 {
1256 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1257 	struct nvme_rdma_device *dev = queue->device;
1258 	struct ib_device *ibdev = dev->dev;
1259 	struct list_head *pool = &queue->qp->rdma_mrs;
1260 
1261 	if (!blk_rq_nr_phys_segments(rq))
1262 		return;
1263 
1264 	if (req->use_sig_mr)
1265 		pool = &queue->qp->sig_mrs;
1266 
1267 	if (req->mr) {
1268 		ib_mr_pool_put(queue->qp, pool, req->mr);
1269 		req->mr = NULL;
1270 	}
1271 
1272 	nvme_rdma_dma_unmap_req(ibdev, rq);
1273 }
1274 
1275 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1276 {
1277 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1278 
1279 	sg->addr = 0;
1280 	put_unaligned_le24(0, sg->length);
1281 	put_unaligned_le32(0, sg->key);
1282 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1283 	return 0;
1284 }
1285 
1286 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1287 		struct nvme_rdma_request *req, struct nvme_command *c,
1288 		int count)
1289 {
1290 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1291 	struct ib_sge *sge = &req->sge[1];
1292 	struct scatterlist *sgl;
1293 	u32 len = 0;
1294 	int i;
1295 
1296 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1297 		sge->addr = sg_dma_address(sgl);
1298 		sge->length = sg_dma_len(sgl);
1299 		sge->lkey = queue->device->pd->local_dma_lkey;
1300 		len += sge->length;
1301 		sge++;
1302 	}
1303 
1304 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1305 	sg->length = cpu_to_le32(len);
1306 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1307 
1308 	req->num_sge += count;
1309 	return 0;
1310 }
1311 
1312 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1313 		struct nvme_rdma_request *req, struct nvme_command *c)
1314 {
1315 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1316 
1317 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1318 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1319 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1320 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1321 	return 0;
1322 }
1323 
1324 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1325 		struct nvme_rdma_request *req, struct nvme_command *c,
1326 		int count)
1327 {
1328 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1329 	int nr;
1330 
1331 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1332 	if (WARN_ON_ONCE(!req->mr))
1333 		return -EAGAIN;
1334 
1335 	/*
1336 	 * Align the MR to a 4K page size to match the ctrl page size and
1337 	 * the block virtual boundary.
1338 	 */
1339 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1340 			  SZ_4K);
1341 	if (unlikely(nr < count)) {
1342 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1343 		req->mr = NULL;
1344 		if (nr < 0)
1345 			return nr;
1346 		return -EINVAL;
1347 	}
1348 
1349 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1350 
1351 	req->reg_cqe.done = nvme_rdma_memreg_done;
1352 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1353 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1354 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1355 	req->reg_wr.wr.num_sge = 0;
1356 	req->reg_wr.mr = req->mr;
1357 	req->reg_wr.key = req->mr->rkey;
1358 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1359 			     IB_ACCESS_REMOTE_READ |
1360 			     IB_ACCESS_REMOTE_WRITE;
1361 
1362 	sg->addr = cpu_to_le64(req->mr->iova);
1363 	put_unaligned_le24(req->mr->length, sg->length);
1364 	put_unaligned_le32(req->mr->rkey, sg->key);
1365 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1366 			NVME_SGL_FMT_INVALIDATE;
1367 
1368 	return 0;
1369 }
1370 
1371 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1372 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1373 		u16 control, u8 pi_type)
1374 {
1375 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1376 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1377 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1378 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1379 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1380 		domain->sig.dif.ref_remap = true;
1381 
1382 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1383 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1384 	domain->sig.dif.app_escape = true;
1385 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1386 		domain->sig.dif.ref_escape = true;
1387 }
1388 
1389 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1390 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1391 		u8 pi_type)
1392 {
1393 	u16 control = le16_to_cpu(cmd->rw.control);
1394 
1395 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1396 	if (control & NVME_RW_PRINFO_PRACT) {
1397 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1398 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1399 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1400 					 pi_type);
1401 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1402 		control &= ~NVME_RW_PRINFO_PRACT;
1403 		cmd->rw.control = cpu_to_le16(control);
1404 	} else {
1405 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1406 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1407 					 pi_type);
1408 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1409 					 pi_type);
1410 	}
1411 }
1412 
1413 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1414 {
1415 	*mask = 0;
1416 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1417 		*mask |= IB_SIG_CHECK_REFTAG;
1418 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1419 		*mask |= IB_SIG_CHECK_GUARD;
1420 }
1421 
1422 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1423 {
1424 	if (unlikely(wc->status != IB_WC_SUCCESS))
1425 		nvme_rdma_wr_error(cq, wc, "SIG");
1426 }
1427 
1428 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1429 		struct nvme_rdma_request *req, struct nvme_command *c,
1430 		int count, int pi_count)
1431 {
1432 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1433 	struct ib_reg_wr *wr = &req->reg_wr;
1434 	struct request *rq = blk_mq_rq_from_pdu(req);
1435 	struct nvme_ns *ns = rq->q->queuedata;
1436 	struct bio *bio = rq->bio;
1437 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1438 	int nr;
1439 
1440 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1441 	if (WARN_ON_ONCE(!req->mr))
1442 		return -EAGAIN;
1443 
1444 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1445 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1446 			     SZ_4K);
1447 	if (unlikely(nr))
1448 		goto mr_put;
1449 
1450 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1451 				req->mr->sig_attrs, ns->pi_type);
1452 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1453 
1454 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1455 
1456 	req->reg_cqe.done = nvme_rdma_sig_done;
1457 	memset(wr, 0, sizeof(*wr));
1458 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1459 	wr->wr.wr_cqe = &req->reg_cqe;
1460 	wr->wr.num_sge = 0;
1461 	wr->wr.send_flags = 0;
1462 	wr->mr = req->mr;
1463 	wr->key = req->mr->rkey;
1464 	wr->access = IB_ACCESS_LOCAL_WRITE |
1465 		     IB_ACCESS_REMOTE_READ |
1466 		     IB_ACCESS_REMOTE_WRITE;
1467 
1468 	sg->addr = cpu_to_le64(req->mr->iova);
1469 	put_unaligned_le24(req->mr->length, sg->length);
1470 	put_unaligned_le32(req->mr->rkey, sg->key);
1471 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1472 
1473 	return 0;
1474 
1475 mr_put:
1476 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1477 	req->mr = NULL;
1478 	if (nr < 0)
1479 		return nr;
1480 	return -EINVAL;
1481 }
1482 
1483 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1484 		int *count, int *pi_count)
1485 {
1486 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1487 	int ret;
1488 
1489 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1490 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1491 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1492 			NVME_INLINE_SG_CNT);
1493 	if (ret)
1494 		return -ENOMEM;
1495 
1496 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1497 					    req->data_sgl.sg_table.sgl);
1498 
1499 	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1500 			       req->data_sgl.nents, rq_dma_dir(rq));
1501 	if (unlikely(*count <= 0)) {
1502 		ret = -EIO;
1503 		goto out_free_table;
1504 	}
1505 
1506 	if (blk_integrity_rq(rq)) {
1507 		req->metadata_sgl->sg_table.sgl =
1508 			(struct scatterlist *)(req->metadata_sgl + 1);
1509 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1510 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1511 				req->metadata_sgl->sg_table.sgl,
1512 				NVME_INLINE_METADATA_SG_CNT);
1513 		if (unlikely(ret)) {
1514 			ret = -ENOMEM;
1515 			goto out_unmap_sg;
1516 		}
1517 
1518 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1519 				rq->bio, req->metadata_sgl->sg_table.sgl);
1520 		*pi_count = ib_dma_map_sg(ibdev,
1521 					  req->metadata_sgl->sg_table.sgl,
1522 					  req->metadata_sgl->nents,
1523 					  rq_dma_dir(rq));
1524 		if (unlikely(*pi_count <= 0)) {
1525 			ret = -EIO;
1526 			goto out_free_pi_table;
1527 		}
1528 	}
1529 
1530 	return 0;
1531 
1532 out_free_pi_table:
1533 	sg_free_table_chained(&req->metadata_sgl->sg_table,
1534 			      NVME_INLINE_METADATA_SG_CNT);
1535 out_unmap_sg:
1536 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1537 			rq_dma_dir(rq));
1538 out_free_table:
1539 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1540 	return ret;
1541 }
1542 
1543 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1544 		struct request *rq, struct nvme_command *c)
1545 {
1546 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1547 	struct nvme_rdma_device *dev = queue->device;
1548 	struct ib_device *ibdev = dev->dev;
1549 	int pi_count = 0;
1550 	int count, ret;
1551 
1552 	req->num_sge = 1;
1553 	refcount_set(&req->ref, 2); /* send and recv completions */
1554 
1555 	c->common.flags |= NVME_CMD_SGL_METABUF;
1556 
1557 	if (!blk_rq_nr_phys_segments(rq))
1558 		return nvme_rdma_set_sg_null(c);
1559 
1560 	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1561 	if (unlikely(ret))
1562 		return ret;
1563 
1564 	if (req->use_sig_mr) {
1565 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1566 		goto out;
1567 	}
1568 
1569 	if (count <= dev->num_inline_segments) {
1570 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1571 		    queue->ctrl->use_inline_data &&
1572 		    blk_rq_payload_bytes(rq) <=
1573 				nvme_rdma_inline_data_size(queue)) {
1574 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1575 			goto out;
1576 		}
1577 
1578 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1579 			ret = nvme_rdma_map_sg_single(queue, req, c);
1580 			goto out;
1581 		}
1582 	}
1583 
1584 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1585 out:
1586 	if (unlikely(ret))
1587 		goto out_dma_unmap_req;
1588 
1589 	return 0;
1590 
1591 out_dma_unmap_req:
1592 	nvme_rdma_dma_unmap_req(ibdev, rq);
1593 	return ret;
1594 }
1595 
1596 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1597 {
1598 	struct nvme_rdma_qe *qe =
1599 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1600 	struct nvme_rdma_request *req =
1601 		container_of(qe, struct nvme_rdma_request, sqe);
1602 
1603 	if (unlikely(wc->status != IB_WC_SUCCESS))
1604 		nvme_rdma_wr_error(cq, wc, "SEND");
1605 	else
1606 		nvme_rdma_end_request(req);
1607 }
1608 
1609 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1610 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1611 		struct ib_send_wr *first)
1612 {
1613 	struct ib_send_wr wr;
1614 	int ret;
1615 
1616 	sge->addr   = qe->dma;
1617 	sge->length = sizeof(struct nvme_command);
1618 	sge->lkey   = queue->device->pd->local_dma_lkey;
1619 
1620 	wr.next       = NULL;
1621 	wr.wr_cqe     = &qe->cqe;
1622 	wr.sg_list    = sge;
1623 	wr.num_sge    = num_sge;
1624 	wr.opcode     = IB_WR_SEND;
1625 	wr.send_flags = IB_SEND_SIGNALED;
1626 
1627 	if (first)
1628 		first->next = &wr;
1629 	else
1630 		first = &wr;
1631 
1632 	ret = ib_post_send(queue->qp, first, NULL);
1633 	if (unlikely(ret)) {
1634 		dev_err(queue->ctrl->ctrl.device,
1635 			     "%s failed with error code %d\n", __func__, ret);
1636 	}
1637 	return ret;
1638 }
1639 
1640 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1641 		struct nvme_rdma_qe *qe)
1642 {
1643 	struct ib_recv_wr wr;
1644 	struct ib_sge list;
1645 	int ret;
1646 
1647 	list.addr   = qe->dma;
1648 	list.length = sizeof(struct nvme_completion);
1649 	list.lkey   = queue->device->pd->local_dma_lkey;
1650 
1651 	qe->cqe.done = nvme_rdma_recv_done;
1652 
1653 	wr.next     = NULL;
1654 	wr.wr_cqe   = &qe->cqe;
1655 	wr.sg_list  = &list;
1656 	wr.num_sge  = 1;
1657 
1658 	ret = ib_post_recv(queue->qp, &wr, NULL);
1659 	if (unlikely(ret)) {
1660 		dev_err(queue->ctrl->ctrl.device,
1661 			"%s failed with error code %d\n", __func__, ret);
1662 	}
1663 	return ret;
1664 }
1665 
1666 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1667 {
1668 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1669 
1670 	if (queue_idx == 0)
1671 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1672 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1673 }
1674 
1675 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1676 {
1677 	if (unlikely(wc->status != IB_WC_SUCCESS))
1678 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1679 }
1680 
1681 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1682 {
1683 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1684 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1685 	struct ib_device *dev = queue->device->dev;
1686 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1687 	struct nvme_command *cmd = sqe->data;
1688 	struct ib_sge sge;
1689 	int ret;
1690 
1691 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1692 
1693 	memset(cmd, 0, sizeof(*cmd));
1694 	cmd->common.opcode = nvme_admin_async_event;
1695 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1696 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1697 	nvme_rdma_set_sg_null(cmd);
1698 
1699 	sqe->cqe.done = nvme_rdma_async_done;
1700 
1701 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1702 			DMA_TO_DEVICE);
1703 
1704 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1705 	WARN_ON_ONCE(ret);
1706 }
1707 
1708 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1709 		struct nvme_completion *cqe, struct ib_wc *wc)
1710 {
1711 	struct request *rq;
1712 	struct nvme_rdma_request *req;
1713 
1714 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1715 	if (!rq) {
1716 		dev_err(queue->ctrl->ctrl.device,
1717 			"got bad command_id %#x on QP %#x\n",
1718 			cqe->command_id, queue->qp->qp_num);
1719 		nvme_rdma_error_recovery(queue->ctrl);
1720 		return;
1721 	}
1722 	req = blk_mq_rq_to_pdu(rq);
1723 
1724 	req->status = cqe->status;
1725 	req->result = cqe->result;
1726 
1727 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1728 		if (unlikely(!req->mr ||
1729 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1730 			dev_err(queue->ctrl->ctrl.device,
1731 				"Bogus remote invalidation for rkey %#x\n",
1732 				req->mr ? req->mr->rkey : 0);
1733 			nvme_rdma_error_recovery(queue->ctrl);
1734 		}
1735 	} else if (req->mr) {
1736 		int ret;
1737 
1738 		ret = nvme_rdma_inv_rkey(queue, req);
1739 		if (unlikely(ret < 0)) {
1740 			dev_err(queue->ctrl->ctrl.device,
1741 				"Queueing INV WR for rkey %#x failed (%d)\n",
1742 				req->mr->rkey, ret);
1743 			nvme_rdma_error_recovery(queue->ctrl);
1744 		}
1745 		/* the local invalidation completion will end the request */
1746 		return;
1747 	}
1748 
1749 	nvme_rdma_end_request(req);
1750 }
1751 
1752 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1753 {
1754 	struct nvme_rdma_qe *qe =
1755 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1756 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1757 	struct ib_device *ibdev = queue->device->dev;
1758 	struct nvme_completion *cqe = qe->data;
1759 	const size_t len = sizeof(struct nvme_completion);
1760 
1761 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1762 		nvme_rdma_wr_error(cq, wc, "RECV");
1763 		return;
1764 	}
1765 
1766 	/* sanity checking for received data length */
1767 	if (unlikely(wc->byte_len < len)) {
1768 		dev_err(queue->ctrl->ctrl.device,
1769 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1770 		nvme_rdma_error_recovery(queue->ctrl);
1771 		return;
1772 	}
1773 
1774 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1775 	/*
1776 	 * AEN requests are special as they don't time out and can
1777 	 * survive any kind of queue freeze and often don't respond to
1778 	 * aborts.  We don't even bother to allocate a struct request
1779 	 * for them but rather special case them here.
1780 	 */
1781 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1782 				     cqe->command_id)))
1783 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1784 				&cqe->result);
1785 	else
1786 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1787 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1788 
1789 	nvme_rdma_post_recv(queue, qe);
1790 }
1791 
1792 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1793 {
1794 	int ret, i;
1795 
1796 	for (i = 0; i < queue->queue_size; i++) {
1797 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1798 		if (ret)
1799 			return ret;
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1806 		struct rdma_cm_event *ev)
1807 {
1808 	struct rdma_cm_id *cm_id = queue->cm_id;
1809 	int status = ev->status;
1810 	const char *rej_msg;
1811 	const struct nvme_rdma_cm_rej *rej_data;
1812 	u8 rej_data_len;
1813 
1814 	rej_msg = rdma_reject_msg(cm_id, status);
1815 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1816 
1817 	if (rej_data && rej_data_len >= sizeof(u16)) {
1818 		u16 sts = le16_to_cpu(rej_data->sts);
1819 
1820 		dev_err(queue->ctrl->ctrl.device,
1821 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1822 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1823 	} else {
1824 		dev_err(queue->ctrl->ctrl.device,
1825 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1826 	}
1827 
1828 	return -ECONNRESET;
1829 }
1830 
1831 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1832 {
1833 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1834 	int ret;
1835 
1836 	ret = nvme_rdma_create_queue_ib(queue);
1837 	if (ret)
1838 		return ret;
1839 
1840 	if (ctrl->opts->tos >= 0)
1841 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1842 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1843 	if (ret) {
1844 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1845 			queue->cm_error);
1846 		goto out_destroy_queue;
1847 	}
1848 
1849 	return 0;
1850 
1851 out_destroy_queue:
1852 	nvme_rdma_destroy_queue_ib(queue);
1853 	return ret;
1854 }
1855 
1856 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1857 {
1858 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1859 	struct rdma_conn_param param = { };
1860 	struct nvme_rdma_cm_req priv = { };
1861 	int ret;
1862 
1863 	param.qp_num = queue->qp->qp_num;
1864 	param.flow_control = 1;
1865 
1866 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1867 	/* maximum retry count */
1868 	param.retry_count = 7;
1869 	param.rnr_retry_count = 7;
1870 	param.private_data = &priv;
1871 	param.private_data_len = sizeof(priv);
1872 
1873 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1874 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1875 	/*
1876 	 * set the admin queue depth to the minimum size
1877 	 * specified by the Fabrics standard.
1878 	 */
1879 	if (priv.qid == 0) {
1880 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1881 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1882 	} else {
1883 		/*
1884 		 * current interpretation of the fabrics spec
1885 		 * is at minimum you make hrqsize sqsize+1, or a
1886 		 * 1's based representation of sqsize.
1887 		 */
1888 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1889 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1890 	}
1891 
1892 	ret = rdma_connect_locked(queue->cm_id, &param);
1893 	if (ret) {
1894 		dev_err(ctrl->ctrl.device,
1895 			"rdma_connect_locked failed (%d).\n", ret);
1896 		return ret;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1903 		struct rdma_cm_event *ev)
1904 {
1905 	struct nvme_rdma_queue *queue = cm_id->context;
1906 	int cm_error = 0;
1907 
1908 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1909 		rdma_event_msg(ev->event), ev->event,
1910 		ev->status, cm_id);
1911 
1912 	switch (ev->event) {
1913 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1914 		cm_error = nvme_rdma_addr_resolved(queue);
1915 		break;
1916 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1917 		cm_error = nvme_rdma_route_resolved(queue);
1918 		break;
1919 	case RDMA_CM_EVENT_ESTABLISHED:
1920 		queue->cm_error = nvme_rdma_conn_established(queue);
1921 		/* complete cm_done regardless of success/failure */
1922 		complete(&queue->cm_done);
1923 		return 0;
1924 	case RDMA_CM_EVENT_REJECTED:
1925 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1926 		break;
1927 	case RDMA_CM_EVENT_ROUTE_ERROR:
1928 	case RDMA_CM_EVENT_CONNECT_ERROR:
1929 	case RDMA_CM_EVENT_UNREACHABLE:
1930 	case RDMA_CM_EVENT_ADDR_ERROR:
1931 		dev_dbg(queue->ctrl->ctrl.device,
1932 			"CM error event %d\n", ev->event);
1933 		cm_error = -ECONNRESET;
1934 		break;
1935 	case RDMA_CM_EVENT_DISCONNECTED:
1936 	case RDMA_CM_EVENT_ADDR_CHANGE:
1937 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1938 		dev_dbg(queue->ctrl->ctrl.device,
1939 			"disconnect received - connection closed\n");
1940 		nvme_rdma_error_recovery(queue->ctrl);
1941 		break;
1942 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1943 		/* device removal is handled via the ib_client API */
1944 		break;
1945 	default:
1946 		dev_err(queue->ctrl->ctrl.device,
1947 			"Unexpected RDMA CM event (%d)\n", ev->event);
1948 		nvme_rdma_error_recovery(queue->ctrl);
1949 		break;
1950 	}
1951 
1952 	if (cm_error) {
1953 		queue->cm_error = cm_error;
1954 		complete(&queue->cm_done);
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static void nvme_rdma_complete_timed_out(struct request *rq)
1961 {
1962 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1963 	struct nvme_rdma_queue *queue = req->queue;
1964 
1965 	nvme_rdma_stop_queue(queue);
1966 	nvmf_complete_timed_out_request(rq);
1967 }
1968 
1969 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1970 {
1971 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1972 	struct nvme_rdma_queue *queue = req->queue;
1973 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1974 
1975 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1976 		 rq->tag, nvme_rdma_queue_idx(queue));
1977 
1978 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1979 		/*
1980 		 * If we are resetting, connecting or deleting we should
1981 		 * complete immediately because we may block controller
1982 		 * teardown or setup sequence
1983 		 * - ctrl disable/shutdown fabrics requests
1984 		 * - connect requests
1985 		 * - initialization admin requests
1986 		 * - I/O requests that entered after unquiescing and
1987 		 *   the controller stopped responding
1988 		 *
1989 		 * All other requests should be cancelled by the error
1990 		 * recovery work, so it's fine that we fail it here.
1991 		 */
1992 		nvme_rdma_complete_timed_out(rq);
1993 		return BLK_EH_DONE;
1994 	}
1995 
1996 	/*
1997 	 * LIVE state should trigger the normal error recovery which will
1998 	 * handle completing this request.
1999 	 */
2000 	nvme_rdma_error_recovery(ctrl);
2001 	return BLK_EH_RESET_TIMER;
2002 }
2003 
2004 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2005 		const struct blk_mq_queue_data *bd)
2006 {
2007 	struct nvme_ns *ns = hctx->queue->queuedata;
2008 	struct nvme_rdma_queue *queue = hctx->driver_data;
2009 	struct request *rq = bd->rq;
2010 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2011 	struct nvme_rdma_qe *sqe = &req->sqe;
2012 	struct nvme_command *c = nvme_req(rq)->cmd;
2013 	struct ib_device *dev;
2014 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2015 	blk_status_t ret;
2016 	int err;
2017 
2018 	WARN_ON_ONCE(rq->tag < 0);
2019 
2020 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2021 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2022 
2023 	dev = queue->device->dev;
2024 
2025 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2026 					 sizeof(struct nvme_command),
2027 					 DMA_TO_DEVICE);
2028 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2029 	if (unlikely(err))
2030 		return BLK_STS_RESOURCE;
2031 
2032 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2033 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2034 
2035 	ret = nvme_setup_cmd(ns, rq);
2036 	if (ret)
2037 		goto unmap_qe;
2038 
2039 	nvme_start_request(rq);
2040 
2041 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2042 	    queue->pi_support &&
2043 	    (c->common.opcode == nvme_cmd_write ||
2044 	     c->common.opcode == nvme_cmd_read) &&
2045 	    nvme_ns_has_pi(ns))
2046 		req->use_sig_mr = true;
2047 	else
2048 		req->use_sig_mr = false;
2049 
2050 	err = nvme_rdma_map_data(queue, rq, c);
2051 	if (unlikely(err < 0)) {
2052 		dev_err(queue->ctrl->ctrl.device,
2053 			     "Failed to map data (%d)\n", err);
2054 		goto err;
2055 	}
2056 
2057 	sqe->cqe.done = nvme_rdma_send_done;
2058 
2059 	ib_dma_sync_single_for_device(dev, sqe->dma,
2060 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2061 
2062 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2063 			req->mr ? &req->reg_wr.wr : NULL);
2064 	if (unlikely(err))
2065 		goto err_unmap;
2066 
2067 	return BLK_STS_OK;
2068 
2069 err_unmap:
2070 	nvme_rdma_unmap_data(queue, rq);
2071 err:
2072 	if (err == -EIO)
2073 		ret = nvme_host_path_error(rq);
2074 	else if (err == -ENOMEM || err == -EAGAIN)
2075 		ret = BLK_STS_RESOURCE;
2076 	else
2077 		ret = BLK_STS_IOERR;
2078 	nvme_cleanup_cmd(rq);
2079 unmap_qe:
2080 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2081 			    DMA_TO_DEVICE);
2082 	return ret;
2083 }
2084 
2085 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2086 {
2087 	struct nvme_rdma_queue *queue = hctx->driver_data;
2088 
2089 	return ib_process_cq_direct(queue->ib_cq, -1);
2090 }
2091 
2092 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2093 {
2094 	struct request *rq = blk_mq_rq_from_pdu(req);
2095 	struct ib_mr_status mr_status;
2096 	int ret;
2097 
2098 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2099 	if (ret) {
2100 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2101 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2102 		return;
2103 	}
2104 
2105 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2106 		switch (mr_status.sig_err.err_type) {
2107 		case IB_SIG_BAD_GUARD:
2108 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2109 			break;
2110 		case IB_SIG_BAD_REFTAG:
2111 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2112 			break;
2113 		case IB_SIG_BAD_APPTAG:
2114 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2115 			break;
2116 		}
2117 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2118 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2119 		       mr_status.sig_err.actual);
2120 	}
2121 }
2122 
2123 static void nvme_rdma_complete_rq(struct request *rq)
2124 {
2125 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2126 	struct nvme_rdma_queue *queue = req->queue;
2127 	struct ib_device *ibdev = queue->device->dev;
2128 
2129 	if (req->use_sig_mr)
2130 		nvme_rdma_check_pi_status(req);
2131 
2132 	nvme_rdma_unmap_data(queue, rq);
2133 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2134 			    DMA_TO_DEVICE);
2135 	nvme_complete_rq(rq);
2136 }
2137 
2138 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2139 {
2140 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2141 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2142 
2143 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2144 		/* separate read/write queues */
2145 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2146 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2147 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2148 		set->map[HCTX_TYPE_READ].nr_queues =
2149 			ctrl->io_queues[HCTX_TYPE_READ];
2150 		set->map[HCTX_TYPE_READ].queue_offset =
2151 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2152 	} else {
2153 		/* shared read/write queues */
2154 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2155 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2156 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2157 		set->map[HCTX_TYPE_READ].nr_queues =
2158 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2159 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2160 	}
2161 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2162 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2163 
2164 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2165 		/* map dedicated poll queues only if we have queues left */
2166 		set->map[HCTX_TYPE_POLL].nr_queues =
2167 				ctrl->io_queues[HCTX_TYPE_POLL];
2168 		set->map[HCTX_TYPE_POLL].queue_offset =
2169 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2170 			ctrl->io_queues[HCTX_TYPE_READ];
2171 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2172 	}
2173 
2174 	dev_info(ctrl->ctrl.device,
2175 		"mapped %d/%d/%d default/read/poll queues.\n",
2176 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2177 		ctrl->io_queues[HCTX_TYPE_READ],
2178 		ctrl->io_queues[HCTX_TYPE_POLL]);
2179 }
2180 
2181 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2182 	.queue_rq	= nvme_rdma_queue_rq,
2183 	.complete	= nvme_rdma_complete_rq,
2184 	.init_request	= nvme_rdma_init_request,
2185 	.exit_request	= nvme_rdma_exit_request,
2186 	.init_hctx	= nvme_rdma_init_hctx,
2187 	.timeout	= nvme_rdma_timeout,
2188 	.map_queues	= nvme_rdma_map_queues,
2189 	.poll		= nvme_rdma_poll,
2190 };
2191 
2192 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2193 	.queue_rq	= nvme_rdma_queue_rq,
2194 	.complete	= nvme_rdma_complete_rq,
2195 	.init_request	= nvme_rdma_init_request,
2196 	.exit_request	= nvme_rdma_exit_request,
2197 	.init_hctx	= nvme_rdma_init_admin_hctx,
2198 	.timeout	= nvme_rdma_timeout,
2199 };
2200 
2201 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2202 {
2203 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2204 	nvme_quiesce_admin_queue(&ctrl->ctrl);
2205 	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2206 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2207 }
2208 
2209 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2210 {
2211 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2212 }
2213 
2214 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2215 {
2216 	struct nvme_rdma_ctrl *ctrl =
2217 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2218 
2219 	nvme_stop_ctrl(&ctrl->ctrl);
2220 	nvme_rdma_shutdown_ctrl(ctrl, false);
2221 
2222 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2223 		/* state change failure should never happen */
2224 		WARN_ON_ONCE(1);
2225 		return;
2226 	}
2227 
2228 	if (nvme_rdma_setup_ctrl(ctrl, false))
2229 		goto out_fail;
2230 
2231 	return;
2232 
2233 out_fail:
2234 	++ctrl->ctrl.nr_reconnects;
2235 	nvme_rdma_reconnect_or_remove(ctrl);
2236 }
2237 
2238 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2239 	.name			= "rdma",
2240 	.module			= THIS_MODULE,
2241 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2242 	.reg_read32		= nvmf_reg_read32,
2243 	.reg_read64		= nvmf_reg_read64,
2244 	.reg_write32		= nvmf_reg_write32,
2245 	.free_ctrl		= nvme_rdma_free_ctrl,
2246 	.submit_async_event	= nvme_rdma_submit_async_event,
2247 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2248 	.get_address		= nvmf_get_address,
2249 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2250 };
2251 
2252 /*
2253  * Fails a connection request if it matches an existing controller
2254  * (association) with the same tuple:
2255  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2256  *
2257  * if local address is not specified in the request, it will match an
2258  * existing controller with all the other parameters the same and no
2259  * local port address specified as well.
2260  *
2261  * The ports don't need to be compared as they are intrinsically
2262  * already matched by the port pointers supplied.
2263  */
2264 static bool
2265 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2266 {
2267 	struct nvme_rdma_ctrl *ctrl;
2268 	bool found = false;
2269 
2270 	mutex_lock(&nvme_rdma_ctrl_mutex);
2271 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2272 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2273 		if (found)
2274 			break;
2275 	}
2276 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2277 
2278 	return found;
2279 }
2280 
2281 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2282 		struct nvmf_ctrl_options *opts)
2283 {
2284 	struct nvme_rdma_ctrl *ctrl;
2285 	int ret;
2286 	bool changed;
2287 
2288 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2289 	if (!ctrl)
2290 		return ERR_PTR(-ENOMEM);
2291 	ctrl->ctrl.opts = opts;
2292 	INIT_LIST_HEAD(&ctrl->list);
2293 
2294 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2295 		opts->trsvcid =
2296 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2297 		if (!opts->trsvcid) {
2298 			ret = -ENOMEM;
2299 			goto out_free_ctrl;
2300 		}
2301 		opts->mask |= NVMF_OPT_TRSVCID;
2302 	}
2303 
2304 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2305 			opts->traddr, opts->trsvcid, &ctrl->addr);
2306 	if (ret) {
2307 		pr_err("malformed address passed: %s:%s\n",
2308 			opts->traddr, opts->trsvcid);
2309 		goto out_free_ctrl;
2310 	}
2311 
2312 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2313 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2314 			opts->host_traddr, NULL, &ctrl->src_addr);
2315 		if (ret) {
2316 			pr_err("malformed src address passed: %s\n",
2317 			       opts->host_traddr);
2318 			goto out_free_ctrl;
2319 		}
2320 	}
2321 
2322 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2323 		ret = -EALREADY;
2324 		goto out_free_ctrl;
2325 	}
2326 
2327 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2328 			nvme_rdma_reconnect_ctrl_work);
2329 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2330 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2331 
2332 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2333 				opts->nr_poll_queues + 1;
2334 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2335 	ctrl->ctrl.kato = opts->kato;
2336 
2337 	ret = -ENOMEM;
2338 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2339 				GFP_KERNEL);
2340 	if (!ctrl->queues)
2341 		goto out_free_ctrl;
2342 
2343 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2344 				0 /* no quirks, we're perfect! */);
2345 	if (ret)
2346 		goto out_kfree_queues;
2347 
2348 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2349 	WARN_ON_ONCE(!changed);
2350 
2351 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2352 	if (ret)
2353 		goto out_uninit_ctrl;
2354 
2355 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2356 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2357 
2358 	mutex_lock(&nvme_rdma_ctrl_mutex);
2359 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2360 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2361 
2362 	return &ctrl->ctrl;
2363 
2364 out_uninit_ctrl:
2365 	nvme_uninit_ctrl(&ctrl->ctrl);
2366 	nvme_put_ctrl(&ctrl->ctrl);
2367 	if (ret > 0)
2368 		ret = -EIO;
2369 	return ERR_PTR(ret);
2370 out_kfree_queues:
2371 	kfree(ctrl->queues);
2372 out_free_ctrl:
2373 	kfree(ctrl);
2374 	return ERR_PTR(ret);
2375 }
2376 
2377 static struct nvmf_transport_ops nvme_rdma_transport = {
2378 	.name		= "rdma",
2379 	.module		= THIS_MODULE,
2380 	.required_opts	= NVMF_OPT_TRADDR,
2381 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2382 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2383 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2384 			  NVMF_OPT_TOS,
2385 	.create_ctrl	= nvme_rdma_create_ctrl,
2386 };
2387 
2388 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2389 {
2390 	struct nvme_rdma_ctrl *ctrl;
2391 	struct nvme_rdma_device *ndev;
2392 	bool found = false;
2393 
2394 	mutex_lock(&device_list_mutex);
2395 	list_for_each_entry(ndev, &device_list, entry) {
2396 		if (ndev->dev == ib_device) {
2397 			found = true;
2398 			break;
2399 		}
2400 	}
2401 	mutex_unlock(&device_list_mutex);
2402 
2403 	if (!found)
2404 		return;
2405 
2406 	/* Delete all controllers using this device */
2407 	mutex_lock(&nvme_rdma_ctrl_mutex);
2408 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2409 		if (ctrl->device->dev != ib_device)
2410 			continue;
2411 		nvme_delete_ctrl(&ctrl->ctrl);
2412 	}
2413 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2414 
2415 	flush_workqueue(nvme_delete_wq);
2416 }
2417 
2418 static struct ib_client nvme_rdma_ib_client = {
2419 	.name   = "nvme_rdma",
2420 	.remove = nvme_rdma_remove_one
2421 };
2422 
2423 static int __init nvme_rdma_init_module(void)
2424 {
2425 	int ret;
2426 
2427 	ret = ib_register_client(&nvme_rdma_ib_client);
2428 	if (ret)
2429 		return ret;
2430 
2431 	ret = nvmf_register_transport(&nvme_rdma_transport);
2432 	if (ret)
2433 		goto err_unreg_client;
2434 
2435 	return 0;
2436 
2437 err_unreg_client:
2438 	ib_unregister_client(&nvme_rdma_ib_client);
2439 	return ret;
2440 }
2441 
2442 static void __exit nvme_rdma_cleanup_module(void)
2443 {
2444 	struct nvme_rdma_ctrl *ctrl;
2445 
2446 	nvmf_unregister_transport(&nvme_rdma_transport);
2447 	ib_unregister_client(&nvme_rdma_ib_client);
2448 
2449 	mutex_lock(&nvme_rdma_ctrl_mutex);
2450 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2451 		nvme_delete_ctrl(&ctrl->ctrl);
2452 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2453 	flush_workqueue(nvme_delete_wq);
2454 }
2455 
2456 module_init(nvme_rdma_init_module);
2457 module_exit(nvme_rdma_cleanup_module);
2458 
2459 MODULE_LICENSE("GPL v2");
2460