xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision a9d85efb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 	nvme_req(rq)->cmd = req->sqe.data;
318 
319 	return 0;
320 }
321 
322 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 		unsigned int hctx_idx)
324 {
325 	struct nvme_rdma_ctrl *ctrl = data;
326 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
327 
328 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
329 
330 	hctx->driver_data = queue;
331 	return 0;
332 }
333 
334 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
335 		unsigned int hctx_idx)
336 {
337 	struct nvme_rdma_ctrl *ctrl = data;
338 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
339 
340 	BUG_ON(hctx_idx != 0);
341 
342 	hctx->driver_data = queue;
343 	return 0;
344 }
345 
346 static void nvme_rdma_free_dev(struct kref *ref)
347 {
348 	struct nvme_rdma_device *ndev =
349 		container_of(ref, struct nvme_rdma_device, ref);
350 
351 	mutex_lock(&device_list_mutex);
352 	list_del(&ndev->entry);
353 	mutex_unlock(&device_list_mutex);
354 
355 	ib_dealloc_pd(ndev->pd);
356 	kfree(ndev);
357 }
358 
359 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
360 {
361 	kref_put(&dev->ref, nvme_rdma_free_dev);
362 }
363 
364 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
365 {
366 	return kref_get_unless_zero(&dev->ref);
367 }
368 
369 static struct nvme_rdma_device *
370 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
371 {
372 	struct nvme_rdma_device *ndev;
373 
374 	mutex_lock(&device_list_mutex);
375 	list_for_each_entry(ndev, &device_list, entry) {
376 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
377 		    nvme_rdma_dev_get(ndev))
378 			goto out_unlock;
379 	}
380 
381 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
382 	if (!ndev)
383 		goto out_err;
384 
385 	ndev->dev = cm_id->device;
386 	kref_init(&ndev->ref);
387 
388 	ndev->pd = ib_alloc_pd(ndev->dev,
389 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
390 	if (IS_ERR(ndev->pd))
391 		goto out_free_dev;
392 
393 	if (!(ndev->dev->attrs.device_cap_flags &
394 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
395 		dev_err(&ndev->dev->dev,
396 			"Memory registrations not supported.\n");
397 		goto out_free_pd;
398 	}
399 
400 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
401 					ndev->dev->attrs.max_send_sge - 1);
402 	list_add(&ndev->entry, &device_list);
403 out_unlock:
404 	mutex_unlock(&device_list_mutex);
405 	return ndev;
406 
407 out_free_pd:
408 	ib_dealloc_pd(ndev->pd);
409 out_free_dev:
410 	kfree(ndev);
411 out_err:
412 	mutex_unlock(&device_list_mutex);
413 	return NULL;
414 }
415 
416 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
417 {
418 	if (nvme_rdma_poll_queue(queue))
419 		ib_free_cq(queue->ib_cq);
420 	else
421 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
422 }
423 
424 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 	struct nvme_rdma_device *dev;
427 	struct ib_device *ibdev;
428 
429 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
430 		return;
431 
432 	dev = queue->device;
433 	ibdev = dev->dev;
434 
435 	if (queue->pi_support)
436 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
437 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
438 
439 	/*
440 	 * The cm_id object might have been destroyed during RDMA connection
441 	 * establishment error flow to avoid getting other cma events, thus
442 	 * the destruction of the QP shouldn't use rdma_cm API.
443 	 */
444 	ib_destroy_qp(queue->qp);
445 	nvme_rdma_free_cq(queue);
446 
447 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449 
450 	nvme_rdma_dev_put(dev);
451 }
452 
453 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
454 {
455 	u32 max_page_list_len;
456 
457 	if (pi_support)
458 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
459 	else
460 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
461 
462 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
463 }
464 
465 static int nvme_rdma_create_cq(struct ib_device *ibdev,
466 		struct nvme_rdma_queue *queue)
467 {
468 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
469 	enum ib_poll_context poll_ctx;
470 
471 	/*
472 	 * Spread I/O queues completion vectors according their queue index.
473 	 * Admin queues can always go on completion vector 0.
474 	 */
475 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
476 
477 	/* Polling queues need direct cq polling context */
478 	if (nvme_rdma_poll_queue(queue)) {
479 		poll_ctx = IB_POLL_DIRECT;
480 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
481 					   comp_vector, poll_ctx);
482 	} else {
483 		poll_ctx = IB_POLL_SOFTIRQ;
484 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
485 					      comp_vector, poll_ctx);
486 	}
487 
488 	if (IS_ERR(queue->ib_cq)) {
489 		ret = PTR_ERR(queue->ib_cq);
490 		return ret;
491 	}
492 
493 	return 0;
494 }
495 
496 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
497 {
498 	struct ib_device *ibdev;
499 	const int send_wr_factor = 3;			/* MR, SEND, INV */
500 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
501 	int ret, pages_per_mr;
502 
503 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
504 	if (!queue->device) {
505 		dev_err(queue->cm_id->device->dev.parent,
506 			"no client data found!\n");
507 		return -ECONNREFUSED;
508 	}
509 	ibdev = queue->device->dev;
510 
511 	/* +1 for ib_stop_cq */
512 	queue->cq_size = cq_factor * queue->queue_size + 1;
513 
514 	ret = nvme_rdma_create_cq(ibdev, queue);
515 	if (ret)
516 		goto out_put_dev;
517 
518 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
519 	if (ret)
520 		goto out_destroy_ib_cq;
521 
522 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
523 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
524 	if (!queue->rsp_ring) {
525 		ret = -ENOMEM;
526 		goto out_destroy_qp;
527 	}
528 
529 	/*
530 	 * Currently we don't use SG_GAPS MR's so if the first entry is
531 	 * misaligned we'll end up using two entries for a single data page,
532 	 * so one additional entry is required.
533 	 */
534 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
535 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
536 			      queue->queue_size,
537 			      IB_MR_TYPE_MEM_REG,
538 			      pages_per_mr, 0);
539 	if (ret) {
540 		dev_err(queue->ctrl->ctrl.device,
541 			"failed to initialize MR pool sized %d for QID %d\n",
542 			queue->queue_size, nvme_rdma_queue_idx(queue));
543 		goto out_destroy_ring;
544 	}
545 
546 	if (queue->pi_support) {
547 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
548 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
549 				      pages_per_mr, pages_per_mr);
550 		if (ret) {
551 			dev_err(queue->ctrl->ctrl.device,
552 				"failed to initialize PI MR pool sized %d for QID %d\n",
553 				queue->queue_size, nvme_rdma_queue_idx(queue));
554 			goto out_destroy_mr_pool;
555 		}
556 	}
557 
558 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
559 
560 	return 0;
561 
562 out_destroy_mr_pool:
563 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
564 out_destroy_ring:
565 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
566 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
567 out_destroy_qp:
568 	rdma_destroy_qp(queue->cm_id);
569 out_destroy_ib_cq:
570 	nvme_rdma_free_cq(queue);
571 out_put_dev:
572 	nvme_rdma_dev_put(queue->device);
573 	return ret;
574 }
575 
576 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
577 		int idx, size_t queue_size)
578 {
579 	struct nvme_rdma_queue *queue;
580 	struct sockaddr *src_addr = NULL;
581 	int ret;
582 
583 	queue = &ctrl->queues[idx];
584 	mutex_init(&queue->queue_lock);
585 	queue->ctrl = ctrl;
586 	if (idx && ctrl->ctrl.max_integrity_segments)
587 		queue->pi_support = true;
588 	else
589 		queue->pi_support = false;
590 	init_completion(&queue->cm_done);
591 
592 	if (idx > 0)
593 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
594 	else
595 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
596 
597 	queue->queue_size = queue_size;
598 
599 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
600 			RDMA_PS_TCP, IB_QPT_RC);
601 	if (IS_ERR(queue->cm_id)) {
602 		dev_info(ctrl->ctrl.device,
603 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
604 		ret = PTR_ERR(queue->cm_id);
605 		goto out_destroy_mutex;
606 	}
607 
608 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
609 		src_addr = (struct sockaddr *)&ctrl->src_addr;
610 
611 	queue->cm_error = -ETIMEDOUT;
612 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
613 			(struct sockaddr *)&ctrl->addr,
614 			NVME_RDMA_CONNECT_TIMEOUT_MS);
615 	if (ret) {
616 		dev_info(ctrl->ctrl.device,
617 			"rdma_resolve_addr failed (%d).\n", ret);
618 		goto out_destroy_cm_id;
619 	}
620 
621 	ret = nvme_rdma_wait_for_cm(queue);
622 	if (ret) {
623 		dev_info(ctrl->ctrl.device,
624 			"rdma connection establishment failed (%d)\n", ret);
625 		goto out_destroy_cm_id;
626 	}
627 
628 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
629 
630 	return 0;
631 
632 out_destroy_cm_id:
633 	rdma_destroy_id(queue->cm_id);
634 	nvme_rdma_destroy_queue_ib(queue);
635 out_destroy_mutex:
636 	mutex_destroy(&queue->queue_lock);
637 	return ret;
638 }
639 
640 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 {
642 	rdma_disconnect(queue->cm_id);
643 	ib_drain_qp(queue->qp);
644 }
645 
646 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
647 {
648 	mutex_lock(&queue->queue_lock);
649 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
650 		__nvme_rdma_stop_queue(queue);
651 	mutex_unlock(&queue->queue_lock);
652 }
653 
654 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
655 {
656 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
657 		return;
658 
659 	rdma_destroy_id(queue->cm_id);
660 	nvme_rdma_destroy_queue_ib(queue);
661 	mutex_destroy(&queue->queue_lock);
662 }
663 
664 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
665 {
666 	int i;
667 
668 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
669 		nvme_rdma_free_queue(&ctrl->queues[i]);
670 }
671 
672 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
673 {
674 	int i;
675 
676 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
677 		nvme_rdma_stop_queue(&ctrl->queues[i]);
678 }
679 
680 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
681 {
682 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
683 	int ret;
684 
685 	if (idx)
686 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
687 	else
688 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
689 
690 	if (!ret) {
691 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
692 	} else {
693 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
694 			__nvme_rdma_stop_queue(queue);
695 		dev_info(ctrl->ctrl.device,
696 			"failed to connect queue: %d ret=%d\n", idx, ret);
697 	}
698 	return ret;
699 }
700 
701 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
702 {
703 	int i, ret = 0;
704 
705 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
706 		ret = nvme_rdma_start_queue(ctrl, i);
707 		if (ret)
708 			goto out_stop_queues;
709 	}
710 
711 	return 0;
712 
713 out_stop_queues:
714 	for (i--; i >= 1; i--)
715 		nvme_rdma_stop_queue(&ctrl->queues[i]);
716 	return ret;
717 }
718 
719 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
720 {
721 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
722 	struct ib_device *ibdev = ctrl->device->dev;
723 	unsigned int nr_io_queues, nr_default_queues;
724 	unsigned int nr_read_queues, nr_poll_queues;
725 	int i, ret;
726 
727 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
728 				min(opts->nr_io_queues, num_online_cpus()));
729 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
730 				min(opts->nr_write_queues, num_online_cpus()));
731 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
732 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
733 
734 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
735 	if (ret)
736 		return ret;
737 
738 	if (nr_io_queues == 0) {
739 		dev_err(ctrl->ctrl.device,
740 			"unable to set any I/O queues\n");
741 		return -ENOMEM;
742 	}
743 
744 	ctrl->ctrl.queue_count = nr_io_queues + 1;
745 	dev_info(ctrl->ctrl.device,
746 		"creating %d I/O queues.\n", nr_io_queues);
747 
748 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
749 		/*
750 		 * separate read/write queues
751 		 * hand out dedicated default queues only after we have
752 		 * sufficient read queues.
753 		 */
754 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
755 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
756 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 			min(nr_default_queues, nr_io_queues);
758 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759 	} else {
760 		/*
761 		 * shared read/write queues
762 		 * either no write queues were requested, or we don't have
763 		 * sufficient queue count to have dedicated default queues.
764 		 */
765 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
766 			min(nr_read_queues, nr_io_queues);
767 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
768 	}
769 
770 	if (opts->nr_poll_queues && nr_io_queues) {
771 		/* map dedicated poll queues only if we have queues left */
772 		ctrl->io_queues[HCTX_TYPE_POLL] =
773 			min(nr_poll_queues, nr_io_queues);
774 	}
775 
776 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
777 		ret = nvme_rdma_alloc_queue(ctrl, i,
778 				ctrl->ctrl.sqsize + 1);
779 		if (ret)
780 			goto out_free_queues;
781 	}
782 
783 	return 0;
784 
785 out_free_queues:
786 	for (i--; i >= 1; i--)
787 		nvme_rdma_free_queue(&ctrl->queues[i]);
788 
789 	return ret;
790 }
791 
792 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
793 		bool admin)
794 {
795 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
796 	struct blk_mq_tag_set *set;
797 	int ret;
798 
799 	if (admin) {
800 		set = &ctrl->admin_tag_set;
801 		memset(set, 0, sizeof(*set));
802 		set->ops = &nvme_rdma_admin_mq_ops;
803 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
804 		set->reserved_tags = NVMF_RESERVED_TAGS;
805 		set->numa_node = nctrl->numa_node;
806 		set->cmd_size = sizeof(struct nvme_rdma_request) +
807 				NVME_RDMA_DATA_SGL_SIZE;
808 		set->driver_data = ctrl;
809 		set->nr_hw_queues = 1;
810 		set->timeout = NVME_ADMIN_TIMEOUT;
811 		set->flags = BLK_MQ_F_NO_SCHED;
812 	} else {
813 		set = &ctrl->tag_set;
814 		memset(set, 0, sizeof(*set));
815 		set->ops = &nvme_rdma_mq_ops;
816 		set->queue_depth = nctrl->sqsize + 1;
817 		set->reserved_tags = NVMF_RESERVED_TAGS;
818 		set->numa_node = nctrl->numa_node;
819 		set->flags = BLK_MQ_F_SHOULD_MERGE;
820 		set->cmd_size = sizeof(struct nvme_rdma_request) +
821 				NVME_RDMA_DATA_SGL_SIZE;
822 		if (nctrl->max_integrity_segments)
823 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
824 					 NVME_RDMA_METADATA_SGL_SIZE;
825 		set->driver_data = ctrl;
826 		set->nr_hw_queues = nctrl->queue_count - 1;
827 		set->timeout = NVME_IO_TIMEOUT;
828 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
829 	}
830 
831 	ret = blk_mq_alloc_tag_set(set);
832 	if (ret)
833 		return ERR_PTR(ret);
834 
835 	return set;
836 }
837 
838 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
839 		bool remove)
840 {
841 	if (remove) {
842 		blk_cleanup_queue(ctrl->ctrl.admin_q);
843 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
844 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
845 	}
846 	if (ctrl->async_event_sqe.data) {
847 		cancel_work_sync(&ctrl->ctrl.async_event_work);
848 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
849 				sizeof(struct nvme_command), DMA_TO_DEVICE);
850 		ctrl->async_event_sqe.data = NULL;
851 	}
852 	nvme_rdma_free_queue(&ctrl->queues[0]);
853 }
854 
855 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
856 		bool new)
857 {
858 	bool pi_capable = false;
859 	int error;
860 
861 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
862 	if (error)
863 		return error;
864 
865 	ctrl->device = ctrl->queues[0].device;
866 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
867 
868 	/* T10-PI support */
869 	if (ctrl->device->dev->attrs.device_cap_flags &
870 	    IB_DEVICE_INTEGRITY_HANDOVER)
871 		pi_capable = true;
872 
873 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
874 							pi_capable);
875 
876 	/*
877 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
878 	 * It's safe, since any chage in the underlying RDMA device will issue
879 	 * error recovery and queue re-creation.
880 	 */
881 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
882 			sizeof(struct nvme_command), DMA_TO_DEVICE);
883 	if (error)
884 		goto out_free_queue;
885 
886 	if (new) {
887 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
888 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
889 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
890 			goto out_free_async_qe;
891 		}
892 
893 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
894 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
895 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
896 			goto out_free_tagset;
897 		}
898 
899 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
900 		if (IS_ERR(ctrl->ctrl.admin_q)) {
901 			error = PTR_ERR(ctrl->ctrl.admin_q);
902 			goto out_cleanup_fabrics_q;
903 		}
904 	}
905 
906 	error = nvme_rdma_start_queue(ctrl, 0);
907 	if (error)
908 		goto out_cleanup_queue;
909 
910 	error = nvme_enable_ctrl(&ctrl->ctrl);
911 	if (error)
912 		goto out_stop_queue;
913 
914 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
915 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
916 	if (pi_capable)
917 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
918 	else
919 		ctrl->ctrl.max_integrity_segments = 0;
920 
921 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
922 
923 	error = nvme_init_ctrl_finish(&ctrl->ctrl);
924 	if (error)
925 		goto out_quiesce_queue;
926 
927 	return 0;
928 
929 out_quiesce_queue:
930 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
931 	blk_sync_queue(ctrl->ctrl.admin_q);
932 out_stop_queue:
933 	nvme_rdma_stop_queue(&ctrl->queues[0]);
934 	nvme_cancel_admin_tagset(&ctrl->ctrl);
935 out_cleanup_queue:
936 	if (new)
937 		blk_cleanup_queue(ctrl->ctrl.admin_q);
938 out_cleanup_fabrics_q:
939 	if (new)
940 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
941 out_free_tagset:
942 	if (new)
943 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
944 out_free_async_qe:
945 	if (ctrl->async_event_sqe.data) {
946 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
947 			sizeof(struct nvme_command), DMA_TO_DEVICE);
948 		ctrl->async_event_sqe.data = NULL;
949 	}
950 out_free_queue:
951 	nvme_rdma_free_queue(&ctrl->queues[0]);
952 	return error;
953 }
954 
955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
956 		bool remove)
957 {
958 	if (remove) {
959 		blk_cleanup_queue(ctrl->ctrl.connect_q);
960 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
961 	}
962 	nvme_rdma_free_io_queues(ctrl);
963 }
964 
965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
966 {
967 	int ret;
968 
969 	ret = nvme_rdma_alloc_io_queues(ctrl);
970 	if (ret)
971 		return ret;
972 
973 	if (new) {
974 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
975 		if (IS_ERR(ctrl->ctrl.tagset)) {
976 			ret = PTR_ERR(ctrl->ctrl.tagset);
977 			goto out_free_io_queues;
978 		}
979 
980 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
981 		if (IS_ERR(ctrl->ctrl.connect_q)) {
982 			ret = PTR_ERR(ctrl->ctrl.connect_q);
983 			goto out_free_tag_set;
984 		}
985 	}
986 
987 	ret = nvme_rdma_start_io_queues(ctrl);
988 	if (ret)
989 		goto out_cleanup_connect_q;
990 
991 	if (!new) {
992 		nvme_start_queues(&ctrl->ctrl);
993 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
994 			/*
995 			 * If we timed out waiting for freeze we are likely to
996 			 * be stuck.  Fail the controller initialization just
997 			 * to be safe.
998 			 */
999 			ret = -ENODEV;
1000 			goto out_wait_freeze_timed_out;
1001 		}
1002 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1003 			ctrl->ctrl.queue_count - 1);
1004 		nvme_unfreeze(&ctrl->ctrl);
1005 	}
1006 
1007 	return 0;
1008 
1009 out_wait_freeze_timed_out:
1010 	nvme_stop_queues(&ctrl->ctrl);
1011 	nvme_sync_io_queues(&ctrl->ctrl);
1012 	nvme_rdma_stop_io_queues(ctrl);
1013 out_cleanup_connect_q:
1014 	nvme_cancel_tagset(&ctrl->ctrl);
1015 	if (new)
1016 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1017 out_free_tag_set:
1018 	if (new)
1019 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1020 out_free_io_queues:
1021 	nvme_rdma_free_io_queues(ctrl);
1022 	return ret;
1023 }
1024 
1025 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1026 		bool remove)
1027 {
1028 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1029 	blk_sync_queue(ctrl->ctrl.admin_q);
1030 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1031 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1032 	if (remove)
1033 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1034 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1035 }
1036 
1037 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1038 		bool remove)
1039 {
1040 	if (ctrl->ctrl.queue_count > 1) {
1041 		nvme_start_freeze(&ctrl->ctrl);
1042 		nvme_stop_queues(&ctrl->ctrl);
1043 		nvme_sync_io_queues(&ctrl->ctrl);
1044 		nvme_rdma_stop_io_queues(ctrl);
1045 		nvme_cancel_tagset(&ctrl->ctrl);
1046 		if (remove)
1047 			nvme_start_queues(&ctrl->ctrl);
1048 		nvme_rdma_destroy_io_queues(ctrl, remove);
1049 	}
1050 }
1051 
1052 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1053 {
1054 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1055 
1056 	if (list_empty(&ctrl->list))
1057 		goto free_ctrl;
1058 
1059 	mutex_lock(&nvme_rdma_ctrl_mutex);
1060 	list_del(&ctrl->list);
1061 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1062 
1063 	nvmf_free_options(nctrl->opts);
1064 free_ctrl:
1065 	kfree(ctrl->queues);
1066 	kfree(ctrl);
1067 }
1068 
1069 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1070 {
1071 	/* If we are resetting/deleting then do nothing */
1072 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1073 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1074 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1075 		return;
1076 	}
1077 
1078 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1079 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1080 			ctrl->ctrl.opts->reconnect_delay);
1081 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1082 				ctrl->ctrl.opts->reconnect_delay * HZ);
1083 	} else {
1084 		nvme_delete_ctrl(&ctrl->ctrl);
1085 	}
1086 }
1087 
1088 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1089 {
1090 	int ret;
1091 	bool changed;
1092 
1093 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1094 	if (ret)
1095 		return ret;
1096 
1097 	if (ctrl->ctrl.icdoff) {
1098 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1099 		goto destroy_admin;
1100 	}
1101 
1102 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1103 		dev_err(ctrl->ctrl.device,
1104 			"Mandatory keyed sgls are not supported!\n");
1105 		goto destroy_admin;
1106 	}
1107 
1108 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1109 		dev_warn(ctrl->ctrl.device,
1110 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1111 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1112 	}
1113 
1114 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1115 		dev_warn(ctrl->ctrl.device,
1116 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1117 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1118 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1119 	}
1120 
1121 	if (ctrl->ctrl.sgls & (1 << 20))
1122 		ctrl->use_inline_data = true;
1123 
1124 	if (ctrl->ctrl.queue_count > 1) {
1125 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1126 		if (ret)
1127 			goto destroy_admin;
1128 	}
1129 
1130 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1131 	if (!changed) {
1132 		/*
1133 		 * state change failure is ok if we started ctrl delete,
1134 		 * unless we're during creation of a new controller to
1135 		 * avoid races with teardown flow.
1136 		 */
1137 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1138 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1139 		WARN_ON_ONCE(new);
1140 		ret = -EINVAL;
1141 		goto destroy_io;
1142 	}
1143 
1144 	nvme_start_ctrl(&ctrl->ctrl);
1145 	return 0;
1146 
1147 destroy_io:
1148 	if (ctrl->ctrl.queue_count > 1) {
1149 		nvme_stop_queues(&ctrl->ctrl);
1150 		nvme_sync_io_queues(&ctrl->ctrl);
1151 		nvme_rdma_stop_io_queues(ctrl);
1152 		nvme_cancel_tagset(&ctrl->ctrl);
1153 		nvme_rdma_destroy_io_queues(ctrl, new);
1154 	}
1155 destroy_admin:
1156 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1157 	blk_sync_queue(ctrl->ctrl.admin_q);
1158 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1159 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1160 	nvme_rdma_destroy_admin_queue(ctrl, new);
1161 	return ret;
1162 }
1163 
1164 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1165 {
1166 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1167 			struct nvme_rdma_ctrl, reconnect_work);
1168 
1169 	++ctrl->ctrl.nr_reconnects;
1170 
1171 	if (nvme_rdma_setup_ctrl(ctrl, false))
1172 		goto requeue;
1173 
1174 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1175 			ctrl->ctrl.nr_reconnects);
1176 
1177 	ctrl->ctrl.nr_reconnects = 0;
1178 
1179 	return;
1180 
1181 requeue:
1182 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1183 			ctrl->ctrl.nr_reconnects);
1184 	nvme_rdma_reconnect_or_remove(ctrl);
1185 }
1186 
1187 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1188 {
1189 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1190 			struct nvme_rdma_ctrl, err_work);
1191 
1192 	nvme_stop_keep_alive(&ctrl->ctrl);
1193 	nvme_rdma_teardown_io_queues(ctrl, false);
1194 	nvme_start_queues(&ctrl->ctrl);
1195 	nvme_rdma_teardown_admin_queue(ctrl, false);
1196 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1197 
1198 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1199 		/* state change failure is ok if we started ctrl delete */
1200 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1201 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1202 		return;
1203 	}
1204 
1205 	nvme_rdma_reconnect_or_remove(ctrl);
1206 }
1207 
1208 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1209 {
1210 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1211 		return;
1212 
1213 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1214 	queue_work(nvme_reset_wq, &ctrl->err_work);
1215 }
1216 
1217 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1218 {
1219 	struct request *rq = blk_mq_rq_from_pdu(req);
1220 
1221 	if (!refcount_dec_and_test(&req->ref))
1222 		return;
1223 	if (!nvme_try_complete_req(rq, req->status, req->result))
1224 		nvme_rdma_complete_rq(rq);
1225 }
1226 
1227 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1228 		const char *op)
1229 {
1230 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1231 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1232 
1233 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1234 		dev_info(ctrl->ctrl.device,
1235 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1236 			     op, wc->wr_cqe,
1237 			     ib_wc_status_msg(wc->status), wc->status);
1238 	nvme_rdma_error_recovery(ctrl);
1239 }
1240 
1241 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1242 {
1243 	if (unlikely(wc->status != IB_WC_SUCCESS))
1244 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1245 }
1246 
1247 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1248 {
1249 	struct nvme_rdma_request *req =
1250 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1251 
1252 	if (unlikely(wc->status != IB_WC_SUCCESS))
1253 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1254 	else
1255 		nvme_rdma_end_request(req);
1256 }
1257 
1258 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1259 		struct nvme_rdma_request *req)
1260 {
1261 	struct ib_send_wr wr = {
1262 		.opcode		    = IB_WR_LOCAL_INV,
1263 		.next		    = NULL,
1264 		.num_sge	    = 0,
1265 		.send_flags	    = IB_SEND_SIGNALED,
1266 		.ex.invalidate_rkey = req->mr->rkey,
1267 	};
1268 
1269 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1270 	wr.wr_cqe = &req->reg_cqe;
1271 
1272 	return ib_post_send(queue->qp, &wr, NULL);
1273 }
1274 
1275 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1276 		struct request *rq)
1277 {
1278 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1279 	struct nvme_rdma_device *dev = queue->device;
1280 	struct ib_device *ibdev = dev->dev;
1281 	struct list_head *pool = &queue->qp->rdma_mrs;
1282 
1283 	if (!blk_rq_nr_phys_segments(rq))
1284 		return;
1285 
1286 	if (blk_integrity_rq(rq)) {
1287 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1288 				req->metadata_sgl->nents, rq_dma_dir(rq));
1289 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1290 				      NVME_INLINE_METADATA_SG_CNT);
1291 	}
1292 
1293 	if (req->use_sig_mr)
1294 		pool = &queue->qp->sig_mrs;
1295 
1296 	if (req->mr) {
1297 		ib_mr_pool_put(queue->qp, pool, req->mr);
1298 		req->mr = NULL;
1299 	}
1300 
1301 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1302 			rq_dma_dir(rq));
1303 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1304 }
1305 
1306 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1307 {
1308 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1309 
1310 	sg->addr = 0;
1311 	put_unaligned_le24(0, sg->length);
1312 	put_unaligned_le32(0, sg->key);
1313 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1314 	return 0;
1315 }
1316 
1317 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1318 		struct nvme_rdma_request *req, struct nvme_command *c,
1319 		int count)
1320 {
1321 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1322 	struct ib_sge *sge = &req->sge[1];
1323 	struct scatterlist *sgl;
1324 	u32 len = 0;
1325 	int i;
1326 
1327 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1328 		sge->addr = sg_dma_address(sgl);
1329 		sge->length = sg_dma_len(sgl);
1330 		sge->lkey = queue->device->pd->local_dma_lkey;
1331 		len += sge->length;
1332 		sge++;
1333 	}
1334 
1335 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1336 	sg->length = cpu_to_le32(len);
1337 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1338 
1339 	req->num_sge += count;
1340 	return 0;
1341 }
1342 
1343 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1344 		struct nvme_rdma_request *req, struct nvme_command *c)
1345 {
1346 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1347 
1348 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1349 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1350 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1351 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1352 	return 0;
1353 }
1354 
1355 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1356 		struct nvme_rdma_request *req, struct nvme_command *c,
1357 		int count)
1358 {
1359 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1360 	int nr;
1361 
1362 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1363 	if (WARN_ON_ONCE(!req->mr))
1364 		return -EAGAIN;
1365 
1366 	/*
1367 	 * Align the MR to a 4K page size to match the ctrl page size and
1368 	 * the block virtual boundary.
1369 	 */
1370 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1371 			  SZ_4K);
1372 	if (unlikely(nr < count)) {
1373 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1374 		req->mr = NULL;
1375 		if (nr < 0)
1376 			return nr;
1377 		return -EINVAL;
1378 	}
1379 
1380 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1381 
1382 	req->reg_cqe.done = nvme_rdma_memreg_done;
1383 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1384 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1385 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1386 	req->reg_wr.wr.num_sge = 0;
1387 	req->reg_wr.mr = req->mr;
1388 	req->reg_wr.key = req->mr->rkey;
1389 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1390 			     IB_ACCESS_REMOTE_READ |
1391 			     IB_ACCESS_REMOTE_WRITE;
1392 
1393 	sg->addr = cpu_to_le64(req->mr->iova);
1394 	put_unaligned_le24(req->mr->length, sg->length);
1395 	put_unaligned_le32(req->mr->rkey, sg->key);
1396 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1397 			NVME_SGL_FMT_INVALIDATE;
1398 
1399 	return 0;
1400 }
1401 
1402 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1403 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1404 		u16 control, u8 pi_type)
1405 {
1406 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1407 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1408 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1409 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1410 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1411 		domain->sig.dif.ref_remap = true;
1412 
1413 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1414 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1415 	domain->sig.dif.app_escape = true;
1416 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1417 		domain->sig.dif.ref_escape = true;
1418 }
1419 
1420 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1421 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1422 		u8 pi_type)
1423 {
1424 	u16 control = le16_to_cpu(cmd->rw.control);
1425 
1426 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1427 	if (control & NVME_RW_PRINFO_PRACT) {
1428 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1429 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1430 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1431 					 pi_type);
1432 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1433 		control &= ~NVME_RW_PRINFO_PRACT;
1434 		cmd->rw.control = cpu_to_le16(control);
1435 	} else {
1436 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1437 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1438 					 pi_type);
1439 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1440 					 pi_type);
1441 	}
1442 }
1443 
1444 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1445 {
1446 	*mask = 0;
1447 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1448 		*mask |= IB_SIG_CHECK_REFTAG;
1449 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1450 		*mask |= IB_SIG_CHECK_GUARD;
1451 }
1452 
1453 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1454 {
1455 	if (unlikely(wc->status != IB_WC_SUCCESS))
1456 		nvme_rdma_wr_error(cq, wc, "SIG");
1457 }
1458 
1459 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1460 		struct nvme_rdma_request *req, struct nvme_command *c,
1461 		int count, int pi_count)
1462 {
1463 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1464 	struct ib_reg_wr *wr = &req->reg_wr;
1465 	struct request *rq = blk_mq_rq_from_pdu(req);
1466 	struct nvme_ns *ns = rq->q->queuedata;
1467 	struct bio *bio = rq->bio;
1468 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1469 	int nr;
1470 
1471 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1472 	if (WARN_ON_ONCE(!req->mr))
1473 		return -EAGAIN;
1474 
1475 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1476 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1477 			     SZ_4K);
1478 	if (unlikely(nr))
1479 		goto mr_put;
1480 
1481 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1482 				req->mr->sig_attrs, ns->pi_type);
1483 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1484 
1485 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1486 
1487 	req->reg_cqe.done = nvme_rdma_sig_done;
1488 	memset(wr, 0, sizeof(*wr));
1489 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1490 	wr->wr.wr_cqe = &req->reg_cqe;
1491 	wr->wr.num_sge = 0;
1492 	wr->wr.send_flags = 0;
1493 	wr->mr = req->mr;
1494 	wr->key = req->mr->rkey;
1495 	wr->access = IB_ACCESS_LOCAL_WRITE |
1496 		     IB_ACCESS_REMOTE_READ |
1497 		     IB_ACCESS_REMOTE_WRITE;
1498 
1499 	sg->addr = cpu_to_le64(req->mr->iova);
1500 	put_unaligned_le24(req->mr->length, sg->length);
1501 	put_unaligned_le32(req->mr->rkey, sg->key);
1502 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1503 
1504 	return 0;
1505 
1506 mr_put:
1507 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1508 	req->mr = NULL;
1509 	if (nr < 0)
1510 		return nr;
1511 	return -EINVAL;
1512 }
1513 
1514 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1515 		struct request *rq, struct nvme_command *c)
1516 {
1517 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1518 	struct nvme_rdma_device *dev = queue->device;
1519 	struct ib_device *ibdev = dev->dev;
1520 	int pi_count = 0;
1521 	int count, ret;
1522 
1523 	req->num_sge = 1;
1524 	refcount_set(&req->ref, 2); /* send and recv completions */
1525 
1526 	c->common.flags |= NVME_CMD_SGL_METABUF;
1527 
1528 	if (!blk_rq_nr_phys_segments(rq))
1529 		return nvme_rdma_set_sg_null(c);
1530 
1531 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1532 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1533 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1534 			NVME_INLINE_SG_CNT);
1535 	if (ret)
1536 		return -ENOMEM;
1537 
1538 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1539 					    req->data_sgl.sg_table.sgl);
1540 
1541 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1542 			      req->data_sgl.nents, rq_dma_dir(rq));
1543 	if (unlikely(count <= 0)) {
1544 		ret = -EIO;
1545 		goto out_free_table;
1546 	}
1547 
1548 	if (blk_integrity_rq(rq)) {
1549 		req->metadata_sgl->sg_table.sgl =
1550 			(struct scatterlist *)(req->metadata_sgl + 1);
1551 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1552 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1553 				req->metadata_sgl->sg_table.sgl,
1554 				NVME_INLINE_METADATA_SG_CNT);
1555 		if (unlikely(ret)) {
1556 			ret = -ENOMEM;
1557 			goto out_unmap_sg;
1558 		}
1559 
1560 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1561 				rq->bio, req->metadata_sgl->sg_table.sgl);
1562 		pi_count = ib_dma_map_sg(ibdev,
1563 					 req->metadata_sgl->sg_table.sgl,
1564 					 req->metadata_sgl->nents,
1565 					 rq_dma_dir(rq));
1566 		if (unlikely(pi_count <= 0)) {
1567 			ret = -EIO;
1568 			goto out_free_pi_table;
1569 		}
1570 	}
1571 
1572 	if (req->use_sig_mr) {
1573 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1574 		goto out;
1575 	}
1576 
1577 	if (count <= dev->num_inline_segments) {
1578 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1579 		    queue->ctrl->use_inline_data &&
1580 		    blk_rq_payload_bytes(rq) <=
1581 				nvme_rdma_inline_data_size(queue)) {
1582 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1583 			goto out;
1584 		}
1585 
1586 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1587 			ret = nvme_rdma_map_sg_single(queue, req, c);
1588 			goto out;
1589 		}
1590 	}
1591 
1592 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1593 out:
1594 	if (unlikely(ret))
1595 		goto out_unmap_pi_sg;
1596 
1597 	return 0;
1598 
1599 out_unmap_pi_sg:
1600 	if (blk_integrity_rq(rq))
1601 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1602 				req->metadata_sgl->nents, rq_dma_dir(rq));
1603 out_free_pi_table:
1604 	if (blk_integrity_rq(rq))
1605 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1606 				      NVME_INLINE_METADATA_SG_CNT);
1607 out_unmap_sg:
1608 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1609 			rq_dma_dir(rq));
1610 out_free_table:
1611 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1612 	return ret;
1613 }
1614 
1615 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1616 {
1617 	struct nvme_rdma_qe *qe =
1618 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1619 	struct nvme_rdma_request *req =
1620 		container_of(qe, struct nvme_rdma_request, sqe);
1621 
1622 	if (unlikely(wc->status != IB_WC_SUCCESS))
1623 		nvme_rdma_wr_error(cq, wc, "SEND");
1624 	else
1625 		nvme_rdma_end_request(req);
1626 }
1627 
1628 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1629 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1630 		struct ib_send_wr *first)
1631 {
1632 	struct ib_send_wr wr;
1633 	int ret;
1634 
1635 	sge->addr   = qe->dma;
1636 	sge->length = sizeof(struct nvme_command);
1637 	sge->lkey   = queue->device->pd->local_dma_lkey;
1638 
1639 	wr.next       = NULL;
1640 	wr.wr_cqe     = &qe->cqe;
1641 	wr.sg_list    = sge;
1642 	wr.num_sge    = num_sge;
1643 	wr.opcode     = IB_WR_SEND;
1644 	wr.send_flags = IB_SEND_SIGNALED;
1645 
1646 	if (first)
1647 		first->next = &wr;
1648 	else
1649 		first = &wr;
1650 
1651 	ret = ib_post_send(queue->qp, first, NULL);
1652 	if (unlikely(ret)) {
1653 		dev_err(queue->ctrl->ctrl.device,
1654 			     "%s failed with error code %d\n", __func__, ret);
1655 	}
1656 	return ret;
1657 }
1658 
1659 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1660 		struct nvme_rdma_qe *qe)
1661 {
1662 	struct ib_recv_wr wr;
1663 	struct ib_sge list;
1664 	int ret;
1665 
1666 	list.addr   = qe->dma;
1667 	list.length = sizeof(struct nvme_completion);
1668 	list.lkey   = queue->device->pd->local_dma_lkey;
1669 
1670 	qe->cqe.done = nvme_rdma_recv_done;
1671 
1672 	wr.next     = NULL;
1673 	wr.wr_cqe   = &qe->cqe;
1674 	wr.sg_list  = &list;
1675 	wr.num_sge  = 1;
1676 
1677 	ret = ib_post_recv(queue->qp, &wr, NULL);
1678 	if (unlikely(ret)) {
1679 		dev_err(queue->ctrl->ctrl.device,
1680 			"%s failed with error code %d\n", __func__, ret);
1681 	}
1682 	return ret;
1683 }
1684 
1685 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1686 {
1687 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1688 
1689 	if (queue_idx == 0)
1690 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1691 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1692 }
1693 
1694 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1695 {
1696 	if (unlikely(wc->status != IB_WC_SUCCESS))
1697 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1698 }
1699 
1700 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1701 {
1702 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1703 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1704 	struct ib_device *dev = queue->device->dev;
1705 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1706 	struct nvme_command *cmd = sqe->data;
1707 	struct ib_sge sge;
1708 	int ret;
1709 
1710 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1711 
1712 	memset(cmd, 0, sizeof(*cmd));
1713 	cmd->common.opcode = nvme_admin_async_event;
1714 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1715 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1716 	nvme_rdma_set_sg_null(cmd);
1717 
1718 	sqe->cqe.done = nvme_rdma_async_done;
1719 
1720 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1721 			DMA_TO_DEVICE);
1722 
1723 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1724 	WARN_ON_ONCE(ret);
1725 }
1726 
1727 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1728 		struct nvme_completion *cqe, struct ib_wc *wc)
1729 {
1730 	struct request *rq;
1731 	struct nvme_rdma_request *req;
1732 
1733 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1734 	if (!rq) {
1735 		dev_err(queue->ctrl->ctrl.device,
1736 			"got bad command_id %#x on QP %#x\n",
1737 			cqe->command_id, queue->qp->qp_num);
1738 		nvme_rdma_error_recovery(queue->ctrl);
1739 		return;
1740 	}
1741 	req = blk_mq_rq_to_pdu(rq);
1742 
1743 	req->status = cqe->status;
1744 	req->result = cqe->result;
1745 
1746 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1747 		if (unlikely(!req->mr ||
1748 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1749 			dev_err(queue->ctrl->ctrl.device,
1750 				"Bogus remote invalidation for rkey %#x\n",
1751 				req->mr ? req->mr->rkey : 0);
1752 			nvme_rdma_error_recovery(queue->ctrl);
1753 		}
1754 	} else if (req->mr) {
1755 		int ret;
1756 
1757 		ret = nvme_rdma_inv_rkey(queue, req);
1758 		if (unlikely(ret < 0)) {
1759 			dev_err(queue->ctrl->ctrl.device,
1760 				"Queueing INV WR for rkey %#x failed (%d)\n",
1761 				req->mr->rkey, ret);
1762 			nvme_rdma_error_recovery(queue->ctrl);
1763 		}
1764 		/* the local invalidation completion will end the request */
1765 		return;
1766 	}
1767 
1768 	nvme_rdma_end_request(req);
1769 }
1770 
1771 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1772 {
1773 	struct nvme_rdma_qe *qe =
1774 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1775 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1776 	struct ib_device *ibdev = queue->device->dev;
1777 	struct nvme_completion *cqe = qe->data;
1778 	const size_t len = sizeof(struct nvme_completion);
1779 
1780 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1781 		nvme_rdma_wr_error(cq, wc, "RECV");
1782 		return;
1783 	}
1784 
1785 	/* sanity checking for received data length */
1786 	if (unlikely(wc->byte_len < len)) {
1787 		dev_err(queue->ctrl->ctrl.device,
1788 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1789 		nvme_rdma_error_recovery(queue->ctrl);
1790 		return;
1791 	}
1792 
1793 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1794 	/*
1795 	 * AEN requests are special as they don't time out and can
1796 	 * survive any kind of queue freeze and often don't respond to
1797 	 * aborts.  We don't even bother to allocate a struct request
1798 	 * for them but rather special case them here.
1799 	 */
1800 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1801 				     cqe->command_id)))
1802 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1803 				&cqe->result);
1804 	else
1805 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1806 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1807 
1808 	nvme_rdma_post_recv(queue, qe);
1809 }
1810 
1811 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1812 {
1813 	int ret, i;
1814 
1815 	for (i = 0; i < queue->queue_size; i++) {
1816 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1817 		if (ret)
1818 			return ret;
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1825 		struct rdma_cm_event *ev)
1826 {
1827 	struct rdma_cm_id *cm_id = queue->cm_id;
1828 	int status = ev->status;
1829 	const char *rej_msg;
1830 	const struct nvme_rdma_cm_rej *rej_data;
1831 	u8 rej_data_len;
1832 
1833 	rej_msg = rdma_reject_msg(cm_id, status);
1834 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1835 
1836 	if (rej_data && rej_data_len >= sizeof(u16)) {
1837 		u16 sts = le16_to_cpu(rej_data->sts);
1838 
1839 		dev_err(queue->ctrl->ctrl.device,
1840 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1841 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1842 	} else {
1843 		dev_err(queue->ctrl->ctrl.device,
1844 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1845 	}
1846 
1847 	return -ECONNRESET;
1848 }
1849 
1850 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1851 {
1852 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1853 	int ret;
1854 
1855 	ret = nvme_rdma_create_queue_ib(queue);
1856 	if (ret)
1857 		return ret;
1858 
1859 	if (ctrl->opts->tos >= 0)
1860 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1861 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1862 	if (ret) {
1863 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1864 			queue->cm_error);
1865 		goto out_destroy_queue;
1866 	}
1867 
1868 	return 0;
1869 
1870 out_destroy_queue:
1871 	nvme_rdma_destroy_queue_ib(queue);
1872 	return ret;
1873 }
1874 
1875 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1876 {
1877 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1878 	struct rdma_conn_param param = { };
1879 	struct nvme_rdma_cm_req priv = { };
1880 	int ret;
1881 
1882 	param.qp_num = queue->qp->qp_num;
1883 	param.flow_control = 1;
1884 
1885 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1886 	/* maximum retry count */
1887 	param.retry_count = 7;
1888 	param.rnr_retry_count = 7;
1889 	param.private_data = &priv;
1890 	param.private_data_len = sizeof(priv);
1891 
1892 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1893 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1894 	/*
1895 	 * set the admin queue depth to the minimum size
1896 	 * specified by the Fabrics standard.
1897 	 */
1898 	if (priv.qid == 0) {
1899 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1900 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1901 	} else {
1902 		/*
1903 		 * current interpretation of the fabrics spec
1904 		 * is at minimum you make hrqsize sqsize+1, or a
1905 		 * 1's based representation of sqsize.
1906 		 */
1907 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1908 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1909 	}
1910 
1911 	ret = rdma_connect_locked(queue->cm_id, &param);
1912 	if (ret) {
1913 		dev_err(ctrl->ctrl.device,
1914 			"rdma_connect_locked failed (%d).\n", ret);
1915 		return ret;
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1922 		struct rdma_cm_event *ev)
1923 {
1924 	struct nvme_rdma_queue *queue = cm_id->context;
1925 	int cm_error = 0;
1926 
1927 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1928 		rdma_event_msg(ev->event), ev->event,
1929 		ev->status, cm_id);
1930 
1931 	switch (ev->event) {
1932 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1933 		cm_error = nvme_rdma_addr_resolved(queue);
1934 		break;
1935 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1936 		cm_error = nvme_rdma_route_resolved(queue);
1937 		break;
1938 	case RDMA_CM_EVENT_ESTABLISHED:
1939 		queue->cm_error = nvme_rdma_conn_established(queue);
1940 		/* complete cm_done regardless of success/failure */
1941 		complete(&queue->cm_done);
1942 		return 0;
1943 	case RDMA_CM_EVENT_REJECTED:
1944 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1945 		break;
1946 	case RDMA_CM_EVENT_ROUTE_ERROR:
1947 	case RDMA_CM_EVENT_CONNECT_ERROR:
1948 	case RDMA_CM_EVENT_UNREACHABLE:
1949 	case RDMA_CM_EVENT_ADDR_ERROR:
1950 		dev_dbg(queue->ctrl->ctrl.device,
1951 			"CM error event %d\n", ev->event);
1952 		cm_error = -ECONNRESET;
1953 		break;
1954 	case RDMA_CM_EVENT_DISCONNECTED:
1955 	case RDMA_CM_EVENT_ADDR_CHANGE:
1956 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1957 		dev_dbg(queue->ctrl->ctrl.device,
1958 			"disconnect received - connection closed\n");
1959 		nvme_rdma_error_recovery(queue->ctrl);
1960 		break;
1961 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1962 		/* device removal is handled via the ib_client API */
1963 		break;
1964 	default:
1965 		dev_err(queue->ctrl->ctrl.device,
1966 			"Unexpected RDMA CM event (%d)\n", ev->event);
1967 		nvme_rdma_error_recovery(queue->ctrl);
1968 		break;
1969 	}
1970 
1971 	if (cm_error) {
1972 		queue->cm_error = cm_error;
1973 		complete(&queue->cm_done);
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static void nvme_rdma_complete_timed_out(struct request *rq)
1980 {
1981 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1982 	struct nvme_rdma_queue *queue = req->queue;
1983 
1984 	nvme_rdma_stop_queue(queue);
1985 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
1986 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1987 		blk_mq_complete_request(rq);
1988 	}
1989 }
1990 
1991 static enum blk_eh_timer_return
1992 nvme_rdma_timeout(struct request *rq, bool reserved)
1993 {
1994 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1995 	struct nvme_rdma_queue *queue = req->queue;
1996 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1997 
1998 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1999 		 rq->tag, nvme_rdma_queue_idx(queue));
2000 
2001 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2002 		/*
2003 		 * If we are resetting, connecting or deleting we should
2004 		 * complete immediately because we may block controller
2005 		 * teardown or setup sequence
2006 		 * - ctrl disable/shutdown fabrics requests
2007 		 * - connect requests
2008 		 * - initialization admin requests
2009 		 * - I/O requests that entered after unquiescing and
2010 		 *   the controller stopped responding
2011 		 *
2012 		 * All other requests should be cancelled by the error
2013 		 * recovery work, so it's fine that we fail it here.
2014 		 */
2015 		nvme_rdma_complete_timed_out(rq);
2016 		return BLK_EH_DONE;
2017 	}
2018 
2019 	/*
2020 	 * LIVE state should trigger the normal error recovery which will
2021 	 * handle completing this request.
2022 	 */
2023 	nvme_rdma_error_recovery(ctrl);
2024 	return BLK_EH_RESET_TIMER;
2025 }
2026 
2027 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2028 		const struct blk_mq_queue_data *bd)
2029 {
2030 	struct nvme_ns *ns = hctx->queue->queuedata;
2031 	struct nvme_rdma_queue *queue = hctx->driver_data;
2032 	struct request *rq = bd->rq;
2033 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2034 	struct nvme_rdma_qe *sqe = &req->sqe;
2035 	struct nvme_command *c = nvme_req(rq)->cmd;
2036 	struct ib_device *dev;
2037 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2038 	blk_status_t ret;
2039 	int err;
2040 
2041 	WARN_ON_ONCE(rq->tag < 0);
2042 
2043 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2044 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2045 
2046 	dev = queue->device->dev;
2047 
2048 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2049 					 sizeof(struct nvme_command),
2050 					 DMA_TO_DEVICE);
2051 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2052 	if (unlikely(err))
2053 		return BLK_STS_RESOURCE;
2054 
2055 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2056 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2057 
2058 	ret = nvme_setup_cmd(ns, rq);
2059 	if (ret)
2060 		goto unmap_qe;
2061 
2062 	blk_mq_start_request(rq);
2063 
2064 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2065 	    queue->pi_support &&
2066 	    (c->common.opcode == nvme_cmd_write ||
2067 	     c->common.opcode == nvme_cmd_read) &&
2068 	    nvme_ns_has_pi(ns))
2069 		req->use_sig_mr = true;
2070 	else
2071 		req->use_sig_mr = false;
2072 
2073 	err = nvme_rdma_map_data(queue, rq, c);
2074 	if (unlikely(err < 0)) {
2075 		dev_err(queue->ctrl->ctrl.device,
2076 			     "Failed to map data (%d)\n", err);
2077 		goto err;
2078 	}
2079 
2080 	sqe->cqe.done = nvme_rdma_send_done;
2081 
2082 	ib_dma_sync_single_for_device(dev, sqe->dma,
2083 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2084 
2085 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2086 			req->mr ? &req->reg_wr.wr : NULL);
2087 	if (unlikely(err))
2088 		goto err_unmap;
2089 
2090 	return BLK_STS_OK;
2091 
2092 err_unmap:
2093 	nvme_rdma_unmap_data(queue, rq);
2094 err:
2095 	if (err == -EIO)
2096 		ret = nvme_host_path_error(rq);
2097 	else if (err == -ENOMEM || err == -EAGAIN)
2098 		ret = BLK_STS_RESOURCE;
2099 	else
2100 		ret = BLK_STS_IOERR;
2101 	nvme_cleanup_cmd(rq);
2102 unmap_qe:
2103 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2104 			    DMA_TO_DEVICE);
2105 	return ret;
2106 }
2107 
2108 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2109 {
2110 	struct nvme_rdma_queue *queue = hctx->driver_data;
2111 
2112 	return ib_process_cq_direct(queue->ib_cq, -1);
2113 }
2114 
2115 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2116 {
2117 	struct request *rq = blk_mq_rq_from_pdu(req);
2118 	struct ib_mr_status mr_status;
2119 	int ret;
2120 
2121 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2122 	if (ret) {
2123 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2124 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2125 		return;
2126 	}
2127 
2128 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2129 		switch (mr_status.sig_err.err_type) {
2130 		case IB_SIG_BAD_GUARD:
2131 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2132 			break;
2133 		case IB_SIG_BAD_REFTAG:
2134 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2135 			break;
2136 		case IB_SIG_BAD_APPTAG:
2137 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2138 			break;
2139 		}
2140 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2141 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2142 		       mr_status.sig_err.actual);
2143 	}
2144 }
2145 
2146 static void nvme_rdma_complete_rq(struct request *rq)
2147 {
2148 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2149 	struct nvme_rdma_queue *queue = req->queue;
2150 	struct ib_device *ibdev = queue->device->dev;
2151 
2152 	if (req->use_sig_mr)
2153 		nvme_rdma_check_pi_status(req);
2154 
2155 	nvme_rdma_unmap_data(queue, rq);
2156 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2157 			    DMA_TO_DEVICE);
2158 	nvme_complete_rq(rq);
2159 }
2160 
2161 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2162 {
2163 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2164 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2165 
2166 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2167 		/* separate read/write queues */
2168 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2169 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2170 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2171 		set->map[HCTX_TYPE_READ].nr_queues =
2172 			ctrl->io_queues[HCTX_TYPE_READ];
2173 		set->map[HCTX_TYPE_READ].queue_offset =
2174 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2175 	} else {
2176 		/* shared read/write queues */
2177 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2178 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2179 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2180 		set->map[HCTX_TYPE_READ].nr_queues =
2181 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2182 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2183 	}
2184 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2185 			ctrl->device->dev, 0);
2186 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2187 			ctrl->device->dev, 0);
2188 
2189 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2190 		/* map dedicated poll queues only if we have queues left */
2191 		set->map[HCTX_TYPE_POLL].nr_queues =
2192 				ctrl->io_queues[HCTX_TYPE_POLL];
2193 		set->map[HCTX_TYPE_POLL].queue_offset =
2194 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2195 			ctrl->io_queues[HCTX_TYPE_READ];
2196 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2197 	}
2198 
2199 	dev_info(ctrl->ctrl.device,
2200 		"mapped %d/%d/%d default/read/poll queues.\n",
2201 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2202 		ctrl->io_queues[HCTX_TYPE_READ],
2203 		ctrl->io_queues[HCTX_TYPE_POLL]);
2204 
2205 	return 0;
2206 }
2207 
2208 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2209 	.queue_rq	= nvme_rdma_queue_rq,
2210 	.complete	= nvme_rdma_complete_rq,
2211 	.init_request	= nvme_rdma_init_request,
2212 	.exit_request	= nvme_rdma_exit_request,
2213 	.init_hctx	= nvme_rdma_init_hctx,
2214 	.timeout	= nvme_rdma_timeout,
2215 	.map_queues	= nvme_rdma_map_queues,
2216 	.poll		= nvme_rdma_poll,
2217 };
2218 
2219 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2220 	.queue_rq	= nvme_rdma_queue_rq,
2221 	.complete	= nvme_rdma_complete_rq,
2222 	.init_request	= nvme_rdma_init_request,
2223 	.exit_request	= nvme_rdma_exit_request,
2224 	.init_hctx	= nvme_rdma_init_admin_hctx,
2225 	.timeout	= nvme_rdma_timeout,
2226 };
2227 
2228 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2229 {
2230 	cancel_work_sync(&ctrl->err_work);
2231 	cancel_delayed_work_sync(&ctrl->reconnect_work);
2232 
2233 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2234 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2235 	if (shutdown)
2236 		nvme_shutdown_ctrl(&ctrl->ctrl);
2237 	else
2238 		nvme_disable_ctrl(&ctrl->ctrl);
2239 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2240 }
2241 
2242 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2243 {
2244 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2245 }
2246 
2247 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2248 {
2249 	struct nvme_rdma_ctrl *ctrl =
2250 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2251 
2252 	nvme_stop_ctrl(&ctrl->ctrl);
2253 	nvme_rdma_shutdown_ctrl(ctrl, false);
2254 
2255 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2256 		/* state change failure should never happen */
2257 		WARN_ON_ONCE(1);
2258 		return;
2259 	}
2260 
2261 	if (nvme_rdma_setup_ctrl(ctrl, false))
2262 		goto out_fail;
2263 
2264 	return;
2265 
2266 out_fail:
2267 	++ctrl->ctrl.nr_reconnects;
2268 	nvme_rdma_reconnect_or_remove(ctrl);
2269 }
2270 
2271 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2272 	.name			= "rdma",
2273 	.module			= THIS_MODULE,
2274 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2275 	.reg_read32		= nvmf_reg_read32,
2276 	.reg_read64		= nvmf_reg_read64,
2277 	.reg_write32		= nvmf_reg_write32,
2278 	.free_ctrl		= nvme_rdma_free_ctrl,
2279 	.submit_async_event	= nvme_rdma_submit_async_event,
2280 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2281 	.get_address		= nvmf_get_address,
2282 };
2283 
2284 /*
2285  * Fails a connection request if it matches an existing controller
2286  * (association) with the same tuple:
2287  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2288  *
2289  * if local address is not specified in the request, it will match an
2290  * existing controller with all the other parameters the same and no
2291  * local port address specified as well.
2292  *
2293  * The ports don't need to be compared as they are intrinsically
2294  * already matched by the port pointers supplied.
2295  */
2296 static bool
2297 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2298 {
2299 	struct nvme_rdma_ctrl *ctrl;
2300 	bool found = false;
2301 
2302 	mutex_lock(&nvme_rdma_ctrl_mutex);
2303 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2304 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2305 		if (found)
2306 			break;
2307 	}
2308 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2309 
2310 	return found;
2311 }
2312 
2313 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2314 		struct nvmf_ctrl_options *opts)
2315 {
2316 	struct nvme_rdma_ctrl *ctrl;
2317 	int ret;
2318 	bool changed;
2319 
2320 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2321 	if (!ctrl)
2322 		return ERR_PTR(-ENOMEM);
2323 	ctrl->ctrl.opts = opts;
2324 	INIT_LIST_HEAD(&ctrl->list);
2325 
2326 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2327 		opts->trsvcid =
2328 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2329 		if (!opts->trsvcid) {
2330 			ret = -ENOMEM;
2331 			goto out_free_ctrl;
2332 		}
2333 		opts->mask |= NVMF_OPT_TRSVCID;
2334 	}
2335 
2336 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2337 			opts->traddr, opts->trsvcid, &ctrl->addr);
2338 	if (ret) {
2339 		pr_err("malformed address passed: %s:%s\n",
2340 			opts->traddr, opts->trsvcid);
2341 		goto out_free_ctrl;
2342 	}
2343 
2344 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2345 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2346 			opts->host_traddr, NULL, &ctrl->src_addr);
2347 		if (ret) {
2348 			pr_err("malformed src address passed: %s\n",
2349 			       opts->host_traddr);
2350 			goto out_free_ctrl;
2351 		}
2352 	}
2353 
2354 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2355 		ret = -EALREADY;
2356 		goto out_free_ctrl;
2357 	}
2358 
2359 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2360 			nvme_rdma_reconnect_ctrl_work);
2361 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2362 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2363 
2364 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2365 				opts->nr_poll_queues + 1;
2366 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2367 	ctrl->ctrl.kato = opts->kato;
2368 
2369 	ret = -ENOMEM;
2370 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2371 				GFP_KERNEL);
2372 	if (!ctrl->queues)
2373 		goto out_free_ctrl;
2374 
2375 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2376 				0 /* no quirks, we're perfect! */);
2377 	if (ret)
2378 		goto out_kfree_queues;
2379 
2380 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2381 	WARN_ON_ONCE(!changed);
2382 
2383 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2384 	if (ret)
2385 		goto out_uninit_ctrl;
2386 
2387 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2388 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2389 
2390 	mutex_lock(&nvme_rdma_ctrl_mutex);
2391 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2392 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2393 
2394 	return &ctrl->ctrl;
2395 
2396 out_uninit_ctrl:
2397 	nvme_uninit_ctrl(&ctrl->ctrl);
2398 	nvme_put_ctrl(&ctrl->ctrl);
2399 	if (ret > 0)
2400 		ret = -EIO;
2401 	return ERR_PTR(ret);
2402 out_kfree_queues:
2403 	kfree(ctrl->queues);
2404 out_free_ctrl:
2405 	kfree(ctrl);
2406 	return ERR_PTR(ret);
2407 }
2408 
2409 static struct nvmf_transport_ops nvme_rdma_transport = {
2410 	.name		= "rdma",
2411 	.module		= THIS_MODULE,
2412 	.required_opts	= NVMF_OPT_TRADDR,
2413 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2414 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2415 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2416 			  NVMF_OPT_TOS,
2417 	.create_ctrl	= nvme_rdma_create_ctrl,
2418 };
2419 
2420 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2421 {
2422 	struct nvme_rdma_ctrl *ctrl;
2423 	struct nvme_rdma_device *ndev;
2424 	bool found = false;
2425 
2426 	mutex_lock(&device_list_mutex);
2427 	list_for_each_entry(ndev, &device_list, entry) {
2428 		if (ndev->dev == ib_device) {
2429 			found = true;
2430 			break;
2431 		}
2432 	}
2433 	mutex_unlock(&device_list_mutex);
2434 
2435 	if (!found)
2436 		return;
2437 
2438 	/* Delete all controllers using this device */
2439 	mutex_lock(&nvme_rdma_ctrl_mutex);
2440 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2441 		if (ctrl->device->dev != ib_device)
2442 			continue;
2443 		nvme_delete_ctrl(&ctrl->ctrl);
2444 	}
2445 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2446 
2447 	flush_workqueue(nvme_delete_wq);
2448 }
2449 
2450 static struct ib_client nvme_rdma_ib_client = {
2451 	.name   = "nvme_rdma",
2452 	.remove = nvme_rdma_remove_one
2453 };
2454 
2455 static int __init nvme_rdma_init_module(void)
2456 {
2457 	int ret;
2458 
2459 	ret = ib_register_client(&nvme_rdma_ib_client);
2460 	if (ret)
2461 		return ret;
2462 
2463 	ret = nvmf_register_transport(&nvme_rdma_transport);
2464 	if (ret)
2465 		goto err_unreg_client;
2466 
2467 	return 0;
2468 
2469 err_unreg_client:
2470 	ib_unregister_client(&nvme_rdma_ib_client);
2471 	return ret;
2472 }
2473 
2474 static void __exit nvme_rdma_cleanup_module(void)
2475 {
2476 	struct nvme_rdma_ctrl *ctrl;
2477 
2478 	nvmf_unregister_transport(&nvme_rdma_transport);
2479 	ib_unregister_client(&nvme_rdma_ib_client);
2480 
2481 	mutex_lock(&nvme_rdma_ctrl_mutex);
2482 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2483 		nvme_delete_ctrl(&ctrl->ctrl);
2484 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2485 	flush_workqueue(nvme_delete_wq);
2486 }
2487 
2488 module_init(nvme_rdma_init_module);
2489 module_exit(nvme_rdma_cleanup_module);
2490 
2491 MODULE_LICENSE("GPL v2");
2492