xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 struct nvme_rdma_device {
38 	struct ib_device	*dev;
39 	struct ib_pd		*pd;
40 	struct kref		ref;
41 	struct list_head	entry;
42 	unsigned int		num_inline_segments;
43 };
44 
45 struct nvme_rdma_qe {
46 	struct ib_cqe		cqe;
47 	void			*data;
48 	u64			dma;
49 };
50 
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 	struct nvme_request	req;
54 	struct ib_mr		*mr;
55 	struct nvme_rdma_qe	sqe;
56 	union nvme_result	result;
57 	__le16			status;
58 	refcount_t		ref;
59 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 	u32			num_sge;
61 	int			nents;
62 	struct ib_reg_wr	reg_wr;
63 	struct ib_cqe		reg_cqe;
64 	struct nvme_rdma_queue  *queue;
65 	struct sg_table		sg_table;
66 	struct scatterlist	first_sgl[];
67 };
68 
69 enum nvme_rdma_queue_flags {
70 	NVME_RDMA_Q_ALLOCATED		= 0,
71 	NVME_RDMA_Q_LIVE		= 1,
72 	NVME_RDMA_Q_TR_READY		= 2,
73 };
74 
75 struct nvme_rdma_queue {
76 	struct nvme_rdma_qe	*rsp_ring;
77 	int			queue_size;
78 	size_t			cmnd_capsule_len;
79 	struct nvme_rdma_ctrl	*ctrl;
80 	struct nvme_rdma_device	*device;
81 	struct ib_cq		*ib_cq;
82 	struct ib_qp		*qp;
83 
84 	unsigned long		flags;
85 	struct rdma_cm_id	*cm_id;
86 	int			cm_error;
87 	struct completion	cm_done;
88 };
89 
90 struct nvme_rdma_ctrl {
91 	/* read only in the hot path */
92 	struct nvme_rdma_queue	*queues;
93 
94 	/* other member variables */
95 	struct blk_mq_tag_set	tag_set;
96 	struct work_struct	err_work;
97 
98 	struct nvme_rdma_qe	async_event_sqe;
99 
100 	struct delayed_work	reconnect_work;
101 
102 	struct list_head	list;
103 
104 	struct blk_mq_tag_set	admin_tag_set;
105 	struct nvme_rdma_device	*device;
106 
107 	u32			max_fr_pages;
108 
109 	struct sockaddr_storage addr;
110 	struct sockaddr_storage src_addr;
111 
112 	struct nvme_ctrl	ctrl;
113 	bool			use_inline_data;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121 
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124 
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127 
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 	 "Use memory registration even for contiguous memory regions");
137 
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 		struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141 
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144 
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148 	*p++ = val;
149 	*p++ = val >> 8;
150 	*p++ = val >> 16;
151 }
152 
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155 	return queue - queue->ctrl->queues;
156 }
157 
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160 	return nvme_rdma_queue_idx(queue) >
161 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 		queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164 
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169 
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 		size_t capsule_size, enum dma_data_direction dir)
172 {
173 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 	kfree(qe->data);
175 }
176 
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 	if (!qe->data)
182 		return -ENOMEM;
183 
184 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 		kfree(qe->data);
187 		qe->data = NULL;
188 		return -ENOMEM;
189 	}
190 
191 	return 0;
192 }
193 
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 		size_t capsule_size, enum dma_data_direction dir)
197 {
198 	int i;
199 
200 	for (i = 0; i < ib_queue_size; i++)
201 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 	kfree(ring);
203 }
204 
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 		size_t ib_queue_size, size_t capsule_size,
207 		enum dma_data_direction dir)
208 {
209 	struct nvme_rdma_qe *ring;
210 	int i;
211 
212 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 	if (!ring)
214 		return NULL;
215 
216 	for (i = 0; i < ib_queue_size; i++) {
217 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218 			goto out_free_ring;
219 	}
220 
221 	return ring;
222 
223 out_free_ring:
224 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225 	return NULL;
226 }
227 
228 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229 {
230 	pr_debug("QP event %s (%d)\n",
231 		 ib_event_msg(event->event), event->event);
232 
233 }
234 
235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236 {
237 	int ret;
238 
239 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
240 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241 	if (ret < 0)
242 		return ret;
243 	if (ret == 0)
244 		return -ETIMEDOUT;
245 	WARN_ON_ONCE(queue->cm_error > 0);
246 	return queue->cm_error;
247 }
248 
249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
250 {
251 	struct nvme_rdma_device *dev = queue->device;
252 	struct ib_qp_init_attr init_attr;
253 	int ret;
254 
255 	memset(&init_attr, 0, sizeof(init_attr));
256 	init_attr.event_handler = nvme_rdma_qp_event;
257 	/* +1 for drain */
258 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
259 	/* +1 for drain */
260 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
261 	init_attr.cap.max_recv_sge = 1;
262 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
263 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
264 	init_attr.qp_type = IB_QPT_RC;
265 	init_attr.send_cq = queue->ib_cq;
266 	init_attr.recv_cq = queue->ib_cq;
267 
268 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
269 
270 	queue->qp = queue->cm_id->qp;
271 	return ret;
272 }
273 
274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
275 		struct request *rq, unsigned int hctx_idx)
276 {
277 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
278 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
279 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
280 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
281 	struct nvme_rdma_device *dev = queue->device;
282 
283 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
284 			DMA_TO_DEVICE);
285 }
286 
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 		struct request *rq, unsigned int hctx_idx,
289 		unsigned int numa_node)
290 {
291 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295 	struct nvme_rdma_device *dev = queue->device;
296 	struct ib_device *ibdev = dev->dev;
297 	int ret;
298 
299 	nvme_req(rq)->ctrl = &ctrl->ctrl;
300 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
301 			DMA_TO_DEVICE);
302 	if (ret)
303 		return ret;
304 
305 	req->queue = queue;
306 
307 	return 0;
308 }
309 
310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311 		unsigned int hctx_idx)
312 {
313 	struct nvme_rdma_ctrl *ctrl = data;
314 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
315 
316 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
317 
318 	hctx->driver_data = queue;
319 	return 0;
320 }
321 
322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 		unsigned int hctx_idx)
324 {
325 	struct nvme_rdma_ctrl *ctrl = data;
326 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
327 
328 	BUG_ON(hctx_idx != 0);
329 
330 	hctx->driver_data = queue;
331 	return 0;
332 }
333 
334 static void nvme_rdma_free_dev(struct kref *ref)
335 {
336 	struct nvme_rdma_device *ndev =
337 		container_of(ref, struct nvme_rdma_device, ref);
338 
339 	mutex_lock(&device_list_mutex);
340 	list_del(&ndev->entry);
341 	mutex_unlock(&device_list_mutex);
342 
343 	ib_dealloc_pd(ndev->pd);
344 	kfree(ndev);
345 }
346 
347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
348 {
349 	kref_put(&dev->ref, nvme_rdma_free_dev);
350 }
351 
352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
353 {
354 	return kref_get_unless_zero(&dev->ref);
355 }
356 
357 static struct nvme_rdma_device *
358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
359 {
360 	struct nvme_rdma_device *ndev;
361 
362 	mutex_lock(&device_list_mutex);
363 	list_for_each_entry(ndev, &device_list, entry) {
364 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
365 		    nvme_rdma_dev_get(ndev))
366 			goto out_unlock;
367 	}
368 
369 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
370 	if (!ndev)
371 		goto out_err;
372 
373 	ndev->dev = cm_id->device;
374 	kref_init(&ndev->ref);
375 
376 	ndev->pd = ib_alloc_pd(ndev->dev,
377 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
378 	if (IS_ERR(ndev->pd))
379 		goto out_free_dev;
380 
381 	if (!(ndev->dev->attrs.device_cap_flags &
382 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
383 		dev_err(&ndev->dev->dev,
384 			"Memory registrations not supported.\n");
385 		goto out_free_pd;
386 	}
387 
388 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
389 					ndev->dev->attrs.max_send_sge - 1);
390 	list_add(&ndev->entry, &device_list);
391 out_unlock:
392 	mutex_unlock(&device_list_mutex);
393 	return ndev;
394 
395 out_free_pd:
396 	ib_dealloc_pd(ndev->pd);
397 out_free_dev:
398 	kfree(ndev);
399 out_err:
400 	mutex_unlock(&device_list_mutex);
401 	return NULL;
402 }
403 
404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
405 {
406 	struct nvme_rdma_device *dev;
407 	struct ib_device *ibdev;
408 
409 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
410 		return;
411 
412 	dev = queue->device;
413 	ibdev = dev->dev;
414 
415 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
416 
417 	/*
418 	 * The cm_id object might have been destroyed during RDMA connection
419 	 * establishment error flow to avoid getting other cma events, thus
420 	 * the destruction of the QP shouldn't use rdma_cm API.
421 	 */
422 	ib_destroy_qp(queue->qp);
423 	ib_free_cq(queue->ib_cq);
424 
425 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
426 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
427 
428 	nvme_rdma_dev_put(dev);
429 }
430 
431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
432 {
433 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
434 		     ibdev->attrs.max_fast_reg_page_list_len);
435 }
436 
437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
438 {
439 	struct ib_device *ibdev;
440 	const int send_wr_factor = 3;			/* MR, SEND, INV */
441 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
442 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
443 	enum ib_poll_context poll_ctx;
444 	int ret;
445 
446 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
447 	if (!queue->device) {
448 		dev_err(queue->cm_id->device->dev.parent,
449 			"no client data found!\n");
450 		return -ECONNREFUSED;
451 	}
452 	ibdev = queue->device->dev;
453 
454 	/*
455 	 * Spread I/O queues completion vectors according their queue index.
456 	 * Admin queues can always go on completion vector 0.
457 	 */
458 	comp_vector = idx == 0 ? idx : idx - 1;
459 
460 	/* Polling queues need direct cq polling context */
461 	if (nvme_rdma_poll_queue(queue))
462 		poll_ctx = IB_POLL_DIRECT;
463 	else
464 		poll_ctx = IB_POLL_SOFTIRQ;
465 
466 	/* +1 for ib_stop_cq */
467 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
468 				cq_factor * queue->queue_size + 1,
469 				comp_vector, poll_ctx);
470 	if (IS_ERR(queue->ib_cq)) {
471 		ret = PTR_ERR(queue->ib_cq);
472 		goto out_put_dev;
473 	}
474 
475 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
476 	if (ret)
477 		goto out_destroy_ib_cq;
478 
479 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
480 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
481 	if (!queue->rsp_ring) {
482 		ret = -ENOMEM;
483 		goto out_destroy_qp;
484 	}
485 
486 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
487 			      queue->queue_size,
488 			      IB_MR_TYPE_MEM_REG,
489 			      nvme_rdma_get_max_fr_pages(ibdev));
490 	if (ret) {
491 		dev_err(queue->ctrl->ctrl.device,
492 			"failed to initialize MR pool sized %d for QID %d\n",
493 			queue->queue_size, idx);
494 		goto out_destroy_ring;
495 	}
496 
497 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
498 
499 	return 0;
500 
501 out_destroy_ring:
502 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
503 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
504 out_destroy_qp:
505 	rdma_destroy_qp(queue->cm_id);
506 out_destroy_ib_cq:
507 	ib_free_cq(queue->ib_cq);
508 out_put_dev:
509 	nvme_rdma_dev_put(queue->device);
510 	return ret;
511 }
512 
513 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
514 		int idx, size_t queue_size)
515 {
516 	struct nvme_rdma_queue *queue;
517 	struct sockaddr *src_addr = NULL;
518 	int ret;
519 
520 	queue = &ctrl->queues[idx];
521 	queue->ctrl = ctrl;
522 	init_completion(&queue->cm_done);
523 
524 	if (idx > 0)
525 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
526 	else
527 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
528 
529 	queue->queue_size = queue_size;
530 
531 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
532 			RDMA_PS_TCP, IB_QPT_RC);
533 	if (IS_ERR(queue->cm_id)) {
534 		dev_info(ctrl->ctrl.device,
535 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
536 		return PTR_ERR(queue->cm_id);
537 	}
538 
539 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
540 		src_addr = (struct sockaddr *)&ctrl->src_addr;
541 
542 	queue->cm_error = -ETIMEDOUT;
543 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
544 			(struct sockaddr *)&ctrl->addr,
545 			NVME_RDMA_CONNECT_TIMEOUT_MS);
546 	if (ret) {
547 		dev_info(ctrl->ctrl.device,
548 			"rdma_resolve_addr failed (%d).\n", ret);
549 		goto out_destroy_cm_id;
550 	}
551 
552 	ret = nvme_rdma_wait_for_cm(queue);
553 	if (ret) {
554 		dev_info(ctrl->ctrl.device,
555 			"rdma connection establishment failed (%d)\n", ret);
556 		goto out_destroy_cm_id;
557 	}
558 
559 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
560 
561 	return 0;
562 
563 out_destroy_cm_id:
564 	rdma_destroy_id(queue->cm_id);
565 	nvme_rdma_destroy_queue_ib(queue);
566 	return ret;
567 }
568 
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
570 {
571 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
572 		return;
573 
574 	rdma_disconnect(queue->cm_id);
575 	ib_drain_qp(queue->qp);
576 }
577 
578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
579 {
580 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
581 		return;
582 
583 	nvme_rdma_destroy_queue_ib(queue);
584 	rdma_destroy_id(queue->cm_id);
585 }
586 
587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
588 {
589 	int i;
590 
591 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
592 		nvme_rdma_free_queue(&ctrl->queues[i]);
593 }
594 
595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
596 {
597 	int i;
598 
599 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
600 		nvme_rdma_stop_queue(&ctrl->queues[i]);
601 }
602 
603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
604 {
605 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
606 	bool poll = nvme_rdma_poll_queue(queue);
607 	int ret;
608 
609 	if (idx)
610 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
611 	else
612 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
613 
614 	if (!ret)
615 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
616 	else
617 		dev_info(ctrl->ctrl.device,
618 			"failed to connect queue: %d ret=%d\n", idx, ret);
619 	return ret;
620 }
621 
622 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624 	int i, ret = 0;
625 
626 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
627 		ret = nvme_rdma_start_queue(ctrl, i);
628 		if (ret)
629 			goto out_stop_queues;
630 	}
631 
632 	return 0;
633 
634 out_stop_queues:
635 	for (i--; i >= 1; i--)
636 		nvme_rdma_stop_queue(&ctrl->queues[i]);
637 	return ret;
638 }
639 
640 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
641 {
642 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
643 	struct ib_device *ibdev = ctrl->device->dev;
644 	unsigned int nr_io_queues;
645 	int i, ret;
646 
647 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
648 
649 	/*
650 	 * we map queues according to the device irq vectors for
651 	 * optimal locality so we don't need more queues than
652 	 * completion vectors.
653 	 */
654 	nr_io_queues = min_t(unsigned int, nr_io_queues,
655 				ibdev->num_comp_vectors);
656 
657 	if (opts->nr_write_queues) {
658 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
659 				min(opts->nr_write_queues, nr_io_queues);
660 		nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT];
661 	} else {
662 		ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues;
663 	}
664 
665 	ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues;
666 
667 	if (opts->nr_poll_queues) {
668 		ctrl->io_queues[HCTX_TYPE_POLL] =
669 			min(opts->nr_poll_queues, num_online_cpus());
670 		nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL];
671 	}
672 
673 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
674 	if (ret)
675 		return ret;
676 
677 	ctrl->ctrl.queue_count = nr_io_queues + 1;
678 	if (ctrl->ctrl.queue_count < 2)
679 		return 0;
680 
681 	dev_info(ctrl->ctrl.device,
682 		"creating %d I/O queues.\n", nr_io_queues);
683 
684 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
685 		ret = nvme_rdma_alloc_queue(ctrl, i,
686 				ctrl->ctrl.sqsize + 1);
687 		if (ret)
688 			goto out_free_queues;
689 	}
690 
691 	return 0;
692 
693 out_free_queues:
694 	for (i--; i >= 1; i--)
695 		nvme_rdma_free_queue(&ctrl->queues[i]);
696 
697 	return ret;
698 }
699 
700 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
701 		bool admin)
702 {
703 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
704 	struct blk_mq_tag_set *set;
705 	int ret;
706 
707 	if (admin) {
708 		set = &ctrl->admin_tag_set;
709 		memset(set, 0, sizeof(*set));
710 		set->ops = &nvme_rdma_admin_mq_ops;
711 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
712 		set->reserved_tags = 2; /* connect + keep-alive */
713 		set->numa_node = nctrl->numa_node;
714 		set->cmd_size = sizeof(struct nvme_rdma_request) +
715 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
716 		set->driver_data = ctrl;
717 		set->nr_hw_queues = 1;
718 		set->timeout = ADMIN_TIMEOUT;
719 		set->flags = BLK_MQ_F_NO_SCHED;
720 	} else {
721 		set = &ctrl->tag_set;
722 		memset(set, 0, sizeof(*set));
723 		set->ops = &nvme_rdma_mq_ops;
724 		set->queue_depth = nctrl->sqsize + 1;
725 		set->reserved_tags = 1; /* fabric connect */
726 		set->numa_node = nctrl->numa_node;
727 		set->flags = BLK_MQ_F_SHOULD_MERGE;
728 		set->cmd_size = sizeof(struct nvme_rdma_request) +
729 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
730 		set->driver_data = ctrl;
731 		set->nr_hw_queues = nctrl->queue_count - 1;
732 		set->timeout = NVME_IO_TIMEOUT;
733 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
734 	}
735 
736 	ret = blk_mq_alloc_tag_set(set);
737 	if (ret)
738 		return ERR_PTR(ret);
739 
740 	return set;
741 }
742 
743 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
744 		bool remove)
745 {
746 	if (remove) {
747 		blk_cleanup_queue(ctrl->ctrl.admin_q);
748 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
749 	}
750 	if (ctrl->async_event_sqe.data) {
751 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
752 				sizeof(struct nvme_command), DMA_TO_DEVICE);
753 		ctrl->async_event_sqe.data = NULL;
754 	}
755 	nvme_rdma_free_queue(&ctrl->queues[0]);
756 }
757 
758 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
759 		bool new)
760 {
761 	int error;
762 
763 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
764 	if (error)
765 		return error;
766 
767 	ctrl->device = ctrl->queues[0].device;
768 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
769 
770 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
771 
772 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
773 			sizeof(struct nvme_command), DMA_TO_DEVICE);
774 	if (error)
775 		goto out_free_queue;
776 
777 	if (new) {
778 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
779 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
780 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
781 			goto out_free_async_qe;
782 		}
783 
784 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
785 		if (IS_ERR(ctrl->ctrl.admin_q)) {
786 			error = PTR_ERR(ctrl->ctrl.admin_q);
787 			goto out_free_tagset;
788 		}
789 	}
790 
791 	error = nvme_rdma_start_queue(ctrl, 0);
792 	if (error)
793 		goto out_cleanup_queue;
794 
795 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
796 			&ctrl->ctrl.cap);
797 	if (error) {
798 		dev_err(ctrl->ctrl.device,
799 			"prop_get NVME_REG_CAP failed\n");
800 		goto out_stop_queue;
801 	}
802 
803 	ctrl->ctrl.sqsize =
804 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
805 
806 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
807 	if (error)
808 		goto out_stop_queue;
809 
810 	ctrl->ctrl.max_hw_sectors =
811 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
812 
813 	error = nvme_init_identify(&ctrl->ctrl);
814 	if (error)
815 		goto out_stop_queue;
816 
817 	return 0;
818 
819 out_stop_queue:
820 	nvme_rdma_stop_queue(&ctrl->queues[0]);
821 out_cleanup_queue:
822 	if (new)
823 		blk_cleanup_queue(ctrl->ctrl.admin_q);
824 out_free_tagset:
825 	if (new)
826 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
827 out_free_async_qe:
828 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
829 		sizeof(struct nvme_command), DMA_TO_DEVICE);
830 	ctrl->async_event_sqe.data = NULL;
831 out_free_queue:
832 	nvme_rdma_free_queue(&ctrl->queues[0]);
833 	return error;
834 }
835 
836 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
837 		bool remove)
838 {
839 	if (remove) {
840 		blk_cleanup_queue(ctrl->ctrl.connect_q);
841 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
842 	}
843 	nvme_rdma_free_io_queues(ctrl);
844 }
845 
846 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
847 {
848 	int ret;
849 
850 	ret = nvme_rdma_alloc_io_queues(ctrl);
851 	if (ret)
852 		return ret;
853 
854 	if (new) {
855 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
856 		if (IS_ERR(ctrl->ctrl.tagset)) {
857 			ret = PTR_ERR(ctrl->ctrl.tagset);
858 			goto out_free_io_queues;
859 		}
860 
861 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
862 		if (IS_ERR(ctrl->ctrl.connect_q)) {
863 			ret = PTR_ERR(ctrl->ctrl.connect_q);
864 			goto out_free_tag_set;
865 		}
866 	} else {
867 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
868 			ctrl->ctrl.queue_count - 1);
869 	}
870 
871 	ret = nvme_rdma_start_io_queues(ctrl);
872 	if (ret)
873 		goto out_cleanup_connect_q;
874 
875 	return 0;
876 
877 out_cleanup_connect_q:
878 	if (new)
879 		blk_cleanup_queue(ctrl->ctrl.connect_q);
880 out_free_tag_set:
881 	if (new)
882 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
883 out_free_io_queues:
884 	nvme_rdma_free_io_queues(ctrl);
885 	return ret;
886 }
887 
888 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
889 		bool remove)
890 {
891 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
892 	nvme_rdma_stop_queue(&ctrl->queues[0]);
893 	if (ctrl->ctrl.admin_tagset)
894 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
895 			nvme_cancel_request, &ctrl->ctrl);
896 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
897 	nvme_rdma_destroy_admin_queue(ctrl, remove);
898 }
899 
900 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
901 		bool remove)
902 {
903 	if (ctrl->ctrl.queue_count > 1) {
904 		nvme_stop_queues(&ctrl->ctrl);
905 		nvme_rdma_stop_io_queues(ctrl);
906 		if (ctrl->ctrl.tagset)
907 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
908 				nvme_cancel_request, &ctrl->ctrl);
909 		if (remove)
910 			nvme_start_queues(&ctrl->ctrl);
911 		nvme_rdma_destroy_io_queues(ctrl, remove);
912 	}
913 }
914 
915 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
916 {
917 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
918 
919 	if (list_empty(&ctrl->list))
920 		goto free_ctrl;
921 
922 	mutex_lock(&nvme_rdma_ctrl_mutex);
923 	list_del(&ctrl->list);
924 	mutex_unlock(&nvme_rdma_ctrl_mutex);
925 
926 	nvmf_free_options(nctrl->opts);
927 free_ctrl:
928 	kfree(ctrl->queues);
929 	kfree(ctrl);
930 }
931 
932 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
933 {
934 	/* If we are resetting/deleting then do nothing */
935 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
936 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
937 			ctrl->ctrl.state == NVME_CTRL_LIVE);
938 		return;
939 	}
940 
941 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
942 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
943 			ctrl->ctrl.opts->reconnect_delay);
944 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
945 				ctrl->ctrl.opts->reconnect_delay * HZ);
946 	} else {
947 		nvme_delete_ctrl(&ctrl->ctrl);
948 	}
949 }
950 
951 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
952 {
953 	int ret = -EINVAL;
954 	bool changed;
955 
956 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
957 	if (ret)
958 		return ret;
959 
960 	if (ctrl->ctrl.icdoff) {
961 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
962 		goto destroy_admin;
963 	}
964 
965 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
966 		dev_err(ctrl->ctrl.device,
967 			"Mandatory keyed sgls are not supported!\n");
968 		goto destroy_admin;
969 	}
970 
971 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
972 		dev_warn(ctrl->ctrl.device,
973 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
974 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
975 	}
976 
977 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
978 		dev_warn(ctrl->ctrl.device,
979 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
980 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
981 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
982 	}
983 
984 	if (ctrl->ctrl.sgls & (1 << 20))
985 		ctrl->use_inline_data = true;
986 
987 	if (ctrl->ctrl.queue_count > 1) {
988 		ret = nvme_rdma_configure_io_queues(ctrl, new);
989 		if (ret)
990 			goto destroy_admin;
991 	}
992 
993 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
994 	if (!changed) {
995 		/* state change failure is ok if we're in DELETING state */
996 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
997 		ret = -EINVAL;
998 		goto destroy_io;
999 	}
1000 
1001 	nvme_start_ctrl(&ctrl->ctrl);
1002 	return 0;
1003 
1004 destroy_io:
1005 	if (ctrl->ctrl.queue_count > 1)
1006 		nvme_rdma_destroy_io_queues(ctrl, new);
1007 destroy_admin:
1008 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1009 	nvme_rdma_destroy_admin_queue(ctrl, new);
1010 	return ret;
1011 }
1012 
1013 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1014 {
1015 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1016 			struct nvme_rdma_ctrl, reconnect_work);
1017 
1018 	++ctrl->ctrl.nr_reconnects;
1019 
1020 	if (nvme_rdma_setup_ctrl(ctrl, false))
1021 		goto requeue;
1022 
1023 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1024 			ctrl->ctrl.nr_reconnects);
1025 
1026 	ctrl->ctrl.nr_reconnects = 0;
1027 
1028 	return;
1029 
1030 requeue:
1031 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1032 			ctrl->ctrl.nr_reconnects);
1033 	nvme_rdma_reconnect_or_remove(ctrl);
1034 }
1035 
1036 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1037 {
1038 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1039 			struct nvme_rdma_ctrl, err_work);
1040 
1041 	nvme_stop_keep_alive(&ctrl->ctrl);
1042 	nvme_rdma_teardown_io_queues(ctrl, false);
1043 	nvme_start_queues(&ctrl->ctrl);
1044 	nvme_rdma_teardown_admin_queue(ctrl, false);
1045 
1046 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1047 		/* state change failure is ok if we're in DELETING state */
1048 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1049 		return;
1050 	}
1051 
1052 	nvme_rdma_reconnect_or_remove(ctrl);
1053 }
1054 
1055 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1056 {
1057 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1058 		return;
1059 
1060 	queue_work(nvme_wq, &ctrl->err_work);
1061 }
1062 
1063 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1064 		const char *op)
1065 {
1066 	struct nvme_rdma_queue *queue = cq->cq_context;
1067 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1068 
1069 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1070 		dev_info(ctrl->ctrl.device,
1071 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1072 			     op, wc->wr_cqe,
1073 			     ib_wc_status_msg(wc->status), wc->status);
1074 	nvme_rdma_error_recovery(ctrl);
1075 }
1076 
1077 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1078 {
1079 	if (unlikely(wc->status != IB_WC_SUCCESS))
1080 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1081 }
1082 
1083 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1084 {
1085 	struct nvme_rdma_request *req =
1086 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1087 	struct request *rq = blk_mq_rq_from_pdu(req);
1088 
1089 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1090 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1091 		return;
1092 	}
1093 
1094 	if (refcount_dec_and_test(&req->ref))
1095 		nvme_end_request(rq, req->status, req->result);
1096 
1097 }
1098 
1099 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1100 		struct nvme_rdma_request *req)
1101 {
1102 	struct ib_send_wr wr = {
1103 		.opcode		    = IB_WR_LOCAL_INV,
1104 		.next		    = NULL,
1105 		.num_sge	    = 0,
1106 		.send_flags	    = IB_SEND_SIGNALED,
1107 		.ex.invalidate_rkey = req->mr->rkey,
1108 	};
1109 
1110 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1111 	wr.wr_cqe = &req->reg_cqe;
1112 
1113 	return ib_post_send(queue->qp, &wr, NULL);
1114 }
1115 
1116 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1117 		struct request *rq)
1118 {
1119 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1120 	struct nvme_rdma_device *dev = queue->device;
1121 	struct ib_device *ibdev = dev->dev;
1122 
1123 	if (!blk_rq_nr_phys_segments(rq))
1124 		return;
1125 
1126 	if (req->mr) {
1127 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1128 		req->mr = NULL;
1129 	}
1130 
1131 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1132 			req->nents, rq_data_dir(rq) ==
1133 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1134 
1135 	nvme_cleanup_cmd(rq);
1136 	sg_free_table_chained(&req->sg_table, true);
1137 }
1138 
1139 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1140 {
1141 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1142 
1143 	sg->addr = 0;
1144 	put_unaligned_le24(0, sg->length);
1145 	put_unaligned_le32(0, sg->key);
1146 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1147 	return 0;
1148 }
1149 
1150 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1151 		struct nvme_rdma_request *req, struct nvme_command *c,
1152 		int count)
1153 {
1154 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1155 	struct scatterlist *sgl = req->sg_table.sgl;
1156 	struct ib_sge *sge = &req->sge[1];
1157 	u32 len = 0;
1158 	int i;
1159 
1160 	for (i = 0; i < count; i++, sgl++, sge++) {
1161 		sge->addr = sg_dma_address(sgl);
1162 		sge->length = sg_dma_len(sgl);
1163 		sge->lkey = queue->device->pd->local_dma_lkey;
1164 		len += sge->length;
1165 	}
1166 
1167 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1168 	sg->length = cpu_to_le32(len);
1169 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1170 
1171 	req->num_sge += count;
1172 	return 0;
1173 }
1174 
1175 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1176 		struct nvme_rdma_request *req, struct nvme_command *c)
1177 {
1178 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1179 
1180 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1181 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1182 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1183 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1184 	return 0;
1185 }
1186 
1187 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1188 		struct nvme_rdma_request *req, struct nvme_command *c,
1189 		int count)
1190 {
1191 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1192 	int nr;
1193 
1194 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1195 	if (WARN_ON_ONCE(!req->mr))
1196 		return -EAGAIN;
1197 
1198 	/*
1199 	 * Align the MR to a 4K page size to match the ctrl page size and
1200 	 * the block virtual boundary.
1201 	 */
1202 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1203 	if (unlikely(nr < count)) {
1204 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1205 		req->mr = NULL;
1206 		if (nr < 0)
1207 			return nr;
1208 		return -EINVAL;
1209 	}
1210 
1211 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1212 
1213 	req->reg_cqe.done = nvme_rdma_memreg_done;
1214 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1215 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1216 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1217 	req->reg_wr.wr.num_sge = 0;
1218 	req->reg_wr.mr = req->mr;
1219 	req->reg_wr.key = req->mr->rkey;
1220 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1221 			     IB_ACCESS_REMOTE_READ |
1222 			     IB_ACCESS_REMOTE_WRITE;
1223 
1224 	sg->addr = cpu_to_le64(req->mr->iova);
1225 	put_unaligned_le24(req->mr->length, sg->length);
1226 	put_unaligned_le32(req->mr->rkey, sg->key);
1227 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1228 			NVME_SGL_FMT_INVALIDATE;
1229 
1230 	return 0;
1231 }
1232 
1233 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1234 		struct request *rq, struct nvme_command *c)
1235 {
1236 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1237 	struct nvme_rdma_device *dev = queue->device;
1238 	struct ib_device *ibdev = dev->dev;
1239 	int count, ret;
1240 
1241 	req->num_sge = 1;
1242 	refcount_set(&req->ref, 2); /* send and recv completions */
1243 
1244 	c->common.flags |= NVME_CMD_SGL_METABUF;
1245 
1246 	if (!blk_rq_nr_phys_segments(rq))
1247 		return nvme_rdma_set_sg_null(c);
1248 
1249 	req->sg_table.sgl = req->first_sgl;
1250 	ret = sg_alloc_table_chained(&req->sg_table,
1251 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1252 	if (ret)
1253 		return -ENOMEM;
1254 
1255 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1256 
1257 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1258 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1259 	if (unlikely(count <= 0)) {
1260 		ret = -EIO;
1261 		goto out_free_table;
1262 	}
1263 
1264 	if (count <= dev->num_inline_segments) {
1265 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1266 		    queue->ctrl->use_inline_data &&
1267 		    blk_rq_payload_bytes(rq) <=
1268 				nvme_rdma_inline_data_size(queue)) {
1269 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1270 			goto out;
1271 		}
1272 
1273 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1274 			ret = nvme_rdma_map_sg_single(queue, req, c);
1275 			goto out;
1276 		}
1277 	}
1278 
1279 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1280 out:
1281 	if (unlikely(ret))
1282 		goto out_unmap_sg;
1283 
1284 	return 0;
1285 
1286 out_unmap_sg:
1287 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1288 			req->nents, rq_data_dir(rq) ==
1289 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1290 out_free_table:
1291 	sg_free_table_chained(&req->sg_table, true);
1292 	return ret;
1293 }
1294 
1295 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1296 {
1297 	struct nvme_rdma_qe *qe =
1298 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1299 	struct nvme_rdma_request *req =
1300 		container_of(qe, struct nvme_rdma_request, sqe);
1301 	struct request *rq = blk_mq_rq_from_pdu(req);
1302 
1303 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1304 		nvme_rdma_wr_error(cq, wc, "SEND");
1305 		return;
1306 	}
1307 
1308 	if (refcount_dec_and_test(&req->ref))
1309 		nvme_end_request(rq, req->status, req->result);
1310 }
1311 
1312 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1313 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1314 		struct ib_send_wr *first)
1315 {
1316 	struct ib_send_wr wr;
1317 	int ret;
1318 
1319 	sge->addr   = qe->dma;
1320 	sge->length = sizeof(struct nvme_command),
1321 	sge->lkey   = queue->device->pd->local_dma_lkey;
1322 
1323 	wr.next       = NULL;
1324 	wr.wr_cqe     = &qe->cqe;
1325 	wr.sg_list    = sge;
1326 	wr.num_sge    = num_sge;
1327 	wr.opcode     = IB_WR_SEND;
1328 	wr.send_flags = IB_SEND_SIGNALED;
1329 
1330 	if (first)
1331 		first->next = &wr;
1332 	else
1333 		first = &wr;
1334 
1335 	ret = ib_post_send(queue->qp, first, NULL);
1336 	if (unlikely(ret)) {
1337 		dev_err(queue->ctrl->ctrl.device,
1338 			     "%s failed with error code %d\n", __func__, ret);
1339 	}
1340 	return ret;
1341 }
1342 
1343 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1344 		struct nvme_rdma_qe *qe)
1345 {
1346 	struct ib_recv_wr wr;
1347 	struct ib_sge list;
1348 	int ret;
1349 
1350 	list.addr   = qe->dma;
1351 	list.length = sizeof(struct nvme_completion);
1352 	list.lkey   = queue->device->pd->local_dma_lkey;
1353 
1354 	qe->cqe.done = nvme_rdma_recv_done;
1355 
1356 	wr.next     = NULL;
1357 	wr.wr_cqe   = &qe->cqe;
1358 	wr.sg_list  = &list;
1359 	wr.num_sge  = 1;
1360 
1361 	ret = ib_post_recv(queue->qp, &wr, NULL);
1362 	if (unlikely(ret)) {
1363 		dev_err(queue->ctrl->ctrl.device,
1364 			"%s failed with error code %d\n", __func__, ret);
1365 	}
1366 	return ret;
1367 }
1368 
1369 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1370 {
1371 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1372 
1373 	if (queue_idx == 0)
1374 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1375 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1376 }
1377 
1378 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1379 {
1380 	if (unlikely(wc->status != IB_WC_SUCCESS))
1381 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1382 }
1383 
1384 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1385 {
1386 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1387 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1388 	struct ib_device *dev = queue->device->dev;
1389 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1390 	struct nvme_command *cmd = sqe->data;
1391 	struct ib_sge sge;
1392 	int ret;
1393 
1394 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1395 
1396 	memset(cmd, 0, sizeof(*cmd));
1397 	cmd->common.opcode = nvme_admin_async_event;
1398 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1399 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1400 	nvme_rdma_set_sg_null(cmd);
1401 
1402 	sqe->cqe.done = nvme_rdma_async_done;
1403 
1404 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1405 			DMA_TO_DEVICE);
1406 
1407 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1408 	WARN_ON_ONCE(ret);
1409 }
1410 
1411 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1412 		struct nvme_completion *cqe, struct ib_wc *wc)
1413 {
1414 	struct request *rq;
1415 	struct nvme_rdma_request *req;
1416 
1417 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1418 	if (!rq) {
1419 		dev_err(queue->ctrl->ctrl.device,
1420 			"tag 0x%x on QP %#x not found\n",
1421 			cqe->command_id, queue->qp->qp_num);
1422 		nvme_rdma_error_recovery(queue->ctrl);
1423 		return;
1424 	}
1425 	req = blk_mq_rq_to_pdu(rq);
1426 
1427 	req->status = cqe->status;
1428 	req->result = cqe->result;
1429 
1430 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1431 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1432 			dev_err(queue->ctrl->ctrl.device,
1433 				"Bogus remote invalidation for rkey %#x\n",
1434 				req->mr->rkey);
1435 			nvme_rdma_error_recovery(queue->ctrl);
1436 		}
1437 	} else if (req->mr) {
1438 		int ret;
1439 
1440 		ret = nvme_rdma_inv_rkey(queue, req);
1441 		if (unlikely(ret < 0)) {
1442 			dev_err(queue->ctrl->ctrl.device,
1443 				"Queueing INV WR for rkey %#x failed (%d)\n",
1444 				req->mr->rkey, ret);
1445 			nvme_rdma_error_recovery(queue->ctrl);
1446 		}
1447 		/* the local invalidation completion will end the request */
1448 		return;
1449 	}
1450 
1451 	if (refcount_dec_and_test(&req->ref))
1452 		nvme_end_request(rq, req->status, req->result);
1453 }
1454 
1455 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1456 {
1457 	struct nvme_rdma_qe *qe =
1458 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1459 	struct nvme_rdma_queue *queue = cq->cq_context;
1460 	struct ib_device *ibdev = queue->device->dev;
1461 	struct nvme_completion *cqe = qe->data;
1462 	const size_t len = sizeof(struct nvme_completion);
1463 
1464 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1465 		nvme_rdma_wr_error(cq, wc, "RECV");
1466 		return;
1467 	}
1468 
1469 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1470 	/*
1471 	 * AEN requests are special as they don't time out and can
1472 	 * survive any kind of queue freeze and often don't respond to
1473 	 * aborts.  We don't even bother to allocate a struct request
1474 	 * for them but rather special case them here.
1475 	 */
1476 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1477 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1478 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1479 				&cqe->result);
1480 	else
1481 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1482 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1483 
1484 	nvme_rdma_post_recv(queue, qe);
1485 }
1486 
1487 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1488 {
1489 	int ret, i;
1490 
1491 	for (i = 0; i < queue->queue_size; i++) {
1492 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1493 		if (ret)
1494 			goto out_destroy_queue_ib;
1495 	}
1496 
1497 	return 0;
1498 
1499 out_destroy_queue_ib:
1500 	nvme_rdma_destroy_queue_ib(queue);
1501 	return ret;
1502 }
1503 
1504 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1505 		struct rdma_cm_event *ev)
1506 {
1507 	struct rdma_cm_id *cm_id = queue->cm_id;
1508 	int status = ev->status;
1509 	const char *rej_msg;
1510 	const struct nvme_rdma_cm_rej *rej_data;
1511 	u8 rej_data_len;
1512 
1513 	rej_msg = rdma_reject_msg(cm_id, status);
1514 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1515 
1516 	if (rej_data && rej_data_len >= sizeof(u16)) {
1517 		u16 sts = le16_to_cpu(rej_data->sts);
1518 
1519 		dev_err(queue->ctrl->ctrl.device,
1520 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1521 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1522 	} else {
1523 		dev_err(queue->ctrl->ctrl.device,
1524 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1525 	}
1526 
1527 	return -ECONNRESET;
1528 }
1529 
1530 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1531 {
1532 	int ret;
1533 
1534 	ret = nvme_rdma_create_queue_ib(queue);
1535 	if (ret)
1536 		return ret;
1537 
1538 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1539 	if (ret) {
1540 		dev_err(queue->ctrl->ctrl.device,
1541 			"rdma_resolve_route failed (%d).\n",
1542 			queue->cm_error);
1543 		goto out_destroy_queue;
1544 	}
1545 
1546 	return 0;
1547 
1548 out_destroy_queue:
1549 	nvme_rdma_destroy_queue_ib(queue);
1550 	return ret;
1551 }
1552 
1553 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1554 {
1555 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1556 	struct rdma_conn_param param = { };
1557 	struct nvme_rdma_cm_req priv = { };
1558 	int ret;
1559 
1560 	param.qp_num = queue->qp->qp_num;
1561 	param.flow_control = 1;
1562 
1563 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1564 	/* maximum retry count */
1565 	param.retry_count = 7;
1566 	param.rnr_retry_count = 7;
1567 	param.private_data = &priv;
1568 	param.private_data_len = sizeof(priv);
1569 
1570 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1571 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1572 	/*
1573 	 * set the admin queue depth to the minimum size
1574 	 * specified by the Fabrics standard.
1575 	 */
1576 	if (priv.qid == 0) {
1577 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1578 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1579 	} else {
1580 		/*
1581 		 * current interpretation of the fabrics spec
1582 		 * is at minimum you make hrqsize sqsize+1, or a
1583 		 * 1's based representation of sqsize.
1584 		 */
1585 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1586 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1587 	}
1588 
1589 	ret = rdma_connect(queue->cm_id, &param);
1590 	if (ret) {
1591 		dev_err(ctrl->ctrl.device,
1592 			"rdma_connect failed (%d).\n", ret);
1593 		goto out_destroy_queue_ib;
1594 	}
1595 
1596 	return 0;
1597 
1598 out_destroy_queue_ib:
1599 	nvme_rdma_destroy_queue_ib(queue);
1600 	return ret;
1601 }
1602 
1603 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1604 		struct rdma_cm_event *ev)
1605 {
1606 	struct nvme_rdma_queue *queue = cm_id->context;
1607 	int cm_error = 0;
1608 
1609 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1610 		rdma_event_msg(ev->event), ev->event,
1611 		ev->status, cm_id);
1612 
1613 	switch (ev->event) {
1614 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1615 		cm_error = nvme_rdma_addr_resolved(queue);
1616 		break;
1617 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1618 		cm_error = nvme_rdma_route_resolved(queue);
1619 		break;
1620 	case RDMA_CM_EVENT_ESTABLISHED:
1621 		queue->cm_error = nvme_rdma_conn_established(queue);
1622 		/* complete cm_done regardless of success/failure */
1623 		complete(&queue->cm_done);
1624 		return 0;
1625 	case RDMA_CM_EVENT_REJECTED:
1626 		nvme_rdma_destroy_queue_ib(queue);
1627 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1628 		break;
1629 	case RDMA_CM_EVENT_ROUTE_ERROR:
1630 	case RDMA_CM_EVENT_CONNECT_ERROR:
1631 	case RDMA_CM_EVENT_UNREACHABLE:
1632 		nvme_rdma_destroy_queue_ib(queue);
1633 		/* fall through */
1634 	case RDMA_CM_EVENT_ADDR_ERROR:
1635 		dev_dbg(queue->ctrl->ctrl.device,
1636 			"CM error event %d\n", ev->event);
1637 		cm_error = -ECONNRESET;
1638 		break;
1639 	case RDMA_CM_EVENT_DISCONNECTED:
1640 	case RDMA_CM_EVENT_ADDR_CHANGE:
1641 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1642 		dev_dbg(queue->ctrl->ctrl.device,
1643 			"disconnect received - connection closed\n");
1644 		nvme_rdma_error_recovery(queue->ctrl);
1645 		break;
1646 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1647 		/* device removal is handled via the ib_client API */
1648 		break;
1649 	default:
1650 		dev_err(queue->ctrl->ctrl.device,
1651 			"Unexpected RDMA CM event (%d)\n", ev->event);
1652 		nvme_rdma_error_recovery(queue->ctrl);
1653 		break;
1654 	}
1655 
1656 	if (cm_error) {
1657 		queue->cm_error = cm_error;
1658 		complete(&queue->cm_done);
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static enum blk_eh_timer_return
1665 nvme_rdma_timeout(struct request *rq, bool reserved)
1666 {
1667 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1668 	struct nvme_rdma_queue *queue = req->queue;
1669 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1670 
1671 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1672 		 rq->tag, nvme_rdma_queue_idx(queue));
1673 
1674 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1675 		/*
1676 		 * Teardown immediately if controller times out while starting
1677 		 * or we are already started error recovery. all outstanding
1678 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1679 		 */
1680 		flush_work(&ctrl->err_work);
1681 		nvme_rdma_teardown_io_queues(ctrl, false);
1682 		nvme_rdma_teardown_admin_queue(ctrl, false);
1683 		return BLK_EH_DONE;
1684 	}
1685 
1686 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1687 	nvme_rdma_error_recovery(ctrl);
1688 
1689 	return BLK_EH_RESET_TIMER;
1690 }
1691 
1692 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1693 		const struct blk_mq_queue_data *bd)
1694 {
1695 	struct nvme_ns *ns = hctx->queue->queuedata;
1696 	struct nvme_rdma_queue *queue = hctx->driver_data;
1697 	struct request *rq = bd->rq;
1698 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1699 	struct nvme_rdma_qe *sqe = &req->sqe;
1700 	struct nvme_command *c = sqe->data;
1701 	struct ib_device *dev;
1702 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1703 	blk_status_t ret;
1704 	int err;
1705 
1706 	WARN_ON_ONCE(rq->tag < 0);
1707 
1708 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1709 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1710 
1711 	dev = queue->device->dev;
1712 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1713 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1714 
1715 	ret = nvme_setup_cmd(ns, rq, c);
1716 	if (ret)
1717 		return ret;
1718 
1719 	blk_mq_start_request(rq);
1720 
1721 	err = nvme_rdma_map_data(queue, rq, c);
1722 	if (unlikely(err < 0)) {
1723 		dev_err(queue->ctrl->ctrl.device,
1724 			     "Failed to map data (%d)\n", err);
1725 		nvme_cleanup_cmd(rq);
1726 		goto err;
1727 	}
1728 
1729 	sqe->cqe.done = nvme_rdma_send_done;
1730 
1731 	ib_dma_sync_single_for_device(dev, sqe->dma,
1732 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1733 
1734 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1735 			req->mr ? &req->reg_wr.wr : NULL);
1736 	if (unlikely(err)) {
1737 		nvme_rdma_unmap_data(queue, rq);
1738 		goto err;
1739 	}
1740 
1741 	return BLK_STS_OK;
1742 err:
1743 	if (err == -ENOMEM || err == -EAGAIN)
1744 		return BLK_STS_RESOURCE;
1745 	return BLK_STS_IOERR;
1746 }
1747 
1748 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1749 {
1750 	struct nvme_rdma_queue *queue = hctx->driver_data;
1751 
1752 	return ib_process_cq_direct(queue->ib_cq, -1);
1753 }
1754 
1755 static void nvme_rdma_complete_rq(struct request *rq)
1756 {
1757 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1758 
1759 	nvme_rdma_unmap_data(req->queue, rq);
1760 	nvme_complete_rq(rq);
1761 }
1762 
1763 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1764 {
1765 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1766 
1767 	set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1768 	set->map[HCTX_TYPE_DEFAULT].nr_queues =
1769 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1770 	set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ];
1771 	if (ctrl->ctrl.opts->nr_write_queues) {
1772 		/* separate read/write queues */
1773 		set->map[HCTX_TYPE_READ].queue_offset =
1774 				ctrl->io_queues[HCTX_TYPE_DEFAULT];
1775 	} else {
1776 		/* mixed read/write queues */
1777 		set->map[HCTX_TYPE_READ].queue_offset = 0;
1778 	}
1779 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1780 			ctrl->device->dev, 0);
1781 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1782 			ctrl->device->dev, 0);
1783 
1784 	if (ctrl->ctrl.opts->nr_poll_queues) {
1785 		set->map[HCTX_TYPE_POLL].nr_queues =
1786 				ctrl->io_queues[HCTX_TYPE_POLL];
1787 		set->map[HCTX_TYPE_POLL].queue_offset =
1788 				ctrl->io_queues[HCTX_TYPE_DEFAULT];
1789 		if (ctrl->ctrl.opts->nr_write_queues)
1790 			set->map[HCTX_TYPE_POLL].queue_offset +=
1791 				ctrl->io_queues[HCTX_TYPE_READ];
1792 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1793 	}
1794 	return 0;
1795 }
1796 
1797 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1798 	.queue_rq	= nvme_rdma_queue_rq,
1799 	.complete	= nvme_rdma_complete_rq,
1800 	.init_request	= nvme_rdma_init_request,
1801 	.exit_request	= nvme_rdma_exit_request,
1802 	.init_hctx	= nvme_rdma_init_hctx,
1803 	.timeout	= nvme_rdma_timeout,
1804 	.map_queues	= nvme_rdma_map_queues,
1805 	.poll		= nvme_rdma_poll,
1806 };
1807 
1808 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1809 	.queue_rq	= nvme_rdma_queue_rq,
1810 	.complete	= nvme_rdma_complete_rq,
1811 	.init_request	= nvme_rdma_init_request,
1812 	.exit_request	= nvme_rdma_exit_request,
1813 	.init_hctx	= nvme_rdma_init_admin_hctx,
1814 	.timeout	= nvme_rdma_timeout,
1815 };
1816 
1817 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1818 {
1819 	cancel_work_sync(&ctrl->err_work);
1820 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1821 
1822 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1823 	if (shutdown)
1824 		nvme_shutdown_ctrl(&ctrl->ctrl);
1825 	else
1826 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1827 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1828 }
1829 
1830 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1831 {
1832 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1833 }
1834 
1835 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1836 {
1837 	struct nvme_rdma_ctrl *ctrl =
1838 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1839 
1840 	nvme_stop_ctrl(&ctrl->ctrl);
1841 	nvme_rdma_shutdown_ctrl(ctrl, false);
1842 
1843 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1844 		/* state change failure should never happen */
1845 		WARN_ON_ONCE(1);
1846 		return;
1847 	}
1848 
1849 	if (nvme_rdma_setup_ctrl(ctrl, false))
1850 		goto out_fail;
1851 
1852 	return;
1853 
1854 out_fail:
1855 	++ctrl->ctrl.nr_reconnects;
1856 	nvme_rdma_reconnect_or_remove(ctrl);
1857 }
1858 
1859 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1860 	.name			= "rdma",
1861 	.module			= THIS_MODULE,
1862 	.flags			= NVME_F_FABRICS,
1863 	.reg_read32		= nvmf_reg_read32,
1864 	.reg_read64		= nvmf_reg_read64,
1865 	.reg_write32		= nvmf_reg_write32,
1866 	.free_ctrl		= nvme_rdma_free_ctrl,
1867 	.submit_async_event	= nvme_rdma_submit_async_event,
1868 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1869 	.get_address		= nvmf_get_address,
1870 };
1871 
1872 /*
1873  * Fails a connection request if it matches an existing controller
1874  * (association) with the same tuple:
1875  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1876  *
1877  * if local address is not specified in the request, it will match an
1878  * existing controller with all the other parameters the same and no
1879  * local port address specified as well.
1880  *
1881  * The ports don't need to be compared as they are intrinsically
1882  * already matched by the port pointers supplied.
1883  */
1884 static bool
1885 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1886 {
1887 	struct nvme_rdma_ctrl *ctrl;
1888 	bool found = false;
1889 
1890 	mutex_lock(&nvme_rdma_ctrl_mutex);
1891 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1892 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1893 		if (found)
1894 			break;
1895 	}
1896 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1897 
1898 	return found;
1899 }
1900 
1901 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1902 		struct nvmf_ctrl_options *opts)
1903 {
1904 	struct nvme_rdma_ctrl *ctrl;
1905 	int ret;
1906 	bool changed;
1907 
1908 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1909 	if (!ctrl)
1910 		return ERR_PTR(-ENOMEM);
1911 	ctrl->ctrl.opts = opts;
1912 	INIT_LIST_HEAD(&ctrl->list);
1913 
1914 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1915 		opts->trsvcid =
1916 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1917 		if (!opts->trsvcid) {
1918 			ret = -ENOMEM;
1919 			goto out_free_ctrl;
1920 		}
1921 		opts->mask |= NVMF_OPT_TRSVCID;
1922 	}
1923 
1924 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1925 			opts->traddr, opts->trsvcid, &ctrl->addr);
1926 	if (ret) {
1927 		pr_err("malformed address passed: %s:%s\n",
1928 			opts->traddr, opts->trsvcid);
1929 		goto out_free_ctrl;
1930 	}
1931 
1932 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1933 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1934 			opts->host_traddr, NULL, &ctrl->src_addr);
1935 		if (ret) {
1936 			pr_err("malformed src address passed: %s\n",
1937 			       opts->host_traddr);
1938 			goto out_free_ctrl;
1939 		}
1940 	}
1941 
1942 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1943 		ret = -EALREADY;
1944 		goto out_free_ctrl;
1945 	}
1946 
1947 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1948 			nvme_rdma_reconnect_ctrl_work);
1949 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1950 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1951 
1952 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1953 				opts->nr_poll_queues + 1;
1954 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1955 	ctrl->ctrl.kato = opts->kato;
1956 
1957 	ret = -ENOMEM;
1958 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1959 				GFP_KERNEL);
1960 	if (!ctrl->queues)
1961 		goto out_free_ctrl;
1962 
1963 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1964 				0 /* no quirks, we're perfect! */);
1965 	if (ret)
1966 		goto out_kfree_queues;
1967 
1968 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1969 	WARN_ON_ONCE(!changed);
1970 
1971 	ret = nvme_rdma_setup_ctrl(ctrl, true);
1972 	if (ret)
1973 		goto out_uninit_ctrl;
1974 
1975 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1976 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1977 
1978 	nvme_get_ctrl(&ctrl->ctrl);
1979 
1980 	mutex_lock(&nvme_rdma_ctrl_mutex);
1981 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1982 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1983 
1984 	return &ctrl->ctrl;
1985 
1986 out_uninit_ctrl:
1987 	nvme_uninit_ctrl(&ctrl->ctrl);
1988 	nvme_put_ctrl(&ctrl->ctrl);
1989 	if (ret > 0)
1990 		ret = -EIO;
1991 	return ERR_PTR(ret);
1992 out_kfree_queues:
1993 	kfree(ctrl->queues);
1994 out_free_ctrl:
1995 	kfree(ctrl);
1996 	return ERR_PTR(ret);
1997 }
1998 
1999 static struct nvmf_transport_ops nvme_rdma_transport = {
2000 	.name		= "rdma",
2001 	.module		= THIS_MODULE,
2002 	.required_opts	= NVMF_OPT_TRADDR,
2003 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2004 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2005 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2006 	.create_ctrl	= nvme_rdma_create_ctrl,
2007 };
2008 
2009 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2010 {
2011 	struct nvme_rdma_ctrl *ctrl;
2012 	struct nvme_rdma_device *ndev;
2013 	bool found = false;
2014 
2015 	mutex_lock(&device_list_mutex);
2016 	list_for_each_entry(ndev, &device_list, entry) {
2017 		if (ndev->dev == ib_device) {
2018 			found = true;
2019 			break;
2020 		}
2021 	}
2022 	mutex_unlock(&device_list_mutex);
2023 
2024 	if (!found)
2025 		return;
2026 
2027 	/* Delete all controllers using this device */
2028 	mutex_lock(&nvme_rdma_ctrl_mutex);
2029 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2030 		if (ctrl->device->dev != ib_device)
2031 			continue;
2032 		nvme_delete_ctrl(&ctrl->ctrl);
2033 	}
2034 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2035 
2036 	flush_workqueue(nvme_delete_wq);
2037 }
2038 
2039 static struct ib_client nvme_rdma_ib_client = {
2040 	.name   = "nvme_rdma",
2041 	.remove = nvme_rdma_remove_one
2042 };
2043 
2044 static int __init nvme_rdma_init_module(void)
2045 {
2046 	int ret;
2047 
2048 	ret = ib_register_client(&nvme_rdma_ib_client);
2049 	if (ret)
2050 		return ret;
2051 
2052 	ret = nvmf_register_transport(&nvme_rdma_transport);
2053 	if (ret)
2054 		goto err_unreg_client;
2055 
2056 	return 0;
2057 
2058 err_unreg_client:
2059 	ib_unregister_client(&nvme_rdma_ib_client);
2060 	return ret;
2061 }
2062 
2063 static void __exit nvme_rdma_cleanup_module(void)
2064 {
2065 	nvmf_unregister_transport(&nvme_rdma_transport);
2066 	ib_unregister_client(&nvme_rdma_ib_client);
2067 }
2068 
2069 module_init(nvme_rdma_init_module);
2070 module_exit(nvme_rdma_cleanup_module);
2071 
2072 MODULE_LICENSE("GPL v2");
2073