1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 unsigned int num_inline_segments; 51 }; 52 53 struct nvme_rdma_qe { 54 struct ib_cqe cqe; 55 void *data; 56 u64 dma; 57 }; 58 59 struct nvme_rdma_queue; 60 struct nvme_rdma_request { 61 struct nvme_request req; 62 struct ib_mr *mr; 63 struct nvme_rdma_qe sqe; 64 union nvme_result result; 65 __le16 status; 66 refcount_t ref; 67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 68 u32 num_sge; 69 int nents; 70 struct ib_reg_wr reg_wr; 71 struct ib_cqe reg_cqe; 72 struct nvme_rdma_queue *queue; 73 struct sg_table sg_table; 74 struct scatterlist first_sgl[]; 75 }; 76 77 enum nvme_rdma_queue_flags { 78 NVME_RDMA_Q_ALLOCATED = 0, 79 NVME_RDMA_Q_LIVE = 1, 80 NVME_RDMA_Q_TR_READY = 2, 81 }; 82 83 struct nvme_rdma_queue { 84 struct nvme_rdma_qe *rsp_ring; 85 int queue_size; 86 size_t cmnd_capsule_len; 87 struct nvme_rdma_ctrl *ctrl; 88 struct nvme_rdma_device *device; 89 struct ib_cq *ib_cq; 90 struct ib_qp *qp; 91 92 unsigned long flags; 93 struct rdma_cm_id *cm_id; 94 int cm_error; 95 struct completion cm_done; 96 }; 97 98 struct nvme_rdma_ctrl { 99 /* read only in the hot path */ 100 struct nvme_rdma_queue *queues; 101 102 /* other member variables */ 103 struct blk_mq_tag_set tag_set; 104 struct work_struct err_work; 105 106 struct nvme_rdma_qe async_event_sqe; 107 108 struct delayed_work reconnect_work; 109 110 struct list_head list; 111 112 struct blk_mq_tag_set admin_tag_set; 113 struct nvme_rdma_device *device; 114 115 u32 max_fr_pages; 116 117 struct sockaddr_storage addr; 118 struct sockaddr_storage src_addr; 119 120 struct nvme_ctrl ctrl; 121 bool use_inline_data; 122 u32 io_queues[HCTX_MAX_TYPES]; 123 }; 124 125 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 126 { 127 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 128 } 129 130 static LIST_HEAD(device_list); 131 static DEFINE_MUTEX(device_list_mutex); 132 133 static LIST_HEAD(nvme_rdma_ctrl_list); 134 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 135 136 /* 137 * Disabling this option makes small I/O goes faster, but is fundamentally 138 * unsafe. With it turned off we will have to register a global rkey that 139 * allows read and write access to all physical memory. 140 */ 141 static bool register_always = true; 142 module_param(register_always, bool, 0444); 143 MODULE_PARM_DESC(register_always, 144 "Use memory registration even for contiguous memory regions"); 145 146 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 147 struct rdma_cm_event *event); 148 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 149 150 static const struct blk_mq_ops nvme_rdma_mq_ops; 151 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 152 153 /* XXX: really should move to a generic header sooner or later.. */ 154 static inline void put_unaligned_le24(u32 val, u8 *p) 155 { 156 *p++ = val; 157 *p++ = val >> 8; 158 *p++ = val >> 16; 159 } 160 161 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 162 { 163 return queue - queue->ctrl->queues; 164 } 165 166 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 167 { 168 return nvme_rdma_queue_idx(queue) > 169 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 170 queue->ctrl->io_queues[HCTX_TYPE_READ]; 171 } 172 173 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 174 { 175 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 176 } 177 178 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 179 size_t capsule_size, enum dma_data_direction dir) 180 { 181 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 182 kfree(qe->data); 183 } 184 185 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 186 size_t capsule_size, enum dma_data_direction dir) 187 { 188 qe->data = kzalloc(capsule_size, GFP_KERNEL); 189 if (!qe->data) 190 return -ENOMEM; 191 192 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 193 if (ib_dma_mapping_error(ibdev, qe->dma)) { 194 kfree(qe->data); 195 qe->data = NULL; 196 return -ENOMEM; 197 } 198 199 return 0; 200 } 201 202 static void nvme_rdma_free_ring(struct ib_device *ibdev, 203 struct nvme_rdma_qe *ring, size_t ib_queue_size, 204 size_t capsule_size, enum dma_data_direction dir) 205 { 206 int i; 207 208 for (i = 0; i < ib_queue_size; i++) 209 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 210 kfree(ring); 211 } 212 213 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 214 size_t ib_queue_size, size_t capsule_size, 215 enum dma_data_direction dir) 216 { 217 struct nvme_rdma_qe *ring; 218 int i; 219 220 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 221 if (!ring) 222 return NULL; 223 224 for (i = 0; i < ib_queue_size; i++) { 225 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 226 goto out_free_ring; 227 } 228 229 return ring; 230 231 out_free_ring: 232 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 233 return NULL; 234 } 235 236 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 237 { 238 pr_debug("QP event %s (%d)\n", 239 ib_event_msg(event->event), event->event); 240 241 } 242 243 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 244 { 245 int ret; 246 247 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 248 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 249 if (ret < 0) 250 return ret; 251 if (ret == 0) 252 return -ETIMEDOUT; 253 WARN_ON_ONCE(queue->cm_error > 0); 254 return queue->cm_error; 255 } 256 257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 258 { 259 struct nvme_rdma_device *dev = queue->device; 260 struct ib_qp_init_attr init_attr; 261 int ret; 262 263 memset(&init_attr, 0, sizeof(init_attr)); 264 init_attr.event_handler = nvme_rdma_qp_event; 265 /* +1 for drain */ 266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 267 /* +1 for drain */ 268 init_attr.cap.max_recv_wr = queue->queue_size + 1; 269 init_attr.cap.max_recv_sge = 1; 270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 272 init_attr.qp_type = IB_QPT_RC; 273 init_attr.send_cq = queue->ib_cq; 274 init_attr.recv_cq = queue->ib_cq; 275 276 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 277 278 queue->qp = queue->cm_id->qp; 279 return ret; 280 } 281 282 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 283 struct request *rq, unsigned int hctx_idx) 284 { 285 struct nvme_rdma_ctrl *ctrl = set->driver_data; 286 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 287 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 288 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 289 struct nvme_rdma_device *dev = queue->device; 290 291 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 292 DMA_TO_DEVICE); 293 } 294 295 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 296 struct request *rq, unsigned int hctx_idx, 297 unsigned int numa_node) 298 { 299 struct nvme_rdma_ctrl *ctrl = set->driver_data; 300 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 301 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 302 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 303 struct nvme_rdma_device *dev = queue->device; 304 struct ib_device *ibdev = dev->dev; 305 int ret; 306 307 nvme_req(rq)->ctrl = &ctrl->ctrl; 308 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 309 DMA_TO_DEVICE); 310 if (ret) 311 return ret; 312 313 req->queue = queue; 314 315 return 0; 316 } 317 318 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 319 unsigned int hctx_idx) 320 { 321 struct nvme_rdma_ctrl *ctrl = data; 322 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 323 324 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 325 326 hctx->driver_data = queue; 327 return 0; 328 } 329 330 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 331 unsigned int hctx_idx) 332 { 333 struct nvme_rdma_ctrl *ctrl = data; 334 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 335 336 BUG_ON(hctx_idx != 0); 337 338 hctx->driver_data = queue; 339 return 0; 340 } 341 342 static void nvme_rdma_free_dev(struct kref *ref) 343 { 344 struct nvme_rdma_device *ndev = 345 container_of(ref, struct nvme_rdma_device, ref); 346 347 mutex_lock(&device_list_mutex); 348 list_del(&ndev->entry); 349 mutex_unlock(&device_list_mutex); 350 351 ib_dealloc_pd(ndev->pd); 352 kfree(ndev); 353 } 354 355 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 356 { 357 kref_put(&dev->ref, nvme_rdma_free_dev); 358 } 359 360 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 361 { 362 return kref_get_unless_zero(&dev->ref); 363 } 364 365 static struct nvme_rdma_device * 366 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 367 { 368 struct nvme_rdma_device *ndev; 369 370 mutex_lock(&device_list_mutex); 371 list_for_each_entry(ndev, &device_list, entry) { 372 if (ndev->dev->node_guid == cm_id->device->node_guid && 373 nvme_rdma_dev_get(ndev)) 374 goto out_unlock; 375 } 376 377 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 378 if (!ndev) 379 goto out_err; 380 381 ndev->dev = cm_id->device; 382 kref_init(&ndev->ref); 383 384 ndev->pd = ib_alloc_pd(ndev->dev, 385 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 386 if (IS_ERR(ndev->pd)) 387 goto out_free_dev; 388 389 if (!(ndev->dev->attrs.device_cap_flags & 390 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 391 dev_err(&ndev->dev->dev, 392 "Memory registrations not supported.\n"); 393 goto out_free_pd; 394 } 395 396 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 397 ndev->dev->attrs.max_send_sge - 1); 398 list_add(&ndev->entry, &device_list); 399 out_unlock: 400 mutex_unlock(&device_list_mutex); 401 return ndev; 402 403 out_free_pd: 404 ib_dealloc_pd(ndev->pd); 405 out_free_dev: 406 kfree(ndev); 407 out_err: 408 mutex_unlock(&device_list_mutex); 409 return NULL; 410 } 411 412 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 413 { 414 struct nvme_rdma_device *dev; 415 struct ib_device *ibdev; 416 417 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 418 return; 419 420 dev = queue->device; 421 ibdev = dev->dev; 422 423 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 424 425 /* 426 * The cm_id object might have been destroyed during RDMA connection 427 * establishment error flow to avoid getting other cma events, thus 428 * the destruction of the QP shouldn't use rdma_cm API. 429 */ 430 ib_destroy_qp(queue->qp); 431 ib_free_cq(queue->ib_cq); 432 433 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 434 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 435 436 nvme_rdma_dev_put(dev); 437 } 438 439 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 440 { 441 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 442 ibdev->attrs.max_fast_reg_page_list_len); 443 } 444 445 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 446 { 447 struct ib_device *ibdev; 448 const int send_wr_factor = 3; /* MR, SEND, INV */ 449 const int cq_factor = send_wr_factor + 1; /* + RECV */ 450 int comp_vector, idx = nvme_rdma_queue_idx(queue); 451 enum ib_poll_context poll_ctx; 452 int ret; 453 454 queue->device = nvme_rdma_find_get_device(queue->cm_id); 455 if (!queue->device) { 456 dev_err(queue->cm_id->device->dev.parent, 457 "no client data found!\n"); 458 return -ECONNREFUSED; 459 } 460 ibdev = queue->device->dev; 461 462 /* 463 * Spread I/O queues completion vectors according their queue index. 464 * Admin queues can always go on completion vector 0. 465 */ 466 comp_vector = idx == 0 ? idx : idx - 1; 467 468 /* Polling queues need direct cq polling context */ 469 if (nvme_rdma_poll_queue(queue)) 470 poll_ctx = IB_POLL_DIRECT; 471 else 472 poll_ctx = IB_POLL_SOFTIRQ; 473 474 /* +1 for ib_stop_cq */ 475 queue->ib_cq = ib_alloc_cq(ibdev, queue, 476 cq_factor * queue->queue_size + 1, 477 comp_vector, poll_ctx); 478 if (IS_ERR(queue->ib_cq)) { 479 ret = PTR_ERR(queue->ib_cq); 480 goto out_put_dev; 481 } 482 483 ret = nvme_rdma_create_qp(queue, send_wr_factor); 484 if (ret) 485 goto out_destroy_ib_cq; 486 487 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 488 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 489 if (!queue->rsp_ring) { 490 ret = -ENOMEM; 491 goto out_destroy_qp; 492 } 493 494 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 495 queue->queue_size, 496 IB_MR_TYPE_MEM_REG, 497 nvme_rdma_get_max_fr_pages(ibdev)); 498 if (ret) { 499 dev_err(queue->ctrl->ctrl.device, 500 "failed to initialize MR pool sized %d for QID %d\n", 501 queue->queue_size, idx); 502 goto out_destroy_ring; 503 } 504 505 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 506 507 return 0; 508 509 out_destroy_ring: 510 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 511 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 512 out_destroy_qp: 513 rdma_destroy_qp(queue->cm_id); 514 out_destroy_ib_cq: 515 ib_free_cq(queue->ib_cq); 516 out_put_dev: 517 nvme_rdma_dev_put(queue->device); 518 return ret; 519 } 520 521 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 522 int idx, size_t queue_size) 523 { 524 struct nvme_rdma_queue *queue; 525 struct sockaddr *src_addr = NULL; 526 int ret; 527 528 queue = &ctrl->queues[idx]; 529 queue->ctrl = ctrl; 530 init_completion(&queue->cm_done); 531 532 if (idx > 0) 533 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 534 else 535 queue->cmnd_capsule_len = sizeof(struct nvme_command); 536 537 queue->queue_size = queue_size; 538 539 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 540 RDMA_PS_TCP, IB_QPT_RC); 541 if (IS_ERR(queue->cm_id)) { 542 dev_info(ctrl->ctrl.device, 543 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 544 return PTR_ERR(queue->cm_id); 545 } 546 547 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 548 src_addr = (struct sockaddr *)&ctrl->src_addr; 549 550 queue->cm_error = -ETIMEDOUT; 551 ret = rdma_resolve_addr(queue->cm_id, src_addr, 552 (struct sockaddr *)&ctrl->addr, 553 NVME_RDMA_CONNECT_TIMEOUT_MS); 554 if (ret) { 555 dev_info(ctrl->ctrl.device, 556 "rdma_resolve_addr failed (%d).\n", ret); 557 goto out_destroy_cm_id; 558 } 559 560 ret = nvme_rdma_wait_for_cm(queue); 561 if (ret) { 562 dev_info(ctrl->ctrl.device, 563 "rdma connection establishment failed (%d)\n", ret); 564 goto out_destroy_cm_id; 565 } 566 567 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 568 569 return 0; 570 571 out_destroy_cm_id: 572 rdma_destroy_id(queue->cm_id); 573 nvme_rdma_destroy_queue_ib(queue); 574 return ret; 575 } 576 577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 578 { 579 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 580 return; 581 582 rdma_disconnect(queue->cm_id); 583 ib_drain_qp(queue->qp); 584 } 585 586 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 587 { 588 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 589 return; 590 591 nvme_rdma_destroy_queue_ib(queue); 592 rdma_destroy_id(queue->cm_id); 593 } 594 595 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 596 { 597 int i; 598 599 for (i = 1; i < ctrl->ctrl.queue_count; i++) 600 nvme_rdma_free_queue(&ctrl->queues[i]); 601 } 602 603 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 604 { 605 int i; 606 607 for (i = 1; i < ctrl->ctrl.queue_count; i++) 608 nvme_rdma_stop_queue(&ctrl->queues[i]); 609 } 610 611 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 612 { 613 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 614 bool poll = nvme_rdma_poll_queue(queue); 615 int ret; 616 617 if (idx) 618 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 619 else 620 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 621 622 if (!ret) 623 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 624 else 625 dev_info(ctrl->ctrl.device, 626 "failed to connect queue: %d ret=%d\n", idx, ret); 627 return ret; 628 } 629 630 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 631 { 632 int i, ret = 0; 633 634 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 635 ret = nvme_rdma_start_queue(ctrl, i); 636 if (ret) 637 goto out_stop_queues; 638 } 639 640 return 0; 641 642 out_stop_queues: 643 for (i--; i >= 1; i--) 644 nvme_rdma_stop_queue(&ctrl->queues[i]); 645 return ret; 646 } 647 648 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 649 { 650 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 651 struct ib_device *ibdev = ctrl->device->dev; 652 unsigned int nr_io_queues; 653 int i, ret; 654 655 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 656 657 /* 658 * we map queues according to the device irq vectors for 659 * optimal locality so we don't need more queues than 660 * completion vectors. 661 */ 662 nr_io_queues = min_t(unsigned int, nr_io_queues, 663 ibdev->num_comp_vectors); 664 665 if (opts->nr_write_queues) { 666 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 667 min(opts->nr_write_queues, nr_io_queues); 668 nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT]; 669 } else { 670 ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues; 671 } 672 673 ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues; 674 675 if (opts->nr_poll_queues) { 676 ctrl->io_queues[HCTX_TYPE_POLL] = 677 min(opts->nr_poll_queues, num_online_cpus()); 678 nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL]; 679 } 680 681 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 682 if (ret) 683 return ret; 684 685 ctrl->ctrl.queue_count = nr_io_queues + 1; 686 if (ctrl->ctrl.queue_count < 2) 687 return 0; 688 689 dev_info(ctrl->ctrl.device, 690 "creating %d I/O queues.\n", nr_io_queues); 691 692 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 693 ret = nvme_rdma_alloc_queue(ctrl, i, 694 ctrl->ctrl.sqsize + 1); 695 if (ret) 696 goto out_free_queues; 697 } 698 699 return 0; 700 701 out_free_queues: 702 for (i--; i >= 1; i--) 703 nvme_rdma_free_queue(&ctrl->queues[i]); 704 705 return ret; 706 } 707 708 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 709 struct blk_mq_tag_set *set) 710 { 711 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 712 713 blk_mq_free_tag_set(set); 714 nvme_rdma_dev_put(ctrl->device); 715 } 716 717 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 718 bool admin) 719 { 720 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 721 struct blk_mq_tag_set *set; 722 int ret; 723 724 if (admin) { 725 set = &ctrl->admin_tag_set; 726 memset(set, 0, sizeof(*set)); 727 set->ops = &nvme_rdma_admin_mq_ops; 728 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 729 set->reserved_tags = 2; /* connect + keep-alive */ 730 set->numa_node = nctrl->numa_node; 731 set->cmd_size = sizeof(struct nvme_rdma_request) + 732 SG_CHUNK_SIZE * sizeof(struct scatterlist); 733 set->driver_data = ctrl; 734 set->nr_hw_queues = 1; 735 set->timeout = ADMIN_TIMEOUT; 736 set->flags = BLK_MQ_F_NO_SCHED; 737 } else { 738 set = &ctrl->tag_set; 739 memset(set, 0, sizeof(*set)); 740 set->ops = &nvme_rdma_mq_ops; 741 set->queue_depth = nctrl->sqsize + 1; 742 set->reserved_tags = 1; /* fabric connect */ 743 set->numa_node = nctrl->numa_node; 744 set->flags = BLK_MQ_F_SHOULD_MERGE; 745 set->cmd_size = sizeof(struct nvme_rdma_request) + 746 SG_CHUNK_SIZE * sizeof(struct scatterlist); 747 set->driver_data = ctrl; 748 set->nr_hw_queues = nctrl->queue_count - 1; 749 set->timeout = NVME_IO_TIMEOUT; 750 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 751 } 752 753 ret = blk_mq_alloc_tag_set(set); 754 if (ret) 755 goto out; 756 757 /* 758 * We need a reference on the device as long as the tag_set is alive, 759 * as the MRs in the request structures need a valid ib_device. 760 */ 761 ret = nvme_rdma_dev_get(ctrl->device); 762 if (!ret) { 763 ret = -EINVAL; 764 goto out_free_tagset; 765 } 766 767 return set; 768 769 out_free_tagset: 770 blk_mq_free_tag_set(set); 771 out: 772 return ERR_PTR(ret); 773 } 774 775 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 776 bool remove) 777 { 778 if (remove) { 779 blk_cleanup_queue(ctrl->ctrl.admin_q); 780 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 781 } 782 if (ctrl->async_event_sqe.data) { 783 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 784 sizeof(struct nvme_command), DMA_TO_DEVICE); 785 ctrl->async_event_sqe.data = NULL; 786 } 787 nvme_rdma_free_queue(&ctrl->queues[0]); 788 } 789 790 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 791 bool new) 792 { 793 int error; 794 795 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 796 if (error) 797 return error; 798 799 ctrl->device = ctrl->queues[0].device; 800 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 801 802 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 803 804 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 805 sizeof(struct nvme_command), DMA_TO_DEVICE); 806 if (error) 807 goto out_free_queue; 808 809 if (new) { 810 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 811 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 812 error = PTR_ERR(ctrl->ctrl.admin_tagset); 813 goto out_free_async_qe; 814 } 815 816 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 817 if (IS_ERR(ctrl->ctrl.admin_q)) { 818 error = PTR_ERR(ctrl->ctrl.admin_q); 819 goto out_free_tagset; 820 } 821 } 822 823 error = nvme_rdma_start_queue(ctrl, 0); 824 if (error) 825 goto out_cleanup_queue; 826 827 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 828 &ctrl->ctrl.cap); 829 if (error) { 830 dev_err(ctrl->ctrl.device, 831 "prop_get NVME_REG_CAP failed\n"); 832 goto out_stop_queue; 833 } 834 835 ctrl->ctrl.sqsize = 836 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 837 838 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 839 if (error) 840 goto out_stop_queue; 841 842 ctrl->ctrl.max_hw_sectors = 843 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 844 845 error = nvme_init_identify(&ctrl->ctrl); 846 if (error) 847 goto out_stop_queue; 848 849 return 0; 850 851 out_stop_queue: 852 nvme_rdma_stop_queue(&ctrl->queues[0]); 853 out_cleanup_queue: 854 if (new) 855 blk_cleanup_queue(ctrl->ctrl.admin_q); 856 out_free_tagset: 857 if (new) 858 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 859 out_free_async_qe: 860 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 861 sizeof(struct nvme_command), DMA_TO_DEVICE); 862 ctrl->async_event_sqe.data = NULL; 863 out_free_queue: 864 nvme_rdma_free_queue(&ctrl->queues[0]); 865 return error; 866 } 867 868 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 869 bool remove) 870 { 871 if (remove) { 872 blk_cleanup_queue(ctrl->ctrl.connect_q); 873 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 874 } 875 nvme_rdma_free_io_queues(ctrl); 876 } 877 878 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 879 { 880 int ret; 881 882 ret = nvme_rdma_alloc_io_queues(ctrl); 883 if (ret) 884 return ret; 885 886 if (new) { 887 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 888 if (IS_ERR(ctrl->ctrl.tagset)) { 889 ret = PTR_ERR(ctrl->ctrl.tagset); 890 goto out_free_io_queues; 891 } 892 893 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 894 if (IS_ERR(ctrl->ctrl.connect_q)) { 895 ret = PTR_ERR(ctrl->ctrl.connect_q); 896 goto out_free_tag_set; 897 } 898 } else { 899 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 900 ctrl->ctrl.queue_count - 1); 901 } 902 903 ret = nvme_rdma_start_io_queues(ctrl); 904 if (ret) 905 goto out_cleanup_connect_q; 906 907 return 0; 908 909 out_cleanup_connect_q: 910 if (new) 911 blk_cleanup_queue(ctrl->ctrl.connect_q); 912 out_free_tag_set: 913 if (new) 914 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 915 out_free_io_queues: 916 nvme_rdma_free_io_queues(ctrl); 917 return ret; 918 } 919 920 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 921 bool remove) 922 { 923 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 924 nvme_rdma_stop_queue(&ctrl->queues[0]); 925 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, 926 &ctrl->ctrl); 927 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 928 nvme_rdma_destroy_admin_queue(ctrl, remove); 929 } 930 931 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 932 bool remove) 933 { 934 if (ctrl->ctrl.queue_count > 1) { 935 nvme_stop_queues(&ctrl->ctrl); 936 nvme_rdma_stop_io_queues(ctrl); 937 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, 938 &ctrl->ctrl); 939 if (remove) 940 nvme_start_queues(&ctrl->ctrl); 941 nvme_rdma_destroy_io_queues(ctrl, remove); 942 } 943 } 944 945 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 946 { 947 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 948 949 cancel_work_sync(&ctrl->err_work); 950 cancel_delayed_work_sync(&ctrl->reconnect_work); 951 } 952 953 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 954 { 955 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 956 957 if (list_empty(&ctrl->list)) 958 goto free_ctrl; 959 960 mutex_lock(&nvme_rdma_ctrl_mutex); 961 list_del(&ctrl->list); 962 mutex_unlock(&nvme_rdma_ctrl_mutex); 963 964 nvmf_free_options(nctrl->opts); 965 free_ctrl: 966 kfree(ctrl->queues); 967 kfree(ctrl); 968 } 969 970 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 971 { 972 /* If we are resetting/deleting then do nothing */ 973 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 974 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 975 ctrl->ctrl.state == NVME_CTRL_LIVE); 976 return; 977 } 978 979 if (nvmf_should_reconnect(&ctrl->ctrl)) { 980 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 981 ctrl->ctrl.opts->reconnect_delay); 982 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 983 ctrl->ctrl.opts->reconnect_delay * HZ); 984 } else { 985 nvme_delete_ctrl(&ctrl->ctrl); 986 } 987 } 988 989 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 990 { 991 int ret = -EINVAL; 992 bool changed; 993 994 ret = nvme_rdma_configure_admin_queue(ctrl, new); 995 if (ret) 996 return ret; 997 998 if (ctrl->ctrl.icdoff) { 999 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1000 goto destroy_admin; 1001 } 1002 1003 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1004 dev_err(ctrl->ctrl.device, 1005 "Mandatory keyed sgls are not supported!\n"); 1006 goto destroy_admin; 1007 } 1008 1009 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1010 dev_warn(ctrl->ctrl.device, 1011 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1012 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1013 } 1014 1015 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1016 dev_warn(ctrl->ctrl.device, 1017 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1018 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1019 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1020 } 1021 1022 if (ctrl->ctrl.sgls & (1 << 20)) 1023 ctrl->use_inline_data = true; 1024 1025 if (ctrl->ctrl.queue_count > 1) { 1026 ret = nvme_rdma_configure_io_queues(ctrl, new); 1027 if (ret) 1028 goto destroy_admin; 1029 } 1030 1031 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1032 if (!changed) { 1033 /* state change failure is ok if we're in DELETING state */ 1034 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1035 ret = -EINVAL; 1036 goto destroy_io; 1037 } 1038 1039 nvme_start_ctrl(&ctrl->ctrl); 1040 return 0; 1041 1042 destroy_io: 1043 if (ctrl->ctrl.queue_count > 1) 1044 nvme_rdma_destroy_io_queues(ctrl, new); 1045 destroy_admin: 1046 nvme_rdma_stop_queue(&ctrl->queues[0]); 1047 nvme_rdma_destroy_admin_queue(ctrl, new); 1048 return ret; 1049 } 1050 1051 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1052 { 1053 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1054 struct nvme_rdma_ctrl, reconnect_work); 1055 1056 ++ctrl->ctrl.nr_reconnects; 1057 1058 if (nvme_rdma_setup_ctrl(ctrl, false)) 1059 goto requeue; 1060 1061 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1062 ctrl->ctrl.nr_reconnects); 1063 1064 ctrl->ctrl.nr_reconnects = 0; 1065 1066 return; 1067 1068 requeue: 1069 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1070 ctrl->ctrl.nr_reconnects); 1071 nvme_rdma_reconnect_or_remove(ctrl); 1072 } 1073 1074 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1075 { 1076 struct nvme_rdma_ctrl *ctrl = container_of(work, 1077 struct nvme_rdma_ctrl, err_work); 1078 1079 nvme_stop_keep_alive(&ctrl->ctrl); 1080 nvme_rdma_teardown_io_queues(ctrl, false); 1081 nvme_start_queues(&ctrl->ctrl); 1082 nvme_rdma_teardown_admin_queue(ctrl, false); 1083 1084 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1085 /* state change failure is ok if we're in DELETING state */ 1086 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1087 return; 1088 } 1089 1090 nvme_rdma_reconnect_or_remove(ctrl); 1091 } 1092 1093 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1094 { 1095 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1096 return; 1097 1098 queue_work(nvme_wq, &ctrl->err_work); 1099 } 1100 1101 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1102 const char *op) 1103 { 1104 struct nvme_rdma_queue *queue = cq->cq_context; 1105 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1106 1107 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1108 dev_info(ctrl->ctrl.device, 1109 "%s for CQE 0x%p failed with status %s (%d)\n", 1110 op, wc->wr_cqe, 1111 ib_wc_status_msg(wc->status), wc->status); 1112 nvme_rdma_error_recovery(ctrl); 1113 } 1114 1115 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1116 { 1117 if (unlikely(wc->status != IB_WC_SUCCESS)) 1118 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1119 } 1120 1121 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1122 { 1123 struct nvme_rdma_request *req = 1124 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1125 struct request *rq = blk_mq_rq_from_pdu(req); 1126 1127 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1128 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1129 return; 1130 } 1131 1132 if (refcount_dec_and_test(&req->ref)) 1133 nvme_end_request(rq, req->status, req->result); 1134 1135 } 1136 1137 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1138 struct nvme_rdma_request *req) 1139 { 1140 struct ib_send_wr wr = { 1141 .opcode = IB_WR_LOCAL_INV, 1142 .next = NULL, 1143 .num_sge = 0, 1144 .send_flags = IB_SEND_SIGNALED, 1145 .ex.invalidate_rkey = req->mr->rkey, 1146 }; 1147 1148 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1149 wr.wr_cqe = &req->reg_cqe; 1150 1151 return ib_post_send(queue->qp, &wr, NULL); 1152 } 1153 1154 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1155 struct request *rq) 1156 { 1157 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1158 struct nvme_rdma_device *dev = queue->device; 1159 struct ib_device *ibdev = dev->dev; 1160 1161 if (!blk_rq_payload_bytes(rq)) 1162 return; 1163 1164 if (req->mr) { 1165 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1166 req->mr = NULL; 1167 } 1168 1169 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1170 req->nents, rq_data_dir(rq) == 1171 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1172 1173 nvme_cleanup_cmd(rq); 1174 sg_free_table_chained(&req->sg_table, true); 1175 } 1176 1177 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1178 { 1179 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1180 1181 sg->addr = 0; 1182 put_unaligned_le24(0, sg->length); 1183 put_unaligned_le32(0, sg->key); 1184 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1185 return 0; 1186 } 1187 1188 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1189 struct nvme_rdma_request *req, struct nvme_command *c, 1190 int count) 1191 { 1192 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1193 struct scatterlist *sgl = req->sg_table.sgl; 1194 struct ib_sge *sge = &req->sge[1]; 1195 u32 len = 0; 1196 int i; 1197 1198 for (i = 0; i < count; i++, sgl++, sge++) { 1199 sge->addr = sg_dma_address(sgl); 1200 sge->length = sg_dma_len(sgl); 1201 sge->lkey = queue->device->pd->local_dma_lkey; 1202 len += sge->length; 1203 } 1204 1205 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1206 sg->length = cpu_to_le32(len); 1207 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1208 1209 req->num_sge += count; 1210 return 0; 1211 } 1212 1213 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1214 struct nvme_rdma_request *req, struct nvme_command *c) 1215 { 1216 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1217 1218 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1219 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1220 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1221 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1222 return 0; 1223 } 1224 1225 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1226 struct nvme_rdma_request *req, struct nvme_command *c, 1227 int count) 1228 { 1229 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1230 int nr; 1231 1232 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1233 if (WARN_ON_ONCE(!req->mr)) 1234 return -EAGAIN; 1235 1236 /* 1237 * Align the MR to a 4K page size to match the ctrl page size and 1238 * the block virtual boundary. 1239 */ 1240 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1241 if (unlikely(nr < count)) { 1242 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1243 req->mr = NULL; 1244 if (nr < 0) 1245 return nr; 1246 return -EINVAL; 1247 } 1248 1249 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1250 1251 req->reg_cqe.done = nvme_rdma_memreg_done; 1252 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1253 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1254 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1255 req->reg_wr.wr.num_sge = 0; 1256 req->reg_wr.mr = req->mr; 1257 req->reg_wr.key = req->mr->rkey; 1258 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1259 IB_ACCESS_REMOTE_READ | 1260 IB_ACCESS_REMOTE_WRITE; 1261 1262 sg->addr = cpu_to_le64(req->mr->iova); 1263 put_unaligned_le24(req->mr->length, sg->length); 1264 put_unaligned_le32(req->mr->rkey, sg->key); 1265 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1266 NVME_SGL_FMT_INVALIDATE; 1267 1268 return 0; 1269 } 1270 1271 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1272 struct request *rq, struct nvme_command *c) 1273 { 1274 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1275 struct nvme_rdma_device *dev = queue->device; 1276 struct ib_device *ibdev = dev->dev; 1277 int count, ret; 1278 1279 req->num_sge = 1; 1280 refcount_set(&req->ref, 2); /* send and recv completions */ 1281 1282 c->common.flags |= NVME_CMD_SGL_METABUF; 1283 1284 if (!blk_rq_payload_bytes(rq)) 1285 return nvme_rdma_set_sg_null(c); 1286 1287 req->sg_table.sgl = req->first_sgl; 1288 ret = sg_alloc_table_chained(&req->sg_table, 1289 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1290 if (ret) 1291 return -ENOMEM; 1292 1293 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1294 1295 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1296 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1297 if (unlikely(count <= 0)) { 1298 ret = -EIO; 1299 goto out_free_table; 1300 } 1301 1302 if (count <= dev->num_inline_segments) { 1303 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1304 queue->ctrl->use_inline_data && 1305 blk_rq_payload_bytes(rq) <= 1306 nvme_rdma_inline_data_size(queue)) { 1307 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1308 goto out; 1309 } 1310 1311 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1312 ret = nvme_rdma_map_sg_single(queue, req, c); 1313 goto out; 1314 } 1315 } 1316 1317 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1318 out: 1319 if (unlikely(ret)) 1320 goto out_unmap_sg; 1321 1322 return 0; 1323 1324 out_unmap_sg: 1325 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1326 req->nents, rq_data_dir(rq) == 1327 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1328 out_free_table: 1329 sg_free_table_chained(&req->sg_table, true); 1330 return ret; 1331 } 1332 1333 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1334 { 1335 struct nvme_rdma_qe *qe = 1336 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1337 struct nvme_rdma_request *req = 1338 container_of(qe, struct nvme_rdma_request, sqe); 1339 struct request *rq = blk_mq_rq_from_pdu(req); 1340 1341 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1342 nvme_rdma_wr_error(cq, wc, "SEND"); 1343 return; 1344 } 1345 1346 if (refcount_dec_and_test(&req->ref)) 1347 nvme_end_request(rq, req->status, req->result); 1348 } 1349 1350 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1351 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1352 struct ib_send_wr *first) 1353 { 1354 struct ib_send_wr wr; 1355 int ret; 1356 1357 sge->addr = qe->dma; 1358 sge->length = sizeof(struct nvme_command), 1359 sge->lkey = queue->device->pd->local_dma_lkey; 1360 1361 wr.next = NULL; 1362 wr.wr_cqe = &qe->cqe; 1363 wr.sg_list = sge; 1364 wr.num_sge = num_sge; 1365 wr.opcode = IB_WR_SEND; 1366 wr.send_flags = IB_SEND_SIGNALED; 1367 1368 if (first) 1369 first->next = ≀ 1370 else 1371 first = ≀ 1372 1373 ret = ib_post_send(queue->qp, first, NULL); 1374 if (unlikely(ret)) { 1375 dev_err(queue->ctrl->ctrl.device, 1376 "%s failed with error code %d\n", __func__, ret); 1377 } 1378 return ret; 1379 } 1380 1381 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1382 struct nvme_rdma_qe *qe) 1383 { 1384 struct ib_recv_wr wr; 1385 struct ib_sge list; 1386 int ret; 1387 1388 list.addr = qe->dma; 1389 list.length = sizeof(struct nvme_completion); 1390 list.lkey = queue->device->pd->local_dma_lkey; 1391 1392 qe->cqe.done = nvme_rdma_recv_done; 1393 1394 wr.next = NULL; 1395 wr.wr_cqe = &qe->cqe; 1396 wr.sg_list = &list; 1397 wr.num_sge = 1; 1398 1399 ret = ib_post_recv(queue->qp, &wr, NULL); 1400 if (unlikely(ret)) { 1401 dev_err(queue->ctrl->ctrl.device, 1402 "%s failed with error code %d\n", __func__, ret); 1403 } 1404 return ret; 1405 } 1406 1407 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1408 { 1409 u32 queue_idx = nvme_rdma_queue_idx(queue); 1410 1411 if (queue_idx == 0) 1412 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1413 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1414 } 1415 1416 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1417 { 1418 if (unlikely(wc->status != IB_WC_SUCCESS)) 1419 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1420 } 1421 1422 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1423 { 1424 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1425 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1426 struct ib_device *dev = queue->device->dev; 1427 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1428 struct nvme_command *cmd = sqe->data; 1429 struct ib_sge sge; 1430 int ret; 1431 1432 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1433 1434 memset(cmd, 0, sizeof(*cmd)); 1435 cmd->common.opcode = nvme_admin_async_event; 1436 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1437 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1438 nvme_rdma_set_sg_null(cmd); 1439 1440 sqe->cqe.done = nvme_rdma_async_done; 1441 1442 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1443 DMA_TO_DEVICE); 1444 1445 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1446 WARN_ON_ONCE(ret); 1447 } 1448 1449 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1450 struct nvme_completion *cqe, struct ib_wc *wc) 1451 { 1452 struct request *rq; 1453 struct nvme_rdma_request *req; 1454 1455 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1456 if (!rq) { 1457 dev_err(queue->ctrl->ctrl.device, 1458 "tag 0x%x on QP %#x not found\n", 1459 cqe->command_id, queue->qp->qp_num); 1460 nvme_rdma_error_recovery(queue->ctrl); 1461 return; 1462 } 1463 req = blk_mq_rq_to_pdu(rq); 1464 1465 req->status = cqe->status; 1466 req->result = cqe->result; 1467 1468 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1469 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1470 dev_err(queue->ctrl->ctrl.device, 1471 "Bogus remote invalidation for rkey %#x\n", 1472 req->mr->rkey); 1473 nvme_rdma_error_recovery(queue->ctrl); 1474 } 1475 } else if (req->mr) { 1476 int ret; 1477 1478 ret = nvme_rdma_inv_rkey(queue, req); 1479 if (unlikely(ret < 0)) { 1480 dev_err(queue->ctrl->ctrl.device, 1481 "Queueing INV WR for rkey %#x failed (%d)\n", 1482 req->mr->rkey, ret); 1483 nvme_rdma_error_recovery(queue->ctrl); 1484 } 1485 /* the local invalidation completion will end the request */ 1486 return; 1487 } 1488 1489 if (refcount_dec_and_test(&req->ref)) 1490 nvme_end_request(rq, req->status, req->result); 1491 } 1492 1493 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1494 { 1495 struct nvme_rdma_qe *qe = 1496 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1497 struct nvme_rdma_queue *queue = cq->cq_context; 1498 struct ib_device *ibdev = queue->device->dev; 1499 struct nvme_completion *cqe = qe->data; 1500 const size_t len = sizeof(struct nvme_completion); 1501 1502 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1503 nvme_rdma_wr_error(cq, wc, "RECV"); 1504 return; 1505 } 1506 1507 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1508 /* 1509 * AEN requests are special as they don't time out and can 1510 * survive any kind of queue freeze and often don't respond to 1511 * aborts. We don't even bother to allocate a struct request 1512 * for them but rather special case them here. 1513 */ 1514 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1515 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1516 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1517 &cqe->result); 1518 else 1519 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1520 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1521 1522 nvme_rdma_post_recv(queue, qe); 1523 } 1524 1525 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1526 { 1527 int ret, i; 1528 1529 for (i = 0; i < queue->queue_size; i++) { 1530 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1531 if (ret) 1532 goto out_destroy_queue_ib; 1533 } 1534 1535 return 0; 1536 1537 out_destroy_queue_ib: 1538 nvme_rdma_destroy_queue_ib(queue); 1539 return ret; 1540 } 1541 1542 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1543 struct rdma_cm_event *ev) 1544 { 1545 struct rdma_cm_id *cm_id = queue->cm_id; 1546 int status = ev->status; 1547 const char *rej_msg; 1548 const struct nvme_rdma_cm_rej *rej_data; 1549 u8 rej_data_len; 1550 1551 rej_msg = rdma_reject_msg(cm_id, status); 1552 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1553 1554 if (rej_data && rej_data_len >= sizeof(u16)) { 1555 u16 sts = le16_to_cpu(rej_data->sts); 1556 1557 dev_err(queue->ctrl->ctrl.device, 1558 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1559 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1560 } else { 1561 dev_err(queue->ctrl->ctrl.device, 1562 "Connect rejected: status %d (%s).\n", status, rej_msg); 1563 } 1564 1565 return -ECONNRESET; 1566 } 1567 1568 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1569 { 1570 int ret; 1571 1572 ret = nvme_rdma_create_queue_ib(queue); 1573 if (ret) 1574 return ret; 1575 1576 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1577 if (ret) { 1578 dev_err(queue->ctrl->ctrl.device, 1579 "rdma_resolve_route failed (%d).\n", 1580 queue->cm_error); 1581 goto out_destroy_queue; 1582 } 1583 1584 return 0; 1585 1586 out_destroy_queue: 1587 nvme_rdma_destroy_queue_ib(queue); 1588 return ret; 1589 } 1590 1591 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1592 { 1593 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1594 struct rdma_conn_param param = { }; 1595 struct nvme_rdma_cm_req priv = { }; 1596 int ret; 1597 1598 param.qp_num = queue->qp->qp_num; 1599 param.flow_control = 1; 1600 1601 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1602 /* maximum retry count */ 1603 param.retry_count = 7; 1604 param.rnr_retry_count = 7; 1605 param.private_data = &priv; 1606 param.private_data_len = sizeof(priv); 1607 1608 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1609 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1610 /* 1611 * set the admin queue depth to the minimum size 1612 * specified by the Fabrics standard. 1613 */ 1614 if (priv.qid == 0) { 1615 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1616 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1617 } else { 1618 /* 1619 * current interpretation of the fabrics spec 1620 * is at minimum you make hrqsize sqsize+1, or a 1621 * 1's based representation of sqsize. 1622 */ 1623 priv.hrqsize = cpu_to_le16(queue->queue_size); 1624 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1625 } 1626 1627 ret = rdma_connect(queue->cm_id, ¶m); 1628 if (ret) { 1629 dev_err(ctrl->ctrl.device, 1630 "rdma_connect failed (%d).\n", ret); 1631 goto out_destroy_queue_ib; 1632 } 1633 1634 return 0; 1635 1636 out_destroy_queue_ib: 1637 nvme_rdma_destroy_queue_ib(queue); 1638 return ret; 1639 } 1640 1641 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1642 struct rdma_cm_event *ev) 1643 { 1644 struct nvme_rdma_queue *queue = cm_id->context; 1645 int cm_error = 0; 1646 1647 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1648 rdma_event_msg(ev->event), ev->event, 1649 ev->status, cm_id); 1650 1651 switch (ev->event) { 1652 case RDMA_CM_EVENT_ADDR_RESOLVED: 1653 cm_error = nvme_rdma_addr_resolved(queue); 1654 break; 1655 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1656 cm_error = nvme_rdma_route_resolved(queue); 1657 break; 1658 case RDMA_CM_EVENT_ESTABLISHED: 1659 queue->cm_error = nvme_rdma_conn_established(queue); 1660 /* complete cm_done regardless of success/failure */ 1661 complete(&queue->cm_done); 1662 return 0; 1663 case RDMA_CM_EVENT_REJECTED: 1664 nvme_rdma_destroy_queue_ib(queue); 1665 cm_error = nvme_rdma_conn_rejected(queue, ev); 1666 break; 1667 case RDMA_CM_EVENT_ROUTE_ERROR: 1668 case RDMA_CM_EVENT_CONNECT_ERROR: 1669 case RDMA_CM_EVENT_UNREACHABLE: 1670 nvme_rdma_destroy_queue_ib(queue); 1671 /* fall through */ 1672 case RDMA_CM_EVENT_ADDR_ERROR: 1673 dev_dbg(queue->ctrl->ctrl.device, 1674 "CM error event %d\n", ev->event); 1675 cm_error = -ECONNRESET; 1676 break; 1677 case RDMA_CM_EVENT_DISCONNECTED: 1678 case RDMA_CM_EVENT_ADDR_CHANGE: 1679 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1680 dev_dbg(queue->ctrl->ctrl.device, 1681 "disconnect received - connection closed\n"); 1682 nvme_rdma_error_recovery(queue->ctrl); 1683 break; 1684 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1685 /* device removal is handled via the ib_client API */ 1686 break; 1687 default: 1688 dev_err(queue->ctrl->ctrl.device, 1689 "Unexpected RDMA CM event (%d)\n", ev->event); 1690 nvme_rdma_error_recovery(queue->ctrl); 1691 break; 1692 } 1693 1694 if (cm_error) { 1695 queue->cm_error = cm_error; 1696 complete(&queue->cm_done); 1697 } 1698 1699 return 0; 1700 } 1701 1702 static enum blk_eh_timer_return 1703 nvme_rdma_timeout(struct request *rq, bool reserved) 1704 { 1705 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1706 struct nvme_rdma_queue *queue = req->queue; 1707 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1708 1709 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1710 rq->tag, nvme_rdma_queue_idx(queue)); 1711 1712 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1713 /* 1714 * Teardown immediately if controller times out while starting 1715 * or we are already started error recovery. all outstanding 1716 * requests are completed on shutdown, so we return BLK_EH_DONE. 1717 */ 1718 flush_work(&ctrl->err_work); 1719 nvme_rdma_teardown_io_queues(ctrl, false); 1720 nvme_rdma_teardown_admin_queue(ctrl, false); 1721 return BLK_EH_DONE; 1722 } 1723 1724 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1725 nvme_rdma_error_recovery(ctrl); 1726 1727 return BLK_EH_RESET_TIMER; 1728 } 1729 1730 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1731 const struct blk_mq_queue_data *bd) 1732 { 1733 struct nvme_ns *ns = hctx->queue->queuedata; 1734 struct nvme_rdma_queue *queue = hctx->driver_data; 1735 struct request *rq = bd->rq; 1736 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1737 struct nvme_rdma_qe *sqe = &req->sqe; 1738 struct nvme_command *c = sqe->data; 1739 struct ib_device *dev; 1740 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1741 blk_status_t ret; 1742 int err; 1743 1744 WARN_ON_ONCE(rq->tag < 0); 1745 1746 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1747 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1748 1749 dev = queue->device->dev; 1750 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1751 sizeof(struct nvme_command), DMA_TO_DEVICE); 1752 1753 ret = nvme_setup_cmd(ns, rq, c); 1754 if (ret) 1755 return ret; 1756 1757 blk_mq_start_request(rq); 1758 1759 err = nvme_rdma_map_data(queue, rq, c); 1760 if (unlikely(err < 0)) { 1761 dev_err(queue->ctrl->ctrl.device, 1762 "Failed to map data (%d)\n", err); 1763 nvme_cleanup_cmd(rq); 1764 goto err; 1765 } 1766 1767 sqe->cqe.done = nvme_rdma_send_done; 1768 1769 ib_dma_sync_single_for_device(dev, sqe->dma, 1770 sizeof(struct nvme_command), DMA_TO_DEVICE); 1771 1772 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1773 req->mr ? &req->reg_wr.wr : NULL); 1774 if (unlikely(err)) { 1775 nvme_rdma_unmap_data(queue, rq); 1776 goto err; 1777 } 1778 1779 return BLK_STS_OK; 1780 err: 1781 if (err == -ENOMEM || err == -EAGAIN) 1782 return BLK_STS_RESOURCE; 1783 return BLK_STS_IOERR; 1784 } 1785 1786 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1787 { 1788 struct nvme_rdma_queue *queue = hctx->driver_data; 1789 1790 return ib_process_cq_direct(queue->ib_cq, -1); 1791 } 1792 1793 static void nvme_rdma_complete_rq(struct request *rq) 1794 { 1795 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1796 1797 nvme_rdma_unmap_data(req->queue, rq); 1798 nvme_complete_rq(rq); 1799 } 1800 1801 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1802 { 1803 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1804 1805 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1806 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1807 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1808 set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ]; 1809 if (ctrl->ctrl.opts->nr_write_queues) { 1810 /* separate read/write queues */ 1811 set->map[HCTX_TYPE_READ].queue_offset = 1812 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1813 } else { 1814 /* mixed read/write queues */ 1815 set->map[HCTX_TYPE_READ].queue_offset = 0; 1816 } 1817 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1818 ctrl->device->dev, 0); 1819 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1820 ctrl->device->dev, 0); 1821 1822 if (ctrl->ctrl.opts->nr_poll_queues) { 1823 set->map[HCTX_TYPE_POLL].nr_queues = 1824 ctrl->io_queues[HCTX_TYPE_POLL]; 1825 set->map[HCTX_TYPE_POLL].queue_offset = 1826 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1827 if (ctrl->ctrl.opts->nr_write_queues) 1828 set->map[HCTX_TYPE_POLL].queue_offset += 1829 ctrl->io_queues[HCTX_TYPE_READ]; 1830 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1831 } 1832 return 0; 1833 } 1834 1835 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1836 .queue_rq = nvme_rdma_queue_rq, 1837 .complete = nvme_rdma_complete_rq, 1838 .init_request = nvme_rdma_init_request, 1839 .exit_request = nvme_rdma_exit_request, 1840 .init_hctx = nvme_rdma_init_hctx, 1841 .timeout = nvme_rdma_timeout, 1842 .map_queues = nvme_rdma_map_queues, 1843 .poll = nvme_rdma_poll, 1844 }; 1845 1846 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1847 .queue_rq = nvme_rdma_queue_rq, 1848 .complete = nvme_rdma_complete_rq, 1849 .init_request = nvme_rdma_init_request, 1850 .exit_request = nvme_rdma_exit_request, 1851 .init_hctx = nvme_rdma_init_admin_hctx, 1852 .timeout = nvme_rdma_timeout, 1853 }; 1854 1855 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1856 { 1857 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1858 if (shutdown) 1859 nvme_shutdown_ctrl(&ctrl->ctrl); 1860 else 1861 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1862 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1863 } 1864 1865 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1866 { 1867 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1868 } 1869 1870 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1871 { 1872 struct nvme_rdma_ctrl *ctrl = 1873 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1874 1875 nvme_stop_ctrl(&ctrl->ctrl); 1876 nvme_rdma_shutdown_ctrl(ctrl, false); 1877 1878 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1879 /* state change failure should never happen */ 1880 WARN_ON_ONCE(1); 1881 return; 1882 } 1883 1884 if (nvme_rdma_setup_ctrl(ctrl, false)) 1885 goto out_fail; 1886 1887 return; 1888 1889 out_fail: 1890 ++ctrl->ctrl.nr_reconnects; 1891 nvme_rdma_reconnect_or_remove(ctrl); 1892 } 1893 1894 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1895 .name = "rdma", 1896 .module = THIS_MODULE, 1897 .flags = NVME_F_FABRICS, 1898 .reg_read32 = nvmf_reg_read32, 1899 .reg_read64 = nvmf_reg_read64, 1900 .reg_write32 = nvmf_reg_write32, 1901 .free_ctrl = nvme_rdma_free_ctrl, 1902 .submit_async_event = nvme_rdma_submit_async_event, 1903 .delete_ctrl = nvme_rdma_delete_ctrl, 1904 .get_address = nvmf_get_address, 1905 .stop_ctrl = nvme_rdma_stop_ctrl, 1906 }; 1907 1908 /* 1909 * Fails a connection request if it matches an existing controller 1910 * (association) with the same tuple: 1911 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1912 * 1913 * if local address is not specified in the request, it will match an 1914 * existing controller with all the other parameters the same and no 1915 * local port address specified as well. 1916 * 1917 * The ports don't need to be compared as they are intrinsically 1918 * already matched by the port pointers supplied. 1919 */ 1920 static bool 1921 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1922 { 1923 struct nvme_rdma_ctrl *ctrl; 1924 bool found = false; 1925 1926 mutex_lock(&nvme_rdma_ctrl_mutex); 1927 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1928 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1929 if (found) 1930 break; 1931 } 1932 mutex_unlock(&nvme_rdma_ctrl_mutex); 1933 1934 return found; 1935 } 1936 1937 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1938 struct nvmf_ctrl_options *opts) 1939 { 1940 struct nvme_rdma_ctrl *ctrl; 1941 int ret; 1942 bool changed; 1943 1944 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1945 if (!ctrl) 1946 return ERR_PTR(-ENOMEM); 1947 ctrl->ctrl.opts = opts; 1948 INIT_LIST_HEAD(&ctrl->list); 1949 1950 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1951 opts->trsvcid = 1952 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1953 if (!opts->trsvcid) { 1954 ret = -ENOMEM; 1955 goto out_free_ctrl; 1956 } 1957 opts->mask |= NVMF_OPT_TRSVCID; 1958 } 1959 1960 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1961 opts->traddr, opts->trsvcid, &ctrl->addr); 1962 if (ret) { 1963 pr_err("malformed address passed: %s:%s\n", 1964 opts->traddr, opts->trsvcid); 1965 goto out_free_ctrl; 1966 } 1967 1968 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1969 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1970 opts->host_traddr, NULL, &ctrl->src_addr); 1971 if (ret) { 1972 pr_err("malformed src address passed: %s\n", 1973 opts->host_traddr); 1974 goto out_free_ctrl; 1975 } 1976 } 1977 1978 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1979 ret = -EALREADY; 1980 goto out_free_ctrl; 1981 } 1982 1983 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1984 nvme_rdma_reconnect_ctrl_work); 1985 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1986 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1987 1988 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1989 opts->nr_poll_queues + 1; 1990 ctrl->ctrl.sqsize = opts->queue_size - 1; 1991 ctrl->ctrl.kato = opts->kato; 1992 1993 ret = -ENOMEM; 1994 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1995 GFP_KERNEL); 1996 if (!ctrl->queues) 1997 goto out_free_ctrl; 1998 1999 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2000 0 /* no quirks, we're perfect! */); 2001 if (ret) 2002 goto out_kfree_queues; 2003 2004 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2005 WARN_ON_ONCE(!changed); 2006 2007 ret = nvme_rdma_setup_ctrl(ctrl, true); 2008 if (ret) 2009 goto out_uninit_ctrl; 2010 2011 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2012 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2013 2014 nvme_get_ctrl(&ctrl->ctrl); 2015 2016 mutex_lock(&nvme_rdma_ctrl_mutex); 2017 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2018 mutex_unlock(&nvme_rdma_ctrl_mutex); 2019 2020 return &ctrl->ctrl; 2021 2022 out_uninit_ctrl: 2023 nvme_uninit_ctrl(&ctrl->ctrl); 2024 nvme_put_ctrl(&ctrl->ctrl); 2025 if (ret > 0) 2026 ret = -EIO; 2027 return ERR_PTR(ret); 2028 out_kfree_queues: 2029 kfree(ctrl->queues); 2030 out_free_ctrl: 2031 kfree(ctrl); 2032 return ERR_PTR(ret); 2033 } 2034 2035 static struct nvmf_transport_ops nvme_rdma_transport = { 2036 .name = "rdma", 2037 .module = THIS_MODULE, 2038 .required_opts = NVMF_OPT_TRADDR, 2039 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2040 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2041 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES, 2042 .create_ctrl = nvme_rdma_create_ctrl, 2043 }; 2044 2045 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2046 { 2047 struct nvme_rdma_ctrl *ctrl; 2048 struct nvme_rdma_device *ndev; 2049 bool found = false; 2050 2051 mutex_lock(&device_list_mutex); 2052 list_for_each_entry(ndev, &device_list, entry) { 2053 if (ndev->dev == ib_device) { 2054 found = true; 2055 break; 2056 } 2057 } 2058 mutex_unlock(&device_list_mutex); 2059 2060 if (!found) 2061 return; 2062 2063 /* Delete all controllers using this device */ 2064 mutex_lock(&nvme_rdma_ctrl_mutex); 2065 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2066 if (ctrl->device->dev != ib_device) 2067 continue; 2068 nvme_delete_ctrl(&ctrl->ctrl); 2069 } 2070 mutex_unlock(&nvme_rdma_ctrl_mutex); 2071 2072 flush_workqueue(nvme_delete_wq); 2073 } 2074 2075 static struct ib_client nvme_rdma_ib_client = { 2076 .name = "nvme_rdma", 2077 .remove = nvme_rdma_remove_one 2078 }; 2079 2080 static int __init nvme_rdma_init_module(void) 2081 { 2082 int ret; 2083 2084 ret = ib_register_client(&nvme_rdma_ib_client); 2085 if (ret) 2086 return ret; 2087 2088 ret = nvmf_register_transport(&nvme_rdma_transport); 2089 if (ret) 2090 goto err_unreg_client; 2091 2092 return 0; 2093 2094 err_unreg_client: 2095 ib_unregister_client(&nvme_rdma_ib_client); 2096 return ret; 2097 } 2098 2099 static void __exit nvme_rdma_cleanup_module(void) 2100 { 2101 nvmf_unregister_transport(&nvme_rdma_transport); 2102 ib_unregister_client(&nvme_rdma_ib_client); 2103 } 2104 2105 module_init(nvme_rdma_init_module); 2106 module_exit(nvme_rdma_cleanup_module); 2107 2108 MODULE_LICENSE("GPL v2"); 2109