1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/blk-mq-rdma.h> 23 #include <linux/types.h> 24 #include <linux/list.h> 25 #include <linux/mutex.h> 26 #include <linux/scatterlist.h> 27 #include <linux/nvme.h> 28 #include <asm/unaligned.h> 29 30 #include <rdma/ib_verbs.h> 31 #include <rdma/rdma_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 39 40 #define NVME_RDMA_MAX_SEGMENTS 256 41 42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 43 44 /* 45 * We handle AEN commands ourselves and don't even let the 46 * block layer know about them. 47 */ 48 #define NVME_RDMA_NR_AEN_COMMANDS 1 49 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 50 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 51 52 struct nvme_rdma_device { 53 struct ib_device *dev; 54 struct ib_pd *pd; 55 struct kref ref; 56 struct list_head entry; 57 }; 58 59 struct nvme_rdma_qe { 60 struct ib_cqe cqe; 61 void *data; 62 u64 dma; 63 }; 64 65 struct nvme_rdma_queue; 66 struct nvme_rdma_request { 67 struct nvme_request req; 68 struct ib_mr *mr; 69 struct nvme_rdma_qe sqe; 70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 71 u32 num_sge; 72 int nents; 73 bool inline_data; 74 struct ib_reg_wr reg_wr; 75 struct ib_cqe reg_cqe; 76 struct nvme_rdma_queue *queue; 77 struct sg_table sg_table; 78 struct scatterlist first_sgl[]; 79 }; 80 81 enum nvme_rdma_queue_flags { 82 NVME_RDMA_Q_LIVE = 0, 83 NVME_RDMA_Q_DELETING = 1, 84 }; 85 86 struct nvme_rdma_queue { 87 struct nvme_rdma_qe *rsp_ring; 88 atomic_t sig_count; 89 int queue_size; 90 size_t cmnd_capsule_len; 91 struct nvme_rdma_ctrl *ctrl; 92 struct nvme_rdma_device *device; 93 struct ib_cq *ib_cq; 94 struct ib_qp *qp; 95 96 unsigned long flags; 97 struct rdma_cm_id *cm_id; 98 int cm_error; 99 struct completion cm_done; 100 }; 101 102 struct nvme_rdma_ctrl { 103 /* read only in the hot path */ 104 struct nvme_rdma_queue *queues; 105 106 /* other member variables */ 107 struct blk_mq_tag_set tag_set; 108 struct work_struct delete_work; 109 struct work_struct err_work; 110 111 struct nvme_rdma_qe async_event_sqe; 112 113 struct delayed_work reconnect_work; 114 115 struct list_head list; 116 117 struct blk_mq_tag_set admin_tag_set; 118 struct nvme_rdma_device *device; 119 120 u32 max_fr_pages; 121 122 struct sockaddr_storage addr; 123 struct sockaddr_storage src_addr; 124 125 struct nvme_ctrl ctrl; 126 }; 127 128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 129 { 130 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 131 } 132 133 static LIST_HEAD(device_list); 134 static DEFINE_MUTEX(device_list_mutex); 135 136 static LIST_HEAD(nvme_rdma_ctrl_list); 137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 138 139 /* 140 * Disabling this option makes small I/O goes faster, but is fundamentally 141 * unsafe. With it turned off we will have to register a global rkey that 142 * allows read and write access to all physical memory. 143 */ 144 static bool register_always = true; 145 module_param(register_always, bool, 0444); 146 MODULE_PARM_DESC(register_always, 147 "Use memory registration even for contiguous memory regions"); 148 149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 150 struct rdma_cm_event *event); 151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 152 153 static const struct blk_mq_ops nvme_rdma_mq_ops; 154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 155 156 /* XXX: really should move to a generic header sooner or later.. */ 157 static inline void put_unaligned_le24(u32 val, u8 *p) 158 { 159 *p++ = val; 160 *p++ = val >> 8; 161 *p++ = val >> 16; 162 } 163 164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 165 { 166 return queue - queue->ctrl->queues; 167 } 168 169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 170 { 171 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 172 } 173 174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 175 size_t capsule_size, enum dma_data_direction dir) 176 { 177 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 178 kfree(qe->data); 179 } 180 181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 182 size_t capsule_size, enum dma_data_direction dir) 183 { 184 qe->data = kzalloc(capsule_size, GFP_KERNEL); 185 if (!qe->data) 186 return -ENOMEM; 187 188 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 189 if (ib_dma_mapping_error(ibdev, qe->dma)) { 190 kfree(qe->data); 191 return -ENOMEM; 192 } 193 194 return 0; 195 } 196 197 static void nvme_rdma_free_ring(struct ib_device *ibdev, 198 struct nvme_rdma_qe *ring, size_t ib_queue_size, 199 size_t capsule_size, enum dma_data_direction dir) 200 { 201 int i; 202 203 for (i = 0; i < ib_queue_size; i++) 204 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 205 kfree(ring); 206 } 207 208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 209 size_t ib_queue_size, size_t capsule_size, 210 enum dma_data_direction dir) 211 { 212 struct nvme_rdma_qe *ring; 213 int i; 214 215 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 216 if (!ring) 217 return NULL; 218 219 for (i = 0; i < ib_queue_size; i++) { 220 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 221 goto out_free_ring; 222 } 223 224 return ring; 225 226 out_free_ring: 227 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 228 return NULL; 229 } 230 231 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 232 { 233 pr_debug("QP event %s (%d)\n", 234 ib_event_msg(event->event), event->event); 235 236 } 237 238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 239 { 240 wait_for_completion_interruptible_timeout(&queue->cm_done, 241 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 242 return queue->cm_error; 243 } 244 245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 246 { 247 struct nvme_rdma_device *dev = queue->device; 248 struct ib_qp_init_attr init_attr; 249 int ret; 250 251 memset(&init_attr, 0, sizeof(init_attr)); 252 init_attr.event_handler = nvme_rdma_qp_event; 253 /* +1 for drain */ 254 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 255 /* +1 for drain */ 256 init_attr.cap.max_recv_wr = queue->queue_size + 1; 257 init_attr.cap.max_recv_sge = 1; 258 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 259 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 260 init_attr.qp_type = IB_QPT_RC; 261 init_attr.send_cq = queue->ib_cq; 262 init_attr.recv_cq = queue->ib_cq; 263 264 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 265 266 queue->qp = queue->cm_id->qp; 267 return ret; 268 } 269 270 static int nvme_rdma_reinit_request(void *data, struct request *rq) 271 { 272 struct nvme_rdma_ctrl *ctrl = data; 273 struct nvme_rdma_device *dev = ctrl->device; 274 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 275 int ret = 0; 276 277 ib_dereg_mr(req->mr); 278 279 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 280 ctrl->max_fr_pages); 281 if (IS_ERR(req->mr)) { 282 ret = PTR_ERR(req->mr); 283 req->mr = NULL; 284 goto out; 285 } 286 287 req->mr->need_inval = false; 288 289 out: 290 return ret; 291 } 292 293 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 294 struct request *rq, unsigned int hctx_idx) 295 { 296 struct nvme_rdma_ctrl *ctrl = set->driver_data; 297 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 298 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 299 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 300 struct nvme_rdma_device *dev = queue->device; 301 302 if (req->mr) 303 ib_dereg_mr(req->mr); 304 305 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 306 DMA_TO_DEVICE); 307 } 308 309 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 310 struct request *rq, unsigned int hctx_idx, 311 unsigned int numa_node) 312 { 313 struct nvme_rdma_ctrl *ctrl = set->driver_data; 314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 315 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 316 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 317 struct nvme_rdma_device *dev = queue->device; 318 struct ib_device *ibdev = dev->dev; 319 int ret; 320 321 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 322 DMA_TO_DEVICE); 323 if (ret) 324 return ret; 325 326 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 327 ctrl->max_fr_pages); 328 if (IS_ERR(req->mr)) { 329 ret = PTR_ERR(req->mr); 330 goto out_free_qe; 331 } 332 333 req->queue = queue; 334 335 return 0; 336 337 out_free_qe: 338 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 339 DMA_TO_DEVICE); 340 return -ENOMEM; 341 } 342 343 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 344 unsigned int hctx_idx) 345 { 346 struct nvme_rdma_ctrl *ctrl = data; 347 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 348 349 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 350 351 hctx->driver_data = queue; 352 return 0; 353 } 354 355 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 356 unsigned int hctx_idx) 357 { 358 struct nvme_rdma_ctrl *ctrl = data; 359 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 360 361 BUG_ON(hctx_idx != 0); 362 363 hctx->driver_data = queue; 364 return 0; 365 } 366 367 static void nvme_rdma_free_dev(struct kref *ref) 368 { 369 struct nvme_rdma_device *ndev = 370 container_of(ref, struct nvme_rdma_device, ref); 371 372 mutex_lock(&device_list_mutex); 373 list_del(&ndev->entry); 374 mutex_unlock(&device_list_mutex); 375 376 ib_dealloc_pd(ndev->pd); 377 kfree(ndev); 378 } 379 380 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 381 { 382 kref_put(&dev->ref, nvme_rdma_free_dev); 383 } 384 385 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 386 { 387 return kref_get_unless_zero(&dev->ref); 388 } 389 390 static struct nvme_rdma_device * 391 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 392 { 393 struct nvme_rdma_device *ndev; 394 395 mutex_lock(&device_list_mutex); 396 list_for_each_entry(ndev, &device_list, entry) { 397 if (ndev->dev->node_guid == cm_id->device->node_guid && 398 nvme_rdma_dev_get(ndev)) 399 goto out_unlock; 400 } 401 402 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 403 if (!ndev) 404 goto out_err; 405 406 ndev->dev = cm_id->device; 407 kref_init(&ndev->ref); 408 409 ndev->pd = ib_alloc_pd(ndev->dev, 410 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 411 if (IS_ERR(ndev->pd)) 412 goto out_free_dev; 413 414 if (!(ndev->dev->attrs.device_cap_flags & 415 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 416 dev_err(&ndev->dev->dev, 417 "Memory registrations not supported.\n"); 418 goto out_free_pd; 419 } 420 421 list_add(&ndev->entry, &device_list); 422 out_unlock: 423 mutex_unlock(&device_list_mutex); 424 return ndev; 425 426 out_free_pd: 427 ib_dealloc_pd(ndev->pd); 428 out_free_dev: 429 kfree(ndev); 430 out_err: 431 mutex_unlock(&device_list_mutex); 432 return NULL; 433 } 434 435 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 436 { 437 struct nvme_rdma_device *dev; 438 struct ib_device *ibdev; 439 440 dev = queue->device; 441 ibdev = dev->dev; 442 rdma_destroy_qp(queue->cm_id); 443 ib_free_cq(queue->ib_cq); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 452 { 453 struct ib_device *ibdev; 454 const int send_wr_factor = 3; /* MR, SEND, INV */ 455 const int cq_factor = send_wr_factor + 1; /* + RECV */ 456 int comp_vector, idx = nvme_rdma_queue_idx(queue); 457 int ret; 458 459 queue->device = nvme_rdma_find_get_device(queue->cm_id); 460 if (!queue->device) { 461 dev_err(queue->cm_id->device->dev.parent, 462 "no client data found!\n"); 463 return -ECONNREFUSED; 464 } 465 ibdev = queue->device->dev; 466 467 /* 468 * Spread I/O queues completion vectors according their queue index. 469 * Admin queues can always go on completion vector 0. 470 */ 471 comp_vector = idx == 0 ? idx : idx - 1; 472 473 /* +1 for ib_stop_cq */ 474 queue->ib_cq = ib_alloc_cq(ibdev, queue, 475 cq_factor * queue->queue_size + 1, 476 comp_vector, IB_POLL_SOFTIRQ); 477 if (IS_ERR(queue->ib_cq)) { 478 ret = PTR_ERR(queue->ib_cq); 479 goto out_put_dev; 480 } 481 482 ret = nvme_rdma_create_qp(queue, send_wr_factor); 483 if (ret) 484 goto out_destroy_ib_cq; 485 486 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 487 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 488 if (!queue->rsp_ring) { 489 ret = -ENOMEM; 490 goto out_destroy_qp; 491 } 492 493 return 0; 494 495 out_destroy_qp: 496 ib_destroy_qp(queue->qp); 497 out_destroy_ib_cq: 498 ib_free_cq(queue->ib_cq); 499 out_put_dev: 500 nvme_rdma_dev_put(queue->device); 501 return ret; 502 } 503 504 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 505 int idx, size_t queue_size) 506 { 507 struct nvme_rdma_queue *queue; 508 struct sockaddr *src_addr = NULL; 509 int ret; 510 511 queue = &ctrl->queues[idx]; 512 queue->ctrl = ctrl; 513 init_completion(&queue->cm_done); 514 515 if (idx > 0) 516 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 517 else 518 queue->cmnd_capsule_len = sizeof(struct nvme_command); 519 520 queue->queue_size = queue_size; 521 atomic_set(&queue->sig_count, 0); 522 523 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 524 RDMA_PS_TCP, IB_QPT_RC); 525 if (IS_ERR(queue->cm_id)) { 526 dev_info(ctrl->ctrl.device, 527 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 528 return PTR_ERR(queue->cm_id); 529 } 530 531 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 532 src_addr = (struct sockaddr *)&ctrl->src_addr; 533 534 queue->cm_error = -ETIMEDOUT; 535 ret = rdma_resolve_addr(queue->cm_id, src_addr, 536 (struct sockaddr *)&ctrl->addr, 537 NVME_RDMA_CONNECT_TIMEOUT_MS); 538 if (ret) { 539 dev_info(ctrl->ctrl.device, 540 "rdma_resolve_addr failed (%d).\n", ret); 541 goto out_destroy_cm_id; 542 } 543 544 ret = nvme_rdma_wait_for_cm(queue); 545 if (ret) { 546 dev_info(ctrl->ctrl.device, 547 "rdma_resolve_addr wait failed (%d).\n", ret); 548 goto out_destroy_cm_id; 549 } 550 551 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 552 553 return 0; 554 555 out_destroy_cm_id: 556 rdma_destroy_id(queue->cm_id); 557 return ret; 558 } 559 560 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 561 { 562 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 563 return; 564 565 rdma_disconnect(queue->cm_id); 566 ib_drain_qp(queue->qp); 567 } 568 569 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 570 { 571 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 572 return; 573 574 nvme_rdma_destroy_queue_ib(queue); 575 rdma_destroy_id(queue->cm_id); 576 } 577 578 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 579 { 580 int i; 581 582 for (i = 1; i < ctrl->ctrl.queue_count; i++) 583 nvme_rdma_free_queue(&ctrl->queues[i]); 584 } 585 586 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 587 { 588 int i; 589 590 for (i = 1; i < ctrl->ctrl.queue_count; i++) 591 nvme_rdma_stop_queue(&ctrl->queues[i]); 592 } 593 594 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 595 { 596 int ret; 597 598 if (idx) 599 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 600 else 601 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 602 603 if (!ret) 604 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 605 else 606 dev_info(ctrl->ctrl.device, 607 "failed to connect queue: %d ret=%d\n", idx, ret); 608 return ret; 609 } 610 611 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 612 { 613 int i, ret = 0; 614 615 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 616 ret = nvme_rdma_start_queue(ctrl, i); 617 if (ret) 618 goto out_stop_queues; 619 } 620 621 return 0; 622 623 out_stop_queues: 624 for (i--; i >= 1; i--) 625 nvme_rdma_stop_queue(&ctrl->queues[i]); 626 return ret; 627 } 628 629 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 630 { 631 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 632 struct ib_device *ibdev = ctrl->device->dev; 633 unsigned int nr_io_queues; 634 int i, ret; 635 636 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 637 638 /* 639 * we map queues according to the device irq vectors for 640 * optimal locality so we don't need more queues than 641 * completion vectors. 642 */ 643 nr_io_queues = min_t(unsigned int, nr_io_queues, 644 ibdev->num_comp_vectors); 645 646 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 647 if (ret) 648 return ret; 649 650 ctrl->ctrl.queue_count = nr_io_queues + 1; 651 if (ctrl->ctrl.queue_count < 2) 652 return 0; 653 654 dev_info(ctrl->ctrl.device, 655 "creating %d I/O queues.\n", nr_io_queues); 656 657 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 658 ret = nvme_rdma_alloc_queue(ctrl, i, 659 ctrl->ctrl.sqsize + 1); 660 if (ret) 661 goto out_free_queues; 662 } 663 664 return 0; 665 666 out_free_queues: 667 for (i--; i >= 1; i--) 668 nvme_rdma_free_queue(&ctrl->queues[i]); 669 670 return ret; 671 } 672 673 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin) 674 { 675 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 676 struct blk_mq_tag_set *set = admin ? 677 &ctrl->admin_tag_set : &ctrl->tag_set; 678 679 blk_mq_free_tag_set(set); 680 nvme_rdma_dev_put(ctrl->device); 681 } 682 683 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 684 bool admin) 685 { 686 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 687 struct blk_mq_tag_set *set; 688 int ret; 689 690 if (admin) { 691 set = &ctrl->admin_tag_set; 692 memset(set, 0, sizeof(*set)); 693 set->ops = &nvme_rdma_admin_mq_ops; 694 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 695 set->reserved_tags = 2; /* connect + keep-alive */ 696 set->numa_node = NUMA_NO_NODE; 697 set->cmd_size = sizeof(struct nvme_rdma_request) + 698 SG_CHUNK_SIZE * sizeof(struct scatterlist); 699 set->driver_data = ctrl; 700 set->nr_hw_queues = 1; 701 set->timeout = ADMIN_TIMEOUT; 702 } else { 703 set = &ctrl->tag_set; 704 memset(set, 0, sizeof(*set)); 705 set->ops = &nvme_rdma_mq_ops; 706 set->queue_depth = nctrl->opts->queue_size; 707 set->reserved_tags = 1; /* fabric connect */ 708 set->numa_node = NUMA_NO_NODE; 709 set->flags = BLK_MQ_F_SHOULD_MERGE; 710 set->cmd_size = sizeof(struct nvme_rdma_request) + 711 SG_CHUNK_SIZE * sizeof(struct scatterlist); 712 set->driver_data = ctrl; 713 set->nr_hw_queues = nctrl->queue_count - 1; 714 set->timeout = NVME_IO_TIMEOUT; 715 } 716 717 ret = blk_mq_alloc_tag_set(set); 718 if (ret) 719 goto out; 720 721 /* 722 * We need a reference on the device as long as the tag_set is alive, 723 * as the MRs in the request structures need a valid ib_device. 724 */ 725 ret = nvme_rdma_dev_get(ctrl->device); 726 if (!ret) { 727 ret = -EINVAL; 728 goto out_free_tagset; 729 } 730 731 return set; 732 733 out_free_tagset: 734 blk_mq_free_tag_set(set); 735 out: 736 return ERR_PTR(ret); 737 } 738 739 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 740 bool remove) 741 { 742 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 743 sizeof(struct nvme_command), DMA_TO_DEVICE); 744 nvme_rdma_stop_queue(&ctrl->queues[0]); 745 if (remove) { 746 blk_cleanup_queue(ctrl->ctrl.admin_q); 747 nvme_rdma_free_tagset(&ctrl->ctrl, true); 748 } 749 nvme_rdma_free_queue(&ctrl->queues[0]); 750 } 751 752 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 753 bool new) 754 { 755 int error; 756 757 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 758 if (error) 759 return error; 760 761 ctrl->device = ctrl->queues[0].device; 762 763 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 764 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 765 766 if (new) { 767 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 768 if (IS_ERR(ctrl->ctrl.admin_tagset)) 769 goto out_free_queue; 770 771 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 772 if (IS_ERR(ctrl->ctrl.admin_q)) { 773 error = PTR_ERR(ctrl->ctrl.admin_q); 774 goto out_free_tagset; 775 } 776 } else { 777 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set, 778 nvme_rdma_reinit_request); 779 if (error) 780 goto out_free_queue; 781 } 782 783 error = nvme_rdma_start_queue(ctrl, 0); 784 if (error) 785 goto out_cleanup_queue; 786 787 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 788 &ctrl->ctrl.cap); 789 if (error) { 790 dev_err(ctrl->ctrl.device, 791 "prop_get NVME_REG_CAP failed\n"); 792 goto out_cleanup_queue; 793 } 794 795 ctrl->ctrl.sqsize = 796 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 797 798 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 799 if (error) 800 goto out_cleanup_queue; 801 802 ctrl->ctrl.max_hw_sectors = 803 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 804 805 error = nvme_init_identify(&ctrl->ctrl); 806 if (error) 807 goto out_cleanup_queue; 808 809 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 810 &ctrl->async_event_sqe, sizeof(struct nvme_command), 811 DMA_TO_DEVICE); 812 if (error) 813 goto out_cleanup_queue; 814 815 return 0; 816 817 out_cleanup_queue: 818 if (new) 819 blk_cleanup_queue(ctrl->ctrl.admin_q); 820 out_free_tagset: 821 if (new) 822 nvme_rdma_free_tagset(&ctrl->ctrl, true); 823 out_free_queue: 824 nvme_rdma_free_queue(&ctrl->queues[0]); 825 return error; 826 } 827 828 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 829 bool remove) 830 { 831 nvme_rdma_stop_io_queues(ctrl); 832 if (remove) { 833 blk_cleanup_queue(ctrl->ctrl.connect_q); 834 nvme_rdma_free_tagset(&ctrl->ctrl, false); 835 } 836 nvme_rdma_free_io_queues(ctrl); 837 } 838 839 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 840 { 841 int ret; 842 843 ret = nvme_rdma_alloc_io_queues(ctrl); 844 if (ret) 845 return ret; 846 847 if (new) { 848 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 849 if (IS_ERR(ctrl->ctrl.tagset)) 850 goto out_free_io_queues; 851 852 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 853 if (IS_ERR(ctrl->ctrl.connect_q)) { 854 ret = PTR_ERR(ctrl->ctrl.connect_q); 855 goto out_free_tag_set; 856 } 857 } else { 858 ret = blk_mq_reinit_tagset(&ctrl->tag_set, 859 nvme_rdma_reinit_request); 860 if (ret) 861 goto out_free_io_queues; 862 863 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 864 ctrl->ctrl.queue_count - 1); 865 } 866 867 ret = nvme_rdma_start_io_queues(ctrl); 868 if (ret) 869 goto out_cleanup_connect_q; 870 871 return 0; 872 873 out_cleanup_connect_q: 874 if (new) 875 blk_cleanup_queue(ctrl->ctrl.connect_q); 876 out_free_tag_set: 877 if (new) 878 nvme_rdma_free_tagset(&ctrl->ctrl, false); 879 out_free_io_queues: 880 nvme_rdma_free_io_queues(ctrl); 881 return ret; 882 } 883 884 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 885 { 886 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 887 888 if (list_empty(&ctrl->list)) 889 goto free_ctrl; 890 891 mutex_lock(&nvme_rdma_ctrl_mutex); 892 list_del(&ctrl->list); 893 mutex_unlock(&nvme_rdma_ctrl_mutex); 894 895 kfree(ctrl->queues); 896 nvmf_free_options(nctrl->opts); 897 free_ctrl: 898 kfree(ctrl); 899 } 900 901 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 902 { 903 /* If we are resetting/deleting then do nothing */ 904 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 905 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 906 ctrl->ctrl.state == NVME_CTRL_LIVE); 907 return; 908 } 909 910 if (nvmf_should_reconnect(&ctrl->ctrl)) { 911 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 912 ctrl->ctrl.opts->reconnect_delay); 913 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 914 ctrl->ctrl.opts->reconnect_delay * HZ); 915 } else { 916 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 917 queue_work(nvme_wq, &ctrl->delete_work); 918 } 919 } 920 921 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 922 { 923 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 924 struct nvme_rdma_ctrl, reconnect_work); 925 bool changed; 926 int ret; 927 928 ++ctrl->ctrl.nr_reconnects; 929 930 if (ctrl->ctrl.queue_count > 1) 931 nvme_rdma_destroy_io_queues(ctrl, false); 932 933 nvme_rdma_destroy_admin_queue(ctrl, false); 934 ret = nvme_rdma_configure_admin_queue(ctrl, false); 935 if (ret) 936 goto requeue; 937 938 if (ctrl->ctrl.queue_count > 1) { 939 ret = nvme_rdma_configure_io_queues(ctrl, false); 940 if (ret) 941 goto requeue; 942 } 943 944 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 945 if (!changed) { 946 /* state change failure is ok if we're in DELETING state */ 947 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 948 return; 949 } 950 951 ctrl->ctrl.nr_reconnects = 0; 952 953 nvme_start_ctrl(&ctrl->ctrl); 954 955 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 956 957 return; 958 959 requeue: 960 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 961 ctrl->ctrl.nr_reconnects); 962 nvme_rdma_reconnect_or_remove(ctrl); 963 } 964 965 static void nvme_rdma_error_recovery_work(struct work_struct *work) 966 { 967 struct nvme_rdma_ctrl *ctrl = container_of(work, 968 struct nvme_rdma_ctrl, err_work); 969 970 nvme_stop_keep_alive(&ctrl->ctrl); 971 972 if (ctrl->ctrl.queue_count > 1) { 973 nvme_stop_queues(&ctrl->ctrl); 974 nvme_rdma_stop_io_queues(ctrl); 975 } 976 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 977 nvme_rdma_stop_queue(&ctrl->queues[0]); 978 979 /* We must take care of fastfail/requeue all our inflight requests */ 980 if (ctrl->ctrl.queue_count > 1) 981 blk_mq_tagset_busy_iter(&ctrl->tag_set, 982 nvme_cancel_request, &ctrl->ctrl); 983 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 984 nvme_cancel_request, &ctrl->ctrl); 985 986 /* 987 * queues are not a live anymore, so restart the queues to fail fast 988 * new IO 989 */ 990 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 991 nvme_start_queues(&ctrl->ctrl); 992 993 nvme_rdma_reconnect_or_remove(ctrl); 994 } 995 996 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 997 { 998 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 999 return; 1000 1001 queue_work(nvme_wq, &ctrl->err_work); 1002 } 1003 1004 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1005 const char *op) 1006 { 1007 struct nvme_rdma_queue *queue = cq->cq_context; 1008 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1009 1010 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1011 dev_info(ctrl->ctrl.device, 1012 "%s for CQE 0x%p failed with status %s (%d)\n", 1013 op, wc->wr_cqe, 1014 ib_wc_status_msg(wc->status), wc->status); 1015 nvme_rdma_error_recovery(ctrl); 1016 } 1017 1018 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1019 { 1020 if (unlikely(wc->status != IB_WC_SUCCESS)) 1021 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1022 } 1023 1024 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1025 { 1026 if (unlikely(wc->status != IB_WC_SUCCESS)) 1027 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1028 } 1029 1030 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1031 struct nvme_rdma_request *req) 1032 { 1033 struct ib_send_wr *bad_wr; 1034 struct ib_send_wr wr = { 1035 .opcode = IB_WR_LOCAL_INV, 1036 .next = NULL, 1037 .num_sge = 0, 1038 .send_flags = 0, 1039 .ex.invalidate_rkey = req->mr->rkey, 1040 }; 1041 1042 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1043 wr.wr_cqe = &req->reg_cqe; 1044 1045 return ib_post_send(queue->qp, &wr, &bad_wr); 1046 } 1047 1048 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1049 struct request *rq) 1050 { 1051 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1052 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1053 struct nvme_rdma_device *dev = queue->device; 1054 struct ib_device *ibdev = dev->dev; 1055 int res; 1056 1057 if (!blk_rq_bytes(rq)) 1058 return; 1059 1060 if (req->mr->need_inval) { 1061 res = nvme_rdma_inv_rkey(queue, req); 1062 if (unlikely(res < 0)) { 1063 dev_err(ctrl->ctrl.device, 1064 "Queueing INV WR for rkey %#x failed (%d)\n", 1065 req->mr->rkey, res); 1066 nvme_rdma_error_recovery(queue->ctrl); 1067 } 1068 } 1069 1070 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1071 req->nents, rq_data_dir(rq) == 1072 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1073 1074 nvme_cleanup_cmd(rq); 1075 sg_free_table_chained(&req->sg_table, true); 1076 } 1077 1078 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1079 { 1080 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1081 1082 sg->addr = 0; 1083 put_unaligned_le24(0, sg->length); 1084 put_unaligned_le32(0, sg->key); 1085 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1086 return 0; 1087 } 1088 1089 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1090 struct nvme_rdma_request *req, struct nvme_command *c) 1091 { 1092 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1093 1094 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1095 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1096 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1097 1098 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1099 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1100 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1101 1102 req->inline_data = true; 1103 req->num_sge++; 1104 return 0; 1105 } 1106 1107 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1108 struct nvme_rdma_request *req, struct nvme_command *c) 1109 { 1110 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1111 1112 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1113 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1114 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1115 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1116 return 0; 1117 } 1118 1119 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1120 struct nvme_rdma_request *req, struct nvme_command *c, 1121 int count) 1122 { 1123 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1124 int nr; 1125 1126 /* 1127 * Align the MR to a 4K page size to match the ctrl page size and 1128 * the block virtual boundary. 1129 */ 1130 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1131 if (unlikely(nr < count)) { 1132 if (nr < 0) 1133 return nr; 1134 return -EINVAL; 1135 } 1136 1137 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1138 1139 req->reg_cqe.done = nvme_rdma_memreg_done; 1140 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1141 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1142 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1143 req->reg_wr.wr.num_sge = 0; 1144 req->reg_wr.mr = req->mr; 1145 req->reg_wr.key = req->mr->rkey; 1146 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1147 IB_ACCESS_REMOTE_READ | 1148 IB_ACCESS_REMOTE_WRITE; 1149 1150 req->mr->need_inval = true; 1151 1152 sg->addr = cpu_to_le64(req->mr->iova); 1153 put_unaligned_le24(req->mr->length, sg->length); 1154 put_unaligned_le32(req->mr->rkey, sg->key); 1155 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1156 NVME_SGL_FMT_INVALIDATE; 1157 1158 return 0; 1159 } 1160 1161 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1162 struct request *rq, struct nvme_command *c) 1163 { 1164 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1165 struct nvme_rdma_device *dev = queue->device; 1166 struct ib_device *ibdev = dev->dev; 1167 int count, ret; 1168 1169 req->num_sge = 1; 1170 req->inline_data = false; 1171 req->mr->need_inval = false; 1172 1173 c->common.flags |= NVME_CMD_SGL_METABUF; 1174 1175 if (!blk_rq_bytes(rq)) 1176 return nvme_rdma_set_sg_null(c); 1177 1178 req->sg_table.sgl = req->first_sgl; 1179 ret = sg_alloc_table_chained(&req->sg_table, 1180 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1181 if (ret) 1182 return -ENOMEM; 1183 1184 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1185 1186 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1187 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1188 if (unlikely(count <= 0)) { 1189 sg_free_table_chained(&req->sg_table, true); 1190 return -EIO; 1191 } 1192 1193 if (count == 1) { 1194 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1195 blk_rq_payload_bytes(rq) <= 1196 nvme_rdma_inline_data_size(queue)) 1197 return nvme_rdma_map_sg_inline(queue, req, c); 1198 1199 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1200 return nvme_rdma_map_sg_single(queue, req, c); 1201 } 1202 1203 return nvme_rdma_map_sg_fr(queue, req, c, count); 1204 } 1205 1206 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1207 { 1208 if (unlikely(wc->status != IB_WC_SUCCESS)) 1209 nvme_rdma_wr_error(cq, wc, "SEND"); 1210 } 1211 1212 /* 1213 * We want to signal completion at least every queue depth/2. This returns the 1214 * largest power of two that is not above half of (queue size + 1) to optimize 1215 * (avoid divisions). 1216 */ 1217 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1218 { 1219 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1220 1221 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1222 } 1223 1224 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1225 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1226 struct ib_send_wr *first, bool flush) 1227 { 1228 struct ib_send_wr wr, *bad_wr; 1229 int ret; 1230 1231 sge->addr = qe->dma; 1232 sge->length = sizeof(struct nvme_command), 1233 sge->lkey = queue->device->pd->local_dma_lkey; 1234 1235 qe->cqe.done = nvme_rdma_send_done; 1236 1237 wr.next = NULL; 1238 wr.wr_cqe = &qe->cqe; 1239 wr.sg_list = sge; 1240 wr.num_sge = num_sge; 1241 wr.opcode = IB_WR_SEND; 1242 wr.send_flags = 0; 1243 1244 /* 1245 * Unsignalled send completions are another giant desaster in the 1246 * IB Verbs spec: If we don't regularly post signalled sends 1247 * the send queue will fill up and only a QP reset will rescue us. 1248 * Would have been way to obvious to handle this in hardware or 1249 * at least the RDMA stack.. 1250 * 1251 * Always signal the flushes. The magic request used for the flush 1252 * sequencer is not allocated in our driver's tagset and it's 1253 * triggered to be freed by blk_cleanup_queue(). So we need to 1254 * always mark it as signaled to ensure that the "wr_cqe", which is 1255 * embedded in request's payload, is not freed when __ib_process_cq() 1256 * calls wr_cqe->done(). 1257 */ 1258 if (nvme_rdma_queue_sig_limit(queue) || flush) 1259 wr.send_flags |= IB_SEND_SIGNALED; 1260 1261 if (first) 1262 first->next = ≀ 1263 else 1264 first = ≀ 1265 1266 ret = ib_post_send(queue->qp, first, &bad_wr); 1267 if (unlikely(ret)) { 1268 dev_err(queue->ctrl->ctrl.device, 1269 "%s failed with error code %d\n", __func__, ret); 1270 } 1271 return ret; 1272 } 1273 1274 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1275 struct nvme_rdma_qe *qe) 1276 { 1277 struct ib_recv_wr wr, *bad_wr; 1278 struct ib_sge list; 1279 int ret; 1280 1281 list.addr = qe->dma; 1282 list.length = sizeof(struct nvme_completion); 1283 list.lkey = queue->device->pd->local_dma_lkey; 1284 1285 qe->cqe.done = nvme_rdma_recv_done; 1286 1287 wr.next = NULL; 1288 wr.wr_cqe = &qe->cqe; 1289 wr.sg_list = &list; 1290 wr.num_sge = 1; 1291 1292 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1293 if (unlikely(ret)) { 1294 dev_err(queue->ctrl->ctrl.device, 1295 "%s failed with error code %d\n", __func__, ret); 1296 } 1297 return ret; 1298 } 1299 1300 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1301 { 1302 u32 queue_idx = nvme_rdma_queue_idx(queue); 1303 1304 if (queue_idx == 0) 1305 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1306 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1307 } 1308 1309 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1310 { 1311 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1312 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1313 struct ib_device *dev = queue->device->dev; 1314 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1315 struct nvme_command *cmd = sqe->data; 1316 struct ib_sge sge; 1317 int ret; 1318 1319 if (WARN_ON_ONCE(aer_idx != 0)) 1320 return; 1321 1322 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1323 1324 memset(cmd, 0, sizeof(*cmd)); 1325 cmd->common.opcode = nvme_admin_async_event; 1326 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1327 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1328 nvme_rdma_set_sg_null(cmd); 1329 1330 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1331 DMA_TO_DEVICE); 1332 1333 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1334 WARN_ON_ONCE(ret); 1335 } 1336 1337 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1338 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1339 { 1340 struct request *rq; 1341 struct nvme_rdma_request *req; 1342 int ret = 0; 1343 1344 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1345 if (!rq) { 1346 dev_err(queue->ctrl->ctrl.device, 1347 "tag 0x%x on QP %#x not found\n", 1348 cqe->command_id, queue->qp->qp_num); 1349 nvme_rdma_error_recovery(queue->ctrl); 1350 return ret; 1351 } 1352 req = blk_mq_rq_to_pdu(rq); 1353 1354 if (rq->tag == tag) 1355 ret = 1; 1356 1357 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1358 wc->ex.invalidate_rkey == req->mr->rkey) 1359 req->mr->need_inval = false; 1360 1361 nvme_end_request(rq, cqe->status, cqe->result); 1362 return ret; 1363 } 1364 1365 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1366 { 1367 struct nvme_rdma_qe *qe = 1368 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1369 struct nvme_rdma_queue *queue = cq->cq_context; 1370 struct ib_device *ibdev = queue->device->dev; 1371 struct nvme_completion *cqe = qe->data; 1372 const size_t len = sizeof(struct nvme_completion); 1373 int ret = 0; 1374 1375 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1376 nvme_rdma_wr_error(cq, wc, "RECV"); 1377 return 0; 1378 } 1379 1380 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1381 /* 1382 * AEN requests are special as they don't time out and can 1383 * survive any kind of queue freeze and often don't respond to 1384 * aborts. We don't even bother to allocate a struct request 1385 * for them but rather special case them here. 1386 */ 1387 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1388 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1389 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1390 &cqe->result); 1391 else 1392 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1393 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1394 1395 nvme_rdma_post_recv(queue, qe); 1396 return ret; 1397 } 1398 1399 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1400 { 1401 __nvme_rdma_recv_done(cq, wc, -1); 1402 } 1403 1404 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1405 { 1406 int ret, i; 1407 1408 for (i = 0; i < queue->queue_size; i++) { 1409 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1410 if (ret) 1411 goto out_destroy_queue_ib; 1412 } 1413 1414 return 0; 1415 1416 out_destroy_queue_ib: 1417 nvme_rdma_destroy_queue_ib(queue); 1418 return ret; 1419 } 1420 1421 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1422 struct rdma_cm_event *ev) 1423 { 1424 struct rdma_cm_id *cm_id = queue->cm_id; 1425 int status = ev->status; 1426 const char *rej_msg; 1427 const struct nvme_rdma_cm_rej *rej_data; 1428 u8 rej_data_len; 1429 1430 rej_msg = rdma_reject_msg(cm_id, status); 1431 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1432 1433 if (rej_data && rej_data_len >= sizeof(u16)) { 1434 u16 sts = le16_to_cpu(rej_data->sts); 1435 1436 dev_err(queue->ctrl->ctrl.device, 1437 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1438 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1439 } else { 1440 dev_err(queue->ctrl->ctrl.device, 1441 "Connect rejected: status %d (%s).\n", status, rej_msg); 1442 } 1443 1444 return -ECONNRESET; 1445 } 1446 1447 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1448 { 1449 int ret; 1450 1451 ret = nvme_rdma_create_queue_ib(queue); 1452 if (ret) 1453 return ret; 1454 1455 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1456 if (ret) { 1457 dev_err(queue->ctrl->ctrl.device, 1458 "rdma_resolve_route failed (%d).\n", 1459 queue->cm_error); 1460 goto out_destroy_queue; 1461 } 1462 1463 return 0; 1464 1465 out_destroy_queue: 1466 nvme_rdma_destroy_queue_ib(queue); 1467 return ret; 1468 } 1469 1470 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1471 { 1472 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1473 struct rdma_conn_param param = { }; 1474 struct nvme_rdma_cm_req priv = { }; 1475 int ret; 1476 1477 param.qp_num = queue->qp->qp_num; 1478 param.flow_control = 1; 1479 1480 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1481 /* maximum retry count */ 1482 param.retry_count = 7; 1483 param.rnr_retry_count = 7; 1484 param.private_data = &priv; 1485 param.private_data_len = sizeof(priv); 1486 1487 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1488 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1489 /* 1490 * set the admin queue depth to the minimum size 1491 * specified by the Fabrics standard. 1492 */ 1493 if (priv.qid == 0) { 1494 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1495 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1496 } else { 1497 /* 1498 * current interpretation of the fabrics spec 1499 * is at minimum you make hrqsize sqsize+1, or a 1500 * 1's based representation of sqsize. 1501 */ 1502 priv.hrqsize = cpu_to_le16(queue->queue_size); 1503 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1504 } 1505 1506 ret = rdma_connect(queue->cm_id, ¶m); 1507 if (ret) { 1508 dev_err(ctrl->ctrl.device, 1509 "rdma_connect failed (%d).\n", ret); 1510 goto out_destroy_queue_ib; 1511 } 1512 1513 return 0; 1514 1515 out_destroy_queue_ib: 1516 nvme_rdma_destroy_queue_ib(queue); 1517 return ret; 1518 } 1519 1520 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1521 struct rdma_cm_event *ev) 1522 { 1523 struct nvme_rdma_queue *queue = cm_id->context; 1524 int cm_error = 0; 1525 1526 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1527 rdma_event_msg(ev->event), ev->event, 1528 ev->status, cm_id); 1529 1530 switch (ev->event) { 1531 case RDMA_CM_EVENT_ADDR_RESOLVED: 1532 cm_error = nvme_rdma_addr_resolved(queue); 1533 break; 1534 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1535 cm_error = nvme_rdma_route_resolved(queue); 1536 break; 1537 case RDMA_CM_EVENT_ESTABLISHED: 1538 queue->cm_error = nvme_rdma_conn_established(queue); 1539 /* complete cm_done regardless of success/failure */ 1540 complete(&queue->cm_done); 1541 return 0; 1542 case RDMA_CM_EVENT_REJECTED: 1543 nvme_rdma_destroy_queue_ib(queue); 1544 cm_error = nvme_rdma_conn_rejected(queue, ev); 1545 break; 1546 case RDMA_CM_EVENT_ROUTE_ERROR: 1547 case RDMA_CM_EVENT_CONNECT_ERROR: 1548 case RDMA_CM_EVENT_UNREACHABLE: 1549 nvme_rdma_destroy_queue_ib(queue); 1550 case RDMA_CM_EVENT_ADDR_ERROR: 1551 dev_dbg(queue->ctrl->ctrl.device, 1552 "CM error event %d\n", ev->event); 1553 cm_error = -ECONNRESET; 1554 break; 1555 case RDMA_CM_EVENT_DISCONNECTED: 1556 case RDMA_CM_EVENT_ADDR_CHANGE: 1557 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1558 dev_dbg(queue->ctrl->ctrl.device, 1559 "disconnect received - connection closed\n"); 1560 nvme_rdma_error_recovery(queue->ctrl); 1561 break; 1562 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1563 /* device removal is handled via the ib_client API */ 1564 break; 1565 default: 1566 dev_err(queue->ctrl->ctrl.device, 1567 "Unexpected RDMA CM event (%d)\n", ev->event); 1568 nvme_rdma_error_recovery(queue->ctrl); 1569 break; 1570 } 1571 1572 if (cm_error) { 1573 queue->cm_error = cm_error; 1574 complete(&queue->cm_done); 1575 } 1576 1577 return 0; 1578 } 1579 1580 static enum blk_eh_timer_return 1581 nvme_rdma_timeout(struct request *rq, bool reserved) 1582 { 1583 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1584 1585 /* queue error recovery */ 1586 nvme_rdma_error_recovery(req->queue->ctrl); 1587 1588 /* fail with DNR on cmd timeout */ 1589 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1590 1591 return BLK_EH_HANDLED; 1592 } 1593 1594 /* 1595 * We cannot accept any other command until the Connect command has completed. 1596 */ 1597 static inline blk_status_t 1598 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1599 { 1600 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1601 struct nvme_command *cmd = nvme_req(rq)->cmd; 1602 1603 if (!blk_rq_is_passthrough(rq) || 1604 cmd->common.opcode != nvme_fabrics_command || 1605 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1606 /* 1607 * reconnecting state means transport disruption, which 1608 * can take a long time and even might fail permanently, 1609 * so we can't let incoming I/O be requeued forever. 1610 * fail it fast to allow upper layers a chance to 1611 * failover. 1612 */ 1613 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING) 1614 return BLK_STS_IOERR; 1615 return BLK_STS_RESOURCE; /* try again later */ 1616 } 1617 } 1618 1619 return 0; 1620 } 1621 1622 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1623 const struct blk_mq_queue_data *bd) 1624 { 1625 struct nvme_ns *ns = hctx->queue->queuedata; 1626 struct nvme_rdma_queue *queue = hctx->driver_data; 1627 struct request *rq = bd->rq; 1628 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1629 struct nvme_rdma_qe *sqe = &req->sqe; 1630 struct nvme_command *c = sqe->data; 1631 bool flush = false; 1632 struct ib_device *dev; 1633 blk_status_t ret; 1634 int err; 1635 1636 WARN_ON_ONCE(rq->tag < 0); 1637 1638 ret = nvme_rdma_queue_is_ready(queue, rq); 1639 if (unlikely(ret)) 1640 return ret; 1641 1642 dev = queue->device->dev; 1643 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1644 sizeof(struct nvme_command), DMA_TO_DEVICE); 1645 1646 ret = nvme_setup_cmd(ns, rq, c); 1647 if (ret) 1648 return ret; 1649 1650 blk_mq_start_request(rq); 1651 1652 err = nvme_rdma_map_data(queue, rq, c); 1653 if (unlikely(err < 0)) { 1654 dev_err(queue->ctrl->ctrl.device, 1655 "Failed to map data (%d)\n", err); 1656 nvme_cleanup_cmd(rq); 1657 goto err; 1658 } 1659 1660 ib_dma_sync_single_for_device(dev, sqe->dma, 1661 sizeof(struct nvme_command), DMA_TO_DEVICE); 1662 1663 if (req_op(rq) == REQ_OP_FLUSH) 1664 flush = true; 1665 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1666 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1667 if (unlikely(err)) { 1668 nvme_rdma_unmap_data(queue, rq); 1669 goto err; 1670 } 1671 1672 return BLK_STS_OK; 1673 err: 1674 if (err == -ENOMEM || err == -EAGAIN) 1675 return BLK_STS_RESOURCE; 1676 return BLK_STS_IOERR; 1677 } 1678 1679 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1680 { 1681 struct nvme_rdma_queue *queue = hctx->driver_data; 1682 struct ib_cq *cq = queue->ib_cq; 1683 struct ib_wc wc; 1684 int found = 0; 1685 1686 while (ib_poll_cq(cq, 1, &wc) > 0) { 1687 struct ib_cqe *cqe = wc.wr_cqe; 1688 1689 if (cqe) { 1690 if (cqe->done == nvme_rdma_recv_done) 1691 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1692 else 1693 cqe->done(cq, &wc); 1694 } 1695 } 1696 1697 return found; 1698 } 1699 1700 static void nvme_rdma_complete_rq(struct request *rq) 1701 { 1702 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1703 1704 nvme_rdma_unmap_data(req->queue, rq); 1705 nvme_complete_rq(rq); 1706 } 1707 1708 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1709 { 1710 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1711 1712 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1713 } 1714 1715 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1716 .queue_rq = nvme_rdma_queue_rq, 1717 .complete = nvme_rdma_complete_rq, 1718 .init_request = nvme_rdma_init_request, 1719 .exit_request = nvme_rdma_exit_request, 1720 .init_hctx = nvme_rdma_init_hctx, 1721 .poll = nvme_rdma_poll, 1722 .timeout = nvme_rdma_timeout, 1723 .map_queues = nvme_rdma_map_queues, 1724 }; 1725 1726 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1727 .queue_rq = nvme_rdma_queue_rq, 1728 .complete = nvme_rdma_complete_rq, 1729 .init_request = nvme_rdma_init_request, 1730 .exit_request = nvme_rdma_exit_request, 1731 .init_hctx = nvme_rdma_init_admin_hctx, 1732 .timeout = nvme_rdma_timeout, 1733 }; 1734 1735 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1736 { 1737 cancel_work_sync(&ctrl->err_work); 1738 cancel_delayed_work_sync(&ctrl->reconnect_work); 1739 1740 if (ctrl->ctrl.queue_count > 1) { 1741 nvme_stop_queues(&ctrl->ctrl); 1742 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1743 nvme_cancel_request, &ctrl->ctrl); 1744 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1745 } 1746 1747 if (shutdown) 1748 nvme_shutdown_ctrl(&ctrl->ctrl); 1749 else 1750 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1751 1752 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1753 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1754 nvme_cancel_request, &ctrl->ctrl); 1755 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1756 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1757 } 1758 1759 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl) 1760 { 1761 nvme_remove_namespaces(&ctrl->ctrl); 1762 nvme_rdma_shutdown_ctrl(ctrl, true); 1763 nvme_uninit_ctrl(&ctrl->ctrl); 1764 nvme_put_ctrl(&ctrl->ctrl); 1765 } 1766 1767 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1768 { 1769 struct nvme_rdma_ctrl *ctrl = container_of(work, 1770 struct nvme_rdma_ctrl, delete_work); 1771 1772 nvme_stop_ctrl(&ctrl->ctrl); 1773 nvme_rdma_remove_ctrl(ctrl); 1774 } 1775 1776 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1777 { 1778 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1779 return -EBUSY; 1780 1781 if (!queue_work(nvme_wq, &ctrl->delete_work)) 1782 return -EBUSY; 1783 1784 return 0; 1785 } 1786 1787 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1788 { 1789 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1790 int ret = 0; 1791 1792 /* 1793 * Keep a reference until all work is flushed since 1794 * __nvme_rdma_del_ctrl can free the ctrl mem 1795 */ 1796 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1797 return -EBUSY; 1798 ret = __nvme_rdma_del_ctrl(ctrl); 1799 if (!ret) 1800 flush_work(&ctrl->delete_work); 1801 nvme_put_ctrl(&ctrl->ctrl); 1802 return ret; 1803 } 1804 1805 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1806 { 1807 struct nvme_rdma_ctrl *ctrl = 1808 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1809 int ret; 1810 bool changed; 1811 1812 nvme_stop_ctrl(&ctrl->ctrl); 1813 nvme_rdma_shutdown_ctrl(ctrl, false); 1814 1815 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1816 if (ret) 1817 goto out_fail; 1818 1819 if (ctrl->ctrl.queue_count > 1) { 1820 ret = nvme_rdma_configure_io_queues(ctrl, false); 1821 if (ret) 1822 goto out_fail; 1823 } 1824 1825 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1826 WARN_ON_ONCE(!changed); 1827 1828 nvme_start_ctrl(&ctrl->ctrl); 1829 1830 return; 1831 1832 out_fail: 1833 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1834 nvme_rdma_remove_ctrl(ctrl); 1835 } 1836 1837 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1838 .name = "rdma", 1839 .module = THIS_MODULE, 1840 .flags = NVME_F_FABRICS, 1841 .reg_read32 = nvmf_reg_read32, 1842 .reg_read64 = nvmf_reg_read64, 1843 .reg_write32 = nvmf_reg_write32, 1844 .free_ctrl = nvme_rdma_free_ctrl, 1845 .submit_async_event = nvme_rdma_submit_async_event, 1846 .delete_ctrl = nvme_rdma_del_ctrl, 1847 .get_address = nvmf_get_address, 1848 }; 1849 1850 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1851 struct nvmf_ctrl_options *opts) 1852 { 1853 struct nvme_rdma_ctrl *ctrl; 1854 int ret; 1855 bool changed; 1856 char *port; 1857 1858 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1859 if (!ctrl) 1860 return ERR_PTR(-ENOMEM); 1861 ctrl->ctrl.opts = opts; 1862 INIT_LIST_HEAD(&ctrl->list); 1863 1864 if (opts->mask & NVMF_OPT_TRSVCID) 1865 port = opts->trsvcid; 1866 else 1867 port = __stringify(NVME_RDMA_IP_PORT); 1868 1869 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1870 opts->traddr, port, &ctrl->addr); 1871 if (ret) { 1872 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1873 goto out_free_ctrl; 1874 } 1875 1876 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1877 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1878 opts->host_traddr, NULL, &ctrl->src_addr); 1879 if (ret) { 1880 pr_err("malformed src address passed: %s\n", 1881 opts->host_traddr); 1882 goto out_free_ctrl; 1883 } 1884 } 1885 1886 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1887 0 /* no quirks, we're perfect! */); 1888 if (ret) 1889 goto out_free_ctrl; 1890 1891 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1892 nvme_rdma_reconnect_ctrl_work); 1893 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1894 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1895 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1896 1897 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1898 ctrl->ctrl.sqsize = opts->queue_size - 1; 1899 ctrl->ctrl.kato = opts->kato; 1900 1901 ret = -ENOMEM; 1902 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1903 GFP_KERNEL); 1904 if (!ctrl->queues) 1905 goto out_uninit_ctrl; 1906 1907 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1908 if (ret) 1909 goto out_kfree_queues; 1910 1911 /* sanity check icdoff */ 1912 if (ctrl->ctrl.icdoff) { 1913 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1914 ret = -EINVAL; 1915 goto out_remove_admin_queue; 1916 } 1917 1918 /* sanity check keyed sgls */ 1919 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1920 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1921 ret = -EINVAL; 1922 goto out_remove_admin_queue; 1923 } 1924 1925 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1926 /* warn if maxcmd is lower than queue_size */ 1927 dev_warn(ctrl->ctrl.device, 1928 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1929 opts->queue_size, ctrl->ctrl.maxcmd); 1930 opts->queue_size = ctrl->ctrl.maxcmd; 1931 } 1932 1933 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1934 /* warn if sqsize is lower than queue_size */ 1935 dev_warn(ctrl->ctrl.device, 1936 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1937 opts->queue_size, ctrl->ctrl.sqsize + 1); 1938 opts->queue_size = ctrl->ctrl.sqsize + 1; 1939 } 1940 1941 if (opts->nr_io_queues) { 1942 ret = nvme_rdma_configure_io_queues(ctrl, true); 1943 if (ret) 1944 goto out_remove_admin_queue; 1945 } 1946 1947 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1948 WARN_ON_ONCE(!changed); 1949 1950 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1951 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1952 1953 kref_get(&ctrl->ctrl.kref); 1954 1955 mutex_lock(&nvme_rdma_ctrl_mutex); 1956 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1957 mutex_unlock(&nvme_rdma_ctrl_mutex); 1958 1959 nvme_start_ctrl(&ctrl->ctrl); 1960 1961 return &ctrl->ctrl; 1962 1963 out_remove_admin_queue: 1964 nvme_rdma_destroy_admin_queue(ctrl, true); 1965 out_kfree_queues: 1966 kfree(ctrl->queues); 1967 out_uninit_ctrl: 1968 nvme_uninit_ctrl(&ctrl->ctrl); 1969 nvme_put_ctrl(&ctrl->ctrl); 1970 if (ret > 0) 1971 ret = -EIO; 1972 return ERR_PTR(ret); 1973 out_free_ctrl: 1974 kfree(ctrl); 1975 return ERR_PTR(ret); 1976 } 1977 1978 static struct nvmf_transport_ops nvme_rdma_transport = { 1979 .name = "rdma", 1980 .required_opts = NVMF_OPT_TRADDR, 1981 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 1982 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 1983 .create_ctrl = nvme_rdma_create_ctrl, 1984 }; 1985 1986 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1987 { 1988 struct nvme_rdma_ctrl *ctrl; 1989 1990 /* Delete all controllers using this device */ 1991 mutex_lock(&nvme_rdma_ctrl_mutex); 1992 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1993 if (ctrl->device->dev != ib_device) 1994 continue; 1995 dev_info(ctrl->ctrl.device, 1996 "Removing ctrl: NQN \"%s\", addr %pISp\n", 1997 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1998 __nvme_rdma_del_ctrl(ctrl); 1999 } 2000 mutex_unlock(&nvme_rdma_ctrl_mutex); 2001 2002 flush_workqueue(nvme_wq); 2003 } 2004 2005 static struct ib_client nvme_rdma_ib_client = { 2006 .name = "nvme_rdma", 2007 .remove = nvme_rdma_remove_one 2008 }; 2009 2010 static int __init nvme_rdma_init_module(void) 2011 { 2012 int ret; 2013 2014 ret = ib_register_client(&nvme_rdma_ib_client); 2015 if (ret) 2016 return ret; 2017 2018 ret = nvmf_register_transport(&nvme_rdma_transport); 2019 if (ret) 2020 goto err_unreg_client; 2021 2022 return 0; 2023 2024 err_unreg_client: 2025 ib_unregister_client(&nvme_rdma_ib_client); 2026 return ret; 2027 } 2028 2029 static void __exit nvme_rdma_cleanup_module(void) 2030 { 2031 nvmf_unregister_transport(&nvme_rdma_transport); 2032 ib_unregister_client(&nvme_rdma_ib_client); 2033 } 2034 2035 module_init(nvme_rdma_init_module); 2036 module_exit(nvme_rdma_cleanup_module); 2037 2038 MODULE_LICENSE("GPL v2"); 2039