1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 }; 51 52 struct nvme_rdma_qe { 53 struct ib_cqe cqe; 54 void *data; 55 u64 dma; 56 }; 57 58 struct nvme_rdma_queue; 59 struct nvme_rdma_request { 60 struct nvme_request req; 61 struct ib_mr *mr; 62 struct nvme_rdma_qe sqe; 63 union nvme_result result; 64 __le16 status; 65 refcount_t ref; 66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 67 u32 num_sge; 68 int nents; 69 struct ib_reg_wr reg_wr; 70 struct ib_cqe reg_cqe; 71 struct nvme_rdma_queue *queue; 72 struct sg_table sg_table; 73 struct scatterlist first_sgl[]; 74 }; 75 76 enum nvme_rdma_queue_flags { 77 NVME_RDMA_Q_ALLOCATED = 0, 78 NVME_RDMA_Q_LIVE = 1, 79 NVME_RDMA_Q_TR_READY = 2, 80 }; 81 82 struct nvme_rdma_queue { 83 struct nvme_rdma_qe *rsp_ring; 84 int queue_size; 85 size_t cmnd_capsule_len; 86 struct nvme_rdma_ctrl *ctrl; 87 struct nvme_rdma_device *device; 88 struct ib_cq *ib_cq; 89 struct ib_qp *qp; 90 91 unsigned long flags; 92 struct rdma_cm_id *cm_id; 93 int cm_error; 94 struct completion cm_done; 95 }; 96 97 struct nvme_rdma_ctrl { 98 /* read only in the hot path */ 99 struct nvme_rdma_queue *queues; 100 101 /* other member variables */ 102 struct blk_mq_tag_set tag_set; 103 struct work_struct err_work; 104 105 struct nvme_rdma_qe async_event_sqe; 106 107 struct delayed_work reconnect_work; 108 109 struct list_head list; 110 111 struct blk_mq_tag_set admin_tag_set; 112 struct nvme_rdma_device *device; 113 114 u32 max_fr_pages; 115 116 struct sockaddr_storage addr; 117 struct sockaddr_storage src_addr; 118 119 struct nvme_ctrl ctrl; 120 }; 121 122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 123 { 124 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 125 } 126 127 static LIST_HEAD(device_list); 128 static DEFINE_MUTEX(device_list_mutex); 129 130 static LIST_HEAD(nvme_rdma_ctrl_list); 131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 132 133 /* 134 * Disabling this option makes small I/O goes faster, but is fundamentally 135 * unsafe. With it turned off we will have to register a global rkey that 136 * allows read and write access to all physical memory. 137 */ 138 static bool register_always = true; 139 module_param(register_always, bool, 0444); 140 MODULE_PARM_DESC(register_always, 141 "Use memory registration even for contiguous memory regions"); 142 143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 144 struct rdma_cm_event *event); 145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 146 147 static const struct blk_mq_ops nvme_rdma_mq_ops; 148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 149 150 /* XXX: really should move to a generic header sooner or later.. */ 151 static inline void put_unaligned_le24(u32 val, u8 *p) 152 { 153 *p++ = val; 154 *p++ = val >> 8; 155 *p++ = val >> 16; 156 } 157 158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 159 { 160 return queue - queue->ctrl->queues; 161 } 162 163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 164 { 165 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 166 } 167 168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 169 size_t capsule_size, enum dma_data_direction dir) 170 { 171 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 172 kfree(qe->data); 173 } 174 175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 176 size_t capsule_size, enum dma_data_direction dir) 177 { 178 qe->data = kzalloc(capsule_size, GFP_KERNEL); 179 if (!qe->data) 180 return -ENOMEM; 181 182 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 183 if (ib_dma_mapping_error(ibdev, qe->dma)) { 184 kfree(qe->data); 185 return -ENOMEM; 186 } 187 188 return 0; 189 } 190 191 static void nvme_rdma_free_ring(struct ib_device *ibdev, 192 struct nvme_rdma_qe *ring, size_t ib_queue_size, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 int i; 196 197 for (i = 0; i < ib_queue_size; i++) 198 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 199 kfree(ring); 200 } 201 202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 203 size_t ib_queue_size, size_t capsule_size, 204 enum dma_data_direction dir) 205 { 206 struct nvme_rdma_qe *ring; 207 int i; 208 209 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 210 if (!ring) 211 return NULL; 212 213 for (i = 0; i < ib_queue_size; i++) { 214 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 215 goto out_free_ring; 216 } 217 218 return ring; 219 220 out_free_ring: 221 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 222 return NULL; 223 } 224 225 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 226 { 227 pr_debug("QP event %s (%d)\n", 228 ib_event_msg(event->event), event->event); 229 230 } 231 232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 233 { 234 wait_for_completion_interruptible_timeout(&queue->cm_done, 235 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 236 return queue->cm_error; 237 } 238 239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 240 { 241 struct nvme_rdma_device *dev = queue->device; 242 struct ib_qp_init_attr init_attr; 243 int ret; 244 245 memset(&init_attr, 0, sizeof(init_attr)); 246 init_attr.event_handler = nvme_rdma_qp_event; 247 /* +1 for drain */ 248 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 249 /* +1 for drain */ 250 init_attr.cap.max_recv_wr = queue->queue_size + 1; 251 init_attr.cap.max_recv_sge = 1; 252 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 253 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 254 init_attr.qp_type = IB_QPT_RC; 255 init_attr.send_cq = queue->ib_cq; 256 init_attr.recv_cq = queue->ib_cq; 257 258 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 259 260 queue->qp = queue->cm_id->qp; 261 return ret; 262 } 263 264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 265 struct request *rq, unsigned int hctx_idx) 266 { 267 struct nvme_rdma_ctrl *ctrl = set->driver_data; 268 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 269 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 270 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 271 struct nvme_rdma_device *dev = queue->device; 272 273 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 274 DMA_TO_DEVICE); 275 } 276 277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 278 struct request *rq, unsigned int hctx_idx, 279 unsigned int numa_node) 280 { 281 struct nvme_rdma_ctrl *ctrl = set->driver_data; 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 284 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 285 struct nvme_rdma_device *dev = queue->device; 286 struct ib_device *ibdev = dev->dev; 287 int ret; 288 289 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 290 DMA_TO_DEVICE); 291 if (ret) 292 return ret; 293 294 req->queue = queue; 295 296 return 0; 297 } 298 299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 300 unsigned int hctx_idx) 301 { 302 struct nvme_rdma_ctrl *ctrl = data; 303 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 304 305 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 306 307 hctx->driver_data = queue; 308 return 0; 309 } 310 311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 312 unsigned int hctx_idx) 313 { 314 struct nvme_rdma_ctrl *ctrl = data; 315 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 316 317 BUG_ON(hctx_idx != 0); 318 319 hctx->driver_data = queue; 320 return 0; 321 } 322 323 static void nvme_rdma_free_dev(struct kref *ref) 324 { 325 struct nvme_rdma_device *ndev = 326 container_of(ref, struct nvme_rdma_device, ref); 327 328 mutex_lock(&device_list_mutex); 329 list_del(&ndev->entry); 330 mutex_unlock(&device_list_mutex); 331 332 ib_dealloc_pd(ndev->pd); 333 kfree(ndev); 334 } 335 336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 337 { 338 kref_put(&dev->ref, nvme_rdma_free_dev); 339 } 340 341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 342 { 343 return kref_get_unless_zero(&dev->ref); 344 } 345 346 static struct nvme_rdma_device * 347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 348 { 349 struct nvme_rdma_device *ndev; 350 351 mutex_lock(&device_list_mutex); 352 list_for_each_entry(ndev, &device_list, entry) { 353 if (ndev->dev->node_guid == cm_id->device->node_guid && 354 nvme_rdma_dev_get(ndev)) 355 goto out_unlock; 356 } 357 358 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 359 if (!ndev) 360 goto out_err; 361 362 ndev->dev = cm_id->device; 363 kref_init(&ndev->ref); 364 365 ndev->pd = ib_alloc_pd(ndev->dev, 366 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 367 if (IS_ERR(ndev->pd)) 368 goto out_free_dev; 369 370 if (!(ndev->dev->attrs.device_cap_flags & 371 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 372 dev_err(&ndev->dev->dev, 373 "Memory registrations not supported.\n"); 374 goto out_free_pd; 375 } 376 377 list_add(&ndev->entry, &device_list); 378 out_unlock: 379 mutex_unlock(&device_list_mutex); 380 return ndev; 381 382 out_free_pd: 383 ib_dealloc_pd(ndev->pd); 384 out_free_dev: 385 kfree(ndev); 386 out_err: 387 mutex_unlock(&device_list_mutex); 388 return NULL; 389 } 390 391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 392 { 393 struct nvme_rdma_device *dev; 394 struct ib_device *ibdev; 395 396 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 397 return; 398 399 dev = queue->device; 400 ibdev = dev->dev; 401 402 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 403 404 /* 405 * The cm_id object might have been destroyed during RDMA connection 406 * establishment error flow to avoid getting other cma events, thus 407 * the destruction of the QP shouldn't use rdma_cm API. 408 */ 409 ib_destroy_qp(queue->qp); 410 ib_free_cq(queue->ib_cq); 411 412 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 413 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 414 415 nvme_rdma_dev_put(dev); 416 } 417 418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 419 { 420 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 421 ibdev->attrs.max_fast_reg_page_list_len); 422 } 423 424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 425 { 426 struct ib_device *ibdev; 427 const int send_wr_factor = 3; /* MR, SEND, INV */ 428 const int cq_factor = send_wr_factor + 1; /* + RECV */ 429 int comp_vector, idx = nvme_rdma_queue_idx(queue); 430 int ret; 431 432 queue->device = nvme_rdma_find_get_device(queue->cm_id); 433 if (!queue->device) { 434 dev_err(queue->cm_id->device->dev.parent, 435 "no client data found!\n"); 436 return -ECONNREFUSED; 437 } 438 ibdev = queue->device->dev; 439 440 /* 441 * Spread I/O queues completion vectors according their queue index. 442 * Admin queues can always go on completion vector 0. 443 */ 444 comp_vector = idx == 0 ? idx : idx - 1; 445 446 /* +1 for ib_stop_cq */ 447 queue->ib_cq = ib_alloc_cq(ibdev, queue, 448 cq_factor * queue->queue_size + 1, 449 comp_vector, IB_POLL_SOFTIRQ); 450 if (IS_ERR(queue->ib_cq)) { 451 ret = PTR_ERR(queue->ib_cq); 452 goto out_put_dev; 453 } 454 455 ret = nvme_rdma_create_qp(queue, send_wr_factor); 456 if (ret) 457 goto out_destroy_ib_cq; 458 459 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 460 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 461 if (!queue->rsp_ring) { 462 ret = -ENOMEM; 463 goto out_destroy_qp; 464 } 465 466 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 467 queue->queue_size, 468 IB_MR_TYPE_MEM_REG, 469 nvme_rdma_get_max_fr_pages(ibdev)); 470 if (ret) { 471 dev_err(queue->ctrl->ctrl.device, 472 "failed to initialize MR pool sized %d for QID %d\n", 473 queue->queue_size, idx); 474 goto out_destroy_ring; 475 } 476 477 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 478 479 return 0; 480 481 out_destroy_ring: 482 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 483 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 484 out_destroy_qp: 485 rdma_destroy_qp(queue->cm_id); 486 out_destroy_ib_cq: 487 ib_free_cq(queue->ib_cq); 488 out_put_dev: 489 nvme_rdma_dev_put(queue->device); 490 return ret; 491 } 492 493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 494 int idx, size_t queue_size) 495 { 496 struct nvme_rdma_queue *queue; 497 struct sockaddr *src_addr = NULL; 498 int ret; 499 500 queue = &ctrl->queues[idx]; 501 queue->ctrl = ctrl; 502 init_completion(&queue->cm_done); 503 504 if (idx > 0) 505 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 506 else 507 queue->cmnd_capsule_len = sizeof(struct nvme_command); 508 509 queue->queue_size = queue_size; 510 511 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 512 RDMA_PS_TCP, IB_QPT_RC); 513 if (IS_ERR(queue->cm_id)) { 514 dev_info(ctrl->ctrl.device, 515 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 516 return PTR_ERR(queue->cm_id); 517 } 518 519 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 520 src_addr = (struct sockaddr *)&ctrl->src_addr; 521 522 queue->cm_error = -ETIMEDOUT; 523 ret = rdma_resolve_addr(queue->cm_id, src_addr, 524 (struct sockaddr *)&ctrl->addr, 525 NVME_RDMA_CONNECT_TIMEOUT_MS); 526 if (ret) { 527 dev_info(ctrl->ctrl.device, 528 "rdma_resolve_addr failed (%d).\n", ret); 529 goto out_destroy_cm_id; 530 } 531 532 ret = nvme_rdma_wait_for_cm(queue); 533 if (ret) { 534 dev_info(ctrl->ctrl.device, 535 "rdma connection establishment failed (%d)\n", ret); 536 goto out_destroy_cm_id; 537 } 538 539 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 540 541 return 0; 542 543 out_destroy_cm_id: 544 rdma_destroy_id(queue->cm_id); 545 nvme_rdma_destroy_queue_ib(queue); 546 return ret; 547 } 548 549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 550 { 551 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 552 return; 553 554 rdma_disconnect(queue->cm_id); 555 ib_drain_qp(queue->qp); 556 } 557 558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 559 { 560 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 561 return; 562 563 nvme_rdma_destroy_queue_ib(queue); 564 rdma_destroy_id(queue->cm_id); 565 } 566 567 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 568 { 569 int i; 570 571 for (i = 1; i < ctrl->ctrl.queue_count; i++) 572 nvme_rdma_free_queue(&ctrl->queues[i]); 573 } 574 575 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 576 { 577 int i; 578 579 for (i = 1; i < ctrl->ctrl.queue_count; i++) 580 nvme_rdma_stop_queue(&ctrl->queues[i]); 581 } 582 583 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 584 { 585 int ret; 586 587 if (idx) 588 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 589 else 590 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 591 592 if (!ret) 593 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 594 else 595 dev_info(ctrl->ctrl.device, 596 "failed to connect queue: %d ret=%d\n", idx, ret); 597 return ret; 598 } 599 600 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 601 { 602 int i, ret = 0; 603 604 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 605 ret = nvme_rdma_start_queue(ctrl, i); 606 if (ret) 607 goto out_stop_queues; 608 } 609 610 return 0; 611 612 out_stop_queues: 613 for (i--; i >= 1; i--) 614 nvme_rdma_stop_queue(&ctrl->queues[i]); 615 return ret; 616 } 617 618 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 619 { 620 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 621 struct ib_device *ibdev = ctrl->device->dev; 622 unsigned int nr_io_queues; 623 int i, ret; 624 625 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 626 627 /* 628 * we map queues according to the device irq vectors for 629 * optimal locality so we don't need more queues than 630 * completion vectors. 631 */ 632 nr_io_queues = min_t(unsigned int, nr_io_queues, 633 ibdev->num_comp_vectors); 634 635 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 636 if (ret) 637 return ret; 638 639 ctrl->ctrl.queue_count = nr_io_queues + 1; 640 if (ctrl->ctrl.queue_count < 2) 641 return 0; 642 643 dev_info(ctrl->ctrl.device, 644 "creating %d I/O queues.\n", nr_io_queues); 645 646 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 647 ret = nvme_rdma_alloc_queue(ctrl, i, 648 ctrl->ctrl.sqsize + 1); 649 if (ret) 650 goto out_free_queues; 651 } 652 653 return 0; 654 655 out_free_queues: 656 for (i--; i >= 1; i--) 657 nvme_rdma_free_queue(&ctrl->queues[i]); 658 659 return ret; 660 } 661 662 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 663 struct blk_mq_tag_set *set) 664 { 665 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 666 667 blk_mq_free_tag_set(set); 668 nvme_rdma_dev_put(ctrl->device); 669 } 670 671 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 672 bool admin) 673 { 674 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 675 struct blk_mq_tag_set *set; 676 int ret; 677 678 if (admin) { 679 set = &ctrl->admin_tag_set; 680 memset(set, 0, sizeof(*set)); 681 set->ops = &nvme_rdma_admin_mq_ops; 682 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 683 set->reserved_tags = 2; /* connect + keep-alive */ 684 set->numa_node = NUMA_NO_NODE; 685 set->cmd_size = sizeof(struct nvme_rdma_request) + 686 SG_CHUNK_SIZE * sizeof(struct scatterlist); 687 set->driver_data = ctrl; 688 set->nr_hw_queues = 1; 689 set->timeout = ADMIN_TIMEOUT; 690 set->flags = BLK_MQ_F_NO_SCHED; 691 } else { 692 set = &ctrl->tag_set; 693 memset(set, 0, sizeof(*set)); 694 set->ops = &nvme_rdma_mq_ops; 695 set->queue_depth = nctrl->sqsize + 1; 696 set->reserved_tags = 1; /* fabric connect */ 697 set->numa_node = NUMA_NO_NODE; 698 set->flags = BLK_MQ_F_SHOULD_MERGE; 699 set->cmd_size = sizeof(struct nvme_rdma_request) + 700 SG_CHUNK_SIZE * sizeof(struct scatterlist); 701 set->driver_data = ctrl; 702 set->nr_hw_queues = nctrl->queue_count - 1; 703 set->timeout = NVME_IO_TIMEOUT; 704 } 705 706 ret = blk_mq_alloc_tag_set(set); 707 if (ret) 708 goto out; 709 710 /* 711 * We need a reference on the device as long as the tag_set is alive, 712 * as the MRs in the request structures need a valid ib_device. 713 */ 714 ret = nvme_rdma_dev_get(ctrl->device); 715 if (!ret) { 716 ret = -EINVAL; 717 goto out_free_tagset; 718 } 719 720 return set; 721 722 out_free_tagset: 723 blk_mq_free_tag_set(set); 724 out: 725 return ERR_PTR(ret); 726 } 727 728 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 729 bool remove) 730 { 731 if (remove) { 732 blk_cleanup_queue(ctrl->ctrl.admin_q); 733 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 734 } 735 if (ctrl->async_event_sqe.data) { 736 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 737 sizeof(struct nvme_command), DMA_TO_DEVICE); 738 ctrl->async_event_sqe.data = NULL; 739 } 740 nvme_rdma_free_queue(&ctrl->queues[0]); 741 } 742 743 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 744 bool new) 745 { 746 int error; 747 748 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 749 if (error) 750 return error; 751 752 ctrl->device = ctrl->queues[0].device; 753 754 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 755 756 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 757 sizeof(struct nvme_command), DMA_TO_DEVICE); 758 if (error) 759 goto out_free_queue; 760 761 if (new) { 762 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 763 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 764 error = PTR_ERR(ctrl->ctrl.admin_tagset); 765 goto out_free_async_qe; 766 } 767 768 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 769 if (IS_ERR(ctrl->ctrl.admin_q)) { 770 error = PTR_ERR(ctrl->ctrl.admin_q); 771 goto out_free_tagset; 772 } 773 } 774 775 error = nvme_rdma_start_queue(ctrl, 0); 776 if (error) 777 goto out_cleanup_queue; 778 779 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 780 &ctrl->ctrl.cap); 781 if (error) { 782 dev_err(ctrl->ctrl.device, 783 "prop_get NVME_REG_CAP failed\n"); 784 goto out_stop_queue; 785 } 786 787 ctrl->ctrl.sqsize = 788 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 789 790 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 791 if (error) 792 goto out_stop_queue; 793 794 ctrl->ctrl.max_hw_sectors = 795 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 796 797 error = nvme_init_identify(&ctrl->ctrl); 798 if (error) 799 goto out_stop_queue; 800 801 return 0; 802 803 out_stop_queue: 804 nvme_rdma_stop_queue(&ctrl->queues[0]); 805 out_cleanup_queue: 806 if (new) 807 blk_cleanup_queue(ctrl->ctrl.admin_q); 808 out_free_tagset: 809 if (new) 810 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 811 out_free_async_qe: 812 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 813 sizeof(struct nvme_command), DMA_TO_DEVICE); 814 out_free_queue: 815 nvme_rdma_free_queue(&ctrl->queues[0]); 816 return error; 817 } 818 819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 820 bool remove) 821 { 822 if (remove) { 823 blk_cleanup_queue(ctrl->ctrl.connect_q); 824 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 825 } 826 nvme_rdma_free_io_queues(ctrl); 827 } 828 829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 830 { 831 int ret; 832 833 ret = nvme_rdma_alloc_io_queues(ctrl); 834 if (ret) 835 return ret; 836 837 if (new) { 838 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 839 if (IS_ERR(ctrl->ctrl.tagset)) { 840 ret = PTR_ERR(ctrl->ctrl.tagset); 841 goto out_free_io_queues; 842 } 843 844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 845 if (IS_ERR(ctrl->ctrl.connect_q)) { 846 ret = PTR_ERR(ctrl->ctrl.connect_q); 847 goto out_free_tag_set; 848 } 849 } else { 850 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 851 ctrl->ctrl.queue_count - 1); 852 } 853 854 ret = nvme_rdma_start_io_queues(ctrl); 855 if (ret) 856 goto out_cleanup_connect_q; 857 858 return 0; 859 860 out_cleanup_connect_q: 861 if (new) 862 blk_cleanup_queue(ctrl->ctrl.connect_q); 863 out_free_tag_set: 864 if (new) 865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 866 out_free_io_queues: 867 nvme_rdma_free_io_queues(ctrl); 868 return ret; 869 } 870 871 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 872 { 873 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 874 875 cancel_work_sync(&ctrl->err_work); 876 cancel_delayed_work_sync(&ctrl->reconnect_work); 877 } 878 879 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 880 { 881 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 882 883 if (list_empty(&ctrl->list)) 884 goto free_ctrl; 885 886 mutex_lock(&nvme_rdma_ctrl_mutex); 887 list_del(&ctrl->list); 888 mutex_unlock(&nvme_rdma_ctrl_mutex); 889 890 nvmf_free_options(nctrl->opts); 891 free_ctrl: 892 kfree(ctrl->queues); 893 kfree(ctrl); 894 } 895 896 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 897 { 898 /* If we are resetting/deleting then do nothing */ 899 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 900 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 901 ctrl->ctrl.state == NVME_CTRL_LIVE); 902 return; 903 } 904 905 if (nvmf_should_reconnect(&ctrl->ctrl)) { 906 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 907 ctrl->ctrl.opts->reconnect_delay); 908 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 909 ctrl->ctrl.opts->reconnect_delay * HZ); 910 } else { 911 nvme_delete_ctrl(&ctrl->ctrl); 912 } 913 } 914 915 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 916 { 917 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 918 struct nvme_rdma_ctrl, reconnect_work); 919 bool changed; 920 int ret; 921 922 ++ctrl->ctrl.nr_reconnects; 923 924 ret = nvme_rdma_configure_admin_queue(ctrl, false); 925 if (ret) 926 goto requeue; 927 928 if (ctrl->ctrl.queue_count > 1) { 929 ret = nvme_rdma_configure_io_queues(ctrl, false); 930 if (ret) 931 goto destroy_admin; 932 } 933 934 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 935 if (!changed) { 936 /* state change failure is ok if we're in DELETING state */ 937 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 938 return; 939 } 940 941 nvme_start_ctrl(&ctrl->ctrl); 942 943 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 944 ctrl->ctrl.nr_reconnects); 945 946 ctrl->ctrl.nr_reconnects = 0; 947 948 return; 949 950 destroy_admin: 951 nvme_rdma_stop_queue(&ctrl->queues[0]); 952 nvme_rdma_destroy_admin_queue(ctrl, false); 953 requeue: 954 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 955 ctrl->ctrl.nr_reconnects); 956 nvme_rdma_reconnect_or_remove(ctrl); 957 } 958 959 static void nvme_rdma_error_recovery_work(struct work_struct *work) 960 { 961 struct nvme_rdma_ctrl *ctrl = container_of(work, 962 struct nvme_rdma_ctrl, err_work); 963 964 nvme_stop_keep_alive(&ctrl->ctrl); 965 966 if (ctrl->ctrl.queue_count > 1) { 967 nvme_stop_queues(&ctrl->ctrl); 968 nvme_rdma_stop_io_queues(ctrl); 969 blk_mq_tagset_busy_iter(&ctrl->tag_set, 970 nvme_cancel_request, &ctrl->ctrl); 971 nvme_rdma_destroy_io_queues(ctrl, false); 972 } 973 974 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 975 nvme_rdma_stop_queue(&ctrl->queues[0]); 976 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 977 nvme_cancel_request, &ctrl->ctrl); 978 nvme_rdma_destroy_admin_queue(ctrl, false); 979 980 /* 981 * queues are not a live anymore, so restart the queues to fail fast 982 * new IO 983 */ 984 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 985 nvme_start_queues(&ctrl->ctrl); 986 987 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 988 /* state change failure is ok if we're in DELETING state */ 989 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 990 return; 991 } 992 993 nvme_rdma_reconnect_or_remove(ctrl); 994 } 995 996 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 997 { 998 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 999 return; 1000 1001 queue_work(nvme_wq, &ctrl->err_work); 1002 } 1003 1004 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1005 const char *op) 1006 { 1007 struct nvme_rdma_queue *queue = cq->cq_context; 1008 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1009 1010 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1011 dev_info(ctrl->ctrl.device, 1012 "%s for CQE 0x%p failed with status %s (%d)\n", 1013 op, wc->wr_cqe, 1014 ib_wc_status_msg(wc->status), wc->status); 1015 nvme_rdma_error_recovery(ctrl); 1016 } 1017 1018 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1019 { 1020 if (unlikely(wc->status != IB_WC_SUCCESS)) 1021 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1022 } 1023 1024 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1025 { 1026 struct nvme_rdma_request *req = 1027 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1028 struct request *rq = blk_mq_rq_from_pdu(req); 1029 1030 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1031 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1032 return; 1033 } 1034 1035 if (refcount_dec_and_test(&req->ref)) 1036 nvme_end_request(rq, req->status, req->result); 1037 1038 } 1039 1040 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1041 struct nvme_rdma_request *req) 1042 { 1043 struct ib_send_wr *bad_wr; 1044 struct ib_send_wr wr = { 1045 .opcode = IB_WR_LOCAL_INV, 1046 .next = NULL, 1047 .num_sge = 0, 1048 .send_flags = IB_SEND_SIGNALED, 1049 .ex.invalidate_rkey = req->mr->rkey, 1050 }; 1051 1052 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1053 wr.wr_cqe = &req->reg_cqe; 1054 1055 return ib_post_send(queue->qp, &wr, &bad_wr); 1056 } 1057 1058 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1059 struct request *rq) 1060 { 1061 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1062 struct nvme_rdma_device *dev = queue->device; 1063 struct ib_device *ibdev = dev->dev; 1064 1065 if (!blk_rq_payload_bytes(rq)) 1066 return; 1067 1068 if (req->mr) { 1069 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1070 req->mr = NULL; 1071 } 1072 1073 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1074 req->nents, rq_data_dir(rq) == 1075 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1076 1077 nvme_cleanup_cmd(rq); 1078 sg_free_table_chained(&req->sg_table, true); 1079 } 1080 1081 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1082 { 1083 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1084 1085 sg->addr = 0; 1086 put_unaligned_le24(0, sg->length); 1087 put_unaligned_le32(0, sg->key); 1088 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1089 return 0; 1090 } 1091 1092 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1093 struct nvme_rdma_request *req, struct nvme_command *c) 1094 { 1095 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1096 1097 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1098 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1099 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1100 1101 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1102 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1103 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1104 1105 req->num_sge++; 1106 return 0; 1107 } 1108 1109 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1110 struct nvme_rdma_request *req, struct nvme_command *c) 1111 { 1112 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1113 1114 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1115 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1116 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1117 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1118 return 0; 1119 } 1120 1121 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1122 struct nvme_rdma_request *req, struct nvme_command *c, 1123 int count) 1124 { 1125 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1126 int nr; 1127 1128 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1129 if (WARN_ON_ONCE(!req->mr)) 1130 return -EAGAIN; 1131 1132 /* 1133 * Align the MR to a 4K page size to match the ctrl page size and 1134 * the block virtual boundary. 1135 */ 1136 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1137 if (unlikely(nr < count)) { 1138 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1139 req->mr = NULL; 1140 if (nr < 0) 1141 return nr; 1142 return -EINVAL; 1143 } 1144 1145 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1146 1147 req->reg_cqe.done = nvme_rdma_memreg_done; 1148 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1149 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1150 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1151 req->reg_wr.wr.num_sge = 0; 1152 req->reg_wr.mr = req->mr; 1153 req->reg_wr.key = req->mr->rkey; 1154 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1155 IB_ACCESS_REMOTE_READ | 1156 IB_ACCESS_REMOTE_WRITE; 1157 1158 sg->addr = cpu_to_le64(req->mr->iova); 1159 put_unaligned_le24(req->mr->length, sg->length); 1160 put_unaligned_le32(req->mr->rkey, sg->key); 1161 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1162 NVME_SGL_FMT_INVALIDATE; 1163 1164 return 0; 1165 } 1166 1167 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1168 struct request *rq, struct nvme_command *c) 1169 { 1170 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1171 struct nvme_rdma_device *dev = queue->device; 1172 struct ib_device *ibdev = dev->dev; 1173 int count, ret; 1174 1175 req->num_sge = 1; 1176 refcount_set(&req->ref, 2); /* send and recv completions */ 1177 1178 c->common.flags |= NVME_CMD_SGL_METABUF; 1179 1180 if (!blk_rq_payload_bytes(rq)) 1181 return nvme_rdma_set_sg_null(c); 1182 1183 req->sg_table.sgl = req->first_sgl; 1184 ret = sg_alloc_table_chained(&req->sg_table, 1185 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1186 if (ret) 1187 return -ENOMEM; 1188 1189 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1190 1191 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1192 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1193 if (unlikely(count <= 0)) { 1194 ret = -EIO; 1195 goto out_free_table; 1196 } 1197 1198 if (count == 1) { 1199 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1200 blk_rq_payload_bytes(rq) <= 1201 nvme_rdma_inline_data_size(queue)) { 1202 ret = nvme_rdma_map_sg_inline(queue, req, c); 1203 goto out; 1204 } 1205 1206 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1207 ret = nvme_rdma_map_sg_single(queue, req, c); 1208 goto out; 1209 } 1210 } 1211 1212 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1213 out: 1214 if (unlikely(ret)) 1215 goto out_unmap_sg; 1216 1217 return 0; 1218 1219 out_unmap_sg: 1220 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1221 req->nents, rq_data_dir(rq) == 1222 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1223 out_free_table: 1224 sg_free_table_chained(&req->sg_table, true); 1225 return ret; 1226 } 1227 1228 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1229 { 1230 struct nvme_rdma_qe *qe = 1231 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1232 struct nvme_rdma_request *req = 1233 container_of(qe, struct nvme_rdma_request, sqe); 1234 struct request *rq = blk_mq_rq_from_pdu(req); 1235 1236 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1237 nvme_rdma_wr_error(cq, wc, "SEND"); 1238 return; 1239 } 1240 1241 if (refcount_dec_and_test(&req->ref)) 1242 nvme_end_request(rq, req->status, req->result); 1243 } 1244 1245 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1246 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1247 struct ib_send_wr *first) 1248 { 1249 struct ib_send_wr wr, *bad_wr; 1250 int ret; 1251 1252 sge->addr = qe->dma; 1253 sge->length = sizeof(struct nvme_command), 1254 sge->lkey = queue->device->pd->local_dma_lkey; 1255 1256 wr.next = NULL; 1257 wr.wr_cqe = &qe->cqe; 1258 wr.sg_list = sge; 1259 wr.num_sge = num_sge; 1260 wr.opcode = IB_WR_SEND; 1261 wr.send_flags = IB_SEND_SIGNALED; 1262 1263 if (first) 1264 first->next = ≀ 1265 else 1266 first = ≀ 1267 1268 ret = ib_post_send(queue->qp, first, &bad_wr); 1269 if (unlikely(ret)) { 1270 dev_err(queue->ctrl->ctrl.device, 1271 "%s failed with error code %d\n", __func__, ret); 1272 } 1273 return ret; 1274 } 1275 1276 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1277 struct nvme_rdma_qe *qe) 1278 { 1279 struct ib_recv_wr wr, *bad_wr; 1280 struct ib_sge list; 1281 int ret; 1282 1283 list.addr = qe->dma; 1284 list.length = sizeof(struct nvme_completion); 1285 list.lkey = queue->device->pd->local_dma_lkey; 1286 1287 qe->cqe.done = nvme_rdma_recv_done; 1288 1289 wr.next = NULL; 1290 wr.wr_cqe = &qe->cqe; 1291 wr.sg_list = &list; 1292 wr.num_sge = 1; 1293 1294 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1295 if (unlikely(ret)) { 1296 dev_err(queue->ctrl->ctrl.device, 1297 "%s failed with error code %d\n", __func__, ret); 1298 } 1299 return ret; 1300 } 1301 1302 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1303 { 1304 u32 queue_idx = nvme_rdma_queue_idx(queue); 1305 1306 if (queue_idx == 0) 1307 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1308 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1309 } 1310 1311 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1312 { 1313 if (unlikely(wc->status != IB_WC_SUCCESS)) 1314 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1315 } 1316 1317 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1318 { 1319 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1320 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1321 struct ib_device *dev = queue->device->dev; 1322 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1323 struct nvme_command *cmd = sqe->data; 1324 struct ib_sge sge; 1325 int ret; 1326 1327 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1328 1329 memset(cmd, 0, sizeof(*cmd)); 1330 cmd->common.opcode = nvme_admin_async_event; 1331 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1332 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1333 nvme_rdma_set_sg_null(cmd); 1334 1335 sqe->cqe.done = nvme_rdma_async_done; 1336 1337 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1338 DMA_TO_DEVICE); 1339 1340 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1341 WARN_ON_ONCE(ret); 1342 } 1343 1344 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1345 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1346 { 1347 struct request *rq; 1348 struct nvme_rdma_request *req; 1349 int ret = 0; 1350 1351 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1352 if (!rq) { 1353 dev_err(queue->ctrl->ctrl.device, 1354 "tag 0x%x on QP %#x not found\n", 1355 cqe->command_id, queue->qp->qp_num); 1356 nvme_rdma_error_recovery(queue->ctrl); 1357 return ret; 1358 } 1359 req = blk_mq_rq_to_pdu(rq); 1360 1361 req->status = cqe->status; 1362 req->result = cqe->result; 1363 1364 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1365 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1366 dev_err(queue->ctrl->ctrl.device, 1367 "Bogus remote invalidation for rkey %#x\n", 1368 req->mr->rkey); 1369 nvme_rdma_error_recovery(queue->ctrl); 1370 } 1371 } else if (req->mr) { 1372 ret = nvme_rdma_inv_rkey(queue, req); 1373 if (unlikely(ret < 0)) { 1374 dev_err(queue->ctrl->ctrl.device, 1375 "Queueing INV WR for rkey %#x failed (%d)\n", 1376 req->mr->rkey, ret); 1377 nvme_rdma_error_recovery(queue->ctrl); 1378 } 1379 /* the local invalidation completion will end the request */ 1380 return 0; 1381 } 1382 1383 if (refcount_dec_and_test(&req->ref)) { 1384 if (rq->tag == tag) 1385 ret = 1; 1386 nvme_end_request(rq, req->status, req->result); 1387 } 1388 1389 return ret; 1390 } 1391 1392 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1393 { 1394 struct nvme_rdma_qe *qe = 1395 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1396 struct nvme_rdma_queue *queue = cq->cq_context; 1397 struct ib_device *ibdev = queue->device->dev; 1398 struct nvme_completion *cqe = qe->data; 1399 const size_t len = sizeof(struct nvme_completion); 1400 int ret = 0; 1401 1402 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1403 nvme_rdma_wr_error(cq, wc, "RECV"); 1404 return 0; 1405 } 1406 1407 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1408 /* 1409 * AEN requests are special as they don't time out and can 1410 * survive any kind of queue freeze and often don't respond to 1411 * aborts. We don't even bother to allocate a struct request 1412 * for them but rather special case them here. 1413 */ 1414 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1415 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1416 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1417 &cqe->result); 1418 else 1419 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1420 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1421 1422 nvme_rdma_post_recv(queue, qe); 1423 return ret; 1424 } 1425 1426 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1427 { 1428 __nvme_rdma_recv_done(cq, wc, -1); 1429 } 1430 1431 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1432 { 1433 int ret, i; 1434 1435 for (i = 0; i < queue->queue_size; i++) { 1436 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1437 if (ret) 1438 goto out_destroy_queue_ib; 1439 } 1440 1441 return 0; 1442 1443 out_destroy_queue_ib: 1444 nvme_rdma_destroy_queue_ib(queue); 1445 return ret; 1446 } 1447 1448 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1449 struct rdma_cm_event *ev) 1450 { 1451 struct rdma_cm_id *cm_id = queue->cm_id; 1452 int status = ev->status; 1453 const char *rej_msg; 1454 const struct nvme_rdma_cm_rej *rej_data; 1455 u8 rej_data_len; 1456 1457 rej_msg = rdma_reject_msg(cm_id, status); 1458 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1459 1460 if (rej_data && rej_data_len >= sizeof(u16)) { 1461 u16 sts = le16_to_cpu(rej_data->sts); 1462 1463 dev_err(queue->ctrl->ctrl.device, 1464 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1465 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1466 } else { 1467 dev_err(queue->ctrl->ctrl.device, 1468 "Connect rejected: status %d (%s).\n", status, rej_msg); 1469 } 1470 1471 return -ECONNRESET; 1472 } 1473 1474 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1475 { 1476 int ret; 1477 1478 ret = nvme_rdma_create_queue_ib(queue); 1479 if (ret) 1480 return ret; 1481 1482 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1483 if (ret) { 1484 dev_err(queue->ctrl->ctrl.device, 1485 "rdma_resolve_route failed (%d).\n", 1486 queue->cm_error); 1487 goto out_destroy_queue; 1488 } 1489 1490 return 0; 1491 1492 out_destroy_queue: 1493 nvme_rdma_destroy_queue_ib(queue); 1494 return ret; 1495 } 1496 1497 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1498 { 1499 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1500 struct rdma_conn_param param = { }; 1501 struct nvme_rdma_cm_req priv = { }; 1502 int ret; 1503 1504 param.qp_num = queue->qp->qp_num; 1505 param.flow_control = 1; 1506 1507 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1508 /* maximum retry count */ 1509 param.retry_count = 7; 1510 param.rnr_retry_count = 7; 1511 param.private_data = &priv; 1512 param.private_data_len = sizeof(priv); 1513 1514 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1515 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1516 /* 1517 * set the admin queue depth to the minimum size 1518 * specified by the Fabrics standard. 1519 */ 1520 if (priv.qid == 0) { 1521 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1522 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1523 } else { 1524 /* 1525 * current interpretation of the fabrics spec 1526 * is at minimum you make hrqsize sqsize+1, or a 1527 * 1's based representation of sqsize. 1528 */ 1529 priv.hrqsize = cpu_to_le16(queue->queue_size); 1530 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1531 } 1532 1533 ret = rdma_connect(queue->cm_id, ¶m); 1534 if (ret) { 1535 dev_err(ctrl->ctrl.device, 1536 "rdma_connect failed (%d).\n", ret); 1537 goto out_destroy_queue_ib; 1538 } 1539 1540 return 0; 1541 1542 out_destroy_queue_ib: 1543 nvme_rdma_destroy_queue_ib(queue); 1544 return ret; 1545 } 1546 1547 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1548 struct rdma_cm_event *ev) 1549 { 1550 struct nvme_rdma_queue *queue = cm_id->context; 1551 int cm_error = 0; 1552 1553 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1554 rdma_event_msg(ev->event), ev->event, 1555 ev->status, cm_id); 1556 1557 switch (ev->event) { 1558 case RDMA_CM_EVENT_ADDR_RESOLVED: 1559 cm_error = nvme_rdma_addr_resolved(queue); 1560 break; 1561 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1562 cm_error = nvme_rdma_route_resolved(queue); 1563 break; 1564 case RDMA_CM_EVENT_ESTABLISHED: 1565 queue->cm_error = nvme_rdma_conn_established(queue); 1566 /* complete cm_done regardless of success/failure */ 1567 complete(&queue->cm_done); 1568 return 0; 1569 case RDMA_CM_EVENT_REJECTED: 1570 nvme_rdma_destroy_queue_ib(queue); 1571 cm_error = nvme_rdma_conn_rejected(queue, ev); 1572 break; 1573 case RDMA_CM_EVENT_ROUTE_ERROR: 1574 case RDMA_CM_EVENT_CONNECT_ERROR: 1575 case RDMA_CM_EVENT_UNREACHABLE: 1576 nvme_rdma_destroy_queue_ib(queue); 1577 case RDMA_CM_EVENT_ADDR_ERROR: 1578 dev_dbg(queue->ctrl->ctrl.device, 1579 "CM error event %d\n", ev->event); 1580 cm_error = -ECONNRESET; 1581 break; 1582 case RDMA_CM_EVENT_DISCONNECTED: 1583 case RDMA_CM_EVENT_ADDR_CHANGE: 1584 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1585 dev_dbg(queue->ctrl->ctrl.device, 1586 "disconnect received - connection closed\n"); 1587 nvme_rdma_error_recovery(queue->ctrl); 1588 break; 1589 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1590 /* device removal is handled via the ib_client API */ 1591 break; 1592 default: 1593 dev_err(queue->ctrl->ctrl.device, 1594 "Unexpected RDMA CM event (%d)\n", ev->event); 1595 nvme_rdma_error_recovery(queue->ctrl); 1596 break; 1597 } 1598 1599 if (cm_error) { 1600 queue->cm_error = cm_error; 1601 complete(&queue->cm_done); 1602 } 1603 1604 return 0; 1605 } 1606 1607 static enum blk_eh_timer_return 1608 nvme_rdma_timeout(struct request *rq, bool reserved) 1609 { 1610 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1611 1612 dev_warn(req->queue->ctrl->ctrl.device, 1613 "I/O %d QID %d timeout, reset controller\n", 1614 rq->tag, nvme_rdma_queue_idx(req->queue)); 1615 1616 /* queue error recovery */ 1617 nvme_rdma_error_recovery(req->queue->ctrl); 1618 1619 /* fail with DNR on cmd timeout */ 1620 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1621 1622 return BLK_EH_DONE; 1623 } 1624 1625 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1626 const struct blk_mq_queue_data *bd) 1627 { 1628 struct nvme_ns *ns = hctx->queue->queuedata; 1629 struct nvme_rdma_queue *queue = hctx->driver_data; 1630 struct request *rq = bd->rq; 1631 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1632 struct nvme_rdma_qe *sqe = &req->sqe; 1633 struct nvme_command *c = sqe->data; 1634 struct ib_device *dev; 1635 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1636 blk_status_t ret; 1637 int err; 1638 1639 WARN_ON_ONCE(rq->tag < 0); 1640 1641 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1642 return nvmf_fail_nonready_command(rq); 1643 1644 dev = queue->device->dev; 1645 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1646 sizeof(struct nvme_command), DMA_TO_DEVICE); 1647 1648 ret = nvme_setup_cmd(ns, rq, c); 1649 if (ret) 1650 return ret; 1651 1652 blk_mq_start_request(rq); 1653 1654 err = nvme_rdma_map_data(queue, rq, c); 1655 if (unlikely(err < 0)) { 1656 dev_err(queue->ctrl->ctrl.device, 1657 "Failed to map data (%d)\n", err); 1658 nvme_cleanup_cmd(rq); 1659 goto err; 1660 } 1661 1662 sqe->cqe.done = nvme_rdma_send_done; 1663 1664 ib_dma_sync_single_for_device(dev, sqe->dma, 1665 sizeof(struct nvme_command), DMA_TO_DEVICE); 1666 1667 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1668 req->mr ? &req->reg_wr.wr : NULL); 1669 if (unlikely(err)) { 1670 nvme_rdma_unmap_data(queue, rq); 1671 goto err; 1672 } 1673 1674 return BLK_STS_OK; 1675 err: 1676 if (err == -ENOMEM || err == -EAGAIN) 1677 return BLK_STS_RESOURCE; 1678 return BLK_STS_IOERR; 1679 } 1680 1681 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1682 { 1683 struct nvme_rdma_queue *queue = hctx->driver_data; 1684 struct ib_cq *cq = queue->ib_cq; 1685 struct ib_wc wc; 1686 int found = 0; 1687 1688 while (ib_poll_cq(cq, 1, &wc) > 0) { 1689 struct ib_cqe *cqe = wc.wr_cqe; 1690 1691 if (cqe) { 1692 if (cqe->done == nvme_rdma_recv_done) 1693 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1694 else 1695 cqe->done(cq, &wc); 1696 } 1697 } 1698 1699 return found; 1700 } 1701 1702 static void nvme_rdma_complete_rq(struct request *rq) 1703 { 1704 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1705 1706 nvme_rdma_unmap_data(req->queue, rq); 1707 nvme_complete_rq(rq); 1708 } 1709 1710 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1711 { 1712 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1713 1714 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1715 } 1716 1717 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1718 .queue_rq = nvme_rdma_queue_rq, 1719 .complete = nvme_rdma_complete_rq, 1720 .init_request = nvme_rdma_init_request, 1721 .exit_request = nvme_rdma_exit_request, 1722 .init_hctx = nvme_rdma_init_hctx, 1723 .poll = nvme_rdma_poll, 1724 .timeout = nvme_rdma_timeout, 1725 .map_queues = nvme_rdma_map_queues, 1726 }; 1727 1728 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1729 .queue_rq = nvme_rdma_queue_rq, 1730 .complete = nvme_rdma_complete_rq, 1731 .init_request = nvme_rdma_init_request, 1732 .exit_request = nvme_rdma_exit_request, 1733 .init_hctx = nvme_rdma_init_admin_hctx, 1734 .timeout = nvme_rdma_timeout, 1735 }; 1736 1737 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1738 { 1739 if (ctrl->ctrl.queue_count > 1) { 1740 nvme_stop_queues(&ctrl->ctrl); 1741 nvme_rdma_stop_io_queues(ctrl); 1742 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1743 nvme_cancel_request, &ctrl->ctrl); 1744 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1745 } 1746 1747 if (shutdown) 1748 nvme_shutdown_ctrl(&ctrl->ctrl); 1749 else 1750 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1751 1752 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1753 nvme_rdma_stop_queue(&ctrl->queues[0]); 1754 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1755 nvme_cancel_request, &ctrl->ctrl); 1756 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1757 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1758 } 1759 1760 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1761 { 1762 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1763 } 1764 1765 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1766 { 1767 struct nvme_rdma_ctrl *ctrl = 1768 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1769 int ret; 1770 bool changed; 1771 1772 nvme_stop_ctrl(&ctrl->ctrl); 1773 nvme_rdma_shutdown_ctrl(ctrl, false); 1774 1775 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1776 /* state change failure should never happen */ 1777 WARN_ON_ONCE(1); 1778 return; 1779 } 1780 1781 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1782 if (ret) 1783 goto out_fail; 1784 1785 if (ctrl->ctrl.queue_count > 1) { 1786 ret = nvme_rdma_configure_io_queues(ctrl, false); 1787 if (ret) 1788 goto out_fail; 1789 } 1790 1791 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1792 if (!changed) { 1793 /* state change failure is ok if we're in DELETING state */ 1794 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1795 return; 1796 } 1797 1798 nvme_start_ctrl(&ctrl->ctrl); 1799 1800 return; 1801 1802 out_fail: 1803 ++ctrl->ctrl.nr_reconnects; 1804 nvme_rdma_reconnect_or_remove(ctrl); 1805 } 1806 1807 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1808 .name = "rdma", 1809 .module = THIS_MODULE, 1810 .flags = NVME_F_FABRICS, 1811 .reg_read32 = nvmf_reg_read32, 1812 .reg_read64 = nvmf_reg_read64, 1813 .reg_write32 = nvmf_reg_write32, 1814 .free_ctrl = nvme_rdma_free_ctrl, 1815 .submit_async_event = nvme_rdma_submit_async_event, 1816 .delete_ctrl = nvme_rdma_delete_ctrl, 1817 .get_address = nvmf_get_address, 1818 .stop_ctrl = nvme_rdma_stop_ctrl, 1819 }; 1820 1821 static inline bool 1822 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1823 struct nvmf_ctrl_options *opts) 1824 { 1825 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1826 1827 1828 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1829 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1830 return false; 1831 1832 if (opts->mask & NVMF_OPT_TRSVCID && 1833 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1834 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1835 return false; 1836 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1837 if (strcmp(opts->trsvcid, stdport)) 1838 return false; 1839 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1840 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1841 return false; 1842 } 1843 /* else, it's a match as both have stdport. Fall to next checks */ 1844 1845 /* 1846 * checking the local address is rough. In most cases, one 1847 * is not specified and the host port is selected by the stack. 1848 * 1849 * Assume no match if: 1850 * local address is specified and address is not the same 1851 * local address is not specified but remote is, or vice versa 1852 * (admin using specific host_traddr when it matters). 1853 */ 1854 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1855 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1856 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1857 return false; 1858 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1859 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1860 return false; 1861 /* 1862 * if neither controller had an host port specified, assume it's 1863 * a match as everything else matched. 1864 */ 1865 1866 return true; 1867 } 1868 1869 /* 1870 * Fails a connection request if it matches an existing controller 1871 * (association) with the same tuple: 1872 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1873 * 1874 * if local address is not specified in the request, it will match an 1875 * existing controller with all the other parameters the same and no 1876 * local port address specified as well. 1877 * 1878 * The ports don't need to be compared as they are intrinsically 1879 * already matched by the port pointers supplied. 1880 */ 1881 static bool 1882 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1883 { 1884 struct nvme_rdma_ctrl *ctrl; 1885 bool found = false; 1886 1887 mutex_lock(&nvme_rdma_ctrl_mutex); 1888 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1889 found = __nvme_rdma_options_match(ctrl, opts); 1890 if (found) 1891 break; 1892 } 1893 mutex_unlock(&nvme_rdma_ctrl_mutex); 1894 1895 return found; 1896 } 1897 1898 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1899 struct nvmf_ctrl_options *opts) 1900 { 1901 struct nvme_rdma_ctrl *ctrl; 1902 int ret; 1903 bool changed; 1904 char *port; 1905 1906 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1907 if (!ctrl) 1908 return ERR_PTR(-ENOMEM); 1909 ctrl->ctrl.opts = opts; 1910 INIT_LIST_HEAD(&ctrl->list); 1911 1912 if (opts->mask & NVMF_OPT_TRSVCID) 1913 port = opts->trsvcid; 1914 else 1915 port = __stringify(NVME_RDMA_IP_PORT); 1916 1917 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1918 opts->traddr, port, &ctrl->addr); 1919 if (ret) { 1920 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1921 goto out_free_ctrl; 1922 } 1923 1924 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1925 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1926 opts->host_traddr, NULL, &ctrl->src_addr); 1927 if (ret) { 1928 pr_err("malformed src address passed: %s\n", 1929 opts->host_traddr); 1930 goto out_free_ctrl; 1931 } 1932 } 1933 1934 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1935 ret = -EALREADY; 1936 goto out_free_ctrl; 1937 } 1938 1939 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1940 nvme_rdma_reconnect_ctrl_work); 1941 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1942 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1943 1944 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1945 ctrl->ctrl.sqsize = opts->queue_size - 1; 1946 ctrl->ctrl.kato = opts->kato; 1947 1948 ret = -ENOMEM; 1949 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1950 GFP_KERNEL); 1951 if (!ctrl->queues) 1952 goto out_free_ctrl; 1953 1954 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1955 0 /* no quirks, we're perfect! */); 1956 if (ret) 1957 goto out_kfree_queues; 1958 1959 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1960 WARN_ON_ONCE(!changed); 1961 1962 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1963 if (ret) 1964 goto out_uninit_ctrl; 1965 1966 /* sanity check icdoff */ 1967 if (ctrl->ctrl.icdoff) { 1968 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1969 ret = -EINVAL; 1970 goto out_remove_admin_queue; 1971 } 1972 1973 /* sanity check keyed sgls */ 1974 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1975 dev_err(ctrl->ctrl.device, 1976 "Mandatory keyed sgls are not supported!\n"); 1977 ret = -EINVAL; 1978 goto out_remove_admin_queue; 1979 } 1980 1981 /* only warn if argument is too large here, will clamp later */ 1982 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1983 dev_warn(ctrl->ctrl.device, 1984 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1985 opts->queue_size, ctrl->ctrl.sqsize + 1); 1986 } 1987 1988 /* warn if maxcmd is lower than sqsize+1 */ 1989 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1990 dev_warn(ctrl->ctrl.device, 1991 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1992 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1993 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1994 } 1995 1996 if (opts->nr_io_queues) { 1997 ret = nvme_rdma_configure_io_queues(ctrl, true); 1998 if (ret) 1999 goto out_remove_admin_queue; 2000 } 2001 2002 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2003 WARN_ON_ONCE(!changed); 2004 2005 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2006 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2007 2008 nvme_get_ctrl(&ctrl->ctrl); 2009 2010 mutex_lock(&nvme_rdma_ctrl_mutex); 2011 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2012 mutex_unlock(&nvme_rdma_ctrl_mutex); 2013 2014 nvme_start_ctrl(&ctrl->ctrl); 2015 2016 return &ctrl->ctrl; 2017 2018 out_remove_admin_queue: 2019 nvme_rdma_stop_queue(&ctrl->queues[0]); 2020 nvme_rdma_destroy_admin_queue(ctrl, true); 2021 out_uninit_ctrl: 2022 nvme_uninit_ctrl(&ctrl->ctrl); 2023 nvme_put_ctrl(&ctrl->ctrl); 2024 if (ret > 0) 2025 ret = -EIO; 2026 return ERR_PTR(ret); 2027 out_kfree_queues: 2028 kfree(ctrl->queues); 2029 out_free_ctrl: 2030 kfree(ctrl); 2031 return ERR_PTR(ret); 2032 } 2033 2034 static struct nvmf_transport_ops nvme_rdma_transport = { 2035 .name = "rdma", 2036 .module = THIS_MODULE, 2037 .required_opts = NVMF_OPT_TRADDR, 2038 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2039 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2040 .create_ctrl = nvme_rdma_create_ctrl, 2041 }; 2042 2043 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2044 { 2045 struct nvme_rdma_ctrl *ctrl; 2046 struct nvme_rdma_device *ndev; 2047 bool found = false; 2048 2049 mutex_lock(&device_list_mutex); 2050 list_for_each_entry(ndev, &device_list, entry) { 2051 if (ndev->dev == ib_device) { 2052 found = true; 2053 break; 2054 } 2055 } 2056 mutex_unlock(&device_list_mutex); 2057 2058 if (!found) 2059 return; 2060 2061 /* Delete all controllers using this device */ 2062 mutex_lock(&nvme_rdma_ctrl_mutex); 2063 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2064 if (ctrl->device->dev != ib_device) 2065 continue; 2066 nvme_delete_ctrl(&ctrl->ctrl); 2067 } 2068 mutex_unlock(&nvme_rdma_ctrl_mutex); 2069 2070 flush_workqueue(nvme_delete_wq); 2071 } 2072 2073 static struct ib_client nvme_rdma_ib_client = { 2074 .name = "nvme_rdma", 2075 .remove = nvme_rdma_remove_one 2076 }; 2077 2078 static int __init nvme_rdma_init_module(void) 2079 { 2080 int ret; 2081 2082 ret = ib_register_client(&nvme_rdma_ib_client); 2083 if (ret) 2084 return ret; 2085 2086 ret = nvmf_register_transport(&nvme_rdma_transport); 2087 if (ret) 2088 goto err_unreg_client; 2089 2090 return 0; 2091 2092 err_unreg_client: 2093 ib_unregister_client(&nvme_rdma_ib_client); 2094 return ret; 2095 } 2096 2097 static void __exit nvme_rdma_cleanup_module(void) 2098 { 2099 nvmf_unregister_transport(&nvme_rdma_transport); 2100 ib_unregister_client(&nvme_rdma_ib_client); 2101 } 2102 2103 module_init(nvme_rdma_init_module); 2104 module_exit(nvme_rdma_cleanup_module); 2105 2106 MODULE_LICENSE("GPL v2"); 2107