xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 8cb5d748)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29 
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33 
34 #include "nvme.h"
35 #include "fabrics.h"
36 
37 
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
39 
40 #define NVME_RDMA_MAX_SEGMENTS		256
41 
42 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
43 
44 /*
45  * We handle AEN commands ourselves and don't even let the
46  * block layer know about them.
47  */
48 #define NVME_RDMA_NR_AEN_COMMANDS      1
49 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
50 	(NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51 
52 struct nvme_rdma_device {
53 	struct ib_device       *dev;
54 	struct ib_pd	       *pd;
55 	struct kref		ref;
56 	struct list_head	entry;
57 };
58 
59 struct nvme_rdma_qe {
60 	struct ib_cqe		cqe;
61 	void			*data;
62 	u64			dma;
63 };
64 
65 struct nvme_rdma_queue;
66 struct nvme_rdma_request {
67 	struct nvme_request	req;
68 	struct ib_mr		*mr;
69 	struct nvme_rdma_qe	sqe;
70 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 	u32			num_sge;
72 	int			nents;
73 	bool			inline_data;
74 	struct ib_reg_wr	reg_wr;
75 	struct ib_cqe		reg_cqe;
76 	struct nvme_rdma_queue  *queue;
77 	struct sg_table		sg_table;
78 	struct scatterlist	first_sgl[];
79 };
80 
81 enum nvme_rdma_queue_flags {
82 	NVME_RDMA_Q_LIVE		= 0,
83 	NVME_RDMA_Q_DELETING		= 1,
84 };
85 
86 struct nvme_rdma_queue {
87 	struct nvme_rdma_qe	*rsp_ring;
88 	atomic_t		sig_count;
89 	int			queue_size;
90 	size_t			cmnd_capsule_len;
91 	struct nvme_rdma_ctrl	*ctrl;
92 	struct nvme_rdma_device	*device;
93 	struct ib_cq		*ib_cq;
94 	struct ib_qp		*qp;
95 
96 	unsigned long		flags;
97 	struct rdma_cm_id	*cm_id;
98 	int			cm_error;
99 	struct completion	cm_done;
100 };
101 
102 struct nvme_rdma_ctrl {
103 	/* read only in the hot path */
104 	struct nvme_rdma_queue	*queues;
105 
106 	/* other member variables */
107 	struct blk_mq_tag_set	tag_set;
108 	struct work_struct	delete_work;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 };
127 
128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
129 {
130 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
131 }
132 
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135 
136 static LIST_HEAD(nvme_rdma_ctrl_list);
137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
138 
139 /*
140  * Disabling this option makes small I/O goes faster, but is fundamentally
141  * unsafe.  With it turned off we will have to register a global rkey that
142  * allows read and write access to all physical memory.
143  */
144 static bool register_always = true;
145 module_param(register_always, bool, 0444);
146 MODULE_PARM_DESC(register_always,
147 	 "Use memory registration even for contiguous memory regions");
148 
149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
150 		struct rdma_cm_event *event);
151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
152 
153 static const struct blk_mq_ops nvme_rdma_mq_ops;
154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
155 
156 /* XXX: really should move to a generic header sooner or later.. */
157 static inline void put_unaligned_le24(u32 val, u8 *p)
158 {
159 	*p++ = val;
160 	*p++ = val >> 8;
161 	*p++ = val >> 16;
162 }
163 
164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
165 {
166 	return queue - queue->ctrl->queues;
167 }
168 
169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
170 {
171 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173 
174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
175 		size_t capsule_size, enum dma_data_direction dir)
176 {
177 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
178 	kfree(qe->data);
179 }
180 
181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
182 		size_t capsule_size, enum dma_data_direction dir)
183 {
184 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
185 	if (!qe->data)
186 		return -ENOMEM;
187 
188 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
189 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
190 		kfree(qe->data);
191 		return -ENOMEM;
192 	}
193 
194 	return 0;
195 }
196 
197 static void nvme_rdma_free_ring(struct ib_device *ibdev,
198 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
199 		size_t capsule_size, enum dma_data_direction dir)
200 {
201 	int i;
202 
203 	for (i = 0; i < ib_queue_size; i++)
204 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
205 	kfree(ring);
206 }
207 
208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
209 		size_t ib_queue_size, size_t capsule_size,
210 		enum dma_data_direction dir)
211 {
212 	struct nvme_rdma_qe *ring;
213 	int i;
214 
215 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
216 	if (!ring)
217 		return NULL;
218 
219 	for (i = 0; i < ib_queue_size; i++) {
220 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
221 			goto out_free_ring;
222 	}
223 
224 	return ring;
225 
226 out_free_ring:
227 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
228 	return NULL;
229 }
230 
231 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
232 {
233 	pr_debug("QP event %s (%d)\n",
234 		 ib_event_msg(event->event), event->event);
235 
236 }
237 
238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
239 {
240 	wait_for_completion_interruptible_timeout(&queue->cm_done,
241 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
242 	return queue->cm_error;
243 }
244 
245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
246 {
247 	struct nvme_rdma_device *dev = queue->device;
248 	struct ib_qp_init_attr init_attr;
249 	int ret;
250 
251 	memset(&init_attr, 0, sizeof(init_attr));
252 	init_attr.event_handler = nvme_rdma_qp_event;
253 	/* +1 for drain */
254 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
255 	/* +1 for drain */
256 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
257 	init_attr.cap.max_recv_sge = 1;
258 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
259 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
260 	init_attr.qp_type = IB_QPT_RC;
261 	init_attr.send_cq = queue->ib_cq;
262 	init_attr.recv_cq = queue->ib_cq;
263 
264 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
265 
266 	queue->qp = queue->cm_id->qp;
267 	return ret;
268 }
269 
270 static int nvme_rdma_reinit_request(void *data, struct request *rq)
271 {
272 	struct nvme_rdma_ctrl *ctrl = data;
273 	struct nvme_rdma_device *dev = ctrl->device;
274 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
275 	int ret = 0;
276 
277 	ib_dereg_mr(req->mr);
278 
279 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
280 			ctrl->max_fr_pages);
281 	if (IS_ERR(req->mr)) {
282 		ret = PTR_ERR(req->mr);
283 		req->mr = NULL;
284 		goto out;
285 	}
286 
287 	req->mr->need_inval = false;
288 
289 out:
290 	return ret;
291 }
292 
293 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
294 		struct request *rq, unsigned int hctx_idx)
295 {
296 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
297 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
298 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
299 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
300 	struct nvme_rdma_device *dev = queue->device;
301 
302 	if (req->mr)
303 		ib_dereg_mr(req->mr);
304 
305 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
306 			DMA_TO_DEVICE);
307 }
308 
309 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
310 		struct request *rq, unsigned int hctx_idx,
311 		unsigned int numa_node)
312 {
313 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
314 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
315 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
316 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
317 	struct nvme_rdma_device *dev = queue->device;
318 	struct ib_device *ibdev = dev->dev;
319 	int ret;
320 
321 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
322 			DMA_TO_DEVICE);
323 	if (ret)
324 		return ret;
325 
326 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
327 			ctrl->max_fr_pages);
328 	if (IS_ERR(req->mr)) {
329 		ret = PTR_ERR(req->mr);
330 		goto out_free_qe;
331 	}
332 
333 	req->queue = queue;
334 
335 	return 0;
336 
337 out_free_qe:
338 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
339 			DMA_TO_DEVICE);
340 	return -ENOMEM;
341 }
342 
343 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
344 		unsigned int hctx_idx)
345 {
346 	struct nvme_rdma_ctrl *ctrl = data;
347 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
348 
349 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
350 
351 	hctx->driver_data = queue;
352 	return 0;
353 }
354 
355 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
356 		unsigned int hctx_idx)
357 {
358 	struct nvme_rdma_ctrl *ctrl = data;
359 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
360 
361 	BUG_ON(hctx_idx != 0);
362 
363 	hctx->driver_data = queue;
364 	return 0;
365 }
366 
367 static void nvme_rdma_free_dev(struct kref *ref)
368 {
369 	struct nvme_rdma_device *ndev =
370 		container_of(ref, struct nvme_rdma_device, ref);
371 
372 	mutex_lock(&device_list_mutex);
373 	list_del(&ndev->entry);
374 	mutex_unlock(&device_list_mutex);
375 
376 	ib_dealloc_pd(ndev->pd);
377 	kfree(ndev);
378 }
379 
380 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
381 {
382 	kref_put(&dev->ref, nvme_rdma_free_dev);
383 }
384 
385 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
386 {
387 	return kref_get_unless_zero(&dev->ref);
388 }
389 
390 static struct nvme_rdma_device *
391 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
392 {
393 	struct nvme_rdma_device *ndev;
394 
395 	mutex_lock(&device_list_mutex);
396 	list_for_each_entry(ndev, &device_list, entry) {
397 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
398 		    nvme_rdma_dev_get(ndev))
399 			goto out_unlock;
400 	}
401 
402 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
403 	if (!ndev)
404 		goto out_err;
405 
406 	ndev->dev = cm_id->device;
407 	kref_init(&ndev->ref);
408 
409 	ndev->pd = ib_alloc_pd(ndev->dev,
410 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
411 	if (IS_ERR(ndev->pd))
412 		goto out_free_dev;
413 
414 	if (!(ndev->dev->attrs.device_cap_flags &
415 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
416 		dev_err(&ndev->dev->dev,
417 			"Memory registrations not supported.\n");
418 		goto out_free_pd;
419 	}
420 
421 	list_add(&ndev->entry, &device_list);
422 out_unlock:
423 	mutex_unlock(&device_list_mutex);
424 	return ndev;
425 
426 out_free_pd:
427 	ib_dealloc_pd(ndev->pd);
428 out_free_dev:
429 	kfree(ndev);
430 out_err:
431 	mutex_unlock(&device_list_mutex);
432 	return NULL;
433 }
434 
435 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
436 {
437 	struct nvme_rdma_device *dev;
438 	struct ib_device *ibdev;
439 
440 	dev = queue->device;
441 	ibdev = dev->dev;
442 	rdma_destroy_qp(queue->cm_id);
443 	ib_free_cq(queue->ib_cq);
444 
445 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 
448 	nvme_rdma_dev_put(dev);
449 }
450 
451 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
452 {
453 	struct ib_device *ibdev;
454 	const int send_wr_factor = 3;			/* MR, SEND, INV */
455 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
456 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
457 	int ret;
458 
459 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
460 	if (!queue->device) {
461 		dev_err(queue->cm_id->device->dev.parent,
462 			"no client data found!\n");
463 		return -ECONNREFUSED;
464 	}
465 	ibdev = queue->device->dev;
466 
467 	/*
468 	 * Spread I/O queues completion vectors according their queue index.
469 	 * Admin queues can always go on completion vector 0.
470 	 */
471 	comp_vector = idx == 0 ? idx : idx - 1;
472 
473 	/* +1 for ib_stop_cq */
474 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
475 				cq_factor * queue->queue_size + 1,
476 				comp_vector, IB_POLL_SOFTIRQ);
477 	if (IS_ERR(queue->ib_cq)) {
478 		ret = PTR_ERR(queue->ib_cq);
479 		goto out_put_dev;
480 	}
481 
482 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
483 	if (ret)
484 		goto out_destroy_ib_cq;
485 
486 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
487 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
488 	if (!queue->rsp_ring) {
489 		ret = -ENOMEM;
490 		goto out_destroy_qp;
491 	}
492 
493 	return 0;
494 
495 out_destroy_qp:
496 	ib_destroy_qp(queue->qp);
497 out_destroy_ib_cq:
498 	ib_free_cq(queue->ib_cq);
499 out_put_dev:
500 	nvme_rdma_dev_put(queue->device);
501 	return ret;
502 }
503 
504 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
505 		int idx, size_t queue_size)
506 {
507 	struct nvme_rdma_queue *queue;
508 	struct sockaddr *src_addr = NULL;
509 	int ret;
510 
511 	queue = &ctrl->queues[idx];
512 	queue->ctrl = ctrl;
513 	init_completion(&queue->cm_done);
514 
515 	if (idx > 0)
516 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
517 	else
518 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
519 
520 	queue->queue_size = queue_size;
521 	atomic_set(&queue->sig_count, 0);
522 
523 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
524 			RDMA_PS_TCP, IB_QPT_RC);
525 	if (IS_ERR(queue->cm_id)) {
526 		dev_info(ctrl->ctrl.device,
527 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
528 		return PTR_ERR(queue->cm_id);
529 	}
530 
531 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
532 		src_addr = (struct sockaddr *)&ctrl->src_addr;
533 
534 	queue->cm_error = -ETIMEDOUT;
535 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
536 			(struct sockaddr *)&ctrl->addr,
537 			NVME_RDMA_CONNECT_TIMEOUT_MS);
538 	if (ret) {
539 		dev_info(ctrl->ctrl.device,
540 			"rdma_resolve_addr failed (%d).\n", ret);
541 		goto out_destroy_cm_id;
542 	}
543 
544 	ret = nvme_rdma_wait_for_cm(queue);
545 	if (ret) {
546 		dev_info(ctrl->ctrl.device,
547 			"rdma_resolve_addr wait failed (%d).\n", ret);
548 		goto out_destroy_cm_id;
549 	}
550 
551 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
552 
553 	return 0;
554 
555 out_destroy_cm_id:
556 	rdma_destroy_id(queue->cm_id);
557 	return ret;
558 }
559 
560 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
561 {
562 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
563 		return;
564 
565 	rdma_disconnect(queue->cm_id);
566 	ib_drain_qp(queue->qp);
567 }
568 
569 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
570 {
571 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
572 		return;
573 
574 	nvme_rdma_destroy_queue_ib(queue);
575 	rdma_destroy_id(queue->cm_id);
576 }
577 
578 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
579 {
580 	int i;
581 
582 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
583 		nvme_rdma_free_queue(&ctrl->queues[i]);
584 }
585 
586 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
587 {
588 	int i;
589 
590 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
591 		nvme_rdma_stop_queue(&ctrl->queues[i]);
592 }
593 
594 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
595 {
596 	int ret;
597 
598 	if (idx)
599 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
600 	else
601 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
602 
603 	if (!ret)
604 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
605 	else
606 		dev_info(ctrl->ctrl.device,
607 			"failed to connect queue: %d ret=%d\n", idx, ret);
608 	return ret;
609 }
610 
611 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
612 {
613 	int i, ret = 0;
614 
615 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
616 		ret = nvme_rdma_start_queue(ctrl, i);
617 		if (ret)
618 			goto out_stop_queues;
619 	}
620 
621 	return 0;
622 
623 out_stop_queues:
624 	for (i--; i >= 1; i--)
625 		nvme_rdma_stop_queue(&ctrl->queues[i]);
626 	return ret;
627 }
628 
629 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
630 {
631 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
632 	struct ib_device *ibdev = ctrl->device->dev;
633 	unsigned int nr_io_queues;
634 	int i, ret;
635 
636 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
637 
638 	/*
639 	 * we map queues according to the device irq vectors for
640 	 * optimal locality so we don't need more queues than
641 	 * completion vectors.
642 	 */
643 	nr_io_queues = min_t(unsigned int, nr_io_queues,
644 				ibdev->num_comp_vectors);
645 
646 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
647 	if (ret)
648 		return ret;
649 
650 	ctrl->ctrl.queue_count = nr_io_queues + 1;
651 	if (ctrl->ctrl.queue_count < 2)
652 		return 0;
653 
654 	dev_info(ctrl->ctrl.device,
655 		"creating %d I/O queues.\n", nr_io_queues);
656 
657 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
658 		ret = nvme_rdma_alloc_queue(ctrl, i,
659 				ctrl->ctrl.sqsize + 1);
660 		if (ret)
661 			goto out_free_queues;
662 	}
663 
664 	return 0;
665 
666 out_free_queues:
667 	for (i--; i >= 1; i--)
668 		nvme_rdma_free_queue(&ctrl->queues[i]);
669 
670 	return ret;
671 }
672 
673 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
674 {
675 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
676 	struct blk_mq_tag_set *set = admin ?
677 			&ctrl->admin_tag_set : &ctrl->tag_set;
678 
679 	blk_mq_free_tag_set(set);
680 	nvme_rdma_dev_put(ctrl->device);
681 }
682 
683 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
684 		bool admin)
685 {
686 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
687 	struct blk_mq_tag_set *set;
688 	int ret;
689 
690 	if (admin) {
691 		set = &ctrl->admin_tag_set;
692 		memset(set, 0, sizeof(*set));
693 		set->ops = &nvme_rdma_admin_mq_ops;
694 		set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
695 		set->reserved_tags = 2; /* connect + keep-alive */
696 		set->numa_node = NUMA_NO_NODE;
697 		set->cmd_size = sizeof(struct nvme_rdma_request) +
698 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
699 		set->driver_data = ctrl;
700 		set->nr_hw_queues = 1;
701 		set->timeout = ADMIN_TIMEOUT;
702 	} else {
703 		set = &ctrl->tag_set;
704 		memset(set, 0, sizeof(*set));
705 		set->ops = &nvme_rdma_mq_ops;
706 		set->queue_depth = nctrl->opts->queue_size;
707 		set->reserved_tags = 1; /* fabric connect */
708 		set->numa_node = NUMA_NO_NODE;
709 		set->flags = BLK_MQ_F_SHOULD_MERGE;
710 		set->cmd_size = sizeof(struct nvme_rdma_request) +
711 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
712 		set->driver_data = ctrl;
713 		set->nr_hw_queues = nctrl->queue_count - 1;
714 		set->timeout = NVME_IO_TIMEOUT;
715 	}
716 
717 	ret = blk_mq_alloc_tag_set(set);
718 	if (ret)
719 		goto out;
720 
721 	/*
722 	 * We need a reference on the device as long as the tag_set is alive,
723 	 * as the MRs in the request structures need a valid ib_device.
724 	 */
725 	ret = nvme_rdma_dev_get(ctrl->device);
726 	if (!ret) {
727 		ret = -EINVAL;
728 		goto out_free_tagset;
729 	}
730 
731 	return set;
732 
733 out_free_tagset:
734 	blk_mq_free_tag_set(set);
735 out:
736 	return ERR_PTR(ret);
737 }
738 
739 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
740 		bool remove)
741 {
742 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
743 			sizeof(struct nvme_command), DMA_TO_DEVICE);
744 	nvme_rdma_stop_queue(&ctrl->queues[0]);
745 	if (remove) {
746 		blk_cleanup_queue(ctrl->ctrl.admin_q);
747 		nvme_rdma_free_tagset(&ctrl->ctrl, true);
748 	}
749 	nvme_rdma_free_queue(&ctrl->queues[0]);
750 }
751 
752 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
753 		bool new)
754 {
755 	int error;
756 
757 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
758 	if (error)
759 		return error;
760 
761 	ctrl->device = ctrl->queues[0].device;
762 
763 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
764 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
765 
766 	if (new) {
767 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
768 		if (IS_ERR(ctrl->ctrl.admin_tagset))
769 			goto out_free_queue;
770 
771 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
772 		if (IS_ERR(ctrl->ctrl.admin_q)) {
773 			error = PTR_ERR(ctrl->ctrl.admin_q);
774 			goto out_free_tagset;
775 		}
776 	} else {
777 		error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
778 					     nvme_rdma_reinit_request);
779 		if (error)
780 			goto out_free_queue;
781 	}
782 
783 	error = nvme_rdma_start_queue(ctrl, 0);
784 	if (error)
785 		goto out_cleanup_queue;
786 
787 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
788 			&ctrl->ctrl.cap);
789 	if (error) {
790 		dev_err(ctrl->ctrl.device,
791 			"prop_get NVME_REG_CAP failed\n");
792 		goto out_cleanup_queue;
793 	}
794 
795 	ctrl->ctrl.sqsize =
796 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
797 
798 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
799 	if (error)
800 		goto out_cleanup_queue;
801 
802 	ctrl->ctrl.max_hw_sectors =
803 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
804 
805 	error = nvme_init_identify(&ctrl->ctrl);
806 	if (error)
807 		goto out_cleanup_queue;
808 
809 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
810 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
811 			DMA_TO_DEVICE);
812 	if (error)
813 		goto out_cleanup_queue;
814 
815 	return 0;
816 
817 out_cleanup_queue:
818 	if (new)
819 		blk_cleanup_queue(ctrl->ctrl.admin_q);
820 out_free_tagset:
821 	if (new)
822 		nvme_rdma_free_tagset(&ctrl->ctrl, true);
823 out_free_queue:
824 	nvme_rdma_free_queue(&ctrl->queues[0]);
825 	return error;
826 }
827 
828 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
829 		bool remove)
830 {
831 	nvme_rdma_stop_io_queues(ctrl);
832 	if (remove) {
833 		blk_cleanup_queue(ctrl->ctrl.connect_q);
834 		nvme_rdma_free_tagset(&ctrl->ctrl, false);
835 	}
836 	nvme_rdma_free_io_queues(ctrl);
837 }
838 
839 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
840 {
841 	int ret;
842 
843 	ret = nvme_rdma_alloc_io_queues(ctrl);
844 	if (ret)
845 		return ret;
846 
847 	if (new) {
848 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
849 		if (IS_ERR(ctrl->ctrl.tagset))
850 			goto out_free_io_queues;
851 
852 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
853 		if (IS_ERR(ctrl->ctrl.connect_q)) {
854 			ret = PTR_ERR(ctrl->ctrl.connect_q);
855 			goto out_free_tag_set;
856 		}
857 	} else {
858 		ret = blk_mq_reinit_tagset(&ctrl->tag_set,
859 					   nvme_rdma_reinit_request);
860 		if (ret)
861 			goto out_free_io_queues;
862 
863 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
864 			ctrl->ctrl.queue_count - 1);
865 	}
866 
867 	ret = nvme_rdma_start_io_queues(ctrl);
868 	if (ret)
869 		goto out_cleanup_connect_q;
870 
871 	return 0;
872 
873 out_cleanup_connect_q:
874 	if (new)
875 		blk_cleanup_queue(ctrl->ctrl.connect_q);
876 out_free_tag_set:
877 	if (new)
878 		nvme_rdma_free_tagset(&ctrl->ctrl, false);
879 out_free_io_queues:
880 	nvme_rdma_free_io_queues(ctrl);
881 	return ret;
882 }
883 
884 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
885 {
886 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
887 
888 	if (list_empty(&ctrl->list))
889 		goto free_ctrl;
890 
891 	mutex_lock(&nvme_rdma_ctrl_mutex);
892 	list_del(&ctrl->list);
893 	mutex_unlock(&nvme_rdma_ctrl_mutex);
894 
895 	kfree(ctrl->queues);
896 	nvmf_free_options(nctrl->opts);
897 free_ctrl:
898 	kfree(ctrl);
899 }
900 
901 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
902 {
903 	/* If we are resetting/deleting then do nothing */
904 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
905 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
906 			ctrl->ctrl.state == NVME_CTRL_LIVE);
907 		return;
908 	}
909 
910 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
911 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
912 			ctrl->ctrl.opts->reconnect_delay);
913 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
914 				ctrl->ctrl.opts->reconnect_delay * HZ);
915 	} else {
916 		dev_info(ctrl->ctrl.device, "Removing controller...\n");
917 		queue_work(nvme_wq, &ctrl->delete_work);
918 	}
919 }
920 
921 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
922 {
923 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
924 			struct nvme_rdma_ctrl, reconnect_work);
925 	bool changed;
926 	int ret;
927 
928 	++ctrl->ctrl.nr_reconnects;
929 
930 	if (ctrl->ctrl.queue_count > 1)
931 		nvme_rdma_destroy_io_queues(ctrl, false);
932 
933 	nvme_rdma_destroy_admin_queue(ctrl, false);
934 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
935 	if (ret)
936 		goto requeue;
937 
938 	if (ctrl->ctrl.queue_count > 1) {
939 		ret = nvme_rdma_configure_io_queues(ctrl, false);
940 		if (ret)
941 			goto requeue;
942 	}
943 
944 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
945 	if (!changed) {
946 		/* state change failure is ok if we're in DELETING state */
947 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
948 		return;
949 	}
950 
951 	ctrl->ctrl.nr_reconnects = 0;
952 
953 	nvme_start_ctrl(&ctrl->ctrl);
954 
955 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
956 
957 	return;
958 
959 requeue:
960 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
961 			ctrl->ctrl.nr_reconnects);
962 	nvme_rdma_reconnect_or_remove(ctrl);
963 }
964 
965 static void nvme_rdma_error_recovery_work(struct work_struct *work)
966 {
967 	struct nvme_rdma_ctrl *ctrl = container_of(work,
968 			struct nvme_rdma_ctrl, err_work);
969 
970 	nvme_stop_keep_alive(&ctrl->ctrl);
971 
972 	if (ctrl->ctrl.queue_count > 1) {
973 		nvme_stop_queues(&ctrl->ctrl);
974 		nvme_rdma_stop_io_queues(ctrl);
975 	}
976 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
977 	nvme_rdma_stop_queue(&ctrl->queues[0]);
978 
979 	/* We must take care of fastfail/requeue all our inflight requests */
980 	if (ctrl->ctrl.queue_count > 1)
981 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
982 					nvme_cancel_request, &ctrl->ctrl);
983 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
984 				nvme_cancel_request, &ctrl->ctrl);
985 
986 	/*
987 	 * queues are not a live anymore, so restart the queues to fail fast
988 	 * new IO
989 	 */
990 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
991 	nvme_start_queues(&ctrl->ctrl);
992 
993 	nvme_rdma_reconnect_or_remove(ctrl);
994 }
995 
996 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
997 {
998 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
999 		return;
1000 
1001 	queue_work(nvme_wq, &ctrl->err_work);
1002 }
1003 
1004 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1005 		const char *op)
1006 {
1007 	struct nvme_rdma_queue *queue = cq->cq_context;
1008 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1009 
1010 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1011 		dev_info(ctrl->ctrl.device,
1012 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1013 			     op, wc->wr_cqe,
1014 			     ib_wc_status_msg(wc->status), wc->status);
1015 	nvme_rdma_error_recovery(ctrl);
1016 }
1017 
1018 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1019 {
1020 	if (unlikely(wc->status != IB_WC_SUCCESS))
1021 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1022 }
1023 
1024 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1025 {
1026 	if (unlikely(wc->status != IB_WC_SUCCESS))
1027 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1028 }
1029 
1030 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1031 		struct nvme_rdma_request *req)
1032 {
1033 	struct ib_send_wr *bad_wr;
1034 	struct ib_send_wr wr = {
1035 		.opcode		    = IB_WR_LOCAL_INV,
1036 		.next		    = NULL,
1037 		.num_sge	    = 0,
1038 		.send_flags	    = 0,
1039 		.ex.invalidate_rkey = req->mr->rkey,
1040 	};
1041 
1042 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1043 	wr.wr_cqe = &req->reg_cqe;
1044 
1045 	return ib_post_send(queue->qp, &wr, &bad_wr);
1046 }
1047 
1048 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1049 		struct request *rq)
1050 {
1051 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1052 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1053 	struct nvme_rdma_device *dev = queue->device;
1054 	struct ib_device *ibdev = dev->dev;
1055 	int res;
1056 
1057 	if (!blk_rq_bytes(rq))
1058 		return;
1059 
1060 	if (req->mr->need_inval) {
1061 		res = nvme_rdma_inv_rkey(queue, req);
1062 		if (unlikely(res < 0)) {
1063 			dev_err(ctrl->ctrl.device,
1064 				"Queueing INV WR for rkey %#x failed (%d)\n",
1065 				req->mr->rkey, res);
1066 			nvme_rdma_error_recovery(queue->ctrl);
1067 		}
1068 	}
1069 
1070 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1071 			req->nents, rq_data_dir(rq) ==
1072 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1073 
1074 	nvme_cleanup_cmd(rq);
1075 	sg_free_table_chained(&req->sg_table, true);
1076 }
1077 
1078 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1079 {
1080 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1081 
1082 	sg->addr = 0;
1083 	put_unaligned_le24(0, sg->length);
1084 	put_unaligned_le32(0, sg->key);
1085 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1086 	return 0;
1087 }
1088 
1089 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1090 		struct nvme_rdma_request *req, struct nvme_command *c)
1091 {
1092 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1093 
1094 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1095 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1096 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1097 
1098 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1099 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1100 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1101 
1102 	req->inline_data = true;
1103 	req->num_sge++;
1104 	return 0;
1105 }
1106 
1107 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1108 		struct nvme_rdma_request *req, struct nvme_command *c)
1109 {
1110 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1111 
1112 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1113 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1114 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1115 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1116 	return 0;
1117 }
1118 
1119 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1120 		struct nvme_rdma_request *req, struct nvme_command *c,
1121 		int count)
1122 {
1123 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1124 	int nr;
1125 
1126 	/*
1127 	 * Align the MR to a 4K page size to match the ctrl page size and
1128 	 * the block virtual boundary.
1129 	 */
1130 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1131 	if (unlikely(nr < count)) {
1132 		if (nr < 0)
1133 			return nr;
1134 		return -EINVAL;
1135 	}
1136 
1137 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1138 
1139 	req->reg_cqe.done = nvme_rdma_memreg_done;
1140 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1141 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1142 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1143 	req->reg_wr.wr.num_sge = 0;
1144 	req->reg_wr.mr = req->mr;
1145 	req->reg_wr.key = req->mr->rkey;
1146 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1147 			     IB_ACCESS_REMOTE_READ |
1148 			     IB_ACCESS_REMOTE_WRITE;
1149 
1150 	req->mr->need_inval = true;
1151 
1152 	sg->addr = cpu_to_le64(req->mr->iova);
1153 	put_unaligned_le24(req->mr->length, sg->length);
1154 	put_unaligned_le32(req->mr->rkey, sg->key);
1155 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1156 			NVME_SGL_FMT_INVALIDATE;
1157 
1158 	return 0;
1159 }
1160 
1161 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1162 		struct request *rq, struct nvme_command *c)
1163 {
1164 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1165 	struct nvme_rdma_device *dev = queue->device;
1166 	struct ib_device *ibdev = dev->dev;
1167 	int count, ret;
1168 
1169 	req->num_sge = 1;
1170 	req->inline_data = false;
1171 	req->mr->need_inval = false;
1172 
1173 	c->common.flags |= NVME_CMD_SGL_METABUF;
1174 
1175 	if (!blk_rq_bytes(rq))
1176 		return nvme_rdma_set_sg_null(c);
1177 
1178 	req->sg_table.sgl = req->first_sgl;
1179 	ret = sg_alloc_table_chained(&req->sg_table,
1180 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1181 	if (ret)
1182 		return -ENOMEM;
1183 
1184 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1185 
1186 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1187 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1188 	if (unlikely(count <= 0)) {
1189 		sg_free_table_chained(&req->sg_table, true);
1190 		return -EIO;
1191 	}
1192 
1193 	if (count == 1) {
1194 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1195 		    blk_rq_payload_bytes(rq) <=
1196 				nvme_rdma_inline_data_size(queue))
1197 			return nvme_rdma_map_sg_inline(queue, req, c);
1198 
1199 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1200 			return nvme_rdma_map_sg_single(queue, req, c);
1201 	}
1202 
1203 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1204 }
1205 
1206 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1207 {
1208 	if (unlikely(wc->status != IB_WC_SUCCESS))
1209 		nvme_rdma_wr_error(cq, wc, "SEND");
1210 }
1211 
1212 /*
1213  * We want to signal completion at least every queue depth/2.  This returns the
1214  * largest power of two that is not above half of (queue size + 1) to optimize
1215  * (avoid divisions).
1216  */
1217 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1218 {
1219 	int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1220 
1221 	return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1222 }
1223 
1224 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1225 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1226 		struct ib_send_wr *first, bool flush)
1227 {
1228 	struct ib_send_wr wr, *bad_wr;
1229 	int ret;
1230 
1231 	sge->addr   = qe->dma;
1232 	sge->length = sizeof(struct nvme_command),
1233 	sge->lkey   = queue->device->pd->local_dma_lkey;
1234 
1235 	qe->cqe.done = nvme_rdma_send_done;
1236 
1237 	wr.next       = NULL;
1238 	wr.wr_cqe     = &qe->cqe;
1239 	wr.sg_list    = sge;
1240 	wr.num_sge    = num_sge;
1241 	wr.opcode     = IB_WR_SEND;
1242 	wr.send_flags = 0;
1243 
1244 	/*
1245 	 * Unsignalled send completions are another giant desaster in the
1246 	 * IB Verbs spec:  If we don't regularly post signalled sends
1247 	 * the send queue will fill up and only a QP reset will rescue us.
1248 	 * Would have been way to obvious to handle this in hardware or
1249 	 * at least the RDMA stack..
1250 	 *
1251 	 * Always signal the flushes. The magic request used for the flush
1252 	 * sequencer is not allocated in our driver's tagset and it's
1253 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1254 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1255 	 * embedded in request's payload, is not freed when __ib_process_cq()
1256 	 * calls wr_cqe->done().
1257 	 */
1258 	if (nvme_rdma_queue_sig_limit(queue) || flush)
1259 		wr.send_flags |= IB_SEND_SIGNALED;
1260 
1261 	if (first)
1262 		first->next = &wr;
1263 	else
1264 		first = &wr;
1265 
1266 	ret = ib_post_send(queue->qp, first, &bad_wr);
1267 	if (unlikely(ret)) {
1268 		dev_err(queue->ctrl->ctrl.device,
1269 			     "%s failed with error code %d\n", __func__, ret);
1270 	}
1271 	return ret;
1272 }
1273 
1274 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1275 		struct nvme_rdma_qe *qe)
1276 {
1277 	struct ib_recv_wr wr, *bad_wr;
1278 	struct ib_sge list;
1279 	int ret;
1280 
1281 	list.addr   = qe->dma;
1282 	list.length = sizeof(struct nvme_completion);
1283 	list.lkey   = queue->device->pd->local_dma_lkey;
1284 
1285 	qe->cqe.done = nvme_rdma_recv_done;
1286 
1287 	wr.next     = NULL;
1288 	wr.wr_cqe   = &qe->cqe;
1289 	wr.sg_list  = &list;
1290 	wr.num_sge  = 1;
1291 
1292 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1293 	if (unlikely(ret)) {
1294 		dev_err(queue->ctrl->ctrl.device,
1295 			"%s failed with error code %d\n", __func__, ret);
1296 	}
1297 	return ret;
1298 }
1299 
1300 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1301 {
1302 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1303 
1304 	if (queue_idx == 0)
1305 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1306 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1307 }
1308 
1309 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1310 {
1311 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1312 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1313 	struct ib_device *dev = queue->device->dev;
1314 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1315 	struct nvme_command *cmd = sqe->data;
1316 	struct ib_sge sge;
1317 	int ret;
1318 
1319 	if (WARN_ON_ONCE(aer_idx != 0))
1320 		return;
1321 
1322 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1323 
1324 	memset(cmd, 0, sizeof(*cmd));
1325 	cmd->common.opcode = nvme_admin_async_event;
1326 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1327 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1328 	nvme_rdma_set_sg_null(cmd);
1329 
1330 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1331 			DMA_TO_DEVICE);
1332 
1333 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1334 	WARN_ON_ONCE(ret);
1335 }
1336 
1337 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1338 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1339 {
1340 	struct request *rq;
1341 	struct nvme_rdma_request *req;
1342 	int ret = 0;
1343 
1344 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1345 	if (!rq) {
1346 		dev_err(queue->ctrl->ctrl.device,
1347 			"tag 0x%x on QP %#x not found\n",
1348 			cqe->command_id, queue->qp->qp_num);
1349 		nvme_rdma_error_recovery(queue->ctrl);
1350 		return ret;
1351 	}
1352 	req = blk_mq_rq_to_pdu(rq);
1353 
1354 	if (rq->tag == tag)
1355 		ret = 1;
1356 
1357 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1358 	    wc->ex.invalidate_rkey == req->mr->rkey)
1359 		req->mr->need_inval = false;
1360 
1361 	nvme_end_request(rq, cqe->status, cqe->result);
1362 	return ret;
1363 }
1364 
1365 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1366 {
1367 	struct nvme_rdma_qe *qe =
1368 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1369 	struct nvme_rdma_queue *queue = cq->cq_context;
1370 	struct ib_device *ibdev = queue->device->dev;
1371 	struct nvme_completion *cqe = qe->data;
1372 	const size_t len = sizeof(struct nvme_completion);
1373 	int ret = 0;
1374 
1375 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1376 		nvme_rdma_wr_error(cq, wc, "RECV");
1377 		return 0;
1378 	}
1379 
1380 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1381 	/*
1382 	 * AEN requests are special as they don't time out and can
1383 	 * survive any kind of queue freeze and often don't respond to
1384 	 * aborts.  We don't even bother to allocate a struct request
1385 	 * for them but rather special case them here.
1386 	 */
1387 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1388 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1389 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1390 				&cqe->result);
1391 	else
1392 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1393 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1394 
1395 	nvme_rdma_post_recv(queue, qe);
1396 	return ret;
1397 }
1398 
1399 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1400 {
1401 	__nvme_rdma_recv_done(cq, wc, -1);
1402 }
1403 
1404 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1405 {
1406 	int ret, i;
1407 
1408 	for (i = 0; i < queue->queue_size; i++) {
1409 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1410 		if (ret)
1411 			goto out_destroy_queue_ib;
1412 	}
1413 
1414 	return 0;
1415 
1416 out_destroy_queue_ib:
1417 	nvme_rdma_destroy_queue_ib(queue);
1418 	return ret;
1419 }
1420 
1421 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1422 		struct rdma_cm_event *ev)
1423 {
1424 	struct rdma_cm_id *cm_id = queue->cm_id;
1425 	int status = ev->status;
1426 	const char *rej_msg;
1427 	const struct nvme_rdma_cm_rej *rej_data;
1428 	u8 rej_data_len;
1429 
1430 	rej_msg = rdma_reject_msg(cm_id, status);
1431 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1432 
1433 	if (rej_data && rej_data_len >= sizeof(u16)) {
1434 		u16 sts = le16_to_cpu(rej_data->sts);
1435 
1436 		dev_err(queue->ctrl->ctrl.device,
1437 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1438 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1439 	} else {
1440 		dev_err(queue->ctrl->ctrl.device,
1441 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1442 	}
1443 
1444 	return -ECONNRESET;
1445 }
1446 
1447 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1448 {
1449 	int ret;
1450 
1451 	ret = nvme_rdma_create_queue_ib(queue);
1452 	if (ret)
1453 		return ret;
1454 
1455 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1456 	if (ret) {
1457 		dev_err(queue->ctrl->ctrl.device,
1458 			"rdma_resolve_route failed (%d).\n",
1459 			queue->cm_error);
1460 		goto out_destroy_queue;
1461 	}
1462 
1463 	return 0;
1464 
1465 out_destroy_queue:
1466 	nvme_rdma_destroy_queue_ib(queue);
1467 	return ret;
1468 }
1469 
1470 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1471 {
1472 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1473 	struct rdma_conn_param param = { };
1474 	struct nvme_rdma_cm_req priv = { };
1475 	int ret;
1476 
1477 	param.qp_num = queue->qp->qp_num;
1478 	param.flow_control = 1;
1479 
1480 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1481 	/* maximum retry count */
1482 	param.retry_count = 7;
1483 	param.rnr_retry_count = 7;
1484 	param.private_data = &priv;
1485 	param.private_data_len = sizeof(priv);
1486 
1487 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1488 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1489 	/*
1490 	 * set the admin queue depth to the minimum size
1491 	 * specified by the Fabrics standard.
1492 	 */
1493 	if (priv.qid == 0) {
1494 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1495 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1496 	} else {
1497 		/*
1498 		 * current interpretation of the fabrics spec
1499 		 * is at minimum you make hrqsize sqsize+1, or a
1500 		 * 1's based representation of sqsize.
1501 		 */
1502 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1503 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1504 	}
1505 
1506 	ret = rdma_connect(queue->cm_id, &param);
1507 	if (ret) {
1508 		dev_err(ctrl->ctrl.device,
1509 			"rdma_connect failed (%d).\n", ret);
1510 		goto out_destroy_queue_ib;
1511 	}
1512 
1513 	return 0;
1514 
1515 out_destroy_queue_ib:
1516 	nvme_rdma_destroy_queue_ib(queue);
1517 	return ret;
1518 }
1519 
1520 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1521 		struct rdma_cm_event *ev)
1522 {
1523 	struct nvme_rdma_queue *queue = cm_id->context;
1524 	int cm_error = 0;
1525 
1526 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1527 		rdma_event_msg(ev->event), ev->event,
1528 		ev->status, cm_id);
1529 
1530 	switch (ev->event) {
1531 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1532 		cm_error = nvme_rdma_addr_resolved(queue);
1533 		break;
1534 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1535 		cm_error = nvme_rdma_route_resolved(queue);
1536 		break;
1537 	case RDMA_CM_EVENT_ESTABLISHED:
1538 		queue->cm_error = nvme_rdma_conn_established(queue);
1539 		/* complete cm_done regardless of success/failure */
1540 		complete(&queue->cm_done);
1541 		return 0;
1542 	case RDMA_CM_EVENT_REJECTED:
1543 		nvme_rdma_destroy_queue_ib(queue);
1544 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1545 		break;
1546 	case RDMA_CM_EVENT_ROUTE_ERROR:
1547 	case RDMA_CM_EVENT_CONNECT_ERROR:
1548 	case RDMA_CM_EVENT_UNREACHABLE:
1549 		nvme_rdma_destroy_queue_ib(queue);
1550 	case RDMA_CM_EVENT_ADDR_ERROR:
1551 		dev_dbg(queue->ctrl->ctrl.device,
1552 			"CM error event %d\n", ev->event);
1553 		cm_error = -ECONNRESET;
1554 		break;
1555 	case RDMA_CM_EVENT_DISCONNECTED:
1556 	case RDMA_CM_EVENT_ADDR_CHANGE:
1557 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1558 		dev_dbg(queue->ctrl->ctrl.device,
1559 			"disconnect received - connection closed\n");
1560 		nvme_rdma_error_recovery(queue->ctrl);
1561 		break;
1562 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1563 		/* device removal is handled via the ib_client API */
1564 		break;
1565 	default:
1566 		dev_err(queue->ctrl->ctrl.device,
1567 			"Unexpected RDMA CM event (%d)\n", ev->event);
1568 		nvme_rdma_error_recovery(queue->ctrl);
1569 		break;
1570 	}
1571 
1572 	if (cm_error) {
1573 		queue->cm_error = cm_error;
1574 		complete(&queue->cm_done);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static enum blk_eh_timer_return
1581 nvme_rdma_timeout(struct request *rq, bool reserved)
1582 {
1583 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1584 
1585 	/* queue error recovery */
1586 	nvme_rdma_error_recovery(req->queue->ctrl);
1587 
1588 	/* fail with DNR on cmd timeout */
1589 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1590 
1591 	return BLK_EH_HANDLED;
1592 }
1593 
1594 /*
1595  * We cannot accept any other command until the Connect command has completed.
1596  */
1597 static inline blk_status_t
1598 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1599 {
1600 	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1601 		struct nvme_command *cmd = nvme_req(rq)->cmd;
1602 
1603 		if (!blk_rq_is_passthrough(rq) ||
1604 		    cmd->common.opcode != nvme_fabrics_command ||
1605 		    cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1606 			/*
1607 			 * reconnecting state means transport disruption, which
1608 			 * can take a long time and even might fail permanently,
1609 			 * so we can't let incoming I/O be requeued forever.
1610 			 * fail it fast to allow upper layers a chance to
1611 			 * failover.
1612 			 */
1613 			if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1614 				return BLK_STS_IOERR;
1615 			return BLK_STS_RESOURCE; /* try again later */
1616 		}
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1623 		const struct blk_mq_queue_data *bd)
1624 {
1625 	struct nvme_ns *ns = hctx->queue->queuedata;
1626 	struct nvme_rdma_queue *queue = hctx->driver_data;
1627 	struct request *rq = bd->rq;
1628 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1629 	struct nvme_rdma_qe *sqe = &req->sqe;
1630 	struct nvme_command *c = sqe->data;
1631 	bool flush = false;
1632 	struct ib_device *dev;
1633 	blk_status_t ret;
1634 	int err;
1635 
1636 	WARN_ON_ONCE(rq->tag < 0);
1637 
1638 	ret = nvme_rdma_queue_is_ready(queue, rq);
1639 	if (unlikely(ret))
1640 		return ret;
1641 
1642 	dev = queue->device->dev;
1643 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1644 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1645 
1646 	ret = nvme_setup_cmd(ns, rq, c);
1647 	if (ret)
1648 		return ret;
1649 
1650 	blk_mq_start_request(rq);
1651 
1652 	err = nvme_rdma_map_data(queue, rq, c);
1653 	if (unlikely(err < 0)) {
1654 		dev_err(queue->ctrl->ctrl.device,
1655 			     "Failed to map data (%d)\n", err);
1656 		nvme_cleanup_cmd(rq);
1657 		goto err;
1658 	}
1659 
1660 	ib_dma_sync_single_for_device(dev, sqe->dma,
1661 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1662 
1663 	if (req_op(rq) == REQ_OP_FLUSH)
1664 		flush = true;
1665 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1666 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1667 	if (unlikely(err)) {
1668 		nvme_rdma_unmap_data(queue, rq);
1669 		goto err;
1670 	}
1671 
1672 	return BLK_STS_OK;
1673 err:
1674 	if (err == -ENOMEM || err == -EAGAIN)
1675 		return BLK_STS_RESOURCE;
1676 	return BLK_STS_IOERR;
1677 }
1678 
1679 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1680 {
1681 	struct nvme_rdma_queue *queue = hctx->driver_data;
1682 	struct ib_cq *cq = queue->ib_cq;
1683 	struct ib_wc wc;
1684 	int found = 0;
1685 
1686 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1687 		struct ib_cqe *cqe = wc.wr_cqe;
1688 
1689 		if (cqe) {
1690 			if (cqe->done == nvme_rdma_recv_done)
1691 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1692 			else
1693 				cqe->done(cq, &wc);
1694 		}
1695 	}
1696 
1697 	return found;
1698 }
1699 
1700 static void nvme_rdma_complete_rq(struct request *rq)
1701 {
1702 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1703 
1704 	nvme_rdma_unmap_data(req->queue, rq);
1705 	nvme_complete_rq(rq);
1706 }
1707 
1708 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1709 {
1710 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1711 
1712 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1713 }
1714 
1715 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1716 	.queue_rq	= nvme_rdma_queue_rq,
1717 	.complete	= nvme_rdma_complete_rq,
1718 	.init_request	= nvme_rdma_init_request,
1719 	.exit_request	= nvme_rdma_exit_request,
1720 	.init_hctx	= nvme_rdma_init_hctx,
1721 	.poll		= nvme_rdma_poll,
1722 	.timeout	= nvme_rdma_timeout,
1723 	.map_queues	= nvme_rdma_map_queues,
1724 };
1725 
1726 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1727 	.queue_rq	= nvme_rdma_queue_rq,
1728 	.complete	= nvme_rdma_complete_rq,
1729 	.init_request	= nvme_rdma_init_request,
1730 	.exit_request	= nvme_rdma_exit_request,
1731 	.init_hctx	= nvme_rdma_init_admin_hctx,
1732 	.timeout	= nvme_rdma_timeout,
1733 };
1734 
1735 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1736 {
1737 	cancel_work_sync(&ctrl->err_work);
1738 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1739 
1740 	if (ctrl->ctrl.queue_count > 1) {
1741 		nvme_stop_queues(&ctrl->ctrl);
1742 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1743 					nvme_cancel_request, &ctrl->ctrl);
1744 		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1745 	}
1746 
1747 	if (shutdown)
1748 		nvme_shutdown_ctrl(&ctrl->ctrl);
1749 	else
1750 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1751 
1752 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1753 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1754 				nvme_cancel_request, &ctrl->ctrl);
1755 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1756 	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1757 }
1758 
1759 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1760 {
1761 	nvme_remove_namespaces(&ctrl->ctrl);
1762 	nvme_rdma_shutdown_ctrl(ctrl, true);
1763 	nvme_uninit_ctrl(&ctrl->ctrl);
1764 	nvme_put_ctrl(&ctrl->ctrl);
1765 }
1766 
1767 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1768 {
1769 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1770 				struct nvme_rdma_ctrl, delete_work);
1771 
1772 	nvme_stop_ctrl(&ctrl->ctrl);
1773 	nvme_rdma_remove_ctrl(ctrl);
1774 }
1775 
1776 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1777 {
1778 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1779 		return -EBUSY;
1780 
1781 	if (!queue_work(nvme_wq, &ctrl->delete_work))
1782 		return -EBUSY;
1783 
1784 	return 0;
1785 }
1786 
1787 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1788 {
1789 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1790 	int ret = 0;
1791 
1792 	/*
1793 	 * Keep a reference until all work is flushed since
1794 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1795 	 */
1796 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1797 		return -EBUSY;
1798 	ret = __nvme_rdma_del_ctrl(ctrl);
1799 	if (!ret)
1800 		flush_work(&ctrl->delete_work);
1801 	nvme_put_ctrl(&ctrl->ctrl);
1802 	return ret;
1803 }
1804 
1805 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1806 {
1807 	struct nvme_rdma_ctrl *ctrl =
1808 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1809 	int ret;
1810 	bool changed;
1811 
1812 	nvme_stop_ctrl(&ctrl->ctrl);
1813 	nvme_rdma_shutdown_ctrl(ctrl, false);
1814 
1815 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1816 	if (ret)
1817 		goto out_fail;
1818 
1819 	if (ctrl->ctrl.queue_count > 1) {
1820 		ret = nvme_rdma_configure_io_queues(ctrl, false);
1821 		if (ret)
1822 			goto out_fail;
1823 	}
1824 
1825 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1826 	WARN_ON_ONCE(!changed);
1827 
1828 	nvme_start_ctrl(&ctrl->ctrl);
1829 
1830 	return;
1831 
1832 out_fail:
1833 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1834 	nvme_rdma_remove_ctrl(ctrl);
1835 }
1836 
1837 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1838 	.name			= "rdma",
1839 	.module			= THIS_MODULE,
1840 	.flags			= NVME_F_FABRICS,
1841 	.reg_read32		= nvmf_reg_read32,
1842 	.reg_read64		= nvmf_reg_read64,
1843 	.reg_write32		= nvmf_reg_write32,
1844 	.free_ctrl		= nvme_rdma_free_ctrl,
1845 	.submit_async_event	= nvme_rdma_submit_async_event,
1846 	.delete_ctrl		= nvme_rdma_del_ctrl,
1847 	.get_address		= nvmf_get_address,
1848 };
1849 
1850 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1851 		struct nvmf_ctrl_options *opts)
1852 {
1853 	struct nvme_rdma_ctrl *ctrl;
1854 	int ret;
1855 	bool changed;
1856 	char *port;
1857 
1858 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1859 	if (!ctrl)
1860 		return ERR_PTR(-ENOMEM);
1861 	ctrl->ctrl.opts = opts;
1862 	INIT_LIST_HEAD(&ctrl->list);
1863 
1864 	if (opts->mask & NVMF_OPT_TRSVCID)
1865 		port = opts->trsvcid;
1866 	else
1867 		port = __stringify(NVME_RDMA_IP_PORT);
1868 
1869 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1870 			opts->traddr, port, &ctrl->addr);
1871 	if (ret) {
1872 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1873 		goto out_free_ctrl;
1874 	}
1875 
1876 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1877 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1878 			opts->host_traddr, NULL, &ctrl->src_addr);
1879 		if (ret) {
1880 			pr_err("malformed src address passed: %s\n",
1881 			       opts->host_traddr);
1882 			goto out_free_ctrl;
1883 		}
1884 	}
1885 
1886 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1887 				0 /* no quirks, we're perfect! */);
1888 	if (ret)
1889 		goto out_free_ctrl;
1890 
1891 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1892 			nvme_rdma_reconnect_ctrl_work);
1893 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1894 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1895 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1896 
1897 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1898 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1899 	ctrl->ctrl.kato = opts->kato;
1900 
1901 	ret = -ENOMEM;
1902 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1903 				GFP_KERNEL);
1904 	if (!ctrl->queues)
1905 		goto out_uninit_ctrl;
1906 
1907 	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1908 	if (ret)
1909 		goto out_kfree_queues;
1910 
1911 	/* sanity check icdoff */
1912 	if (ctrl->ctrl.icdoff) {
1913 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1914 		ret = -EINVAL;
1915 		goto out_remove_admin_queue;
1916 	}
1917 
1918 	/* sanity check keyed sgls */
1919 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1920 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1921 		ret = -EINVAL;
1922 		goto out_remove_admin_queue;
1923 	}
1924 
1925 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1926 		/* warn if maxcmd is lower than queue_size */
1927 		dev_warn(ctrl->ctrl.device,
1928 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1929 			opts->queue_size, ctrl->ctrl.maxcmd);
1930 		opts->queue_size = ctrl->ctrl.maxcmd;
1931 	}
1932 
1933 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1934 		/* warn if sqsize is lower than queue_size */
1935 		dev_warn(ctrl->ctrl.device,
1936 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1937 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1938 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1939 	}
1940 
1941 	if (opts->nr_io_queues) {
1942 		ret = nvme_rdma_configure_io_queues(ctrl, true);
1943 		if (ret)
1944 			goto out_remove_admin_queue;
1945 	}
1946 
1947 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1948 	WARN_ON_ONCE(!changed);
1949 
1950 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1951 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1952 
1953 	kref_get(&ctrl->ctrl.kref);
1954 
1955 	mutex_lock(&nvme_rdma_ctrl_mutex);
1956 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1957 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1958 
1959 	nvme_start_ctrl(&ctrl->ctrl);
1960 
1961 	return &ctrl->ctrl;
1962 
1963 out_remove_admin_queue:
1964 	nvme_rdma_destroy_admin_queue(ctrl, true);
1965 out_kfree_queues:
1966 	kfree(ctrl->queues);
1967 out_uninit_ctrl:
1968 	nvme_uninit_ctrl(&ctrl->ctrl);
1969 	nvme_put_ctrl(&ctrl->ctrl);
1970 	if (ret > 0)
1971 		ret = -EIO;
1972 	return ERR_PTR(ret);
1973 out_free_ctrl:
1974 	kfree(ctrl);
1975 	return ERR_PTR(ret);
1976 }
1977 
1978 static struct nvmf_transport_ops nvme_rdma_transport = {
1979 	.name		= "rdma",
1980 	.required_opts	= NVMF_OPT_TRADDR,
1981 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1982 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1983 	.create_ctrl	= nvme_rdma_create_ctrl,
1984 };
1985 
1986 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1987 {
1988 	struct nvme_rdma_ctrl *ctrl;
1989 
1990 	/* Delete all controllers using this device */
1991 	mutex_lock(&nvme_rdma_ctrl_mutex);
1992 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1993 		if (ctrl->device->dev != ib_device)
1994 			continue;
1995 		dev_info(ctrl->ctrl.device,
1996 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
1997 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1998 		__nvme_rdma_del_ctrl(ctrl);
1999 	}
2000 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2001 
2002 	flush_workqueue(nvme_wq);
2003 }
2004 
2005 static struct ib_client nvme_rdma_ib_client = {
2006 	.name   = "nvme_rdma",
2007 	.remove = nvme_rdma_remove_one
2008 };
2009 
2010 static int __init nvme_rdma_init_module(void)
2011 {
2012 	int ret;
2013 
2014 	ret = ib_register_client(&nvme_rdma_ib_client);
2015 	if (ret)
2016 		return ret;
2017 
2018 	ret = nvmf_register_transport(&nvme_rdma_transport);
2019 	if (ret)
2020 		goto err_unreg_client;
2021 
2022 	return 0;
2023 
2024 err_unreg_client:
2025 	ib_unregister_client(&nvme_rdma_ib_client);
2026 	return ret;
2027 }
2028 
2029 static void __exit nvme_rdma_cleanup_module(void)
2030 {
2031 	nvmf_unregister_transport(&nvme_rdma_transport);
2032 	ib_unregister_client(&nvme_rdma_ib_client);
2033 }
2034 
2035 module_init(nvme_rdma_init_module);
2036 module_exit(nvme_rdma_cleanup_module);
2037 
2038 MODULE_LICENSE("GPL v2");
2039