1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 struct nvme_rdma_device { 38 struct ib_device *dev; 39 struct ib_pd *pd; 40 struct kref ref; 41 struct list_head entry; 42 unsigned int num_inline_segments; 43 }; 44 45 struct nvme_rdma_qe { 46 struct ib_cqe cqe; 47 void *data; 48 u64 dma; 49 }; 50 51 struct nvme_rdma_queue; 52 struct nvme_rdma_request { 53 struct nvme_request req; 54 struct ib_mr *mr; 55 struct nvme_rdma_qe sqe; 56 union nvme_result result; 57 __le16 status; 58 refcount_t ref; 59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 60 u32 num_sge; 61 int nents; 62 struct ib_reg_wr reg_wr; 63 struct ib_cqe reg_cqe; 64 struct nvme_rdma_queue *queue; 65 struct sg_table sg_table; 66 struct scatterlist first_sgl[]; 67 }; 68 69 enum nvme_rdma_queue_flags { 70 NVME_RDMA_Q_ALLOCATED = 0, 71 NVME_RDMA_Q_LIVE = 1, 72 NVME_RDMA_Q_TR_READY = 2, 73 }; 74 75 struct nvme_rdma_queue { 76 struct nvme_rdma_qe *rsp_ring; 77 int queue_size; 78 size_t cmnd_capsule_len; 79 struct nvme_rdma_ctrl *ctrl; 80 struct nvme_rdma_device *device; 81 struct ib_cq *ib_cq; 82 struct ib_qp *qp; 83 84 unsigned long flags; 85 struct rdma_cm_id *cm_id; 86 int cm_error; 87 struct completion cm_done; 88 }; 89 90 struct nvme_rdma_ctrl { 91 /* read only in the hot path */ 92 struct nvme_rdma_queue *queues; 93 94 /* other member variables */ 95 struct blk_mq_tag_set tag_set; 96 struct work_struct err_work; 97 98 struct nvme_rdma_qe async_event_sqe; 99 100 struct delayed_work reconnect_work; 101 102 struct list_head list; 103 104 struct blk_mq_tag_set admin_tag_set; 105 struct nvme_rdma_device *device; 106 107 u32 max_fr_pages; 108 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 112 struct nvme_ctrl ctrl; 113 bool use_inline_data; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 118 { 119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 120 } 121 122 static LIST_HEAD(device_list); 123 static DEFINE_MUTEX(device_list_mutex); 124 125 static LIST_HEAD(nvme_rdma_ctrl_list); 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 127 128 /* 129 * Disabling this option makes small I/O goes faster, but is fundamentally 130 * unsafe. With it turned off we will have to register a global rkey that 131 * allows read and write access to all physical memory. 132 */ 133 static bool register_always = true; 134 module_param(register_always, bool, 0444); 135 MODULE_PARM_DESC(register_always, 136 "Use memory registration even for contiguous memory regions"); 137 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 139 struct rdma_cm_event *event); 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 141 142 static const struct blk_mq_ops nvme_rdma_mq_ops; 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 144 145 /* XXX: really should move to a generic header sooner or later.. */ 146 static inline void put_unaligned_le24(u32 val, u8 *p) 147 { 148 *p++ = val; 149 *p++ = val >> 8; 150 *p++ = val >> 16; 151 } 152 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 154 { 155 return queue - queue->ctrl->queues; 156 } 157 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 159 { 160 return nvme_rdma_queue_idx(queue) > 161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 162 queue->ctrl->io_queues[HCTX_TYPE_READ]; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 qe->data = NULL; 188 return -ENOMEM; 189 } 190 191 return 0; 192 } 193 194 static void nvme_rdma_free_ring(struct ib_device *ibdev, 195 struct nvme_rdma_qe *ring, size_t ib_queue_size, 196 size_t capsule_size, enum dma_data_direction dir) 197 { 198 int i; 199 200 for (i = 0; i < ib_queue_size; i++) 201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 202 kfree(ring); 203 } 204 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 206 size_t ib_queue_size, size_t capsule_size, 207 enum dma_data_direction dir) 208 { 209 struct nvme_rdma_qe *ring; 210 int i; 211 212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 213 if (!ring) 214 return NULL; 215 216 /* 217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 218 * lifetime. It's safe, since any chage in the underlying RDMA device 219 * will issue error recovery and queue re-creation. 220 */ 221 for (i = 0; i < ib_queue_size; i++) { 222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 223 goto out_free_ring; 224 } 225 226 return ring; 227 228 out_free_ring: 229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 230 return NULL; 231 } 232 233 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 234 { 235 pr_debug("QP event %s (%d)\n", 236 ib_event_msg(event->event), event->event); 237 238 } 239 240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 241 { 242 int ret; 243 244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 246 if (ret < 0) 247 return ret; 248 if (ret == 0) 249 return -ETIMEDOUT; 250 WARN_ON_ONCE(queue->cm_error > 0); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 280 struct request *rq, unsigned int hctx_idx) 281 { 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 284 kfree(req->sqe.data); 285 } 286 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx, 289 unsigned int numa_node) 290 { 291 struct nvme_rdma_ctrl *ctrl = set->driver_data; 292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 295 296 nvme_req(rq)->ctrl = &ctrl->ctrl; 297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 298 if (!req->sqe.data) 299 return -ENOMEM; 300 301 req->queue = queue; 302 303 return 0; 304 } 305 306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 307 unsigned int hctx_idx) 308 { 309 struct nvme_rdma_ctrl *ctrl = data; 310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 311 312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 313 314 hctx->driver_data = queue; 315 return 0; 316 } 317 318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 319 unsigned int hctx_idx) 320 { 321 struct nvme_rdma_ctrl *ctrl = data; 322 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 323 324 BUG_ON(hctx_idx != 0); 325 326 hctx->driver_data = queue; 327 return 0; 328 } 329 330 static void nvme_rdma_free_dev(struct kref *ref) 331 { 332 struct nvme_rdma_device *ndev = 333 container_of(ref, struct nvme_rdma_device, ref); 334 335 mutex_lock(&device_list_mutex); 336 list_del(&ndev->entry); 337 mutex_unlock(&device_list_mutex); 338 339 ib_dealloc_pd(ndev->pd); 340 kfree(ndev); 341 } 342 343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 344 { 345 kref_put(&dev->ref, nvme_rdma_free_dev); 346 } 347 348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 349 { 350 return kref_get_unless_zero(&dev->ref); 351 } 352 353 static struct nvme_rdma_device * 354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 355 { 356 struct nvme_rdma_device *ndev; 357 358 mutex_lock(&device_list_mutex); 359 list_for_each_entry(ndev, &device_list, entry) { 360 if (ndev->dev->node_guid == cm_id->device->node_guid && 361 nvme_rdma_dev_get(ndev)) 362 goto out_unlock; 363 } 364 365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 366 if (!ndev) 367 goto out_err; 368 369 ndev->dev = cm_id->device; 370 kref_init(&ndev->ref); 371 372 ndev->pd = ib_alloc_pd(ndev->dev, 373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 374 if (IS_ERR(ndev->pd)) 375 goto out_free_dev; 376 377 if (!(ndev->dev->attrs.device_cap_flags & 378 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 379 dev_err(&ndev->dev->dev, 380 "Memory registrations not supported.\n"); 381 goto out_free_pd; 382 } 383 384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 385 ndev->dev->attrs.max_send_sge - 1); 386 list_add(&ndev->entry, &device_list); 387 out_unlock: 388 mutex_unlock(&device_list_mutex); 389 return ndev; 390 391 out_free_pd: 392 ib_dealloc_pd(ndev->pd); 393 out_free_dev: 394 kfree(ndev); 395 out_err: 396 mutex_unlock(&device_list_mutex); 397 return NULL; 398 } 399 400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 401 { 402 struct nvme_rdma_device *dev; 403 struct ib_device *ibdev; 404 405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 406 return; 407 408 dev = queue->device; 409 ibdev = dev->dev; 410 411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 412 413 /* 414 * The cm_id object might have been destroyed during RDMA connection 415 * establishment error flow to avoid getting other cma events, thus 416 * the destruction of the QP shouldn't use rdma_cm API. 417 */ 418 ib_destroy_qp(queue->qp); 419 ib_free_cq(queue->ib_cq); 420 421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 422 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 423 424 nvme_rdma_dev_put(dev); 425 } 426 427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 428 { 429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 430 ibdev->attrs.max_fast_reg_page_list_len); 431 } 432 433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 434 { 435 struct ib_device *ibdev; 436 const int send_wr_factor = 3; /* MR, SEND, INV */ 437 const int cq_factor = send_wr_factor + 1; /* + RECV */ 438 int comp_vector, idx = nvme_rdma_queue_idx(queue); 439 enum ib_poll_context poll_ctx; 440 int ret; 441 442 queue->device = nvme_rdma_find_get_device(queue->cm_id); 443 if (!queue->device) { 444 dev_err(queue->cm_id->device->dev.parent, 445 "no client data found!\n"); 446 return -ECONNREFUSED; 447 } 448 ibdev = queue->device->dev; 449 450 /* 451 * Spread I/O queues completion vectors according their queue index. 452 * Admin queues can always go on completion vector 0. 453 */ 454 comp_vector = idx == 0 ? idx : idx - 1; 455 456 /* Polling queues need direct cq polling context */ 457 if (nvme_rdma_poll_queue(queue)) 458 poll_ctx = IB_POLL_DIRECT; 459 else 460 poll_ctx = IB_POLL_SOFTIRQ; 461 462 /* +1 for ib_stop_cq */ 463 queue->ib_cq = ib_alloc_cq(ibdev, queue, 464 cq_factor * queue->queue_size + 1, 465 comp_vector, poll_ctx); 466 if (IS_ERR(queue->ib_cq)) { 467 ret = PTR_ERR(queue->ib_cq); 468 goto out_put_dev; 469 } 470 471 ret = nvme_rdma_create_qp(queue, send_wr_factor); 472 if (ret) 473 goto out_destroy_ib_cq; 474 475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 476 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 477 if (!queue->rsp_ring) { 478 ret = -ENOMEM; 479 goto out_destroy_qp; 480 } 481 482 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 483 queue->queue_size, 484 IB_MR_TYPE_MEM_REG, 485 nvme_rdma_get_max_fr_pages(ibdev), 0); 486 if (ret) { 487 dev_err(queue->ctrl->ctrl.device, 488 "failed to initialize MR pool sized %d for QID %d\n", 489 queue->queue_size, idx); 490 goto out_destroy_ring; 491 } 492 493 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 494 495 return 0; 496 497 out_destroy_ring: 498 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 499 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 500 out_destroy_qp: 501 rdma_destroy_qp(queue->cm_id); 502 out_destroy_ib_cq: 503 ib_free_cq(queue->ib_cq); 504 out_put_dev: 505 nvme_rdma_dev_put(queue->device); 506 return ret; 507 } 508 509 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 510 int idx, size_t queue_size) 511 { 512 struct nvme_rdma_queue *queue; 513 struct sockaddr *src_addr = NULL; 514 int ret; 515 516 queue = &ctrl->queues[idx]; 517 queue->ctrl = ctrl; 518 init_completion(&queue->cm_done); 519 520 if (idx > 0) 521 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 522 else 523 queue->cmnd_capsule_len = sizeof(struct nvme_command); 524 525 queue->queue_size = queue_size; 526 527 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 528 RDMA_PS_TCP, IB_QPT_RC); 529 if (IS_ERR(queue->cm_id)) { 530 dev_info(ctrl->ctrl.device, 531 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 532 return PTR_ERR(queue->cm_id); 533 } 534 535 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 536 src_addr = (struct sockaddr *)&ctrl->src_addr; 537 538 queue->cm_error = -ETIMEDOUT; 539 ret = rdma_resolve_addr(queue->cm_id, src_addr, 540 (struct sockaddr *)&ctrl->addr, 541 NVME_RDMA_CONNECT_TIMEOUT_MS); 542 if (ret) { 543 dev_info(ctrl->ctrl.device, 544 "rdma_resolve_addr failed (%d).\n", ret); 545 goto out_destroy_cm_id; 546 } 547 548 ret = nvme_rdma_wait_for_cm(queue); 549 if (ret) { 550 dev_info(ctrl->ctrl.device, 551 "rdma connection establishment failed (%d)\n", ret); 552 goto out_destroy_cm_id; 553 } 554 555 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 556 557 return 0; 558 559 out_destroy_cm_id: 560 rdma_destroy_id(queue->cm_id); 561 nvme_rdma_destroy_queue_ib(queue); 562 return ret; 563 } 564 565 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 566 { 567 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 568 return; 569 570 rdma_disconnect(queue->cm_id); 571 ib_drain_qp(queue->qp); 572 } 573 574 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 575 { 576 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 577 return; 578 579 nvme_rdma_destroy_queue_ib(queue); 580 rdma_destroy_id(queue->cm_id); 581 } 582 583 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 584 { 585 int i; 586 587 for (i = 1; i < ctrl->ctrl.queue_count; i++) 588 nvme_rdma_free_queue(&ctrl->queues[i]); 589 } 590 591 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 592 { 593 int i; 594 595 for (i = 1; i < ctrl->ctrl.queue_count; i++) 596 nvme_rdma_stop_queue(&ctrl->queues[i]); 597 } 598 599 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 600 { 601 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 602 bool poll = nvme_rdma_poll_queue(queue); 603 int ret; 604 605 if (idx) 606 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 607 else 608 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 609 610 if (!ret) 611 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 612 else 613 dev_info(ctrl->ctrl.device, 614 "failed to connect queue: %d ret=%d\n", idx, ret); 615 return ret; 616 } 617 618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 619 { 620 int i, ret = 0; 621 622 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 623 ret = nvme_rdma_start_queue(ctrl, i); 624 if (ret) 625 goto out_stop_queues; 626 } 627 628 return 0; 629 630 out_stop_queues: 631 for (i--; i >= 1; i--) 632 nvme_rdma_stop_queue(&ctrl->queues[i]); 633 return ret; 634 } 635 636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 637 { 638 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 639 struct ib_device *ibdev = ctrl->device->dev; 640 unsigned int nr_io_queues, nr_default_queues; 641 unsigned int nr_read_queues, nr_poll_queues; 642 int i, ret; 643 644 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 645 min(opts->nr_io_queues, num_online_cpus())); 646 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 647 min(opts->nr_write_queues, num_online_cpus())); 648 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 649 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 650 651 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 652 if (ret) 653 return ret; 654 655 ctrl->ctrl.queue_count = nr_io_queues + 1; 656 if (ctrl->ctrl.queue_count < 2) 657 return 0; 658 659 dev_info(ctrl->ctrl.device, 660 "creating %d I/O queues.\n", nr_io_queues); 661 662 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 663 /* 664 * separate read/write queues 665 * hand out dedicated default queues only after we have 666 * sufficient read queues. 667 */ 668 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 669 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 670 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 671 min(nr_default_queues, nr_io_queues); 672 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 673 } else { 674 /* 675 * shared read/write queues 676 * either no write queues were requested, or we don't have 677 * sufficient queue count to have dedicated default queues. 678 */ 679 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 680 min(nr_read_queues, nr_io_queues); 681 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 682 } 683 684 if (opts->nr_poll_queues && nr_io_queues) { 685 /* map dedicated poll queues only if we have queues left */ 686 ctrl->io_queues[HCTX_TYPE_POLL] = 687 min(nr_poll_queues, nr_io_queues); 688 } 689 690 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 691 ret = nvme_rdma_alloc_queue(ctrl, i, 692 ctrl->ctrl.sqsize + 1); 693 if (ret) 694 goto out_free_queues; 695 } 696 697 return 0; 698 699 out_free_queues: 700 for (i--; i >= 1; i--) 701 nvme_rdma_free_queue(&ctrl->queues[i]); 702 703 return ret; 704 } 705 706 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 707 bool admin) 708 { 709 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 710 struct blk_mq_tag_set *set; 711 int ret; 712 713 if (admin) { 714 set = &ctrl->admin_tag_set; 715 memset(set, 0, sizeof(*set)); 716 set->ops = &nvme_rdma_admin_mq_ops; 717 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 718 set->reserved_tags = 2; /* connect + keep-alive */ 719 set->numa_node = nctrl->numa_node; 720 set->cmd_size = sizeof(struct nvme_rdma_request) + 721 SG_CHUNK_SIZE * sizeof(struct scatterlist); 722 set->driver_data = ctrl; 723 set->nr_hw_queues = 1; 724 set->timeout = ADMIN_TIMEOUT; 725 set->flags = BLK_MQ_F_NO_SCHED; 726 } else { 727 set = &ctrl->tag_set; 728 memset(set, 0, sizeof(*set)); 729 set->ops = &nvme_rdma_mq_ops; 730 set->queue_depth = nctrl->sqsize + 1; 731 set->reserved_tags = 1; /* fabric connect */ 732 set->numa_node = nctrl->numa_node; 733 set->flags = BLK_MQ_F_SHOULD_MERGE; 734 set->cmd_size = sizeof(struct nvme_rdma_request) + 735 SG_CHUNK_SIZE * sizeof(struct scatterlist); 736 set->driver_data = ctrl; 737 set->nr_hw_queues = nctrl->queue_count - 1; 738 set->timeout = NVME_IO_TIMEOUT; 739 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 740 } 741 742 ret = blk_mq_alloc_tag_set(set); 743 if (ret) 744 return ERR_PTR(ret); 745 746 return set; 747 } 748 749 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 750 bool remove) 751 { 752 if (remove) { 753 blk_cleanup_queue(ctrl->ctrl.admin_q); 754 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 755 } 756 if (ctrl->async_event_sqe.data) { 757 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 758 sizeof(struct nvme_command), DMA_TO_DEVICE); 759 ctrl->async_event_sqe.data = NULL; 760 } 761 nvme_rdma_free_queue(&ctrl->queues[0]); 762 } 763 764 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 765 bool new) 766 { 767 int error; 768 769 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 770 if (error) 771 return error; 772 773 ctrl->device = ctrl->queues[0].device; 774 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 775 776 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 777 778 /* 779 * Bind the async event SQE DMA mapping to the admin queue lifetime. 780 * It's safe, since any chage in the underlying RDMA device will issue 781 * error recovery and queue re-creation. 782 */ 783 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 784 sizeof(struct nvme_command), DMA_TO_DEVICE); 785 if (error) 786 goto out_free_queue; 787 788 if (new) { 789 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 790 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 791 error = PTR_ERR(ctrl->ctrl.admin_tagset); 792 goto out_free_async_qe; 793 } 794 795 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 796 if (IS_ERR(ctrl->ctrl.admin_q)) { 797 error = PTR_ERR(ctrl->ctrl.admin_q); 798 goto out_free_tagset; 799 } 800 } 801 802 error = nvme_rdma_start_queue(ctrl, 0); 803 if (error) 804 goto out_cleanup_queue; 805 806 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 807 &ctrl->ctrl.cap); 808 if (error) { 809 dev_err(ctrl->ctrl.device, 810 "prop_get NVME_REG_CAP failed\n"); 811 goto out_stop_queue; 812 } 813 814 ctrl->ctrl.sqsize = 815 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 816 817 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 818 if (error) 819 goto out_stop_queue; 820 821 ctrl->ctrl.max_hw_sectors = 822 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 823 824 error = nvme_init_identify(&ctrl->ctrl); 825 if (error) 826 goto out_stop_queue; 827 828 return 0; 829 830 out_stop_queue: 831 nvme_rdma_stop_queue(&ctrl->queues[0]); 832 out_cleanup_queue: 833 if (new) 834 blk_cleanup_queue(ctrl->ctrl.admin_q); 835 out_free_tagset: 836 if (new) 837 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 838 out_free_async_qe: 839 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 840 sizeof(struct nvme_command), DMA_TO_DEVICE); 841 ctrl->async_event_sqe.data = NULL; 842 out_free_queue: 843 nvme_rdma_free_queue(&ctrl->queues[0]); 844 return error; 845 } 846 847 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 848 bool remove) 849 { 850 if (remove) { 851 blk_cleanup_queue(ctrl->ctrl.connect_q); 852 blk_mq_free_tag_set(ctrl->ctrl.tagset); 853 } 854 nvme_rdma_free_io_queues(ctrl); 855 } 856 857 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 858 { 859 int ret; 860 861 ret = nvme_rdma_alloc_io_queues(ctrl); 862 if (ret) 863 return ret; 864 865 if (new) { 866 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 867 if (IS_ERR(ctrl->ctrl.tagset)) { 868 ret = PTR_ERR(ctrl->ctrl.tagset); 869 goto out_free_io_queues; 870 } 871 872 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 873 if (IS_ERR(ctrl->ctrl.connect_q)) { 874 ret = PTR_ERR(ctrl->ctrl.connect_q); 875 goto out_free_tag_set; 876 } 877 } else { 878 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 879 ctrl->ctrl.queue_count - 1); 880 } 881 882 ret = nvme_rdma_start_io_queues(ctrl); 883 if (ret) 884 goto out_cleanup_connect_q; 885 886 return 0; 887 888 out_cleanup_connect_q: 889 if (new) 890 blk_cleanup_queue(ctrl->ctrl.connect_q); 891 out_free_tag_set: 892 if (new) 893 blk_mq_free_tag_set(ctrl->ctrl.tagset); 894 out_free_io_queues: 895 nvme_rdma_free_io_queues(ctrl); 896 return ret; 897 } 898 899 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 900 bool remove) 901 { 902 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 903 nvme_rdma_stop_queue(&ctrl->queues[0]); 904 if (ctrl->ctrl.admin_tagset) 905 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 906 nvme_cancel_request, &ctrl->ctrl); 907 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 908 nvme_rdma_destroy_admin_queue(ctrl, remove); 909 } 910 911 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 912 bool remove) 913 { 914 if (ctrl->ctrl.queue_count > 1) { 915 nvme_stop_queues(&ctrl->ctrl); 916 nvme_rdma_stop_io_queues(ctrl); 917 if (ctrl->ctrl.tagset) 918 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 919 nvme_cancel_request, &ctrl->ctrl); 920 if (remove) 921 nvme_start_queues(&ctrl->ctrl); 922 nvme_rdma_destroy_io_queues(ctrl, remove); 923 } 924 } 925 926 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 927 { 928 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 929 930 if (list_empty(&ctrl->list)) 931 goto free_ctrl; 932 933 mutex_lock(&nvme_rdma_ctrl_mutex); 934 list_del(&ctrl->list); 935 mutex_unlock(&nvme_rdma_ctrl_mutex); 936 937 nvmf_free_options(nctrl->opts); 938 free_ctrl: 939 kfree(ctrl->queues); 940 kfree(ctrl); 941 } 942 943 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 944 { 945 /* If we are resetting/deleting then do nothing */ 946 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 947 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 948 ctrl->ctrl.state == NVME_CTRL_LIVE); 949 return; 950 } 951 952 if (nvmf_should_reconnect(&ctrl->ctrl)) { 953 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 954 ctrl->ctrl.opts->reconnect_delay); 955 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 956 ctrl->ctrl.opts->reconnect_delay * HZ); 957 } else { 958 nvme_delete_ctrl(&ctrl->ctrl); 959 } 960 } 961 962 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 963 { 964 int ret = -EINVAL; 965 bool changed; 966 967 ret = nvme_rdma_configure_admin_queue(ctrl, new); 968 if (ret) 969 return ret; 970 971 if (ctrl->ctrl.icdoff) { 972 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 973 goto destroy_admin; 974 } 975 976 if (!(ctrl->ctrl.sgls & (1 << 2))) { 977 dev_err(ctrl->ctrl.device, 978 "Mandatory keyed sgls are not supported!\n"); 979 goto destroy_admin; 980 } 981 982 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 983 dev_warn(ctrl->ctrl.device, 984 "queue_size %zu > ctrl sqsize %u, clamping down\n", 985 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 986 } 987 988 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 989 dev_warn(ctrl->ctrl.device, 990 "sqsize %u > ctrl maxcmd %u, clamping down\n", 991 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 992 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 993 } 994 995 if (ctrl->ctrl.sgls & (1 << 20)) 996 ctrl->use_inline_data = true; 997 998 if (ctrl->ctrl.queue_count > 1) { 999 ret = nvme_rdma_configure_io_queues(ctrl, new); 1000 if (ret) 1001 goto destroy_admin; 1002 } 1003 1004 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1005 if (!changed) { 1006 /* state change failure is ok if we're in DELETING state */ 1007 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1008 ret = -EINVAL; 1009 goto destroy_io; 1010 } 1011 1012 nvme_start_ctrl(&ctrl->ctrl); 1013 return 0; 1014 1015 destroy_io: 1016 if (ctrl->ctrl.queue_count > 1) 1017 nvme_rdma_destroy_io_queues(ctrl, new); 1018 destroy_admin: 1019 nvme_rdma_stop_queue(&ctrl->queues[0]); 1020 nvme_rdma_destroy_admin_queue(ctrl, new); 1021 return ret; 1022 } 1023 1024 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1025 { 1026 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1027 struct nvme_rdma_ctrl, reconnect_work); 1028 1029 ++ctrl->ctrl.nr_reconnects; 1030 1031 if (nvme_rdma_setup_ctrl(ctrl, false)) 1032 goto requeue; 1033 1034 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1035 ctrl->ctrl.nr_reconnects); 1036 1037 ctrl->ctrl.nr_reconnects = 0; 1038 1039 return; 1040 1041 requeue: 1042 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1043 ctrl->ctrl.nr_reconnects); 1044 nvme_rdma_reconnect_or_remove(ctrl); 1045 } 1046 1047 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1048 { 1049 struct nvme_rdma_ctrl *ctrl = container_of(work, 1050 struct nvme_rdma_ctrl, err_work); 1051 1052 nvme_stop_keep_alive(&ctrl->ctrl); 1053 nvme_rdma_teardown_io_queues(ctrl, false); 1054 nvme_start_queues(&ctrl->ctrl); 1055 nvme_rdma_teardown_admin_queue(ctrl, false); 1056 1057 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1058 /* state change failure is ok if we're in DELETING state */ 1059 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1060 return; 1061 } 1062 1063 nvme_rdma_reconnect_or_remove(ctrl); 1064 } 1065 1066 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1067 { 1068 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1069 return; 1070 1071 queue_work(nvme_wq, &ctrl->err_work); 1072 } 1073 1074 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1075 const char *op) 1076 { 1077 struct nvme_rdma_queue *queue = cq->cq_context; 1078 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1079 1080 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1081 dev_info(ctrl->ctrl.device, 1082 "%s for CQE 0x%p failed with status %s (%d)\n", 1083 op, wc->wr_cqe, 1084 ib_wc_status_msg(wc->status), wc->status); 1085 nvme_rdma_error_recovery(ctrl); 1086 } 1087 1088 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1089 { 1090 if (unlikely(wc->status != IB_WC_SUCCESS)) 1091 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1092 } 1093 1094 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1095 { 1096 struct nvme_rdma_request *req = 1097 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1098 struct request *rq = blk_mq_rq_from_pdu(req); 1099 1100 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1101 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1102 return; 1103 } 1104 1105 if (refcount_dec_and_test(&req->ref)) 1106 nvme_end_request(rq, req->status, req->result); 1107 1108 } 1109 1110 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1111 struct nvme_rdma_request *req) 1112 { 1113 struct ib_send_wr wr = { 1114 .opcode = IB_WR_LOCAL_INV, 1115 .next = NULL, 1116 .num_sge = 0, 1117 .send_flags = IB_SEND_SIGNALED, 1118 .ex.invalidate_rkey = req->mr->rkey, 1119 }; 1120 1121 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1122 wr.wr_cqe = &req->reg_cqe; 1123 1124 return ib_post_send(queue->qp, &wr, NULL); 1125 } 1126 1127 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1128 struct request *rq) 1129 { 1130 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1131 struct nvme_rdma_device *dev = queue->device; 1132 struct ib_device *ibdev = dev->dev; 1133 1134 if (!blk_rq_nr_phys_segments(rq)) 1135 return; 1136 1137 if (req->mr) { 1138 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1139 req->mr = NULL; 1140 } 1141 1142 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1143 req->nents, rq_data_dir(rq) == 1144 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1145 1146 nvme_cleanup_cmd(rq); 1147 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE); 1148 } 1149 1150 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1151 { 1152 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1153 1154 sg->addr = 0; 1155 put_unaligned_le24(0, sg->length); 1156 put_unaligned_le32(0, sg->key); 1157 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1158 return 0; 1159 } 1160 1161 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1162 struct nvme_rdma_request *req, struct nvme_command *c, 1163 int count) 1164 { 1165 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1166 struct scatterlist *sgl = req->sg_table.sgl; 1167 struct ib_sge *sge = &req->sge[1]; 1168 u32 len = 0; 1169 int i; 1170 1171 for (i = 0; i < count; i++, sgl++, sge++) { 1172 sge->addr = sg_dma_address(sgl); 1173 sge->length = sg_dma_len(sgl); 1174 sge->lkey = queue->device->pd->local_dma_lkey; 1175 len += sge->length; 1176 } 1177 1178 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1179 sg->length = cpu_to_le32(len); 1180 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1181 1182 req->num_sge += count; 1183 return 0; 1184 } 1185 1186 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1187 struct nvme_rdma_request *req, struct nvme_command *c) 1188 { 1189 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1190 1191 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1192 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1193 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1194 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1195 return 0; 1196 } 1197 1198 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1199 struct nvme_rdma_request *req, struct nvme_command *c, 1200 int count) 1201 { 1202 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1203 int nr; 1204 1205 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1206 if (WARN_ON_ONCE(!req->mr)) 1207 return -EAGAIN; 1208 1209 /* 1210 * Align the MR to a 4K page size to match the ctrl page size and 1211 * the block virtual boundary. 1212 */ 1213 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1214 if (unlikely(nr < count)) { 1215 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1216 req->mr = NULL; 1217 if (nr < 0) 1218 return nr; 1219 return -EINVAL; 1220 } 1221 1222 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1223 1224 req->reg_cqe.done = nvme_rdma_memreg_done; 1225 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1226 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1227 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1228 req->reg_wr.wr.num_sge = 0; 1229 req->reg_wr.mr = req->mr; 1230 req->reg_wr.key = req->mr->rkey; 1231 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1232 IB_ACCESS_REMOTE_READ | 1233 IB_ACCESS_REMOTE_WRITE; 1234 1235 sg->addr = cpu_to_le64(req->mr->iova); 1236 put_unaligned_le24(req->mr->length, sg->length); 1237 put_unaligned_le32(req->mr->rkey, sg->key); 1238 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1239 NVME_SGL_FMT_INVALIDATE; 1240 1241 return 0; 1242 } 1243 1244 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1245 struct request *rq, struct nvme_command *c) 1246 { 1247 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1248 struct nvme_rdma_device *dev = queue->device; 1249 struct ib_device *ibdev = dev->dev; 1250 int count, ret; 1251 1252 req->num_sge = 1; 1253 refcount_set(&req->ref, 2); /* send and recv completions */ 1254 1255 c->common.flags |= NVME_CMD_SGL_METABUF; 1256 1257 if (!blk_rq_nr_phys_segments(rq)) 1258 return nvme_rdma_set_sg_null(c); 1259 1260 req->sg_table.sgl = req->first_sgl; 1261 ret = sg_alloc_table_chained(&req->sg_table, 1262 blk_rq_nr_phys_segments(rq), req->sg_table.sgl, 1263 SG_CHUNK_SIZE); 1264 if (ret) 1265 return -ENOMEM; 1266 1267 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1268 1269 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1270 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1271 if (unlikely(count <= 0)) { 1272 ret = -EIO; 1273 goto out_free_table; 1274 } 1275 1276 if (count <= dev->num_inline_segments) { 1277 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1278 queue->ctrl->use_inline_data && 1279 blk_rq_payload_bytes(rq) <= 1280 nvme_rdma_inline_data_size(queue)) { 1281 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1282 goto out; 1283 } 1284 1285 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1286 ret = nvme_rdma_map_sg_single(queue, req, c); 1287 goto out; 1288 } 1289 } 1290 1291 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1292 out: 1293 if (unlikely(ret)) 1294 goto out_unmap_sg; 1295 1296 return 0; 1297 1298 out_unmap_sg: 1299 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1300 req->nents, rq_data_dir(rq) == 1301 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1302 out_free_table: 1303 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE); 1304 return ret; 1305 } 1306 1307 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1308 { 1309 struct nvme_rdma_qe *qe = 1310 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1311 struct nvme_rdma_request *req = 1312 container_of(qe, struct nvme_rdma_request, sqe); 1313 struct request *rq = blk_mq_rq_from_pdu(req); 1314 1315 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1316 nvme_rdma_wr_error(cq, wc, "SEND"); 1317 return; 1318 } 1319 1320 if (refcount_dec_and_test(&req->ref)) 1321 nvme_end_request(rq, req->status, req->result); 1322 } 1323 1324 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1325 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1326 struct ib_send_wr *first) 1327 { 1328 struct ib_send_wr wr; 1329 int ret; 1330 1331 sge->addr = qe->dma; 1332 sge->length = sizeof(struct nvme_command), 1333 sge->lkey = queue->device->pd->local_dma_lkey; 1334 1335 wr.next = NULL; 1336 wr.wr_cqe = &qe->cqe; 1337 wr.sg_list = sge; 1338 wr.num_sge = num_sge; 1339 wr.opcode = IB_WR_SEND; 1340 wr.send_flags = IB_SEND_SIGNALED; 1341 1342 if (first) 1343 first->next = ≀ 1344 else 1345 first = ≀ 1346 1347 ret = ib_post_send(queue->qp, first, NULL); 1348 if (unlikely(ret)) { 1349 dev_err(queue->ctrl->ctrl.device, 1350 "%s failed with error code %d\n", __func__, ret); 1351 } 1352 return ret; 1353 } 1354 1355 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1356 struct nvme_rdma_qe *qe) 1357 { 1358 struct ib_recv_wr wr; 1359 struct ib_sge list; 1360 int ret; 1361 1362 list.addr = qe->dma; 1363 list.length = sizeof(struct nvme_completion); 1364 list.lkey = queue->device->pd->local_dma_lkey; 1365 1366 qe->cqe.done = nvme_rdma_recv_done; 1367 1368 wr.next = NULL; 1369 wr.wr_cqe = &qe->cqe; 1370 wr.sg_list = &list; 1371 wr.num_sge = 1; 1372 1373 ret = ib_post_recv(queue->qp, &wr, NULL); 1374 if (unlikely(ret)) { 1375 dev_err(queue->ctrl->ctrl.device, 1376 "%s failed with error code %d\n", __func__, ret); 1377 } 1378 return ret; 1379 } 1380 1381 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1382 { 1383 u32 queue_idx = nvme_rdma_queue_idx(queue); 1384 1385 if (queue_idx == 0) 1386 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1387 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1388 } 1389 1390 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1391 { 1392 if (unlikely(wc->status != IB_WC_SUCCESS)) 1393 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1394 } 1395 1396 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1397 { 1398 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1399 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1400 struct ib_device *dev = queue->device->dev; 1401 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1402 struct nvme_command *cmd = sqe->data; 1403 struct ib_sge sge; 1404 int ret; 1405 1406 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1407 1408 memset(cmd, 0, sizeof(*cmd)); 1409 cmd->common.opcode = nvme_admin_async_event; 1410 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1411 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1412 nvme_rdma_set_sg_null(cmd); 1413 1414 sqe->cqe.done = nvme_rdma_async_done; 1415 1416 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1417 DMA_TO_DEVICE); 1418 1419 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1420 WARN_ON_ONCE(ret); 1421 } 1422 1423 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1424 struct nvme_completion *cqe, struct ib_wc *wc) 1425 { 1426 struct request *rq; 1427 struct nvme_rdma_request *req; 1428 1429 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1430 if (!rq) { 1431 dev_err(queue->ctrl->ctrl.device, 1432 "tag 0x%x on QP %#x not found\n", 1433 cqe->command_id, queue->qp->qp_num); 1434 nvme_rdma_error_recovery(queue->ctrl); 1435 return; 1436 } 1437 req = blk_mq_rq_to_pdu(rq); 1438 1439 req->status = cqe->status; 1440 req->result = cqe->result; 1441 1442 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1443 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1444 dev_err(queue->ctrl->ctrl.device, 1445 "Bogus remote invalidation for rkey %#x\n", 1446 req->mr->rkey); 1447 nvme_rdma_error_recovery(queue->ctrl); 1448 } 1449 } else if (req->mr) { 1450 int ret; 1451 1452 ret = nvme_rdma_inv_rkey(queue, req); 1453 if (unlikely(ret < 0)) { 1454 dev_err(queue->ctrl->ctrl.device, 1455 "Queueing INV WR for rkey %#x failed (%d)\n", 1456 req->mr->rkey, ret); 1457 nvme_rdma_error_recovery(queue->ctrl); 1458 } 1459 /* the local invalidation completion will end the request */ 1460 return; 1461 } 1462 1463 if (refcount_dec_and_test(&req->ref)) 1464 nvme_end_request(rq, req->status, req->result); 1465 } 1466 1467 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1468 { 1469 struct nvme_rdma_qe *qe = 1470 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1471 struct nvme_rdma_queue *queue = cq->cq_context; 1472 struct ib_device *ibdev = queue->device->dev; 1473 struct nvme_completion *cqe = qe->data; 1474 const size_t len = sizeof(struct nvme_completion); 1475 1476 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1477 nvme_rdma_wr_error(cq, wc, "RECV"); 1478 return; 1479 } 1480 1481 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1482 /* 1483 * AEN requests are special as they don't time out and can 1484 * survive any kind of queue freeze and often don't respond to 1485 * aborts. We don't even bother to allocate a struct request 1486 * for them but rather special case them here. 1487 */ 1488 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1489 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1490 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1491 &cqe->result); 1492 else 1493 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1494 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1495 1496 nvme_rdma_post_recv(queue, qe); 1497 } 1498 1499 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1500 { 1501 int ret, i; 1502 1503 for (i = 0; i < queue->queue_size; i++) { 1504 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1505 if (ret) 1506 goto out_destroy_queue_ib; 1507 } 1508 1509 return 0; 1510 1511 out_destroy_queue_ib: 1512 nvme_rdma_destroy_queue_ib(queue); 1513 return ret; 1514 } 1515 1516 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1517 struct rdma_cm_event *ev) 1518 { 1519 struct rdma_cm_id *cm_id = queue->cm_id; 1520 int status = ev->status; 1521 const char *rej_msg; 1522 const struct nvme_rdma_cm_rej *rej_data; 1523 u8 rej_data_len; 1524 1525 rej_msg = rdma_reject_msg(cm_id, status); 1526 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1527 1528 if (rej_data && rej_data_len >= sizeof(u16)) { 1529 u16 sts = le16_to_cpu(rej_data->sts); 1530 1531 dev_err(queue->ctrl->ctrl.device, 1532 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1533 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1534 } else { 1535 dev_err(queue->ctrl->ctrl.device, 1536 "Connect rejected: status %d (%s).\n", status, rej_msg); 1537 } 1538 1539 return -ECONNRESET; 1540 } 1541 1542 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1543 { 1544 int ret; 1545 1546 ret = nvme_rdma_create_queue_ib(queue); 1547 if (ret) 1548 return ret; 1549 1550 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1551 if (ret) { 1552 dev_err(queue->ctrl->ctrl.device, 1553 "rdma_resolve_route failed (%d).\n", 1554 queue->cm_error); 1555 goto out_destroy_queue; 1556 } 1557 1558 return 0; 1559 1560 out_destroy_queue: 1561 nvme_rdma_destroy_queue_ib(queue); 1562 return ret; 1563 } 1564 1565 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1566 { 1567 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1568 struct rdma_conn_param param = { }; 1569 struct nvme_rdma_cm_req priv = { }; 1570 int ret; 1571 1572 param.qp_num = queue->qp->qp_num; 1573 param.flow_control = 1; 1574 1575 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1576 /* maximum retry count */ 1577 param.retry_count = 7; 1578 param.rnr_retry_count = 7; 1579 param.private_data = &priv; 1580 param.private_data_len = sizeof(priv); 1581 1582 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1583 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1584 /* 1585 * set the admin queue depth to the minimum size 1586 * specified by the Fabrics standard. 1587 */ 1588 if (priv.qid == 0) { 1589 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1590 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1591 } else { 1592 /* 1593 * current interpretation of the fabrics spec 1594 * is at minimum you make hrqsize sqsize+1, or a 1595 * 1's based representation of sqsize. 1596 */ 1597 priv.hrqsize = cpu_to_le16(queue->queue_size); 1598 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1599 } 1600 1601 ret = rdma_connect(queue->cm_id, ¶m); 1602 if (ret) { 1603 dev_err(ctrl->ctrl.device, 1604 "rdma_connect failed (%d).\n", ret); 1605 goto out_destroy_queue_ib; 1606 } 1607 1608 return 0; 1609 1610 out_destroy_queue_ib: 1611 nvme_rdma_destroy_queue_ib(queue); 1612 return ret; 1613 } 1614 1615 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1616 struct rdma_cm_event *ev) 1617 { 1618 struct nvme_rdma_queue *queue = cm_id->context; 1619 int cm_error = 0; 1620 1621 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1622 rdma_event_msg(ev->event), ev->event, 1623 ev->status, cm_id); 1624 1625 switch (ev->event) { 1626 case RDMA_CM_EVENT_ADDR_RESOLVED: 1627 cm_error = nvme_rdma_addr_resolved(queue); 1628 break; 1629 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1630 cm_error = nvme_rdma_route_resolved(queue); 1631 break; 1632 case RDMA_CM_EVENT_ESTABLISHED: 1633 queue->cm_error = nvme_rdma_conn_established(queue); 1634 /* complete cm_done regardless of success/failure */ 1635 complete(&queue->cm_done); 1636 return 0; 1637 case RDMA_CM_EVENT_REJECTED: 1638 nvme_rdma_destroy_queue_ib(queue); 1639 cm_error = nvme_rdma_conn_rejected(queue, ev); 1640 break; 1641 case RDMA_CM_EVENT_ROUTE_ERROR: 1642 case RDMA_CM_EVENT_CONNECT_ERROR: 1643 case RDMA_CM_EVENT_UNREACHABLE: 1644 nvme_rdma_destroy_queue_ib(queue); 1645 /* fall through */ 1646 case RDMA_CM_EVENT_ADDR_ERROR: 1647 dev_dbg(queue->ctrl->ctrl.device, 1648 "CM error event %d\n", ev->event); 1649 cm_error = -ECONNRESET; 1650 break; 1651 case RDMA_CM_EVENT_DISCONNECTED: 1652 case RDMA_CM_EVENT_ADDR_CHANGE: 1653 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1654 dev_dbg(queue->ctrl->ctrl.device, 1655 "disconnect received - connection closed\n"); 1656 nvme_rdma_error_recovery(queue->ctrl); 1657 break; 1658 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1659 /* device removal is handled via the ib_client API */ 1660 break; 1661 default: 1662 dev_err(queue->ctrl->ctrl.device, 1663 "Unexpected RDMA CM event (%d)\n", ev->event); 1664 nvme_rdma_error_recovery(queue->ctrl); 1665 break; 1666 } 1667 1668 if (cm_error) { 1669 queue->cm_error = cm_error; 1670 complete(&queue->cm_done); 1671 } 1672 1673 return 0; 1674 } 1675 1676 static enum blk_eh_timer_return 1677 nvme_rdma_timeout(struct request *rq, bool reserved) 1678 { 1679 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1680 struct nvme_rdma_queue *queue = req->queue; 1681 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1682 1683 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1684 rq->tag, nvme_rdma_queue_idx(queue)); 1685 1686 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1687 /* 1688 * Teardown immediately if controller times out while starting 1689 * or we are already started error recovery. all outstanding 1690 * requests are completed on shutdown, so we return BLK_EH_DONE. 1691 */ 1692 flush_work(&ctrl->err_work); 1693 nvme_rdma_teardown_io_queues(ctrl, false); 1694 nvme_rdma_teardown_admin_queue(ctrl, false); 1695 return BLK_EH_DONE; 1696 } 1697 1698 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1699 nvme_rdma_error_recovery(ctrl); 1700 1701 return BLK_EH_RESET_TIMER; 1702 } 1703 1704 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1705 const struct blk_mq_queue_data *bd) 1706 { 1707 struct nvme_ns *ns = hctx->queue->queuedata; 1708 struct nvme_rdma_queue *queue = hctx->driver_data; 1709 struct request *rq = bd->rq; 1710 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1711 struct nvme_rdma_qe *sqe = &req->sqe; 1712 struct nvme_command *c = sqe->data; 1713 struct ib_device *dev; 1714 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1715 blk_status_t ret; 1716 int err; 1717 1718 WARN_ON_ONCE(rq->tag < 0); 1719 1720 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1721 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1722 1723 dev = queue->device->dev; 1724 1725 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 1726 sizeof(struct nvme_command), 1727 DMA_TO_DEVICE); 1728 err = ib_dma_mapping_error(dev, req->sqe.dma); 1729 if (unlikely(err)) 1730 return BLK_STS_RESOURCE; 1731 1732 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1733 sizeof(struct nvme_command), DMA_TO_DEVICE); 1734 1735 ret = nvme_setup_cmd(ns, rq, c); 1736 if (ret) 1737 goto unmap_qe; 1738 1739 blk_mq_start_request(rq); 1740 1741 err = nvme_rdma_map_data(queue, rq, c); 1742 if (unlikely(err < 0)) { 1743 dev_err(queue->ctrl->ctrl.device, 1744 "Failed to map data (%d)\n", err); 1745 nvme_cleanup_cmd(rq); 1746 goto err; 1747 } 1748 1749 sqe->cqe.done = nvme_rdma_send_done; 1750 1751 ib_dma_sync_single_for_device(dev, sqe->dma, 1752 sizeof(struct nvme_command), DMA_TO_DEVICE); 1753 1754 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1755 req->mr ? &req->reg_wr.wr : NULL); 1756 if (unlikely(err)) { 1757 nvme_rdma_unmap_data(queue, rq); 1758 goto err; 1759 } 1760 1761 return BLK_STS_OK; 1762 1763 err: 1764 if (err == -ENOMEM || err == -EAGAIN) 1765 ret = BLK_STS_RESOURCE; 1766 else 1767 ret = BLK_STS_IOERR; 1768 unmap_qe: 1769 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 1770 DMA_TO_DEVICE); 1771 return ret; 1772 } 1773 1774 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1775 { 1776 struct nvme_rdma_queue *queue = hctx->driver_data; 1777 1778 return ib_process_cq_direct(queue->ib_cq, -1); 1779 } 1780 1781 static void nvme_rdma_complete_rq(struct request *rq) 1782 { 1783 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1784 struct nvme_rdma_queue *queue = req->queue; 1785 struct ib_device *ibdev = queue->device->dev; 1786 1787 nvme_rdma_unmap_data(queue, rq); 1788 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 1789 DMA_TO_DEVICE); 1790 nvme_complete_rq(rq); 1791 } 1792 1793 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1794 { 1795 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1796 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1797 1798 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 1799 /* separate read/write queues */ 1800 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1801 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1802 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1803 set->map[HCTX_TYPE_READ].nr_queues = 1804 ctrl->io_queues[HCTX_TYPE_READ]; 1805 set->map[HCTX_TYPE_READ].queue_offset = 1806 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1807 } else { 1808 /* shared read/write queues */ 1809 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1810 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1811 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1812 set->map[HCTX_TYPE_READ].nr_queues = 1813 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1814 set->map[HCTX_TYPE_READ].queue_offset = 0; 1815 } 1816 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1817 ctrl->device->dev, 0); 1818 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1819 ctrl->device->dev, 0); 1820 1821 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 1822 /* map dedicated poll queues only if we have queues left */ 1823 set->map[HCTX_TYPE_POLL].nr_queues = 1824 ctrl->io_queues[HCTX_TYPE_POLL]; 1825 set->map[HCTX_TYPE_POLL].queue_offset = 1826 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1827 ctrl->io_queues[HCTX_TYPE_READ]; 1828 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1829 } 1830 1831 dev_info(ctrl->ctrl.device, 1832 "mapped %d/%d/%d default/read/poll queues.\n", 1833 ctrl->io_queues[HCTX_TYPE_DEFAULT], 1834 ctrl->io_queues[HCTX_TYPE_READ], 1835 ctrl->io_queues[HCTX_TYPE_POLL]); 1836 1837 return 0; 1838 } 1839 1840 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1841 .queue_rq = nvme_rdma_queue_rq, 1842 .complete = nvme_rdma_complete_rq, 1843 .init_request = nvme_rdma_init_request, 1844 .exit_request = nvme_rdma_exit_request, 1845 .init_hctx = nvme_rdma_init_hctx, 1846 .timeout = nvme_rdma_timeout, 1847 .map_queues = nvme_rdma_map_queues, 1848 .poll = nvme_rdma_poll, 1849 }; 1850 1851 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1852 .queue_rq = nvme_rdma_queue_rq, 1853 .complete = nvme_rdma_complete_rq, 1854 .init_request = nvme_rdma_init_request, 1855 .exit_request = nvme_rdma_exit_request, 1856 .init_hctx = nvme_rdma_init_admin_hctx, 1857 .timeout = nvme_rdma_timeout, 1858 }; 1859 1860 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1861 { 1862 cancel_work_sync(&ctrl->err_work); 1863 cancel_delayed_work_sync(&ctrl->reconnect_work); 1864 1865 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1866 if (shutdown) 1867 nvme_shutdown_ctrl(&ctrl->ctrl); 1868 else 1869 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1870 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1871 } 1872 1873 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1874 { 1875 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1876 } 1877 1878 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1879 { 1880 struct nvme_rdma_ctrl *ctrl = 1881 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1882 1883 nvme_stop_ctrl(&ctrl->ctrl); 1884 nvme_rdma_shutdown_ctrl(ctrl, false); 1885 1886 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1887 /* state change failure should never happen */ 1888 WARN_ON_ONCE(1); 1889 return; 1890 } 1891 1892 if (nvme_rdma_setup_ctrl(ctrl, false)) 1893 goto out_fail; 1894 1895 return; 1896 1897 out_fail: 1898 ++ctrl->ctrl.nr_reconnects; 1899 nvme_rdma_reconnect_or_remove(ctrl); 1900 } 1901 1902 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1903 .name = "rdma", 1904 .module = THIS_MODULE, 1905 .flags = NVME_F_FABRICS, 1906 .reg_read32 = nvmf_reg_read32, 1907 .reg_read64 = nvmf_reg_read64, 1908 .reg_write32 = nvmf_reg_write32, 1909 .free_ctrl = nvme_rdma_free_ctrl, 1910 .submit_async_event = nvme_rdma_submit_async_event, 1911 .delete_ctrl = nvme_rdma_delete_ctrl, 1912 .get_address = nvmf_get_address, 1913 }; 1914 1915 /* 1916 * Fails a connection request if it matches an existing controller 1917 * (association) with the same tuple: 1918 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1919 * 1920 * if local address is not specified in the request, it will match an 1921 * existing controller with all the other parameters the same and no 1922 * local port address specified as well. 1923 * 1924 * The ports don't need to be compared as they are intrinsically 1925 * already matched by the port pointers supplied. 1926 */ 1927 static bool 1928 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1929 { 1930 struct nvme_rdma_ctrl *ctrl; 1931 bool found = false; 1932 1933 mutex_lock(&nvme_rdma_ctrl_mutex); 1934 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1935 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1936 if (found) 1937 break; 1938 } 1939 mutex_unlock(&nvme_rdma_ctrl_mutex); 1940 1941 return found; 1942 } 1943 1944 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1945 struct nvmf_ctrl_options *opts) 1946 { 1947 struct nvme_rdma_ctrl *ctrl; 1948 int ret; 1949 bool changed; 1950 1951 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1952 if (!ctrl) 1953 return ERR_PTR(-ENOMEM); 1954 ctrl->ctrl.opts = opts; 1955 INIT_LIST_HEAD(&ctrl->list); 1956 1957 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1958 opts->trsvcid = 1959 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1960 if (!opts->trsvcid) { 1961 ret = -ENOMEM; 1962 goto out_free_ctrl; 1963 } 1964 opts->mask |= NVMF_OPT_TRSVCID; 1965 } 1966 1967 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1968 opts->traddr, opts->trsvcid, &ctrl->addr); 1969 if (ret) { 1970 pr_err("malformed address passed: %s:%s\n", 1971 opts->traddr, opts->trsvcid); 1972 goto out_free_ctrl; 1973 } 1974 1975 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1976 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1977 opts->host_traddr, NULL, &ctrl->src_addr); 1978 if (ret) { 1979 pr_err("malformed src address passed: %s\n", 1980 opts->host_traddr); 1981 goto out_free_ctrl; 1982 } 1983 } 1984 1985 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1986 ret = -EALREADY; 1987 goto out_free_ctrl; 1988 } 1989 1990 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1991 nvme_rdma_reconnect_ctrl_work); 1992 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1993 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1994 1995 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1996 opts->nr_poll_queues + 1; 1997 ctrl->ctrl.sqsize = opts->queue_size - 1; 1998 ctrl->ctrl.kato = opts->kato; 1999 2000 ret = -ENOMEM; 2001 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2002 GFP_KERNEL); 2003 if (!ctrl->queues) 2004 goto out_free_ctrl; 2005 2006 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2007 0 /* no quirks, we're perfect! */); 2008 if (ret) 2009 goto out_kfree_queues; 2010 2011 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2012 WARN_ON_ONCE(!changed); 2013 2014 ret = nvme_rdma_setup_ctrl(ctrl, true); 2015 if (ret) 2016 goto out_uninit_ctrl; 2017 2018 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2019 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2020 2021 nvme_get_ctrl(&ctrl->ctrl); 2022 2023 mutex_lock(&nvme_rdma_ctrl_mutex); 2024 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2025 mutex_unlock(&nvme_rdma_ctrl_mutex); 2026 2027 return &ctrl->ctrl; 2028 2029 out_uninit_ctrl: 2030 nvme_uninit_ctrl(&ctrl->ctrl); 2031 nvme_put_ctrl(&ctrl->ctrl); 2032 if (ret > 0) 2033 ret = -EIO; 2034 return ERR_PTR(ret); 2035 out_kfree_queues: 2036 kfree(ctrl->queues); 2037 out_free_ctrl: 2038 kfree(ctrl); 2039 return ERR_PTR(ret); 2040 } 2041 2042 static struct nvmf_transport_ops nvme_rdma_transport = { 2043 .name = "rdma", 2044 .module = THIS_MODULE, 2045 .required_opts = NVMF_OPT_TRADDR, 2046 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2047 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2048 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES, 2049 .create_ctrl = nvme_rdma_create_ctrl, 2050 }; 2051 2052 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2053 { 2054 struct nvme_rdma_ctrl *ctrl; 2055 struct nvme_rdma_device *ndev; 2056 bool found = false; 2057 2058 mutex_lock(&device_list_mutex); 2059 list_for_each_entry(ndev, &device_list, entry) { 2060 if (ndev->dev == ib_device) { 2061 found = true; 2062 break; 2063 } 2064 } 2065 mutex_unlock(&device_list_mutex); 2066 2067 if (!found) 2068 return; 2069 2070 /* Delete all controllers using this device */ 2071 mutex_lock(&nvme_rdma_ctrl_mutex); 2072 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2073 if (ctrl->device->dev != ib_device) 2074 continue; 2075 nvme_delete_ctrl(&ctrl->ctrl); 2076 } 2077 mutex_unlock(&nvme_rdma_ctrl_mutex); 2078 2079 flush_workqueue(nvme_delete_wq); 2080 } 2081 2082 static struct ib_client nvme_rdma_ib_client = { 2083 .name = "nvme_rdma", 2084 .remove = nvme_rdma_remove_one 2085 }; 2086 2087 static int __init nvme_rdma_init_module(void) 2088 { 2089 int ret; 2090 2091 ret = ib_register_client(&nvme_rdma_ib_client); 2092 if (ret) 2093 return ret; 2094 2095 ret = nvmf_register_transport(&nvme_rdma_transport); 2096 if (ret) 2097 goto err_unreg_client; 2098 2099 return 0; 2100 2101 err_unreg_client: 2102 ib_unregister_client(&nvme_rdma_ib_client); 2103 return ret; 2104 } 2105 2106 static void __exit nvme_rdma_cleanup_module(void) 2107 { 2108 nvmf_unregister_transport(&nvme_rdma_transport); 2109 ib_unregister_client(&nvme_rdma_ib_client); 2110 } 2111 2112 module_init(nvme_rdma_init_module); 2113 module_exit(nvme_rdma_cleanup_module); 2114 2115 MODULE_LICENSE("GPL v2"); 2116