1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 #define NVME_RDMA_DATA_SGL_SIZE \ 38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 39 #define NVME_RDMA_METADATA_SGL_SIZE \ 40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 41 42 struct nvme_rdma_device { 43 struct ib_device *dev; 44 struct ib_pd *pd; 45 struct kref ref; 46 struct list_head entry; 47 unsigned int num_inline_segments; 48 }; 49 50 struct nvme_rdma_qe { 51 struct ib_cqe cqe; 52 void *data; 53 u64 dma; 54 }; 55 56 struct nvme_rdma_sgl { 57 int nents; 58 struct sg_table sg_table; 59 }; 60 61 struct nvme_rdma_queue; 62 struct nvme_rdma_request { 63 struct nvme_request req; 64 struct ib_mr *mr; 65 struct nvme_rdma_qe sqe; 66 union nvme_result result; 67 __le16 status; 68 refcount_t ref; 69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 70 u32 num_sge; 71 struct ib_reg_wr reg_wr; 72 struct ib_cqe reg_cqe; 73 struct nvme_rdma_queue *queue; 74 struct nvme_rdma_sgl data_sgl; 75 struct nvme_rdma_sgl *metadata_sgl; 76 bool use_sig_mr; 77 }; 78 79 enum nvme_rdma_queue_flags { 80 NVME_RDMA_Q_ALLOCATED = 0, 81 NVME_RDMA_Q_LIVE = 1, 82 NVME_RDMA_Q_TR_READY = 2, 83 }; 84 85 struct nvme_rdma_queue { 86 struct nvme_rdma_qe *rsp_ring; 87 int queue_size; 88 size_t cmnd_capsule_len; 89 struct nvme_rdma_ctrl *ctrl; 90 struct nvme_rdma_device *device; 91 struct ib_cq *ib_cq; 92 struct ib_qp *qp; 93 94 unsigned long flags; 95 struct rdma_cm_id *cm_id; 96 int cm_error; 97 struct completion cm_done; 98 bool pi_support; 99 int cq_size; 100 struct mutex queue_lock; 101 }; 102 103 struct nvme_rdma_ctrl { 104 /* read only in the hot path */ 105 struct nvme_rdma_queue *queues; 106 107 /* other member variables */ 108 struct blk_mq_tag_set tag_set; 109 struct work_struct err_work; 110 111 struct nvme_rdma_qe async_event_sqe; 112 113 struct delayed_work reconnect_work; 114 115 struct list_head list; 116 117 struct blk_mq_tag_set admin_tag_set; 118 struct nvme_rdma_device *device; 119 120 u32 max_fr_pages; 121 122 struct sockaddr_storage addr; 123 struct sockaddr_storage src_addr; 124 125 struct nvme_ctrl ctrl; 126 bool use_inline_data; 127 u32 io_queues[HCTX_MAX_TYPES]; 128 }; 129 130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 131 { 132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 133 } 134 135 static LIST_HEAD(device_list); 136 static DEFINE_MUTEX(device_list_mutex); 137 138 static LIST_HEAD(nvme_rdma_ctrl_list); 139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 140 141 /* 142 * Disabling this option makes small I/O goes faster, but is fundamentally 143 * unsafe. With it turned off we will have to register a global rkey that 144 * allows read and write access to all physical memory. 145 */ 146 static bool register_always = true; 147 module_param(register_always, bool, 0444); 148 MODULE_PARM_DESC(register_always, 149 "Use memory registration even for contiguous memory regions"); 150 151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 152 struct rdma_cm_event *event); 153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 154 static void nvme_rdma_complete_rq(struct request *rq); 155 156 static const struct blk_mq_ops nvme_rdma_mq_ops; 157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 158 159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 160 { 161 return queue - queue->ctrl->queues; 162 } 163 164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 165 { 166 return nvme_rdma_queue_idx(queue) > 167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 168 queue->ctrl->io_queues[HCTX_TYPE_READ]; 169 } 170 171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 172 { 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174 } 175 176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 177 size_t capsule_size, enum dma_data_direction dir) 178 { 179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 180 kfree(qe->data); 181 } 182 183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 184 size_t capsule_size, enum dma_data_direction dir) 185 { 186 qe->data = kzalloc(capsule_size, GFP_KERNEL); 187 if (!qe->data) 188 return -ENOMEM; 189 190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 191 if (ib_dma_mapping_error(ibdev, qe->dma)) { 192 kfree(qe->data); 193 qe->data = NULL; 194 return -ENOMEM; 195 } 196 197 return 0; 198 } 199 200 static void nvme_rdma_free_ring(struct ib_device *ibdev, 201 struct nvme_rdma_qe *ring, size_t ib_queue_size, 202 size_t capsule_size, enum dma_data_direction dir) 203 { 204 int i; 205 206 for (i = 0; i < ib_queue_size; i++) 207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 208 kfree(ring); 209 } 210 211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 212 size_t ib_queue_size, size_t capsule_size, 213 enum dma_data_direction dir) 214 { 215 struct nvme_rdma_qe *ring; 216 int i; 217 218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 219 if (!ring) 220 return NULL; 221 222 /* 223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 224 * lifetime. It's safe, since any chage in the underlying RDMA device 225 * will issue error recovery and queue re-creation. 226 */ 227 for (i = 0; i < ib_queue_size; i++) { 228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 229 goto out_free_ring; 230 } 231 232 return ring; 233 234 out_free_ring: 235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 236 return NULL; 237 } 238 239 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 240 { 241 pr_debug("QP event %s (%d)\n", 242 ib_event_msg(event->event), event->event); 243 244 } 245 246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 247 { 248 int ret; 249 250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 252 if (ret < 0) 253 return ret; 254 if (ret == 0) 255 return -ETIMEDOUT; 256 WARN_ON_ONCE(queue->cm_error > 0); 257 return queue->cm_error; 258 } 259 260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 261 { 262 struct nvme_rdma_device *dev = queue->device; 263 struct ib_qp_init_attr init_attr; 264 int ret; 265 266 memset(&init_attr, 0, sizeof(init_attr)); 267 init_attr.event_handler = nvme_rdma_qp_event; 268 /* +1 for drain */ 269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 270 /* +1 for drain */ 271 init_attr.cap.max_recv_wr = queue->queue_size + 1; 272 init_attr.cap.max_recv_sge = 1; 273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 275 init_attr.qp_type = IB_QPT_RC; 276 init_attr.send_cq = queue->ib_cq; 277 init_attr.recv_cq = queue->ib_cq; 278 if (queue->pi_support) 279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 280 init_attr.qp_context = queue; 281 282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 283 284 queue->qp = queue->cm_id->qp; 285 return ret; 286 } 287 288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 289 struct request *rq, unsigned int hctx_idx) 290 { 291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 292 293 kfree(req->sqe.data); 294 } 295 296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 297 struct request *rq, unsigned int hctx_idx, 298 unsigned int numa_node) 299 { 300 struct nvme_rdma_ctrl *ctrl = set->driver_data; 301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 304 305 nvme_req(rq)->ctrl = &ctrl->ctrl; 306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 307 if (!req->sqe.data) 308 return -ENOMEM; 309 310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 311 if (queue->pi_support) 312 req->metadata_sgl = (void *)nvme_req(rq) + 313 sizeof(struct nvme_rdma_request) + 314 NVME_RDMA_DATA_SGL_SIZE; 315 316 req->queue = queue; 317 318 return 0; 319 } 320 321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 322 unsigned int hctx_idx) 323 { 324 struct nvme_rdma_ctrl *ctrl = data; 325 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 326 327 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 328 329 hctx->driver_data = queue; 330 return 0; 331 } 332 333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 334 unsigned int hctx_idx) 335 { 336 struct nvme_rdma_ctrl *ctrl = data; 337 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 338 339 BUG_ON(hctx_idx != 0); 340 341 hctx->driver_data = queue; 342 return 0; 343 } 344 345 static void nvme_rdma_free_dev(struct kref *ref) 346 { 347 struct nvme_rdma_device *ndev = 348 container_of(ref, struct nvme_rdma_device, ref); 349 350 mutex_lock(&device_list_mutex); 351 list_del(&ndev->entry); 352 mutex_unlock(&device_list_mutex); 353 354 ib_dealloc_pd(ndev->pd); 355 kfree(ndev); 356 } 357 358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 359 { 360 kref_put(&dev->ref, nvme_rdma_free_dev); 361 } 362 363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 364 { 365 return kref_get_unless_zero(&dev->ref); 366 } 367 368 static struct nvme_rdma_device * 369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 370 { 371 struct nvme_rdma_device *ndev; 372 373 mutex_lock(&device_list_mutex); 374 list_for_each_entry(ndev, &device_list, entry) { 375 if (ndev->dev->node_guid == cm_id->device->node_guid && 376 nvme_rdma_dev_get(ndev)) 377 goto out_unlock; 378 } 379 380 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 381 if (!ndev) 382 goto out_err; 383 384 ndev->dev = cm_id->device; 385 kref_init(&ndev->ref); 386 387 ndev->pd = ib_alloc_pd(ndev->dev, 388 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 389 if (IS_ERR(ndev->pd)) 390 goto out_free_dev; 391 392 if (!(ndev->dev->attrs.device_cap_flags & 393 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 394 dev_err(&ndev->dev->dev, 395 "Memory registrations not supported.\n"); 396 goto out_free_pd; 397 } 398 399 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 400 ndev->dev->attrs.max_send_sge - 1); 401 list_add(&ndev->entry, &device_list); 402 out_unlock: 403 mutex_unlock(&device_list_mutex); 404 return ndev; 405 406 out_free_pd: 407 ib_dealloc_pd(ndev->pd); 408 out_free_dev: 409 kfree(ndev); 410 out_err: 411 mutex_unlock(&device_list_mutex); 412 return NULL; 413 } 414 415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 416 { 417 if (nvme_rdma_poll_queue(queue)) 418 ib_free_cq(queue->ib_cq); 419 else 420 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 421 } 422 423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 424 { 425 struct nvme_rdma_device *dev; 426 struct ib_device *ibdev; 427 428 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 429 return; 430 431 dev = queue->device; 432 ibdev = dev->dev; 433 434 if (queue->pi_support) 435 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 436 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 437 438 /* 439 * The cm_id object might have been destroyed during RDMA connection 440 * establishment error flow to avoid getting other cma events, thus 441 * the destruction of the QP shouldn't use rdma_cm API. 442 */ 443 ib_destroy_qp(queue->qp); 444 nvme_rdma_free_cq(queue); 445 446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 447 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 448 449 nvme_rdma_dev_put(dev); 450 } 451 452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 453 { 454 u32 max_page_list_len; 455 456 if (pi_support) 457 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 458 else 459 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 460 461 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 462 } 463 464 static int nvme_rdma_create_cq(struct ib_device *ibdev, 465 struct nvme_rdma_queue *queue) 466 { 467 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 468 enum ib_poll_context poll_ctx; 469 470 /* 471 * Spread I/O queues completion vectors according their queue index. 472 * Admin queues can always go on completion vector 0. 473 */ 474 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 475 476 /* Polling queues need direct cq polling context */ 477 if (nvme_rdma_poll_queue(queue)) { 478 poll_ctx = IB_POLL_DIRECT; 479 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 480 comp_vector, poll_ctx); 481 } else { 482 poll_ctx = IB_POLL_SOFTIRQ; 483 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 484 comp_vector, poll_ctx); 485 } 486 487 if (IS_ERR(queue->ib_cq)) { 488 ret = PTR_ERR(queue->ib_cq); 489 return ret; 490 } 491 492 return 0; 493 } 494 495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 496 { 497 struct ib_device *ibdev; 498 const int send_wr_factor = 3; /* MR, SEND, INV */ 499 const int cq_factor = send_wr_factor + 1; /* + RECV */ 500 int ret, pages_per_mr; 501 502 queue->device = nvme_rdma_find_get_device(queue->cm_id); 503 if (!queue->device) { 504 dev_err(queue->cm_id->device->dev.parent, 505 "no client data found!\n"); 506 return -ECONNREFUSED; 507 } 508 ibdev = queue->device->dev; 509 510 /* +1 for ib_stop_cq */ 511 queue->cq_size = cq_factor * queue->queue_size + 1; 512 513 ret = nvme_rdma_create_cq(ibdev, queue); 514 if (ret) 515 goto out_put_dev; 516 517 ret = nvme_rdma_create_qp(queue, send_wr_factor); 518 if (ret) 519 goto out_destroy_ib_cq; 520 521 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 522 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 523 if (!queue->rsp_ring) { 524 ret = -ENOMEM; 525 goto out_destroy_qp; 526 } 527 528 /* 529 * Currently we don't use SG_GAPS MR's so if the first entry is 530 * misaligned we'll end up using two entries for a single data page, 531 * so one additional entry is required. 532 */ 533 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 534 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 535 queue->queue_size, 536 IB_MR_TYPE_MEM_REG, 537 pages_per_mr, 0); 538 if (ret) { 539 dev_err(queue->ctrl->ctrl.device, 540 "failed to initialize MR pool sized %d for QID %d\n", 541 queue->queue_size, nvme_rdma_queue_idx(queue)); 542 goto out_destroy_ring; 543 } 544 545 if (queue->pi_support) { 546 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 547 queue->queue_size, IB_MR_TYPE_INTEGRITY, 548 pages_per_mr, pages_per_mr); 549 if (ret) { 550 dev_err(queue->ctrl->ctrl.device, 551 "failed to initialize PI MR pool sized %d for QID %d\n", 552 queue->queue_size, nvme_rdma_queue_idx(queue)); 553 goto out_destroy_mr_pool; 554 } 555 } 556 557 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 558 559 return 0; 560 561 out_destroy_mr_pool: 562 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 563 out_destroy_ring: 564 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 565 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 566 out_destroy_qp: 567 rdma_destroy_qp(queue->cm_id); 568 out_destroy_ib_cq: 569 nvme_rdma_free_cq(queue); 570 out_put_dev: 571 nvme_rdma_dev_put(queue->device); 572 return ret; 573 } 574 575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 576 int idx, size_t queue_size) 577 { 578 struct nvme_rdma_queue *queue; 579 struct sockaddr *src_addr = NULL; 580 int ret; 581 582 queue = &ctrl->queues[idx]; 583 mutex_init(&queue->queue_lock); 584 queue->ctrl = ctrl; 585 if (idx && ctrl->ctrl.max_integrity_segments) 586 queue->pi_support = true; 587 else 588 queue->pi_support = false; 589 init_completion(&queue->cm_done); 590 591 if (idx > 0) 592 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 593 else 594 queue->cmnd_capsule_len = sizeof(struct nvme_command); 595 596 queue->queue_size = queue_size; 597 598 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 599 RDMA_PS_TCP, IB_QPT_RC); 600 if (IS_ERR(queue->cm_id)) { 601 dev_info(ctrl->ctrl.device, 602 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 603 ret = PTR_ERR(queue->cm_id); 604 goto out_destroy_mutex; 605 } 606 607 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 608 src_addr = (struct sockaddr *)&ctrl->src_addr; 609 610 queue->cm_error = -ETIMEDOUT; 611 ret = rdma_resolve_addr(queue->cm_id, src_addr, 612 (struct sockaddr *)&ctrl->addr, 613 NVME_RDMA_CONNECT_TIMEOUT_MS); 614 if (ret) { 615 dev_info(ctrl->ctrl.device, 616 "rdma_resolve_addr failed (%d).\n", ret); 617 goto out_destroy_cm_id; 618 } 619 620 ret = nvme_rdma_wait_for_cm(queue); 621 if (ret) { 622 dev_info(ctrl->ctrl.device, 623 "rdma connection establishment failed (%d)\n", ret); 624 goto out_destroy_cm_id; 625 } 626 627 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 628 629 return 0; 630 631 out_destroy_cm_id: 632 rdma_destroy_id(queue->cm_id); 633 nvme_rdma_destroy_queue_ib(queue); 634 out_destroy_mutex: 635 mutex_destroy(&queue->queue_lock); 636 return ret; 637 } 638 639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 640 { 641 rdma_disconnect(queue->cm_id); 642 ib_drain_qp(queue->qp); 643 } 644 645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 646 { 647 mutex_lock(&queue->queue_lock); 648 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 649 __nvme_rdma_stop_queue(queue); 650 mutex_unlock(&queue->queue_lock); 651 } 652 653 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 654 { 655 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 656 return; 657 658 nvme_rdma_destroy_queue_ib(queue); 659 rdma_destroy_id(queue->cm_id); 660 mutex_destroy(&queue->queue_lock); 661 } 662 663 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 664 { 665 int i; 666 667 for (i = 1; i < ctrl->ctrl.queue_count; i++) 668 nvme_rdma_free_queue(&ctrl->queues[i]); 669 } 670 671 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 672 { 673 int i; 674 675 for (i = 1; i < ctrl->ctrl.queue_count; i++) 676 nvme_rdma_stop_queue(&ctrl->queues[i]); 677 } 678 679 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 680 { 681 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 682 bool poll = nvme_rdma_poll_queue(queue); 683 int ret; 684 685 if (idx) 686 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 687 else 688 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 689 690 if (!ret) { 691 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 692 } else { 693 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 694 __nvme_rdma_stop_queue(queue); 695 dev_info(ctrl->ctrl.device, 696 "failed to connect queue: %d ret=%d\n", idx, ret); 697 } 698 return ret; 699 } 700 701 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 702 { 703 int i, ret = 0; 704 705 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 706 ret = nvme_rdma_start_queue(ctrl, i); 707 if (ret) 708 goto out_stop_queues; 709 } 710 711 return 0; 712 713 out_stop_queues: 714 for (i--; i >= 1; i--) 715 nvme_rdma_stop_queue(&ctrl->queues[i]); 716 return ret; 717 } 718 719 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 720 { 721 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 722 struct ib_device *ibdev = ctrl->device->dev; 723 unsigned int nr_io_queues, nr_default_queues; 724 unsigned int nr_read_queues, nr_poll_queues; 725 int i, ret; 726 727 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 728 min(opts->nr_io_queues, num_online_cpus())); 729 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 730 min(opts->nr_write_queues, num_online_cpus())); 731 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 732 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 733 734 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 735 if (ret) 736 return ret; 737 738 ctrl->ctrl.queue_count = nr_io_queues + 1; 739 if (ctrl->ctrl.queue_count < 2) 740 return 0; 741 742 dev_info(ctrl->ctrl.device, 743 "creating %d I/O queues.\n", nr_io_queues); 744 745 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 746 /* 747 * separate read/write queues 748 * hand out dedicated default queues only after we have 749 * sufficient read queues. 750 */ 751 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 752 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 753 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 754 min(nr_default_queues, nr_io_queues); 755 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 756 } else { 757 /* 758 * shared read/write queues 759 * either no write queues were requested, or we don't have 760 * sufficient queue count to have dedicated default queues. 761 */ 762 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 763 min(nr_read_queues, nr_io_queues); 764 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 765 } 766 767 if (opts->nr_poll_queues && nr_io_queues) { 768 /* map dedicated poll queues only if we have queues left */ 769 ctrl->io_queues[HCTX_TYPE_POLL] = 770 min(nr_poll_queues, nr_io_queues); 771 } 772 773 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 774 ret = nvme_rdma_alloc_queue(ctrl, i, 775 ctrl->ctrl.sqsize + 1); 776 if (ret) 777 goto out_free_queues; 778 } 779 780 return 0; 781 782 out_free_queues: 783 for (i--; i >= 1; i--) 784 nvme_rdma_free_queue(&ctrl->queues[i]); 785 786 return ret; 787 } 788 789 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 790 bool admin) 791 { 792 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 793 struct blk_mq_tag_set *set; 794 int ret; 795 796 if (admin) { 797 set = &ctrl->admin_tag_set; 798 memset(set, 0, sizeof(*set)); 799 set->ops = &nvme_rdma_admin_mq_ops; 800 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 801 set->reserved_tags = 2; /* connect + keep-alive */ 802 set->numa_node = nctrl->numa_node; 803 set->cmd_size = sizeof(struct nvme_rdma_request) + 804 NVME_RDMA_DATA_SGL_SIZE; 805 set->driver_data = ctrl; 806 set->nr_hw_queues = 1; 807 set->timeout = NVME_ADMIN_TIMEOUT; 808 set->flags = BLK_MQ_F_NO_SCHED; 809 } else { 810 set = &ctrl->tag_set; 811 memset(set, 0, sizeof(*set)); 812 set->ops = &nvme_rdma_mq_ops; 813 set->queue_depth = nctrl->sqsize + 1; 814 set->reserved_tags = 1; /* fabric connect */ 815 set->numa_node = nctrl->numa_node; 816 set->flags = BLK_MQ_F_SHOULD_MERGE; 817 set->cmd_size = sizeof(struct nvme_rdma_request) + 818 NVME_RDMA_DATA_SGL_SIZE; 819 if (nctrl->max_integrity_segments) 820 set->cmd_size += sizeof(struct nvme_rdma_sgl) + 821 NVME_RDMA_METADATA_SGL_SIZE; 822 set->driver_data = ctrl; 823 set->nr_hw_queues = nctrl->queue_count - 1; 824 set->timeout = NVME_IO_TIMEOUT; 825 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 826 } 827 828 ret = blk_mq_alloc_tag_set(set); 829 if (ret) 830 return ERR_PTR(ret); 831 832 return set; 833 } 834 835 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 836 bool remove) 837 { 838 if (remove) { 839 blk_cleanup_queue(ctrl->ctrl.admin_q); 840 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 841 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 842 } 843 if (ctrl->async_event_sqe.data) { 844 cancel_work_sync(&ctrl->ctrl.async_event_work); 845 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 846 sizeof(struct nvme_command), DMA_TO_DEVICE); 847 ctrl->async_event_sqe.data = NULL; 848 } 849 nvme_rdma_free_queue(&ctrl->queues[0]); 850 } 851 852 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 853 bool new) 854 { 855 bool pi_capable = false; 856 int error; 857 858 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 859 if (error) 860 return error; 861 862 ctrl->device = ctrl->queues[0].device; 863 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); 864 865 /* T10-PI support */ 866 if (ctrl->device->dev->attrs.device_cap_flags & 867 IB_DEVICE_INTEGRITY_HANDOVER) 868 pi_capable = true; 869 870 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 871 pi_capable); 872 873 /* 874 * Bind the async event SQE DMA mapping to the admin queue lifetime. 875 * It's safe, since any chage in the underlying RDMA device will issue 876 * error recovery and queue re-creation. 877 */ 878 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 879 sizeof(struct nvme_command), DMA_TO_DEVICE); 880 if (error) 881 goto out_free_queue; 882 883 if (new) { 884 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 885 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 886 error = PTR_ERR(ctrl->ctrl.admin_tagset); 887 goto out_free_async_qe; 888 } 889 890 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 891 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 892 error = PTR_ERR(ctrl->ctrl.fabrics_q); 893 goto out_free_tagset; 894 } 895 896 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 897 if (IS_ERR(ctrl->ctrl.admin_q)) { 898 error = PTR_ERR(ctrl->ctrl.admin_q); 899 goto out_cleanup_fabrics_q; 900 } 901 } 902 903 error = nvme_rdma_start_queue(ctrl, 0); 904 if (error) 905 goto out_cleanup_queue; 906 907 error = nvme_enable_ctrl(&ctrl->ctrl); 908 if (error) 909 goto out_stop_queue; 910 911 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 912 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 913 if (pi_capable) 914 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 915 else 916 ctrl->ctrl.max_integrity_segments = 0; 917 918 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 919 920 error = nvme_init_identify(&ctrl->ctrl); 921 if (error) 922 goto out_stop_queue; 923 924 return 0; 925 926 out_stop_queue: 927 nvme_rdma_stop_queue(&ctrl->queues[0]); 928 out_cleanup_queue: 929 if (new) 930 blk_cleanup_queue(ctrl->ctrl.admin_q); 931 out_cleanup_fabrics_q: 932 if (new) 933 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 934 out_free_tagset: 935 if (new) 936 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 937 out_free_async_qe: 938 if (ctrl->async_event_sqe.data) { 939 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 940 sizeof(struct nvme_command), DMA_TO_DEVICE); 941 ctrl->async_event_sqe.data = NULL; 942 } 943 out_free_queue: 944 nvme_rdma_free_queue(&ctrl->queues[0]); 945 return error; 946 } 947 948 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 949 bool remove) 950 { 951 if (remove) { 952 blk_cleanup_queue(ctrl->ctrl.connect_q); 953 blk_mq_free_tag_set(ctrl->ctrl.tagset); 954 } 955 nvme_rdma_free_io_queues(ctrl); 956 } 957 958 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 959 { 960 int ret; 961 962 ret = nvme_rdma_alloc_io_queues(ctrl); 963 if (ret) 964 return ret; 965 966 if (new) { 967 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 968 if (IS_ERR(ctrl->ctrl.tagset)) { 969 ret = PTR_ERR(ctrl->ctrl.tagset); 970 goto out_free_io_queues; 971 } 972 973 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 974 if (IS_ERR(ctrl->ctrl.connect_q)) { 975 ret = PTR_ERR(ctrl->ctrl.connect_q); 976 goto out_free_tag_set; 977 } 978 } 979 980 ret = nvme_rdma_start_io_queues(ctrl); 981 if (ret) 982 goto out_cleanup_connect_q; 983 984 if (!new) { 985 nvme_start_queues(&ctrl->ctrl); 986 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { 987 /* 988 * If we timed out waiting for freeze we are likely to 989 * be stuck. Fail the controller initialization just 990 * to be safe. 991 */ 992 ret = -ENODEV; 993 goto out_wait_freeze_timed_out; 994 } 995 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 996 ctrl->ctrl.queue_count - 1); 997 nvme_unfreeze(&ctrl->ctrl); 998 } 999 1000 return 0; 1001 1002 out_wait_freeze_timed_out: 1003 nvme_stop_queues(&ctrl->ctrl); 1004 nvme_rdma_stop_io_queues(ctrl); 1005 out_cleanup_connect_q: 1006 if (new) 1007 blk_cleanup_queue(ctrl->ctrl.connect_q); 1008 out_free_tag_set: 1009 if (new) 1010 blk_mq_free_tag_set(ctrl->ctrl.tagset); 1011 out_free_io_queues: 1012 nvme_rdma_free_io_queues(ctrl); 1013 return ret; 1014 } 1015 1016 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 1017 bool remove) 1018 { 1019 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1020 blk_sync_queue(ctrl->ctrl.admin_q); 1021 nvme_rdma_stop_queue(&ctrl->queues[0]); 1022 if (ctrl->ctrl.admin_tagset) { 1023 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 1024 nvme_cancel_request, &ctrl->ctrl); 1025 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 1026 } 1027 if (remove) 1028 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1029 nvme_rdma_destroy_admin_queue(ctrl, remove); 1030 } 1031 1032 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 1033 bool remove) 1034 { 1035 if (ctrl->ctrl.queue_count > 1) { 1036 nvme_start_freeze(&ctrl->ctrl); 1037 nvme_stop_queues(&ctrl->ctrl); 1038 nvme_sync_io_queues(&ctrl->ctrl); 1039 nvme_rdma_stop_io_queues(ctrl); 1040 if (ctrl->ctrl.tagset) { 1041 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 1042 nvme_cancel_request, &ctrl->ctrl); 1043 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 1044 } 1045 if (remove) 1046 nvme_start_queues(&ctrl->ctrl); 1047 nvme_rdma_destroy_io_queues(ctrl, remove); 1048 } 1049 } 1050 1051 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1052 { 1053 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1054 1055 if (list_empty(&ctrl->list)) 1056 goto free_ctrl; 1057 1058 mutex_lock(&nvme_rdma_ctrl_mutex); 1059 list_del(&ctrl->list); 1060 mutex_unlock(&nvme_rdma_ctrl_mutex); 1061 1062 nvmf_free_options(nctrl->opts); 1063 free_ctrl: 1064 kfree(ctrl->queues); 1065 kfree(ctrl); 1066 } 1067 1068 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1069 { 1070 /* If we are resetting/deleting then do nothing */ 1071 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1072 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1073 ctrl->ctrl.state == NVME_CTRL_LIVE); 1074 return; 1075 } 1076 1077 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1078 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1079 ctrl->ctrl.opts->reconnect_delay); 1080 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1081 ctrl->ctrl.opts->reconnect_delay * HZ); 1082 } else { 1083 nvme_delete_ctrl(&ctrl->ctrl); 1084 } 1085 } 1086 1087 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1088 { 1089 int ret = -EINVAL; 1090 bool changed; 1091 1092 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1093 if (ret) 1094 return ret; 1095 1096 if (ctrl->ctrl.icdoff) { 1097 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1098 goto destroy_admin; 1099 } 1100 1101 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1102 dev_err(ctrl->ctrl.device, 1103 "Mandatory keyed sgls are not supported!\n"); 1104 goto destroy_admin; 1105 } 1106 1107 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1108 dev_warn(ctrl->ctrl.device, 1109 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1110 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1111 } 1112 1113 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1114 dev_warn(ctrl->ctrl.device, 1115 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1116 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1117 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1118 } 1119 1120 if (ctrl->ctrl.sgls & (1 << 20)) 1121 ctrl->use_inline_data = true; 1122 1123 if (ctrl->ctrl.queue_count > 1) { 1124 ret = nvme_rdma_configure_io_queues(ctrl, new); 1125 if (ret) 1126 goto destroy_admin; 1127 } 1128 1129 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1130 if (!changed) { 1131 /* 1132 * state change failure is ok if we started ctrl delete, 1133 * unless we're during creation of a new controller to 1134 * avoid races with teardown flow. 1135 */ 1136 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1137 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1138 WARN_ON_ONCE(new); 1139 ret = -EINVAL; 1140 goto destroy_io; 1141 } 1142 1143 nvme_start_ctrl(&ctrl->ctrl); 1144 return 0; 1145 1146 destroy_io: 1147 if (ctrl->ctrl.queue_count > 1) 1148 nvme_rdma_destroy_io_queues(ctrl, new); 1149 destroy_admin: 1150 nvme_rdma_stop_queue(&ctrl->queues[0]); 1151 nvme_rdma_destroy_admin_queue(ctrl, new); 1152 return ret; 1153 } 1154 1155 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1156 { 1157 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1158 struct nvme_rdma_ctrl, reconnect_work); 1159 1160 ++ctrl->ctrl.nr_reconnects; 1161 1162 if (nvme_rdma_setup_ctrl(ctrl, false)) 1163 goto requeue; 1164 1165 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1166 ctrl->ctrl.nr_reconnects); 1167 1168 ctrl->ctrl.nr_reconnects = 0; 1169 1170 return; 1171 1172 requeue: 1173 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1174 ctrl->ctrl.nr_reconnects); 1175 nvme_rdma_reconnect_or_remove(ctrl); 1176 } 1177 1178 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1179 { 1180 struct nvme_rdma_ctrl *ctrl = container_of(work, 1181 struct nvme_rdma_ctrl, err_work); 1182 1183 nvme_stop_keep_alive(&ctrl->ctrl); 1184 nvme_rdma_teardown_io_queues(ctrl, false); 1185 nvme_start_queues(&ctrl->ctrl); 1186 nvme_rdma_teardown_admin_queue(ctrl, false); 1187 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1188 1189 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1190 /* state change failure is ok if we started ctrl delete */ 1191 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1192 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1193 return; 1194 } 1195 1196 nvme_rdma_reconnect_or_remove(ctrl); 1197 } 1198 1199 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1200 { 1201 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1202 return; 1203 1204 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1205 queue_work(nvme_reset_wq, &ctrl->err_work); 1206 } 1207 1208 static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1209 { 1210 struct request *rq = blk_mq_rq_from_pdu(req); 1211 1212 if (!refcount_dec_and_test(&req->ref)) 1213 return; 1214 if (!nvme_try_complete_req(rq, req->status, req->result)) 1215 nvme_rdma_complete_rq(rq); 1216 } 1217 1218 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1219 const char *op) 1220 { 1221 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1222 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1223 1224 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1225 dev_info(ctrl->ctrl.device, 1226 "%s for CQE 0x%p failed with status %s (%d)\n", 1227 op, wc->wr_cqe, 1228 ib_wc_status_msg(wc->status), wc->status); 1229 nvme_rdma_error_recovery(ctrl); 1230 } 1231 1232 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1233 { 1234 if (unlikely(wc->status != IB_WC_SUCCESS)) 1235 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1236 } 1237 1238 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1239 { 1240 struct nvme_rdma_request *req = 1241 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1242 1243 if (unlikely(wc->status != IB_WC_SUCCESS)) 1244 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1245 else 1246 nvme_rdma_end_request(req); 1247 } 1248 1249 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1250 struct nvme_rdma_request *req) 1251 { 1252 struct ib_send_wr wr = { 1253 .opcode = IB_WR_LOCAL_INV, 1254 .next = NULL, 1255 .num_sge = 0, 1256 .send_flags = IB_SEND_SIGNALED, 1257 .ex.invalidate_rkey = req->mr->rkey, 1258 }; 1259 1260 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1261 wr.wr_cqe = &req->reg_cqe; 1262 1263 return ib_post_send(queue->qp, &wr, NULL); 1264 } 1265 1266 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1267 struct request *rq) 1268 { 1269 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1270 struct nvme_rdma_device *dev = queue->device; 1271 struct ib_device *ibdev = dev->dev; 1272 struct list_head *pool = &queue->qp->rdma_mrs; 1273 1274 if (!blk_rq_nr_phys_segments(rq)) 1275 return; 1276 1277 if (blk_integrity_rq(rq)) { 1278 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1279 req->metadata_sgl->nents, rq_dma_dir(rq)); 1280 sg_free_table_chained(&req->metadata_sgl->sg_table, 1281 NVME_INLINE_METADATA_SG_CNT); 1282 } 1283 1284 if (req->use_sig_mr) 1285 pool = &queue->qp->sig_mrs; 1286 1287 if (req->mr) { 1288 ib_mr_pool_put(queue->qp, pool, req->mr); 1289 req->mr = NULL; 1290 } 1291 1292 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1293 rq_dma_dir(rq)); 1294 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1295 } 1296 1297 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1298 { 1299 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1300 1301 sg->addr = 0; 1302 put_unaligned_le24(0, sg->length); 1303 put_unaligned_le32(0, sg->key); 1304 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1305 return 0; 1306 } 1307 1308 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1309 struct nvme_rdma_request *req, struct nvme_command *c, 1310 int count) 1311 { 1312 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1313 struct scatterlist *sgl = req->data_sgl.sg_table.sgl; 1314 struct ib_sge *sge = &req->sge[1]; 1315 u32 len = 0; 1316 int i; 1317 1318 for (i = 0; i < count; i++, sgl++, sge++) { 1319 sge->addr = sg_dma_address(sgl); 1320 sge->length = sg_dma_len(sgl); 1321 sge->lkey = queue->device->pd->local_dma_lkey; 1322 len += sge->length; 1323 } 1324 1325 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1326 sg->length = cpu_to_le32(len); 1327 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1328 1329 req->num_sge += count; 1330 return 0; 1331 } 1332 1333 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1334 struct nvme_rdma_request *req, struct nvme_command *c) 1335 { 1336 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1337 1338 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1339 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1340 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1341 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1342 return 0; 1343 } 1344 1345 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1346 struct nvme_rdma_request *req, struct nvme_command *c, 1347 int count) 1348 { 1349 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1350 int nr; 1351 1352 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1353 if (WARN_ON_ONCE(!req->mr)) 1354 return -EAGAIN; 1355 1356 /* 1357 * Align the MR to a 4K page size to match the ctrl page size and 1358 * the block virtual boundary. 1359 */ 1360 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1361 SZ_4K); 1362 if (unlikely(nr < count)) { 1363 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1364 req->mr = NULL; 1365 if (nr < 0) 1366 return nr; 1367 return -EINVAL; 1368 } 1369 1370 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1371 1372 req->reg_cqe.done = nvme_rdma_memreg_done; 1373 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1374 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1375 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1376 req->reg_wr.wr.num_sge = 0; 1377 req->reg_wr.mr = req->mr; 1378 req->reg_wr.key = req->mr->rkey; 1379 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1380 IB_ACCESS_REMOTE_READ | 1381 IB_ACCESS_REMOTE_WRITE; 1382 1383 sg->addr = cpu_to_le64(req->mr->iova); 1384 put_unaligned_le24(req->mr->length, sg->length); 1385 put_unaligned_le32(req->mr->rkey, sg->key); 1386 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1387 NVME_SGL_FMT_INVALIDATE; 1388 1389 return 0; 1390 } 1391 1392 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1393 struct nvme_command *cmd, struct ib_sig_domain *domain, 1394 u16 control, u8 pi_type) 1395 { 1396 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1397 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1398 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1399 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1400 if (control & NVME_RW_PRINFO_PRCHK_REF) 1401 domain->sig.dif.ref_remap = true; 1402 1403 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1404 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1405 domain->sig.dif.app_escape = true; 1406 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1407 domain->sig.dif.ref_escape = true; 1408 } 1409 1410 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1411 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1412 u8 pi_type) 1413 { 1414 u16 control = le16_to_cpu(cmd->rw.control); 1415 1416 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1417 if (control & NVME_RW_PRINFO_PRACT) { 1418 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1419 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1420 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1421 pi_type); 1422 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1423 control &= ~NVME_RW_PRINFO_PRACT; 1424 cmd->rw.control = cpu_to_le16(control); 1425 } else { 1426 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1427 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1428 pi_type); 1429 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1430 pi_type); 1431 } 1432 } 1433 1434 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1435 { 1436 *mask = 0; 1437 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1438 *mask |= IB_SIG_CHECK_REFTAG; 1439 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1440 *mask |= IB_SIG_CHECK_GUARD; 1441 } 1442 1443 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1444 { 1445 if (unlikely(wc->status != IB_WC_SUCCESS)) 1446 nvme_rdma_wr_error(cq, wc, "SIG"); 1447 } 1448 1449 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1450 struct nvme_rdma_request *req, struct nvme_command *c, 1451 int count, int pi_count) 1452 { 1453 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1454 struct ib_reg_wr *wr = &req->reg_wr; 1455 struct request *rq = blk_mq_rq_from_pdu(req); 1456 struct nvme_ns *ns = rq->q->queuedata; 1457 struct bio *bio = rq->bio; 1458 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1459 int nr; 1460 1461 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1462 if (WARN_ON_ONCE(!req->mr)) 1463 return -EAGAIN; 1464 1465 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1466 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1467 SZ_4K); 1468 if (unlikely(nr)) 1469 goto mr_put; 1470 1471 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c, 1472 req->mr->sig_attrs, ns->pi_type); 1473 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1474 1475 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1476 1477 req->reg_cqe.done = nvme_rdma_sig_done; 1478 memset(wr, 0, sizeof(*wr)); 1479 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1480 wr->wr.wr_cqe = &req->reg_cqe; 1481 wr->wr.num_sge = 0; 1482 wr->wr.send_flags = 0; 1483 wr->mr = req->mr; 1484 wr->key = req->mr->rkey; 1485 wr->access = IB_ACCESS_LOCAL_WRITE | 1486 IB_ACCESS_REMOTE_READ | 1487 IB_ACCESS_REMOTE_WRITE; 1488 1489 sg->addr = cpu_to_le64(req->mr->iova); 1490 put_unaligned_le24(req->mr->length, sg->length); 1491 put_unaligned_le32(req->mr->rkey, sg->key); 1492 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1493 1494 return 0; 1495 1496 mr_put: 1497 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1498 req->mr = NULL; 1499 if (nr < 0) 1500 return nr; 1501 return -EINVAL; 1502 } 1503 1504 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1505 struct request *rq, struct nvme_command *c) 1506 { 1507 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1508 struct nvme_rdma_device *dev = queue->device; 1509 struct ib_device *ibdev = dev->dev; 1510 int pi_count = 0; 1511 int count, ret; 1512 1513 req->num_sge = 1; 1514 refcount_set(&req->ref, 2); /* send and recv completions */ 1515 1516 c->common.flags |= NVME_CMD_SGL_METABUF; 1517 1518 if (!blk_rq_nr_phys_segments(rq)) 1519 return nvme_rdma_set_sg_null(c); 1520 1521 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1522 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1523 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1524 NVME_INLINE_SG_CNT); 1525 if (ret) 1526 return -ENOMEM; 1527 1528 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1529 req->data_sgl.sg_table.sgl); 1530 1531 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1532 req->data_sgl.nents, rq_dma_dir(rq)); 1533 if (unlikely(count <= 0)) { 1534 ret = -EIO; 1535 goto out_free_table; 1536 } 1537 1538 if (blk_integrity_rq(rq)) { 1539 req->metadata_sgl->sg_table.sgl = 1540 (struct scatterlist *)(req->metadata_sgl + 1); 1541 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1542 blk_rq_count_integrity_sg(rq->q, rq->bio), 1543 req->metadata_sgl->sg_table.sgl, 1544 NVME_INLINE_METADATA_SG_CNT); 1545 if (unlikely(ret)) { 1546 ret = -ENOMEM; 1547 goto out_unmap_sg; 1548 } 1549 1550 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1551 rq->bio, req->metadata_sgl->sg_table.sgl); 1552 pi_count = ib_dma_map_sg(ibdev, 1553 req->metadata_sgl->sg_table.sgl, 1554 req->metadata_sgl->nents, 1555 rq_dma_dir(rq)); 1556 if (unlikely(pi_count <= 0)) { 1557 ret = -EIO; 1558 goto out_free_pi_table; 1559 } 1560 } 1561 1562 if (req->use_sig_mr) { 1563 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1564 goto out; 1565 } 1566 1567 if (count <= dev->num_inline_segments) { 1568 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1569 queue->ctrl->use_inline_data && 1570 blk_rq_payload_bytes(rq) <= 1571 nvme_rdma_inline_data_size(queue)) { 1572 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1573 goto out; 1574 } 1575 1576 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1577 ret = nvme_rdma_map_sg_single(queue, req, c); 1578 goto out; 1579 } 1580 } 1581 1582 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1583 out: 1584 if (unlikely(ret)) 1585 goto out_unmap_pi_sg; 1586 1587 return 0; 1588 1589 out_unmap_pi_sg: 1590 if (blk_integrity_rq(rq)) 1591 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1592 req->metadata_sgl->nents, rq_dma_dir(rq)); 1593 out_free_pi_table: 1594 if (blk_integrity_rq(rq)) 1595 sg_free_table_chained(&req->metadata_sgl->sg_table, 1596 NVME_INLINE_METADATA_SG_CNT); 1597 out_unmap_sg: 1598 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1599 rq_dma_dir(rq)); 1600 out_free_table: 1601 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1602 return ret; 1603 } 1604 1605 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1606 { 1607 struct nvme_rdma_qe *qe = 1608 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1609 struct nvme_rdma_request *req = 1610 container_of(qe, struct nvme_rdma_request, sqe); 1611 1612 if (unlikely(wc->status != IB_WC_SUCCESS)) 1613 nvme_rdma_wr_error(cq, wc, "SEND"); 1614 else 1615 nvme_rdma_end_request(req); 1616 } 1617 1618 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1619 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1620 struct ib_send_wr *first) 1621 { 1622 struct ib_send_wr wr; 1623 int ret; 1624 1625 sge->addr = qe->dma; 1626 sge->length = sizeof(struct nvme_command); 1627 sge->lkey = queue->device->pd->local_dma_lkey; 1628 1629 wr.next = NULL; 1630 wr.wr_cqe = &qe->cqe; 1631 wr.sg_list = sge; 1632 wr.num_sge = num_sge; 1633 wr.opcode = IB_WR_SEND; 1634 wr.send_flags = IB_SEND_SIGNALED; 1635 1636 if (first) 1637 first->next = ≀ 1638 else 1639 first = ≀ 1640 1641 ret = ib_post_send(queue->qp, first, NULL); 1642 if (unlikely(ret)) { 1643 dev_err(queue->ctrl->ctrl.device, 1644 "%s failed with error code %d\n", __func__, ret); 1645 } 1646 return ret; 1647 } 1648 1649 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1650 struct nvme_rdma_qe *qe) 1651 { 1652 struct ib_recv_wr wr; 1653 struct ib_sge list; 1654 int ret; 1655 1656 list.addr = qe->dma; 1657 list.length = sizeof(struct nvme_completion); 1658 list.lkey = queue->device->pd->local_dma_lkey; 1659 1660 qe->cqe.done = nvme_rdma_recv_done; 1661 1662 wr.next = NULL; 1663 wr.wr_cqe = &qe->cqe; 1664 wr.sg_list = &list; 1665 wr.num_sge = 1; 1666 1667 ret = ib_post_recv(queue->qp, &wr, NULL); 1668 if (unlikely(ret)) { 1669 dev_err(queue->ctrl->ctrl.device, 1670 "%s failed with error code %d\n", __func__, ret); 1671 } 1672 return ret; 1673 } 1674 1675 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1676 { 1677 u32 queue_idx = nvme_rdma_queue_idx(queue); 1678 1679 if (queue_idx == 0) 1680 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1681 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1682 } 1683 1684 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1685 { 1686 if (unlikely(wc->status != IB_WC_SUCCESS)) 1687 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1688 } 1689 1690 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1691 { 1692 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1693 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1694 struct ib_device *dev = queue->device->dev; 1695 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1696 struct nvme_command *cmd = sqe->data; 1697 struct ib_sge sge; 1698 int ret; 1699 1700 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1701 1702 memset(cmd, 0, sizeof(*cmd)); 1703 cmd->common.opcode = nvme_admin_async_event; 1704 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1705 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1706 nvme_rdma_set_sg_null(cmd); 1707 1708 sqe->cqe.done = nvme_rdma_async_done; 1709 1710 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1711 DMA_TO_DEVICE); 1712 1713 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1714 WARN_ON_ONCE(ret); 1715 } 1716 1717 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1718 struct nvme_completion *cqe, struct ib_wc *wc) 1719 { 1720 struct request *rq; 1721 struct nvme_rdma_request *req; 1722 1723 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1724 if (!rq) { 1725 dev_err(queue->ctrl->ctrl.device, 1726 "tag 0x%x on QP %#x not found\n", 1727 cqe->command_id, queue->qp->qp_num); 1728 nvme_rdma_error_recovery(queue->ctrl); 1729 return; 1730 } 1731 req = blk_mq_rq_to_pdu(rq); 1732 1733 req->status = cqe->status; 1734 req->result = cqe->result; 1735 1736 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1737 if (unlikely(!req->mr || 1738 wc->ex.invalidate_rkey != req->mr->rkey)) { 1739 dev_err(queue->ctrl->ctrl.device, 1740 "Bogus remote invalidation for rkey %#x\n", 1741 req->mr ? req->mr->rkey : 0); 1742 nvme_rdma_error_recovery(queue->ctrl); 1743 } 1744 } else if (req->mr) { 1745 int ret; 1746 1747 ret = nvme_rdma_inv_rkey(queue, req); 1748 if (unlikely(ret < 0)) { 1749 dev_err(queue->ctrl->ctrl.device, 1750 "Queueing INV WR for rkey %#x failed (%d)\n", 1751 req->mr->rkey, ret); 1752 nvme_rdma_error_recovery(queue->ctrl); 1753 } 1754 /* the local invalidation completion will end the request */ 1755 return; 1756 } 1757 1758 nvme_rdma_end_request(req); 1759 } 1760 1761 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1762 { 1763 struct nvme_rdma_qe *qe = 1764 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1765 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1766 struct ib_device *ibdev = queue->device->dev; 1767 struct nvme_completion *cqe = qe->data; 1768 const size_t len = sizeof(struct nvme_completion); 1769 1770 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1771 nvme_rdma_wr_error(cq, wc, "RECV"); 1772 return; 1773 } 1774 1775 /* sanity checking for received data length */ 1776 if (unlikely(wc->byte_len < len)) { 1777 dev_err(queue->ctrl->ctrl.device, 1778 "Unexpected nvme completion length(%d)\n", wc->byte_len); 1779 nvme_rdma_error_recovery(queue->ctrl); 1780 return; 1781 } 1782 1783 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1784 /* 1785 * AEN requests are special as they don't time out and can 1786 * survive any kind of queue freeze and often don't respond to 1787 * aborts. We don't even bother to allocate a struct request 1788 * for them but rather special case them here. 1789 */ 1790 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1791 cqe->command_id))) 1792 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1793 &cqe->result); 1794 else 1795 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1796 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1797 1798 nvme_rdma_post_recv(queue, qe); 1799 } 1800 1801 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1802 { 1803 int ret, i; 1804 1805 for (i = 0; i < queue->queue_size; i++) { 1806 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1807 if (ret) 1808 goto out_destroy_queue_ib; 1809 } 1810 1811 return 0; 1812 1813 out_destroy_queue_ib: 1814 nvme_rdma_destroy_queue_ib(queue); 1815 return ret; 1816 } 1817 1818 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1819 struct rdma_cm_event *ev) 1820 { 1821 struct rdma_cm_id *cm_id = queue->cm_id; 1822 int status = ev->status; 1823 const char *rej_msg; 1824 const struct nvme_rdma_cm_rej *rej_data; 1825 u8 rej_data_len; 1826 1827 rej_msg = rdma_reject_msg(cm_id, status); 1828 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1829 1830 if (rej_data && rej_data_len >= sizeof(u16)) { 1831 u16 sts = le16_to_cpu(rej_data->sts); 1832 1833 dev_err(queue->ctrl->ctrl.device, 1834 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1835 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1836 } else { 1837 dev_err(queue->ctrl->ctrl.device, 1838 "Connect rejected: status %d (%s).\n", status, rej_msg); 1839 } 1840 1841 return -ECONNRESET; 1842 } 1843 1844 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1845 { 1846 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1847 int ret; 1848 1849 ret = nvme_rdma_create_queue_ib(queue); 1850 if (ret) 1851 return ret; 1852 1853 if (ctrl->opts->tos >= 0) 1854 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1855 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1856 if (ret) { 1857 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1858 queue->cm_error); 1859 goto out_destroy_queue; 1860 } 1861 1862 return 0; 1863 1864 out_destroy_queue: 1865 nvme_rdma_destroy_queue_ib(queue); 1866 return ret; 1867 } 1868 1869 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1870 { 1871 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1872 struct rdma_conn_param param = { }; 1873 struct nvme_rdma_cm_req priv = { }; 1874 int ret; 1875 1876 param.qp_num = queue->qp->qp_num; 1877 param.flow_control = 1; 1878 1879 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1880 /* maximum retry count */ 1881 param.retry_count = 7; 1882 param.rnr_retry_count = 7; 1883 param.private_data = &priv; 1884 param.private_data_len = sizeof(priv); 1885 1886 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1887 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1888 /* 1889 * set the admin queue depth to the minimum size 1890 * specified by the Fabrics standard. 1891 */ 1892 if (priv.qid == 0) { 1893 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1894 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1895 } else { 1896 /* 1897 * current interpretation of the fabrics spec 1898 * is at minimum you make hrqsize sqsize+1, or a 1899 * 1's based representation of sqsize. 1900 */ 1901 priv.hrqsize = cpu_to_le16(queue->queue_size); 1902 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1903 } 1904 1905 ret = rdma_connect_locked(queue->cm_id, ¶m); 1906 if (ret) { 1907 dev_err(ctrl->ctrl.device, 1908 "rdma_connect_locked failed (%d).\n", ret); 1909 goto out_destroy_queue_ib; 1910 } 1911 1912 return 0; 1913 1914 out_destroy_queue_ib: 1915 nvme_rdma_destroy_queue_ib(queue); 1916 return ret; 1917 } 1918 1919 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1920 struct rdma_cm_event *ev) 1921 { 1922 struct nvme_rdma_queue *queue = cm_id->context; 1923 int cm_error = 0; 1924 1925 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1926 rdma_event_msg(ev->event), ev->event, 1927 ev->status, cm_id); 1928 1929 switch (ev->event) { 1930 case RDMA_CM_EVENT_ADDR_RESOLVED: 1931 cm_error = nvme_rdma_addr_resolved(queue); 1932 break; 1933 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1934 cm_error = nvme_rdma_route_resolved(queue); 1935 break; 1936 case RDMA_CM_EVENT_ESTABLISHED: 1937 queue->cm_error = nvme_rdma_conn_established(queue); 1938 /* complete cm_done regardless of success/failure */ 1939 complete(&queue->cm_done); 1940 return 0; 1941 case RDMA_CM_EVENT_REJECTED: 1942 cm_error = nvme_rdma_conn_rejected(queue, ev); 1943 break; 1944 case RDMA_CM_EVENT_ROUTE_ERROR: 1945 case RDMA_CM_EVENT_CONNECT_ERROR: 1946 case RDMA_CM_EVENT_UNREACHABLE: 1947 nvme_rdma_destroy_queue_ib(queue); 1948 fallthrough; 1949 case RDMA_CM_EVENT_ADDR_ERROR: 1950 dev_dbg(queue->ctrl->ctrl.device, 1951 "CM error event %d\n", ev->event); 1952 cm_error = -ECONNRESET; 1953 break; 1954 case RDMA_CM_EVENT_DISCONNECTED: 1955 case RDMA_CM_EVENT_ADDR_CHANGE: 1956 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1957 dev_dbg(queue->ctrl->ctrl.device, 1958 "disconnect received - connection closed\n"); 1959 nvme_rdma_error_recovery(queue->ctrl); 1960 break; 1961 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1962 /* device removal is handled via the ib_client API */ 1963 break; 1964 default: 1965 dev_err(queue->ctrl->ctrl.device, 1966 "Unexpected RDMA CM event (%d)\n", ev->event); 1967 nvme_rdma_error_recovery(queue->ctrl); 1968 break; 1969 } 1970 1971 if (cm_error) { 1972 queue->cm_error = cm_error; 1973 complete(&queue->cm_done); 1974 } 1975 1976 return 0; 1977 } 1978 1979 static void nvme_rdma_complete_timed_out(struct request *rq) 1980 { 1981 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1982 struct nvme_rdma_queue *queue = req->queue; 1983 1984 nvme_rdma_stop_queue(queue); 1985 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 1986 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 1987 blk_mq_complete_request(rq); 1988 } 1989 } 1990 1991 static enum blk_eh_timer_return 1992 nvme_rdma_timeout(struct request *rq, bool reserved) 1993 { 1994 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1995 struct nvme_rdma_queue *queue = req->queue; 1996 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1997 1998 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1999 rq->tag, nvme_rdma_queue_idx(queue)); 2000 2001 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2002 /* 2003 * If we are resetting, connecting or deleting we should 2004 * complete immediately because we may block controller 2005 * teardown or setup sequence 2006 * - ctrl disable/shutdown fabrics requests 2007 * - connect requests 2008 * - initialization admin requests 2009 * - I/O requests that entered after unquiescing and 2010 * the controller stopped responding 2011 * 2012 * All other requests should be cancelled by the error 2013 * recovery work, so it's fine that we fail it here. 2014 */ 2015 nvme_rdma_complete_timed_out(rq); 2016 return BLK_EH_DONE; 2017 } 2018 2019 /* 2020 * LIVE state should trigger the normal error recovery which will 2021 * handle completing this request. 2022 */ 2023 nvme_rdma_error_recovery(ctrl); 2024 return BLK_EH_RESET_TIMER; 2025 } 2026 2027 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 2028 const struct blk_mq_queue_data *bd) 2029 { 2030 struct nvme_ns *ns = hctx->queue->queuedata; 2031 struct nvme_rdma_queue *queue = hctx->driver_data; 2032 struct request *rq = bd->rq; 2033 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2034 struct nvme_rdma_qe *sqe = &req->sqe; 2035 struct nvme_command *c = sqe->data; 2036 struct ib_device *dev; 2037 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 2038 blk_status_t ret; 2039 int err; 2040 2041 WARN_ON_ONCE(rq->tag < 0); 2042 2043 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2044 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2045 2046 dev = queue->device->dev; 2047 2048 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2049 sizeof(struct nvme_command), 2050 DMA_TO_DEVICE); 2051 err = ib_dma_mapping_error(dev, req->sqe.dma); 2052 if (unlikely(err)) 2053 return BLK_STS_RESOURCE; 2054 2055 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2056 sizeof(struct nvme_command), DMA_TO_DEVICE); 2057 2058 ret = nvme_setup_cmd(ns, rq, c); 2059 if (ret) 2060 goto unmap_qe; 2061 2062 blk_mq_start_request(rq); 2063 2064 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2065 queue->pi_support && 2066 (c->common.opcode == nvme_cmd_write || 2067 c->common.opcode == nvme_cmd_read) && 2068 nvme_ns_has_pi(ns)) 2069 req->use_sig_mr = true; 2070 else 2071 req->use_sig_mr = false; 2072 2073 err = nvme_rdma_map_data(queue, rq, c); 2074 if (unlikely(err < 0)) { 2075 dev_err(queue->ctrl->ctrl.device, 2076 "Failed to map data (%d)\n", err); 2077 goto err; 2078 } 2079 2080 sqe->cqe.done = nvme_rdma_send_done; 2081 2082 ib_dma_sync_single_for_device(dev, sqe->dma, 2083 sizeof(struct nvme_command), DMA_TO_DEVICE); 2084 2085 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2086 req->mr ? &req->reg_wr.wr : NULL); 2087 if (unlikely(err)) 2088 goto err_unmap; 2089 2090 return BLK_STS_OK; 2091 2092 err_unmap: 2093 nvme_rdma_unmap_data(queue, rq); 2094 err: 2095 if (err == -ENOMEM || err == -EAGAIN) 2096 ret = BLK_STS_RESOURCE; 2097 else 2098 ret = BLK_STS_IOERR; 2099 nvme_cleanup_cmd(rq); 2100 unmap_qe: 2101 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2102 DMA_TO_DEVICE); 2103 return ret; 2104 } 2105 2106 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 2107 { 2108 struct nvme_rdma_queue *queue = hctx->driver_data; 2109 2110 return ib_process_cq_direct(queue->ib_cq, -1); 2111 } 2112 2113 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2114 { 2115 struct request *rq = blk_mq_rq_from_pdu(req); 2116 struct ib_mr_status mr_status; 2117 int ret; 2118 2119 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2120 if (ret) { 2121 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2122 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2123 return; 2124 } 2125 2126 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2127 switch (mr_status.sig_err.err_type) { 2128 case IB_SIG_BAD_GUARD: 2129 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2130 break; 2131 case IB_SIG_BAD_REFTAG: 2132 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2133 break; 2134 case IB_SIG_BAD_APPTAG: 2135 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2136 break; 2137 } 2138 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2139 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2140 mr_status.sig_err.actual); 2141 } 2142 } 2143 2144 static void nvme_rdma_complete_rq(struct request *rq) 2145 { 2146 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2147 struct nvme_rdma_queue *queue = req->queue; 2148 struct ib_device *ibdev = queue->device->dev; 2149 2150 if (req->use_sig_mr) 2151 nvme_rdma_check_pi_status(req); 2152 2153 nvme_rdma_unmap_data(queue, rq); 2154 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2155 DMA_TO_DEVICE); 2156 nvme_complete_rq(rq); 2157 } 2158 2159 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2160 { 2161 struct nvme_rdma_ctrl *ctrl = set->driver_data; 2162 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2163 2164 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2165 /* separate read/write queues */ 2166 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2167 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2168 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2169 set->map[HCTX_TYPE_READ].nr_queues = 2170 ctrl->io_queues[HCTX_TYPE_READ]; 2171 set->map[HCTX_TYPE_READ].queue_offset = 2172 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2173 } else { 2174 /* shared read/write queues */ 2175 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2176 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2177 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2178 set->map[HCTX_TYPE_READ].nr_queues = 2179 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2180 set->map[HCTX_TYPE_READ].queue_offset = 0; 2181 } 2182 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 2183 ctrl->device->dev, 0); 2184 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 2185 ctrl->device->dev, 0); 2186 2187 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2188 /* map dedicated poll queues only if we have queues left */ 2189 set->map[HCTX_TYPE_POLL].nr_queues = 2190 ctrl->io_queues[HCTX_TYPE_POLL]; 2191 set->map[HCTX_TYPE_POLL].queue_offset = 2192 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2193 ctrl->io_queues[HCTX_TYPE_READ]; 2194 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2195 } 2196 2197 dev_info(ctrl->ctrl.device, 2198 "mapped %d/%d/%d default/read/poll queues.\n", 2199 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2200 ctrl->io_queues[HCTX_TYPE_READ], 2201 ctrl->io_queues[HCTX_TYPE_POLL]); 2202 2203 return 0; 2204 } 2205 2206 static const struct blk_mq_ops nvme_rdma_mq_ops = { 2207 .queue_rq = nvme_rdma_queue_rq, 2208 .complete = nvme_rdma_complete_rq, 2209 .init_request = nvme_rdma_init_request, 2210 .exit_request = nvme_rdma_exit_request, 2211 .init_hctx = nvme_rdma_init_hctx, 2212 .timeout = nvme_rdma_timeout, 2213 .map_queues = nvme_rdma_map_queues, 2214 .poll = nvme_rdma_poll, 2215 }; 2216 2217 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2218 .queue_rq = nvme_rdma_queue_rq, 2219 .complete = nvme_rdma_complete_rq, 2220 .init_request = nvme_rdma_init_request, 2221 .exit_request = nvme_rdma_exit_request, 2222 .init_hctx = nvme_rdma_init_admin_hctx, 2223 .timeout = nvme_rdma_timeout, 2224 }; 2225 2226 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2227 { 2228 cancel_work_sync(&ctrl->err_work); 2229 cancel_delayed_work_sync(&ctrl->reconnect_work); 2230 2231 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2232 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2233 if (shutdown) 2234 nvme_shutdown_ctrl(&ctrl->ctrl); 2235 else 2236 nvme_disable_ctrl(&ctrl->ctrl); 2237 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2238 } 2239 2240 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2241 { 2242 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2243 } 2244 2245 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2246 { 2247 struct nvme_rdma_ctrl *ctrl = 2248 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2249 2250 nvme_stop_ctrl(&ctrl->ctrl); 2251 nvme_rdma_shutdown_ctrl(ctrl, false); 2252 2253 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2254 /* state change failure should never happen */ 2255 WARN_ON_ONCE(1); 2256 return; 2257 } 2258 2259 if (nvme_rdma_setup_ctrl(ctrl, false)) 2260 goto out_fail; 2261 2262 return; 2263 2264 out_fail: 2265 ++ctrl->ctrl.nr_reconnects; 2266 nvme_rdma_reconnect_or_remove(ctrl); 2267 } 2268 2269 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2270 .name = "rdma", 2271 .module = THIS_MODULE, 2272 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2273 .reg_read32 = nvmf_reg_read32, 2274 .reg_read64 = nvmf_reg_read64, 2275 .reg_write32 = nvmf_reg_write32, 2276 .free_ctrl = nvme_rdma_free_ctrl, 2277 .submit_async_event = nvme_rdma_submit_async_event, 2278 .delete_ctrl = nvme_rdma_delete_ctrl, 2279 .get_address = nvmf_get_address, 2280 }; 2281 2282 /* 2283 * Fails a connection request if it matches an existing controller 2284 * (association) with the same tuple: 2285 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2286 * 2287 * if local address is not specified in the request, it will match an 2288 * existing controller with all the other parameters the same and no 2289 * local port address specified as well. 2290 * 2291 * The ports don't need to be compared as they are intrinsically 2292 * already matched by the port pointers supplied. 2293 */ 2294 static bool 2295 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2296 { 2297 struct nvme_rdma_ctrl *ctrl; 2298 bool found = false; 2299 2300 mutex_lock(&nvme_rdma_ctrl_mutex); 2301 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2302 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2303 if (found) 2304 break; 2305 } 2306 mutex_unlock(&nvme_rdma_ctrl_mutex); 2307 2308 return found; 2309 } 2310 2311 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2312 struct nvmf_ctrl_options *opts) 2313 { 2314 struct nvme_rdma_ctrl *ctrl; 2315 int ret; 2316 bool changed; 2317 2318 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2319 if (!ctrl) 2320 return ERR_PTR(-ENOMEM); 2321 ctrl->ctrl.opts = opts; 2322 INIT_LIST_HEAD(&ctrl->list); 2323 2324 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2325 opts->trsvcid = 2326 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2327 if (!opts->trsvcid) { 2328 ret = -ENOMEM; 2329 goto out_free_ctrl; 2330 } 2331 opts->mask |= NVMF_OPT_TRSVCID; 2332 } 2333 2334 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2335 opts->traddr, opts->trsvcid, &ctrl->addr); 2336 if (ret) { 2337 pr_err("malformed address passed: %s:%s\n", 2338 opts->traddr, opts->trsvcid); 2339 goto out_free_ctrl; 2340 } 2341 2342 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2343 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2344 opts->host_traddr, NULL, &ctrl->src_addr); 2345 if (ret) { 2346 pr_err("malformed src address passed: %s\n", 2347 opts->host_traddr); 2348 goto out_free_ctrl; 2349 } 2350 } 2351 2352 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2353 ret = -EALREADY; 2354 goto out_free_ctrl; 2355 } 2356 2357 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2358 nvme_rdma_reconnect_ctrl_work); 2359 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2360 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2361 2362 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2363 opts->nr_poll_queues + 1; 2364 ctrl->ctrl.sqsize = opts->queue_size - 1; 2365 ctrl->ctrl.kato = opts->kato; 2366 2367 ret = -ENOMEM; 2368 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2369 GFP_KERNEL); 2370 if (!ctrl->queues) 2371 goto out_free_ctrl; 2372 2373 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2374 0 /* no quirks, we're perfect! */); 2375 if (ret) 2376 goto out_kfree_queues; 2377 2378 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2379 WARN_ON_ONCE(!changed); 2380 2381 ret = nvme_rdma_setup_ctrl(ctrl, true); 2382 if (ret) 2383 goto out_uninit_ctrl; 2384 2385 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2386 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2387 2388 mutex_lock(&nvme_rdma_ctrl_mutex); 2389 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2390 mutex_unlock(&nvme_rdma_ctrl_mutex); 2391 2392 return &ctrl->ctrl; 2393 2394 out_uninit_ctrl: 2395 nvme_uninit_ctrl(&ctrl->ctrl); 2396 nvme_put_ctrl(&ctrl->ctrl); 2397 if (ret > 0) 2398 ret = -EIO; 2399 return ERR_PTR(ret); 2400 out_kfree_queues: 2401 kfree(ctrl->queues); 2402 out_free_ctrl: 2403 kfree(ctrl); 2404 return ERR_PTR(ret); 2405 } 2406 2407 static struct nvmf_transport_ops nvme_rdma_transport = { 2408 .name = "rdma", 2409 .module = THIS_MODULE, 2410 .required_opts = NVMF_OPT_TRADDR, 2411 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2412 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2413 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2414 NVMF_OPT_TOS, 2415 .create_ctrl = nvme_rdma_create_ctrl, 2416 }; 2417 2418 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2419 { 2420 struct nvme_rdma_ctrl *ctrl; 2421 struct nvme_rdma_device *ndev; 2422 bool found = false; 2423 2424 mutex_lock(&device_list_mutex); 2425 list_for_each_entry(ndev, &device_list, entry) { 2426 if (ndev->dev == ib_device) { 2427 found = true; 2428 break; 2429 } 2430 } 2431 mutex_unlock(&device_list_mutex); 2432 2433 if (!found) 2434 return; 2435 2436 /* Delete all controllers using this device */ 2437 mutex_lock(&nvme_rdma_ctrl_mutex); 2438 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2439 if (ctrl->device->dev != ib_device) 2440 continue; 2441 nvme_delete_ctrl(&ctrl->ctrl); 2442 } 2443 mutex_unlock(&nvme_rdma_ctrl_mutex); 2444 2445 flush_workqueue(nvme_delete_wq); 2446 } 2447 2448 static struct ib_client nvme_rdma_ib_client = { 2449 .name = "nvme_rdma", 2450 .remove = nvme_rdma_remove_one 2451 }; 2452 2453 static int __init nvme_rdma_init_module(void) 2454 { 2455 int ret; 2456 2457 ret = ib_register_client(&nvme_rdma_ib_client); 2458 if (ret) 2459 return ret; 2460 2461 ret = nvmf_register_transport(&nvme_rdma_transport); 2462 if (ret) 2463 goto err_unreg_client; 2464 2465 return 0; 2466 2467 err_unreg_client: 2468 ib_unregister_client(&nvme_rdma_ib_client); 2469 return ret; 2470 } 2471 2472 static void __exit nvme_rdma_cleanup_module(void) 2473 { 2474 struct nvme_rdma_ctrl *ctrl; 2475 2476 nvmf_unregister_transport(&nvme_rdma_transport); 2477 ib_unregister_client(&nvme_rdma_ib_client); 2478 2479 mutex_lock(&nvme_rdma_ctrl_mutex); 2480 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2481 nvme_delete_ctrl(&ctrl->ctrl); 2482 mutex_unlock(&nvme_rdma_ctrl_mutex); 2483 flush_workqueue(nvme_delete_wq); 2484 } 2485 2486 module_init(nvme_rdma_init_module); 2487 module_exit(nvme_rdma_cleanup_module); 2488 2489 MODULE_LICENSE("GPL v2"); 2490