xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 890f0b0d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 struct nvme_rdma_device {
38 	struct ib_device	*dev;
39 	struct ib_pd		*pd;
40 	struct kref		ref;
41 	struct list_head	entry;
42 	unsigned int		num_inline_segments;
43 };
44 
45 struct nvme_rdma_qe {
46 	struct ib_cqe		cqe;
47 	void			*data;
48 	u64			dma;
49 };
50 
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 	struct nvme_request	req;
54 	struct ib_mr		*mr;
55 	struct nvme_rdma_qe	sqe;
56 	union nvme_result	result;
57 	__le16			status;
58 	refcount_t		ref;
59 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 	u32			num_sge;
61 	int			nents;
62 	struct ib_reg_wr	reg_wr;
63 	struct ib_cqe		reg_cqe;
64 	struct nvme_rdma_queue  *queue;
65 	struct sg_table		sg_table;
66 	struct scatterlist	first_sgl[];
67 };
68 
69 enum nvme_rdma_queue_flags {
70 	NVME_RDMA_Q_ALLOCATED		= 0,
71 	NVME_RDMA_Q_LIVE		= 1,
72 	NVME_RDMA_Q_TR_READY		= 2,
73 };
74 
75 struct nvme_rdma_queue {
76 	struct nvme_rdma_qe	*rsp_ring;
77 	int			queue_size;
78 	size_t			cmnd_capsule_len;
79 	struct nvme_rdma_ctrl	*ctrl;
80 	struct nvme_rdma_device	*device;
81 	struct ib_cq		*ib_cq;
82 	struct ib_qp		*qp;
83 
84 	unsigned long		flags;
85 	struct rdma_cm_id	*cm_id;
86 	int			cm_error;
87 	struct completion	cm_done;
88 };
89 
90 struct nvme_rdma_ctrl {
91 	/* read only in the hot path */
92 	struct nvme_rdma_queue	*queues;
93 
94 	/* other member variables */
95 	struct blk_mq_tag_set	tag_set;
96 	struct work_struct	err_work;
97 
98 	struct nvme_rdma_qe	async_event_sqe;
99 
100 	struct delayed_work	reconnect_work;
101 
102 	struct list_head	list;
103 
104 	struct blk_mq_tag_set	admin_tag_set;
105 	struct nvme_rdma_device	*device;
106 
107 	u32			max_fr_pages;
108 
109 	struct sockaddr_storage addr;
110 	struct sockaddr_storage src_addr;
111 
112 	struct nvme_ctrl	ctrl;
113 	bool			use_inline_data;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121 
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124 
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127 
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 	 "Use memory registration even for contiguous memory regions");
137 
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 		struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141 
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144 
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148 	*p++ = val;
149 	*p++ = val >> 8;
150 	*p++ = val >> 16;
151 }
152 
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155 	return queue - queue->ctrl->queues;
156 }
157 
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160 	return nvme_rdma_queue_idx(queue) >
161 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 		queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164 
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169 
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 		size_t capsule_size, enum dma_data_direction dir)
172 {
173 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 	kfree(qe->data);
175 }
176 
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 	if (!qe->data)
182 		return -ENOMEM;
183 
184 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 		kfree(qe->data);
187 		qe->data = NULL;
188 		return -ENOMEM;
189 	}
190 
191 	return 0;
192 }
193 
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 		size_t capsule_size, enum dma_data_direction dir)
197 {
198 	int i;
199 
200 	for (i = 0; i < ib_queue_size; i++)
201 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 	kfree(ring);
203 }
204 
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 		size_t ib_queue_size, size_t capsule_size,
207 		enum dma_data_direction dir)
208 {
209 	struct nvme_rdma_qe *ring;
210 	int i;
211 
212 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 	if (!ring)
214 		return NULL;
215 
216 	/*
217 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218 	 * lifetime. It's safe, since any chage in the underlying RDMA device
219 	 * will issue error recovery and queue re-creation.
220 	 */
221 	for (i = 0; i < ib_queue_size; i++) {
222 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223 			goto out_free_ring;
224 	}
225 
226 	return ring;
227 
228 out_free_ring:
229 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 	return NULL;
231 }
232 
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235 	pr_debug("QP event %s (%d)\n",
236 		 ib_event_msg(event->event), event->event);
237 
238 }
239 
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242 	int ret;
243 
244 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
246 	if (ret < 0)
247 		return ret;
248 	if (ret == 0)
249 		return -ETIMEDOUT;
250 	WARN_ON_ONCE(queue->cm_error > 0);
251 	return queue->cm_error;
252 }
253 
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255 {
256 	struct nvme_rdma_device *dev = queue->device;
257 	struct ib_qp_init_attr init_attr;
258 	int ret;
259 
260 	memset(&init_attr, 0, sizeof(init_attr));
261 	init_attr.event_handler = nvme_rdma_qp_event;
262 	/* +1 for drain */
263 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264 	/* +1 for drain */
265 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 	init_attr.cap.max_recv_sge = 1;
267 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 	init_attr.qp_type = IB_QPT_RC;
270 	init_attr.send_cq = queue->ib_cq;
271 	init_attr.recv_cq = queue->ib_cq;
272 
273 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274 
275 	queue->qp = queue->cm_id->qp;
276 	return ret;
277 }
278 
279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280 		struct request *rq, unsigned int hctx_idx)
281 {
282 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 
284 	kfree(req->sqe.data);
285 }
286 
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 		struct request *rq, unsigned int hctx_idx,
289 		unsigned int numa_node)
290 {
291 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295 
296 	nvme_req(rq)->ctrl = &ctrl->ctrl;
297 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
298 	if (!req->sqe.data)
299 		return -ENOMEM;
300 
301 	req->queue = queue;
302 
303 	return 0;
304 }
305 
306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307 		unsigned int hctx_idx)
308 {
309 	struct nvme_rdma_ctrl *ctrl = data;
310 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
311 
312 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
313 
314 	hctx->driver_data = queue;
315 	return 0;
316 }
317 
318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319 		unsigned int hctx_idx)
320 {
321 	struct nvme_rdma_ctrl *ctrl = data;
322 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
323 
324 	BUG_ON(hctx_idx != 0);
325 
326 	hctx->driver_data = queue;
327 	return 0;
328 }
329 
330 static void nvme_rdma_free_dev(struct kref *ref)
331 {
332 	struct nvme_rdma_device *ndev =
333 		container_of(ref, struct nvme_rdma_device, ref);
334 
335 	mutex_lock(&device_list_mutex);
336 	list_del(&ndev->entry);
337 	mutex_unlock(&device_list_mutex);
338 
339 	ib_dealloc_pd(ndev->pd);
340 	kfree(ndev);
341 }
342 
343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
344 {
345 	kref_put(&dev->ref, nvme_rdma_free_dev);
346 }
347 
348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
349 {
350 	return kref_get_unless_zero(&dev->ref);
351 }
352 
353 static struct nvme_rdma_device *
354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
355 {
356 	struct nvme_rdma_device *ndev;
357 
358 	mutex_lock(&device_list_mutex);
359 	list_for_each_entry(ndev, &device_list, entry) {
360 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
361 		    nvme_rdma_dev_get(ndev))
362 			goto out_unlock;
363 	}
364 
365 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
366 	if (!ndev)
367 		goto out_err;
368 
369 	ndev->dev = cm_id->device;
370 	kref_init(&ndev->ref);
371 
372 	ndev->pd = ib_alloc_pd(ndev->dev,
373 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374 	if (IS_ERR(ndev->pd))
375 		goto out_free_dev;
376 
377 	if (!(ndev->dev->attrs.device_cap_flags &
378 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379 		dev_err(&ndev->dev->dev,
380 			"Memory registrations not supported.\n");
381 		goto out_free_pd;
382 	}
383 
384 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385 					ndev->dev->attrs.max_send_sge - 1);
386 	list_add(&ndev->entry, &device_list);
387 out_unlock:
388 	mutex_unlock(&device_list_mutex);
389 	return ndev;
390 
391 out_free_pd:
392 	ib_dealloc_pd(ndev->pd);
393 out_free_dev:
394 	kfree(ndev);
395 out_err:
396 	mutex_unlock(&device_list_mutex);
397 	return NULL;
398 }
399 
400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
401 {
402 	struct nvme_rdma_device *dev;
403 	struct ib_device *ibdev;
404 
405 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
406 		return;
407 
408 	dev = queue->device;
409 	ibdev = dev->dev;
410 
411 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
412 
413 	/*
414 	 * The cm_id object might have been destroyed during RDMA connection
415 	 * establishment error flow to avoid getting other cma events, thus
416 	 * the destruction of the QP shouldn't use rdma_cm API.
417 	 */
418 	ib_destroy_qp(queue->qp);
419 	ib_free_cq(queue->ib_cq);
420 
421 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
423 
424 	nvme_rdma_dev_put(dev);
425 }
426 
427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
428 {
429 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430 		     ibdev->attrs.max_fast_reg_page_list_len - 1);
431 }
432 
433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
434 {
435 	struct ib_device *ibdev;
436 	const int send_wr_factor = 3;			/* MR, SEND, INV */
437 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
438 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
439 	enum ib_poll_context poll_ctx;
440 	int ret, pages_per_mr;
441 
442 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
443 	if (!queue->device) {
444 		dev_err(queue->cm_id->device->dev.parent,
445 			"no client data found!\n");
446 		return -ECONNREFUSED;
447 	}
448 	ibdev = queue->device->dev;
449 
450 	/*
451 	 * Spread I/O queues completion vectors according their queue index.
452 	 * Admin queues can always go on completion vector 0.
453 	 */
454 	comp_vector = idx == 0 ? idx : idx - 1;
455 
456 	/* Polling queues need direct cq polling context */
457 	if (nvme_rdma_poll_queue(queue))
458 		poll_ctx = IB_POLL_DIRECT;
459 	else
460 		poll_ctx = IB_POLL_SOFTIRQ;
461 
462 	/* +1 for ib_stop_cq */
463 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
464 				cq_factor * queue->queue_size + 1,
465 				comp_vector, poll_ctx);
466 	if (IS_ERR(queue->ib_cq)) {
467 		ret = PTR_ERR(queue->ib_cq);
468 		goto out_put_dev;
469 	}
470 
471 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
472 	if (ret)
473 		goto out_destroy_ib_cq;
474 
475 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477 	if (!queue->rsp_ring) {
478 		ret = -ENOMEM;
479 		goto out_destroy_qp;
480 	}
481 
482 	/*
483 	 * Currently we don't use SG_GAPS MR's so if the first entry is
484 	 * misaligned we'll end up using two entries for a single data page,
485 	 * so one additional entry is required.
486 	 */
487 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
488 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
489 			      queue->queue_size,
490 			      IB_MR_TYPE_MEM_REG,
491 			      pages_per_mr, 0);
492 	if (ret) {
493 		dev_err(queue->ctrl->ctrl.device,
494 			"failed to initialize MR pool sized %d for QID %d\n",
495 			queue->queue_size, idx);
496 		goto out_destroy_ring;
497 	}
498 
499 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
500 
501 	return 0;
502 
503 out_destroy_ring:
504 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
505 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
506 out_destroy_qp:
507 	rdma_destroy_qp(queue->cm_id);
508 out_destroy_ib_cq:
509 	ib_free_cq(queue->ib_cq);
510 out_put_dev:
511 	nvme_rdma_dev_put(queue->device);
512 	return ret;
513 }
514 
515 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
516 		int idx, size_t queue_size)
517 {
518 	struct nvme_rdma_queue *queue;
519 	struct sockaddr *src_addr = NULL;
520 	int ret;
521 
522 	queue = &ctrl->queues[idx];
523 	queue->ctrl = ctrl;
524 	init_completion(&queue->cm_done);
525 
526 	if (idx > 0)
527 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
528 	else
529 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
530 
531 	queue->queue_size = queue_size;
532 
533 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
534 			RDMA_PS_TCP, IB_QPT_RC);
535 	if (IS_ERR(queue->cm_id)) {
536 		dev_info(ctrl->ctrl.device,
537 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
538 		return PTR_ERR(queue->cm_id);
539 	}
540 
541 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
542 		src_addr = (struct sockaddr *)&ctrl->src_addr;
543 
544 	queue->cm_error = -ETIMEDOUT;
545 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
546 			(struct sockaddr *)&ctrl->addr,
547 			NVME_RDMA_CONNECT_TIMEOUT_MS);
548 	if (ret) {
549 		dev_info(ctrl->ctrl.device,
550 			"rdma_resolve_addr failed (%d).\n", ret);
551 		goto out_destroy_cm_id;
552 	}
553 
554 	ret = nvme_rdma_wait_for_cm(queue);
555 	if (ret) {
556 		dev_info(ctrl->ctrl.device,
557 			"rdma connection establishment failed (%d)\n", ret);
558 		goto out_destroy_cm_id;
559 	}
560 
561 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
562 
563 	return 0;
564 
565 out_destroy_cm_id:
566 	rdma_destroy_id(queue->cm_id);
567 	nvme_rdma_destroy_queue_ib(queue);
568 	return ret;
569 }
570 
571 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
572 {
573 	rdma_disconnect(queue->cm_id);
574 	ib_drain_qp(queue->qp);
575 }
576 
577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
578 {
579 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
580 		return;
581 	__nvme_rdma_stop_queue(queue);
582 }
583 
584 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
585 {
586 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
587 		return;
588 
589 	nvme_rdma_destroy_queue_ib(queue);
590 	rdma_destroy_id(queue->cm_id);
591 }
592 
593 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595 	int i;
596 
597 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 		nvme_rdma_free_queue(&ctrl->queues[i]);
599 }
600 
601 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
602 {
603 	int i;
604 
605 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
606 		nvme_rdma_stop_queue(&ctrl->queues[i]);
607 }
608 
609 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
610 {
611 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
612 	bool poll = nvme_rdma_poll_queue(queue);
613 	int ret;
614 
615 	if (idx)
616 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
617 	else
618 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
619 
620 	if (!ret) {
621 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
622 	} else {
623 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
624 			__nvme_rdma_stop_queue(queue);
625 		dev_info(ctrl->ctrl.device,
626 			"failed to connect queue: %d ret=%d\n", idx, ret);
627 	}
628 	return ret;
629 }
630 
631 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
632 {
633 	int i, ret = 0;
634 
635 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
636 		ret = nvme_rdma_start_queue(ctrl, i);
637 		if (ret)
638 			goto out_stop_queues;
639 	}
640 
641 	return 0;
642 
643 out_stop_queues:
644 	for (i--; i >= 1; i--)
645 		nvme_rdma_stop_queue(&ctrl->queues[i]);
646 	return ret;
647 }
648 
649 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
650 {
651 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
652 	struct ib_device *ibdev = ctrl->device->dev;
653 	unsigned int nr_io_queues, nr_default_queues;
654 	unsigned int nr_read_queues, nr_poll_queues;
655 	int i, ret;
656 
657 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
658 				min(opts->nr_io_queues, num_online_cpus()));
659 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
660 				min(opts->nr_write_queues, num_online_cpus()));
661 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
662 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
663 
664 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
665 	if (ret)
666 		return ret;
667 
668 	ctrl->ctrl.queue_count = nr_io_queues + 1;
669 	if (ctrl->ctrl.queue_count < 2)
670 		return 0;
671 
672 	dev_info(ctrl->ctrl.device,
673 		"creating %d I/O queues.\n", nr_io_queues);
674 
675 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
676 		/*
677 		 * separate read/write queues
678 		 * hand out dedicated default queues only after we have
679 		 * sufficient read queues.
680 		 */
681 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
682 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
683 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
684 			min(nr_default_queues, nr_io_queues);
685 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
686 	} else {
687 		/*
688 		 * shared read/write queues
689 		 * either no write queues were requested, or we don't have
690 		 * sufficient queue count to have dedicated default queues.
691 		 */
692 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
693 			min(nr_read_queues, nr_io_queues);
694 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
695 	}
696 
697 	if (opts->nr_poll_queues && nr_io_queues) {
698 		/* map dedicated poll queues only if we have queues left */
699 		ctrl->io_queues[HCTX_TYPE_POLL] =
700 			min(nr_poll_queues, nr_io_queues);
701 	}
702 
703 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
704 		ret = nvme_rdma_alloc_queue(ctrl, i,
705 				ctrl->ctrl.sqsize + 1);
706 		if (ret)
707 			goto out_free_queues;
708 	}
709 
710 	return 0;
711 
712 out_free_queues:
713 	for (i--; i >= 1; i--)
714 		nvme_rdma_free_queue(&ctrl->queues[i]);
715 
716 	return ret;
717 }
718 
719 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
720 		bool admin)
721 {
722 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
723 	struct blk_mq_tag_set *set;
724 	int ret;
725 
726 	if (admin) {
727 		set = &ctrl->admin_tag_set;
728 		memset(set, 0, sizeof(*set));
729 		set->ops = &nvme_rdma_admin_mq_ops;
730 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
731 		set->reserved_tags = 2; /* connect + keep-alive */
732 		set->numa_node = nctrl->numa_node;
733 		set->cmd_size = sizeof(struct nvme_rdma_request) +
734 			NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
735 		set->driver_data = ctrl;
736 		set->nr_hw_queues = 1;
737 		set->timeout = ADMIN_TIMEOUT;
738 		set->flags = BLK_MQ_F_NO_SCHED;
739 	} else {
740 		set = &ctrl->tag_set;
741 		memset(set, 0, sizeof(*set));
742 		set->ops = &nvme_rdma_mq_ops;
743 		set->queue_depth = nctrl->sqsize + 1;
744 		set->reserved_tags = 1; /* fabric connect */
745 		set->numa_node = nctrl->numa_node;
746 		set->flags = BLK_MQ_F_SHOULD_MERGE;
747 		set->cmd_size = sizeof(struct nvme_rdma_request) +
748 			NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
749 		set->driver_data = ctrl;
750 		set->nr_hw_queues = nctrl->queue_count - 1;
751 		set->timeout = NVME_IO_TIMEOUT;
752 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
753 	}
754 
755 	ret = blk_mq_alloc_tag_set(set);
756 	if (ret)
757 		return ERR_PTR(ret);
758 
759 	return set;
760 }
761 
762 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
763 		bool remove)
764 {
765 	if (remove) {
766 		blk_cleanup_queue(ctrl->ctrl.admin_q);
767 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
768 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
769 	}
770 	if (ctrl->async_event_sqe.data) {
771 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
772 				sizeof(struct nvme_command), DMA_TO_DEVICE);
773 		ctrl->async_event_sqe.data = NULL;
774 	}
775 	nvme_rdma_free_queue(&ctrl->queues[0]);
776 }
777 
778 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
779 		bool new)
780 {
781 	int error;
782 
783 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
784 	if (error)
785 		return error;
786 
787 	ctrl->device = ctrl->queues[0].device;
788 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
789 
790 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
791 
792 	/*
793 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
794 	 * It's safe, since any chage in the underlying RDMA device will issue
795 	 * error recovery and queue re-creation.
796 	 */
797 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
798 			sizeof(struct nvme_command), DMA_TO_DEVICE);
799 	if (error)
800 		goto out_free_queue;
801 
802 	if (new) {
803 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
804 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
805 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
806 			goto out_free_async_qe;
807 		}
808 
809 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
810 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
811 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
812 			goto out_free_tagset;
813 		}
814 
815 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
816 		if (IS_ERR(ctrl->ctrl.admin_q)) {
817 			error = PTR_ERR(ctrl->ctrl.admin_q);
818 			goto out_cleanup_fabrics_q;
819 		}
820 	}
821 
822 	error = nvme_rdma_start_queue(ctrl, 0);
823 	if (error)
824 		goto out_cleanup_queue;
825 
826 	error = nvme_enable_ctrl(&ctrl->ctrl);
827 	if (error)
828 		goto out_stop_queue;
829 
830 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
831 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
832 
833 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
834 
835 	error = nvme_init_identify(&ctrl->ctrl);
836 	if (error)
837 		goto out_stop_queue;
838 
839 	return 0;
840 
841 out_stop_queue:
842 	nvme_rdma_stop_queue(&ctrl->queues[0]);
843 out_cleanup_queue:
844 	if (new)
845 		blk_cleanup_queue(ctrl->ctrl.admin_q);
846 out_cleanup_fabrics_q:
847 	if (new)
848 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
849 out_free_tagset:
850 	if (new)
851 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
852 out_free_async_qe:
853 	if (ctrl->async_event_sqe.data) {
854 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
855 			sizeof(struct nvme_command), DMA_TO_DEVICE);
856 		ctrl->async_event_sqe.data = NULL;
857 	}
858 out_free_queue:
859 	nvme_rdma_free_queue(&ctrl->queues[0]);
860 	return error;
861 }
862 
863 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
864 		bool remove)
865 {
866 	if (remove) {
867 		blk_cleanup_queue(ctrl->ctrl.connect_q);
868 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
869 	}
870 	nvme_rdma_free_io_queues(ctrl);
871 }
872 
873 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
874 {
875 	int ret;
876 
877 	ret = nvme_rdma_alloc_io_queues(ctrl);
878 	if (ret)
879 		return ret;
880 
881 	if (new) {
882 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
883 		if (IS_ERR(ctrl->ctrl.tagset)) {
884 			ret = PTR_ERR(ctrl->ctrl.tagset);
885 			goto out_free_io_queues;
886 		}
887 
888 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
889 		if (IS_ERR(ctrl->ctrl.connect_q)) {
890 			ret = PTR_ERR(ctrl->ctrl.connect_q);
891 			goto out_free_tag_set;
892 		}
893 	} else {
894 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
895 			ctrl->ctrl.queue_count - 1);
896 	}
897 
898 	ret = nvme_rdma_start_io_queues(ctrl);
899 	if (ret)
900 		goto out_cleanup_connect_q;
901 
902 	return 0;
903 
904 out_cleanup_connect_q:
905 	if (new)
906 		blk_cleanup_queue(ctrl->ctrl.connect_q);
907 out_free_tag_set:
908 	if (new)
909 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
910 out_free_io_queues:
911 	nvme_rdma_free_io_queues(ctrl);
912 	return ret;
913 }
914 
915 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
916 		bool remove)
917 {
918 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
919 	nvme_rdma_stop_queue(&ctrl->queues[0]);
920 	if (ctrl->ctrl.admin_tagset) {
921 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
922 			nvme_cancel_request, &ctrl->ctrl);
923 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
924 	}
925 	if (remove)
926 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
927 	nvme_rdma_destroy_admin_queue(ctrl, remove);
928 }
929 
930 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
931 		bool remove)
932 {
933 	if (ctrl->ctrl.queue_count > 1) {
934 		nvme_stop_queues(&ctrl->ctrl);
935 		nvme_rdma_stop_io_queues(ctrl);
936 		if (ctrl->ctrl.tagset) {
937 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
938 				nvme_cancel_request, &ctrl->ctrl);
939 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
940 		}
941 		if (remove)
942 			nvme_start_queues(&ctrl->ctrl);
943 		nvme_rdma_destroy_io_queues(ctrl, remove);
944 	}
945 }
946 
947 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
948 {
949 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
950 
951 	if (list_empty(&ctrl->list))
952 		goto free_ctrl;
953 
954 	mutex_lock(&nvme_rdma_ctrl_mutex);
955 	list_del(&ctrl->list);
956 	mutex_unlock(&nvme_rdma_ctrl_mutex);
957 
958 	nvmf_free_options(nctrl->opts);
959 free_ctrl:
960 	kfree(ctrl->queues);
961 	kfree(ctrl);
962 }
963 
964 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
965 {
966 	/* If we are resetting/deleting then do nothing */
967 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
968 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
969 			ctrl->ctrl.state == NVME_CTRL_LIVE);
970 		return;
971 	}
972 
973 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
974 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
975 			ctrl->ctrl.opts->reconnect_delay);
976 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
977 				ctrl->ctrl.opts->reconnect_delay * HZ);
978 	} else {
979 		nvme_delete_ctrl(&ctrl->ctrl);
980 	}
981 }
982 
983 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
984 {
985 	int ret = -EINVAL;
986 	bool changed;
987 
988 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
989 	if (ret)
990 		return ret;
991 
992 	if (ctrl->ctrl.icdoff) {
993 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
994 		goto destroy_admin;
995 	}
996 
997 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
998 		dev_err(ctrl->ctrl.device,
999 			"Mandatory keyed sgls are not supported!\n");
1000 		goto destroy_admin;
1001 	}
1002 
1003 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1004 		dev_warn(ctrl->ctrl.device,
1005 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1006 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1007 	}
1008 
1009 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1010 		dev_warn(ctrl->ctrl.device,
1011 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1012 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1013 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1014 	}
1015 
1016 	if (ctrl->ctrl.sgls & (1 << 20))
1017 		ctrl->use_inline_data = true;
1018 
1019 	if (ctrl->ctrl.queue_count > 1) {
1020 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1021 		if (ret)
1022 			goto destroy_admin;
1023 	}
1024 
1025 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1026 	if (!changed) {
1027 		/*
1028 		 * state change failure is ok if we're in DELETING state,
1029 		 * unless we're during creation of a new controller to
1030 		 * avoid races with teardown flow.
1031 		 */
1032 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1033 		WARN_ON_ONCE(new);
1034 		ret = -EINVAL;
1035 		goto destroy_io;
1036 	}
1037 
1038 	nvme_start_ctrl(&ctrl->ctrl);
1039 	return 0;
1040 
1041 destroy_io:
1042 	if (ctrl->ctrl.queue_count > 1)
1043 		nvme_rdma_destroy_io_queues(ctrl, new);
1044 destroy_admin:
1045 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1046 	nvme_rdma_destroy_admin_queue(ctrl, new);
1047 	return ret;
1048 }
1049 
1050 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1051 {
1052 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1053 			struct nvme_rdma_ctrl, reconnect_work);
1054 
1055 	++ctrl->ctrl.nr_reconnects;
1056 
1057 	if (nvme_rdma_setup_ctrl(ctrl, false))
1058 		goto requeue;
1059 
1060 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1061 			ctrl->ctrl.nr_reconnects);
1062 
1063 	ctrl->ctrl.nr_reconnects = 0;
1064 
1065 	return;
1066 
1067 requeue:
1068 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1069 			ctrl->ctrl.nr_reconnects);
1070 	nvme_rdma_reconnect_or_remove(ctrl);
1071 }
1072 
1073 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1074 {
1075 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1076 			struct nvme_rdma_ctrl, err_work);
1077 
1078 	nvme_stop_keep_alive(&ctrl->ctrl);
1079 	nvme_rdma_teardown_io_queues(ctrl, false);
1080 	nvme_start_queues(&ctrl->ctrl);
1081 	nvme_rdma_teardown_admin_queue(ctrl, false);
1082 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1083 
1084 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1085 		/* state change failure is ok if we're in DELETING state */
1086 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1087 		return;
1088 	}
1089 
1090 	nvme_rdma_reconnect_or_remove(ctrl);
1091 }
1092 
1093 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1094 {
1095 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1096 		return;
1097 
1098 	queue_work(nvme_reset_wq, &ctrl->err_work);
1099 }
1100 
1101 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1102 		const char *op)
1103 {
1104 	struct nvme_rdma_queue *queue = cq->cq_context;
1105 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1106 
1107 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1108 		dev_info(ctrl->ctrl.device,
1109 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1110 			     op, wc->wr_cqe,
1111 			     ib_wc_status_msg(wc->status), wc->status);
1112 	nvme_rdma_error_recovery(ctrl);
1113 }
1114 
1115 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1116 {
1117 	if (unlikely(wc->status != IB_WC_SUCCESS))
1118 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1119 }
1120 
1121 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1122 {
1123 	struct nvme_rdma_request *req =
1124 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1125 	struct request *rq = blk_mq_rq_from_pdu(req);
1126 
1127 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1128 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1129 		return;
1130 	}
1131 
1132 	if (refcount_dec_and_test(&req->ref))
1133 		nvme_end_request(rq, req->status, req->result);
1134 
1135 }
1136 
1137 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1138 		struct nvme_rdma_request *req)
1139 {
1140 	struct ib_send_wr wr = {
1141 		.opcode		    = IB_WR_LOCAL_INV,
1142 		.next		    = NULL,
1143 		.num_sge	    = 0,
1144 		.send_flags	    = IB_SEND_SIGNALED,
1145 		.ex.invalidate_rkey = req->mr->rkey,
1146 	};
1147 
1148 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1149 	wr.wr_cqe = &req->reg_cqe;
1150 
1151 	return ib_post_send(queue->qp, &wr, NULL);
1152 }
1153 
1154 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1155 		struct request *rq)
1156 {
1157 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1158 	struct nvme_rdma_device *dev = queue->device;
1159 	struct ib_device *ibdev = dev->dev;
1160 
1161 	if (!blk_rq_nr_phys_segments(rq))
1162 		return;
1163 
1164 	if (req->mr) {
1165 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1166 		req->mr = NULL;
1167 	}
1168 
1169 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1170 	sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1171 }
1172 
1173 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1174 {
1175 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1176 
1177 	sg->addr = 0;
1178 	put_unaligned_le24(0, sg->length);
1179 	put_unaligned_le32(0, sg->key);
1180 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1181 	return 0;
1182 }
1183 
1184 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1185 		struct nvme_rdma_request *req, struct nvme_command *c,
1186 		int count)
1187 {
1188 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1189 	struct scatterlist *sgl = req->sg_table.sgl;
1190 	struct ib_sge *sge = &req->sge[1];
1191 	u32 len = 0;
1192 	int i;
1193 
1194 	for (i = 0; i < count; i++, sgl++, sge++) {
1195 		sge->addr = sg_dma_address(sgl);
1196 		sge->length = sg_dma_len(sgl);
1197 		sge->lkey = queue->device->pd->local_dma_lkey;
1198 		len += sge->length;
1199 	}
1200 
1201 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1202 	sg->length = cpu_to_le32(len);
1203 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1204 
1205 	req->num_sge += count;
1206 	return 0;
1207 }
1208 
1209 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1210 		struct nvme_rdma_request *req, struct nvme_command *c)
1211 {
1212 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1213 
1214 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1215 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1216 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1217 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1218 	return 0;
1219 }
1220 
1221 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1222 		struct nvme_rdma_request *req, struct nvme_command *c,
1223 		int count)
1224 {
1225 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1226 	int nr;
1227 
1228 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1229 	if (WARN_ON_ONCE(!req->mr))
1230 		return -EAGAIN;
1231 
1232 	/*
1233 	 * Align the MR to a 4K page size to match the ctrl page size and
1234 	 * the block virtual boundary.
1235 	 */
1236 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1237 	if (unlikely(nr < count)) {
1238 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1239 		req->mr = NULL;
1240 		if (nr < 0)
1241 			return nr;
1242 		return -EINVAL;
1243 	}
1244 
1245 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1246 
1247 	req->reg_cqe.done = nvme_rdma_memreg_done;
1248 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1249 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1250 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1251 	req->reg_wr.wr.num_sge = 0;
1252 	req->reg_wr.mr = req->mr;
1253 	req->reg_wr.key = req->mr->rkey;
1254 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1255 			     IB_ACCESS_REMOTE_READ |
1256 			     IB_ACCESS_REMOTE_WRITE;
1257 
1258 	sg->addr = cpu_to_le64(req->mr->iova);
1259 	put_unaligned_le24(req->mr->length, sg->length);
1260 	put_unaligned_le32(req->mr->rkey, sg->key);
1261 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1262 			NVME_SGL_FMT_INVALIDATE;
1263 
1264 	return 0;
1265 }
1266 
1267 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1268 		struct request *rq, struct nvme_command *c)
1269 {
1270 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1271 	struct nvme_rdma_device *dev = queue->device;
1272 	struct ib_device *ibdev = dev->dev;
1273 	int count, ret;
1274 
1275 	req->num_sge = 1;
1276 	refcount_set(&req->ref, 2); /* send and recv completions */
1277 
1278 	c->common.flags |= NVME_CMD_SGL_METABUF;
1279 
1280 	if (!blk_rq_nr_phys_segments(rq))
1281 		return nvme_rdma_set_sg_null(c);
1282 
1283 	req->sg_table.sgl = req->first_sgl;
1284 	ret = sg_alloc_table_chained(&req->sg_table,
1285 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1286 			NVME_INLINE_SG_CNT);
1287 	if (ret)
1288 		return -ENOMEM;
1289 
1290 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1291 
1292 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1293 			      rq_dma_dir(rq));
1294 	if (unlikely(count <= 0)) {
1295 		ret = -EIO;
1296 		goto out_free_table;
1297 	}
1298 
1299 	if (count <= dev->num_inline_segments) {
1300 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1301 		    queue->ctrl->use_inline_data &&
1302 		    blk_rq_payload_bytes(rq) <=
1303 				nvme_rdma_inline_data_size(queue)) {
1304 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1305 			goto out;
1306 		}
1307 
1308 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1309 			ret = nvme_rdma_map_sg_single(queue, req, c);
1310 			goto out;
1311 		}
1312 	}
1313 
1314 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1315 out:
1316 	if (unlikely(ret))
1317 		goto out_unmap_sg;
1318 
1319 	return 0;
1320 
1321 out_unmap_sg:
1322 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1323 out_free_table:
1324 	sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1325 	return ret;
1326 }
1327 
1328 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1329 {
1330 	struct nvme_rdma_qe *qe =
1331 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1332 	struct nvme_rdma_request *req =
1333 		container_of(qe, struct nvme_rdma_request, sqe);
1334 	struct request *rq = blk_mq_rq_from_pdu(req);
1335 
1336 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1337 		nvme_rdma_wr_error(cq, wc, "SEND");
1338 		return;
1339 	}
1340 
1341 	if (refcount_dec_and_test(&req->ref))
1342 		nvme_end_request(rq, req->status, req->result);
1343 }
1344 
1345 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1346 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1347 		struct ib_send_wr *first)
1348 {
1349 	struct ib_send_wr wr;
1350 	int ret;
1351 
1352 	sge->addr   = qe->dma;
1353 	sge->length = sizeof(struct nvme_command),
1354 	sge->lkey   = queue->device->pd->local_dma_lkey;
1355 
1356 	wr.next       = NULL;
1357 	wr.wr_cqe     = &qe->cqe;
1358 	wr.sg_list    = sge;
1359 	wr.num_sge    = num_sge;
1360 	wr.opcode     = IB_WR_SEND;
1361 	wr.send_flags = IB_SEND_SIGNALED;
1362 
1363 	if (first)
1364 		first->next = &wr;
1365 	else
1366 		first = &wr;
1367 
1368 	ret = ib_post_send(queue->qp, first, NULL);
1369 	if (unlikely(ret)) {
1370 		dev_err(queue->ctrl->ctrl.device,
1371 			     "%s failed with error code %d\n", __func__, ret);
1372 	}
1373 	return ret;
1374 }
1375 
1376 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1377 		struct nvme_rdma_qe *qe)
1378 {
1379 	struct ib_recv_wr wr;
1380 	struct ib_sge list;
1381 	int ret;
1382 
1383 	list.addr   = qe->dma;
1384 	list.length = sizeof(struct nvme_completion);
1385 	list.lkey   = queue->device->pd->local_dma_lkey;
1386 
1387 	qe->cqe.done = nvme_rdma_recv_done;
1388 
1389 	wr.next     = NULL;
1390 	wr.wr_cqe   = &qe->cqe;
1391 	wr.sg_list  = &list;
1392 	wr.num_sge  = 1;
1393 
1394 	ret = ib_post_recv(queue->qp, &wr, NULL);
1395 	if (unlikely(ret)) {
1396 		dev_err(queue->ctrl->ctrl.device,
1397 			"%s failed with error code %d\n", __func__, ret);
1398 	}
1399 	return ret;
1400 }
1401 
1402 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1403 {
1404 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1405 
1406 	if (queue_idx == 0)
1407 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1408 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1409 }
1410 
1411 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1412 {
1413 	if (unlikely(wc->status != IB_WC_SUCCESS))
1414 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1415 }
1416 
1417 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1418 {
1419 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1420 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1421 	struct ib_device *dev = queue->device->dev;
1422 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1423 	struct nvme_command *cmd = sqe->data;
1424 	struct ib_sge sge;
1425 	int ret;
1426 
1427 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1428 
1429 	memset(cmd, 0, sizeof(*cmd));
1430 	cmd->common.opcode = nvme_admin_async_event;
1431 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1432 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1433 	nvme_rdma_set_sg_null(cmd);
1434 
1435 	sqe->cqe.done = nvme_rdma_async_done;
1436 
1437 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1438 			DMA_TO_DEVICE);
1439 
1440 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1441 	WARN_ON_ONCE(ret);
1442 }
1443 
1444 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1445 		struct nvme_completion *cqe, struct ib_wc *wc)
1446 {
1447 	struct request *rq;
1448 	struct nvme_rdma_request *req;
1449 
1450 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1451 	if (!rq) {
1452 		dev_err(queue->ctrl->ctrl.device,
1453 			"tag 0x%x on QP %#x not found\n",
1454 			cqe->command_id, queue->qp->qp_num);
1455 		nvme_rdma_error_recovery(queue->ctrl);
1456 		return;
1457 	}
1458 	req = blk_mq_rq_to_pdu(rq);
1459 
1460 	req->status = cqe->status;
1461 	req->result = cqe->result;
1462 
1463 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1464 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1465 			dev_err(queue->ctrl->ctrl.device,
1466 				"Bogus remote invalidation for rkey %#x\n",
1467 				req->mr->rkey);
1468 			nvme_rdma_error_recovery(queue->ctrl);
1469 		}
1470 	} else if (req->mr) {
1471 		int ret;
1472 
1473 		ret = nvme_rdma_inv_rkey(queue, req);
1474 		if (unlikely(ret < 0)) {
1475 			dev_err(queue->ctrl->ctrl.device,
1476 				"Queueing INV WR for rkey %#x failed (%d)\n",
1477 				req->mr->rkey, ret);
1478 			nvme_rdma_error_recovery(queue->ctrl);
1479 		}
1480 		/* the local invalidation completion will end the request */
1481 		return;
1482 	}
1483 
1484 	if (refcount_dec_and_test(&req->ref))
1485 		nvme_end_request(rq, req->status, req->result);
1486 }
1487 
1488 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1489 {
1490 	struct nvme_rdma_qe *qe =
1491 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1492 	struct nvme_rdma_queue *queue = cq->cq_context;
1493 	struct ib_device *ibdev = queue->device->dev;
1494 	struct nvme_completion *cqe = qe->data;
1495 	const size_t len = sizeof(struct nvme_completion);
1496 
1497 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1498 		nvme_rdma_wr_error(cq, wc, "RECV");
1499 		return;
1500 	}
1501 
1502 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1503 	/*
1504 	 * AEN requests are special as they don't time out and can
1505 	 * survive any kind of queue freeze and often don't respond to
1506 	 * aborts.  We don't even bother to allocate a struct request
1507 	 * for them but rather special case them here.
1508 	 */
1509 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1510 				     cqe->command_id)))
1511 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1512 				&cqe->result);
1513 	else
1514 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1515 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1516 
1517 	nvme_rdma_post_recv(queue, qe);
1518 }
1519 
1520 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1521 {
1522 	int ret, i;
1523 
1524 	for (i = 0; i < queue->queue_size; i++) {
1525 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1526 		if (ret)
1527 			goto out_destroy_queue_ib;
1528 	}
1529 
1530 	return 0;
1531 
1532 out_destroy_queue_ib:
1533 	nvme_rdma_destroy_queue_ib(queue);
1534 	return ret;
1535 }
1536 
1537 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1538 		struct rdma_cm_event *ev)
1539 {
1540 	struct rdma_cm_id *cm_id = queue->cm_id;
1541 	int status = ev->status;
1542 	const char *rej_msg;
1543 	const struct nvme_rdma_cm_rej *rej_data;
1544 	u8 rej_data_len;
1545 
1546 	rej_msg = rdma_reject_msg(cm_id, status);
1547 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1548 
1549 	if (rej_data && rej_data_len >= sizeof(u16)) {
1550 		u16 sts = le16_to_cpu(rej_data->sts);
1551 
1552 		dev_err(queue->ctrl->ctrl.device,
1553 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1554 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1555 	} else {
1556 		dev_err(queue->ctrl->ctrl.device,
1557 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1558 	}
1559 
1560 	return -ECONNRESET;
1561 }
1562 
1563 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1564 {
1565 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1566 	int ret;
1567 
1568 	ret = nvme_rdma_create_queue_ib(queue);
1569 	if (ret)
1570 		return ret;
1571 
1572 	if (ctrl->opts->tos >= 0)
1573 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1574 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1575 	if (ret) {
1576 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1577 			queue->cm_error);
1578 		goto out_destroy_queue;
1579 	}
1580 
1581 	return 0;
1582 
1583 out_destroy_queue:
1584 	nvme_rdma_destroy_queue_ib(queue);
1585 	return ret;
1586 }
1587 
1588 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1589 {
1590 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1591 	struct rdma_conn_param param = { };
1592 	struct nvme_rdma_cm_req priv = { };
1593 	int ret;
1594 
1595 	param.qp_num = queue->qp->qp_num;
1596 	param.flow_control = 1;
1597 
1598 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1599 	/* maximum retry count */
1600 	param.retry_count = 7;
1601 	param.rnr_retry_count = 7;
1602 	param.private_data = &priv;
1603 	param.private_data_len = sizeof(priv);
1604 
1605 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1606 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1607 	/*
1608 	 * set the admin queue depth to the minimum size
1609 	 * specified by the Fabrics standard.
1610 	 */
1611 	if (priv.qid == 0) {
1612 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1613 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1614 	} else {
1615 		/*
1616 		 * current interpretation of the fabrics spec
1617 		 * is at minimum you make hrqsize sqsize+1, or a
1618 		 * 1's based representation of sqsize.
1619 		 */
1620 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1621 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1622 	}
1623 
1624 	ret = rdma_connect(queue->cm_id, &param);
1625 	if (ret) {
1626 		dev_err(ctrl->ctrl.device,
1627 			"rdma_connect failed (%d).\n", ret);
1628 		goto out_destroy_queue_ib;
1629 	}
1630 
1631 	return 0;
1632 
1633 out_destroy_queue_ib:
1634 	nvme_rdma_destroy_queue_ib(queue);
1635 	return ret;
1636 }
1637 
1638 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1639 		struct rdma_cm_event *ev)
1640 {
1641 	struct nvme_rdma_queue *queue = cm_id->context;
1642 	int cm_error = 0;
1643 
1644 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1645 		rdma_event_msg(ev->event), ev->event,
1646 		ev->status, cm_id);
1647 
1648 	switch (ev->event) {
1649 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1650 		cm_error = nvme_rdma_addr_resolved(queue);
1651 		break;
1652 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1653 		cm_error = nvme_rdma_route_resolved(queue);
1654 		break;
1655 	case RDMA_CM_EVENT_ESTABLISHED:
1656 		queue->cm_error = nvme_rdma_conn_established(queue);
1657 		/* complete cm_done regardless of success/failure */
1658 		complete(&queue->cm_done);
1659 		return 0;
1660 	case RDMA_CM_EVENT_REJECTED:
1661 		nvme_rdma_destroy_queue_ib(queue);
1662 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1663 		break;
1664 	case RDMA_CM_EVENT_ROUTE_ERROR:
1665 	case RDMA_CM_EVENT_CONNECT_ERROR:
1666 	case RDMA_CM_EVENT_UNREACHABLE:
1667 		nvme_rdma_destroy_queue_ib(queue);
1668 		/* fall through */
1669 	case RDMA_CM_EVENT_ADDR_ERROR:
1670 		dev_dbg(queue->ctrl->ctrl.device,
1671 			"CM error event %d\n", ev->event);
1672 		cm_error = -ECONNRESET;
1673 		break;
1674 	case RDMA_CM_EVENT_DISCONNECTED:
1675 	case RDMA_CM_EVENT_ADDR_CHANGE:
1676 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1677 		dev_dbg(queue->ctrl->ctrl.device,
1678 			"disconnect received - connection closed\n");
1679 		nvme_rdma_error_recovery(queue->ctrl);
1680 		break;
1681 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1682 		/* device removal is handled via the ib_client API */
1683 		break;
1684 	default:
1685 		dev_err(queue->ctrl->ctrl.device,
1686 			"Unexpected RDMA CM event (%d)\n", ev->event);
1687 		nvme_rdma_error_recovery(queue->ctrl);
1688 		break;
1689 	}
1690 
1691 	if (cm_error) {
1692 		queue->cm_error = cm_error;
1693 		complete(&queue->cm_done);
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static enum blk_eh_timer_return
1700 nvme_rdma_timeout(struct request *rq, bool reserved)
1701 {
1702 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1703 	struct nvme_rdma_queue *queue = req->queue;
1704 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1705 
1706 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1707 		 rq->tag, nvme_rdma_queue_idx(queue));
1708 
1709 	/*
1710 	 * Restart the timer if a controller reset is already scheduled. Any
1711 	 * timed out commands would be handled before entering the connecting
1712 	 * state.
1713 	 */
1714 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1715 		return BLK_EH_RESET_TIMER;
1716 
1717 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1718 		/*
1719 		 * Teardown immediately if controller times out while starting
1720 		 * or we are already started error recovery. all outstanding
1721 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1722 		 */
1723 		flush_work(&ctrl->err_work);
1724 		nvme_rdma_teardown_io_queues(ctrl, false);
1725 		nvme_rdma_teardown_admin_queue(ctrl, false);
1726 		return BLK_EH_DONE;
1727 	}
1728 
1729 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1730 	nvme_rdma_error_recovery(ctrl);
1731 
1732 	return BLK_EH_RESET_TIMER;
1733 }
1734 
1735 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1736 		const struct blk_mq_queue_data *bd)
1737 {
1738 	struct nvme_ns *ns = hctx->queue->queuedata;
1739 	struct nvme_rdma_queue *queue = hctx->driver_data;
1740 	struct request *rq = bd->rq;
1741 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1742 	struct nvme_rdma_qe *sqe = &req->sqe;
1743 	struct nvme_command *c = sqe->data;
1744 	struct ib_device *dev;
1745 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1746 	blk_status_t ret;
1747 	int err;
1748 
1749 	WARN_ON_ONCE(rq->tag < 0);
1750 
1751 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1752 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1753 
1754 	dev = queue->device->dev;
1755 
1756 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1757 					 sizeof(struct nvme_command),
1758 					 DMA_TO_DEVICE);
1759 	err = ib_dma_mapping_error(dev, req->sqe.dma);
1760 	if (unlikely(err))
1761 		return BLK_STS_RESOURCE;
1762 
1763 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1764 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1765 
1766 	ret = nvme_setup_cmd(ns, rq, c);
1767 	if (ret)
1768 		goto unmap_qe;
1769 
1770 	blk_mq_start_request(rq);
1771 
1772 	err = nvme_rdma_map_data(queue, rq, c);
1773 	if (unlikely(err < 0)) {
1774 		dev_err(queue->ctrl->ctrl.device,
1775 			     "Failed to map data (%d)\n", err);
1776 		goto err;
1777 	}
1778 
1779 	sqe->cqe.done = nvme_rdma_send_done;
1780 
1781 	ib_dma_sync_single_for_device(dev, sqe->dma,
1782 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1783 
1784 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1785 			req->mr ? &req->reg_wr.wr : NULL);
1786 	if (unlikely(err))
1787 		goto err_unmap;
1788 
1789 	return BLK_STS_OK;
1790 
1791 err_unmap:
1792 	nvme_rdma_unmap_data(queue, rq);
1793 err:
1794 	if (err == -ENOMEM || err == -EAGAIN)
1795 		ret = BLK_STS_RESOURCE;
1796 	else
1797 		ret = BLK_STS_IOERR;
1798 	nvme_cleanup_cmd(rq);
1799 unmap_qe:
1800 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1801 			    DMA_TO_DEVICE);
1802 	return ret;
1803 }
1804 
1805 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1806 {
1807 	struct nvme_rdma_queue *queue = hctx->driver_data;
1808 
1809 	return ib_process_cq_direct(queue->ib_cq, -1);
1810 }
1811 
1812 static void nvme_rdma_complete_rq(struct request *rq)
1813 {
1814 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1815 	struct nvme_rdma_queue *queue = req->queue;
1816 	struct ib_device *ibdev = queue->device->dev;
1817 
1818 	nvme_rdma_unmap_data(queue, rq);
1819 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1820 			    DMA_TO_DEVICE);
1821 	nvme_complete_rq(rq);
1822 }
1823 
1824 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1825 {
1826 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1827 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1828 
1829 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1830 		/* separate read/write queues */
1831 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
1832 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1833 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1834 		set->map[HCTX_TYPE_READ].nr_queues =
1835 			ctrl->io_queues[HCTX_TYPE_READ];
1836 		set->map[HCTX_TYPE_READ].queue_offset =
1837 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1838 	} else {
1839 		/* shared read/write queues */
1840 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
1841 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1842 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1843 		set->map[HCTX_TYPE_READ].nr_queues =
1844 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1845 		set->map[HCTX_TYPE_READ].queue_offset = 0;
1846 	}
1847 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1848 			ctrl->device->dev, 0);
1849 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1850 			ctrl->device->dev, 0);
1851 
1852 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1853 		/* map dedicated poll queues only if we have queues left */
1854 		set->map[HCTX_TYPE_POLL].nr_queues =
1855 				ctrl->io_queues[HCTX_TYPE_POLL];
1856 		set->map[HCTX_TYPE_POLL].queue_offset =
1857 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1858 			ctrl->io_queues[HCTX_TYPE_READ];
1859 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1860 	}
1861 
1862 	dev_info(ctrl->ctrl.device,
1863 		"mapped %d/%d/%d default/read/poll queues.\n",
1864 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
1865 		ctrl->io_queues[HCTX_TYPE_READ],
1866 		ctrl->io_queues[HCTX_TYPE_POLL]);
1867 
1868 	return 0;
1869 }
1870 
1871 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1872 	.queue_rq	= nvme_rdma_queue_rq,
1873 	.complete	= nvme_rdma_complete_rq,
1874 	.init_request	= nvme_rdma_init_request,
1875 	.exit_request	= nvme_rdma_exit_request,
1876 	.init_hctx	= nvme_rdma_init_hctx,
1877 	.timeout	= nvme_rdma_timeout,
1878 	.map_queues	= nvme_rdma_map_queues,
1879 	.poll		= nvme_rdma_poll,
1880 };
1881 
1882 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1883 	.queue_rq	= nvme_rdma_queue_rq,
1884 	.complete	= nvme_rdma_complete_rq,
1885 	.init_request	= nvme_rdma_init_request,
1886 	.exit_request	= nvme_rdma_exit_request,
1887 	.init_hctx	= nvme_rdma_init_admin_hctx,
1888 	.timeout	= nvme_rdma_timeout,
1889 };
1890 
1891 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1892 {
1893 	cancel_work_sync(&ctrl->err_work);
1894 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1895 
1896 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1897 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1898 	if (shutdown)
1899 		nvme_shutdown_ctrl(&ctrl->ctrl);
1900 	else
1901 		nvme_disable_ctrl(&ctrl->ctrl);
1902 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1903 }
1904 
1905 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1906 {
1907 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1908 }
1909 
1910 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1911 {
1912 	struct nvme_rdma_ctrl *ctrl =
1913 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1914 
1915 	nvme_stop_ctrl(&ctrl->ctrl);
1916 	nvme_rdma_shutdown_ctrl(ctrl, false);
1917 
1918 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1919 		/* state change failure should never happen */
1920 		WARN_ON_ONCE(1);
1921 		return;
1922 	}
1923 
1924 	if (nvme_rdma_setup_ctrl(ctrl, false))
1925 		goto out_fail;
1926 
1927 	return;
1928 
1929 out_fail:
1930 	++ctrl->ctrl.nr_reconnects;
1931 	nvme_rdma_reconnect_or_remove(ctrl);
1932 }
1933 
1934 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1935 	.name			= "rdma",
1936 	.module			= THIS_MODULE,
1937 	.flags			= NVME_F_FABRICS,
1938 	.reg_read32		= nvmf_reg_read32,
1939 	.reg_read64		= nvmf_reg_read64,
1940 	.reg_write32		= nvmf_reg_write32,
1941 	.free_ctrl		= nvme_rdma_free_ctrl,
1942 	.submit_async_event	= nvme_rdma_submit_async_event,
1943 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1944 	.get_address		= nvmf_get_address,
1945 };
1946 
1947 /*
1948  * Fails a connection request if it matches an existing controller
1949  * (association) with the same tuple:
1950  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1951  *
1952  * if local address is not specified in the request, it will match an
1953  * existing controller with all the other parameters the same and no
1954  * local port address specified as well.
1955  *
1956  * The ports don't need to be compared as they are intrinsically
1957  * already matched by the port pointers supplied.
1958  */
1959 static bool
1960 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1961 {
1962 	struct nvme_rdma_ctrl *ctrl;
1963 	bool found = false;
1964 
1965 	mutex_lock(&nvme_rdma_ctrl_mutex);
1966 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1967 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1968 		if (found)
1969 			break;
1970 	}
1971 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1972 
1973 	return found;
1974 }
1975 
1976 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1977 		struct nvmf_ctrl_options *opts)
1978 {
1979 	struct nvme_rdma_ctrl *ctrl;
1980 	int ret;
1981 	bool changed;
1982 
1983 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1984 	if (!ctrl)
1985 		return ERR_PTR(-ENOMEM);
1986 	ctrl->ctrl.opts = opts;
1987 	INIT_LIST_HEAD(&ctrl->list);
1988 
1989 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1990 		opts->trsvcid =
1991 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1992 		if (!opts->trsvcid) {
1993 			ret = -ENOMEM;
1994 			goto out_free_ctrl;
1995 		}
1996 		opts->mask |= NVMF_OPT_TRSVCID;
1997 	}
1998 
1999 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2000 			opts->traddr, opts->trsvcid, &ctrl->addr);
2001 	if (ret) {
2002 		pr_err("malformed address passed: %s:%s\n",
2003 			opts->traddr, opts->trsvcid);
2004 		goto out_free_ctrl;
2005 	}
2006 
2007 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2008 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2009 			opts->host_traddr, NULL, &ctrl->src_addr);
2010 		if (ret) {
2011 			pr_err("malformed src address passed: %s\n",
2012 			       opts->host_traddr);
2013 			goto out_free_ctrl;
2014 		}
2015 	}
2016 
2017 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2018 		ret = -EALREADY;
2019 		goto out_free_ctrl;
2020 	}
2021 
2022 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2023 			nvme_rdma_reconnect_ctrl_work);
2024 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2025 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2026 
2027 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2028 				opts->nr_poll_queues + 1;
2029 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2030 	ctrl->ctrl.kato = opts->kato;
2031 
2032 	ret = -ENOMEM;
2033 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2034 				GFP_KERNEL);
2035 	if (!ctrl->queues)
2036 		goto out_free_ctrl;
2037 
2038 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2039 				0 /* no quirks, we're perfect! */);
2040 	if (ret)
2041 		goto out_kfree_queues;
2042 
2043 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2044 	WARN_ON_ONCE(!changed);
2045 
2046 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2047 	if (ret)
2048 		goto out_uninit_ctrl;
2049 
2050 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2051 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2052 
2053 	mutex_lock(&nvme_rdma_ctrl_mutex);
2054 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2055 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2056 
2057 	return &ctrl->ctrl;
2058 
2059 out_uninit_ctrl:
2060 	nvme_uninit_ctrl(&ctrl->ctrl);
2061 	nvme_put_ctrl(&ctrl->ctrl);
2062 	if (ret > 0)
2063 		ret = -EIO;
2064 	return ERR_PTR(ret);
2065 out_kfree_queues:
2066 	kfree(ctrl->queues);
2067 out_free_ctrl:
2068 	kfree(ctrl);
2069 	return ERR_PTR(ret);
2070 }
2071 
2072 static struct nvmf_transport_ops nvme_rdma_transport = {
2073 	.name		= "rdma",
2074 	.module		= THIS_MODULE,
2075 	.required_opts	= NVMF_OPT_TRADDR,
2076 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2077 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2078 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2079 			  NVMF_OPT_TOS,
2080 	.create_ctrl	= nvme_rdma_create_ctrl,
2081 };
2082 
2083 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2084 {
2085 	struct nvme_rdma_ctrl *ctrl;
2086 	struct nvme_rdma_device *ndev;
2087 	bool found = false;
2088 
2089 	mutex_lock(&device_list_mutex);
2090 	list_for_each_entry(ndev, &device_list, entry) {
2091 		if (ndev->dev == ib_device) {
2092 			found = true;
2093 			break;
2094 		}
2095 	}
2096 	mutex_unlock(&device_list_mutex);
2097 
2098 	if (!found)
2099 		return;
2100 
2101 	/* Delete all controllers using this device */
2102 	mutex_lock(&nvme_rdma_ctrl_mutex);
2103 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2104 		if (ctrl->device->dev != ib_device)
2105 			continue;
2106 		nvme_delete_ctrl(&ctrl->ctrl);
2107 	}
2108 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2109 
2110 	flush_workqueue(nvme_delete_wq);
2111 }
2112 
2113 static struct ib_client nvme_rdma_ib_client = {
2114 	.name   = "nvme_rdma",
2115 	.remove = nvme_rdma_remove_one
2116 };
2117 
2118 static int __init nvme_rdma_init_module(void)
2119 {
2120 	int ret;
2121 
2122 	ret = ib_register_client(&nvme_rdma_ib_client);
2123 	if (ret)
2124 		return ret;
2125 
2126 	ret = nvmf_register_transport(&nvme_rdma_transport);
2127 	if (ret)
2128 		goto err_unreg_client;
2129 
2130 	return 0;
2131 
2132 err_unreg_client:
2133 	ib_unregister_client(&nvme_rdma_ib_client);
2134 	return ret;
2135 }
2136 
2137 static void __exit nvme_rdma_cleanup_module(void)
2138 {
2139 	struct nvme_rdma_ctrl *ctrl;
2140 
2141 	nvmf_unregister_transport(&nvme_rdma_transport);
2142 	ib_unregister_client(&nvme_rdma_ib_client);
2143 
2144 	mutex_lock(&nvme_rdma_ctrl_mutex);
2145 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2146 		nvme_delete_ctrl(&ctrl->ctrl);
2147 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2148 	flush_workqueue(nvme_delete_wq);
2149 }
2150 
2151 module_init(nvme_rdma_init_module);
2152 module_exit(nvme_rdma_cleanup_module);
2153 
2154 MODULE_LICENSE("GPL v2");
2155