1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 struct nvme_rdma_device { 38 struct ib_device *dev; 39 struct ib_pd *pd; 40 struct kref ref; 41 struct list_head entry; 42 unsigned int num_inline_segments; 43 }; 44 45 struct nvme_rdma_qe { 46 struct ib_cqe cqe; 47 void *data; 48 u64 dma; 49 }; 50 51 struct nvme_rdma_queue; 52 struct nvme_rdma_request { 53 struct nvme_request req; 54 struct ib_mr *mr; 55 struct nvme_rdma_qe sqe; 56 union nvme_result result; 57 __le16 status; 58 refcount_t ref; 59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 60 u32 num_sge; 61 int nents; 62 struct ib_reg_wr reg_wr; 63 struct ib_cqe reg_cqe; 64 struct nvme_rdma_queue *queue; 65 struct sg_table sg_table; 66 struct scatterlist first_sgl[]; 67 }; 68 69 enum nvme_rdma_queue_flags { 70 NVME_RDMA_Q_ALLOCATED = 0, 71 NVME_RDMA_Q_LIVE = 1, 72 NVME_RDMA_Q_TR_READY = 2, 73 }; 74 75 struct nvme_rdma_queue { 76 struct nvme_rdma_qe *rsp_ring; 77 int queue_size; 78 size_t cmnd_capsule_len; 79 struct nvme_rdma_ctrl *ctrl; 80 struct nvme_rdma_device *device; 81 struct ib_cq *ib_cq; 82 struct ib_qp *qp; 83 84 unsigned long flags; 85 struct rdma_cm_id *cm_id; 86 int cm_error; 87 struct completion cm_done; 88 }; 89 90 struct nvme_rdma_ctrl { 91 /* read only in the hot path */ 92 struct nvme_rdma_queue *queues; 93 94 /* other member variables */ 95 struct blk_mq_tag_set tag_set; 96 struct work_struct err_work; 97 98 struct nvme_rdma_qe async_event_sqe; 99 100 struct delayed_work reconnect_work; 101 102 struct list_head list; 103 104 struct blk_mq_tag_set admin_tag_set; 105 struct nvme_rdma_device *device; 106 107 u32 max_fr_pages; 108 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 112 struct nvme_ctrl ctrl; 113 bool use_inline_data; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 118 { 119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 120 } 121 122 static LIST_HEAD(device_list); 123 static DEFINE_MUTEX(device_list_mutex); 124 125 static LIST_HEAD(nvme_rdma_ctrl_list); 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 127 128 /* 129 * Disabling this option makes small I/O goes faster, but is fundamentally 130 * unsafe. With it turned off we will have to register a global rkey that 131 * allows read and write access to all physical memory. 132 */ 133 static bool register_always = true; 134 module_param(register_always, bool, 0444); 135 MODULE_PARM_DESC(register_always, 136 "Use memory registration even for contiguous memory regions"); 137 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 139 struct rdma_cm_event *event); 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 141 142 static const struct blk_mq_ops nvme_rdma_mq_ops; 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 144 145 /* XXX: really should move to a generic header sooner or later.. */ 146 static inline void put_unaligned_le24(u32 val, u8 *p) 147 { 148 *p++ = val; 149 *p++ = val >> 8; 150 *p++ = val >> 16; 151 } 152 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 154 { 155 return queue - queue->ctrl->queues; 156 } 157 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 159 { 160 return nvme_rdma_queue_idx(queue) > 161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 162 queue->ctrl->io_queues[HCTX_TYPE_READ]; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 qe->data = NULL; 188 return -ENOMEM; 189 } 190 191 return 0; 192 } 193 194 static void nvme_rdma_free_ring(struct ib_device *ibdev, 195 struct nvme_rdma_qe *ring, size_t ib_queue_size, 196 size_t capsule_size, enum dma_data_direction dir) 197 { 198 int i; 199 200 for (i = 0; i < ib_queue_size; i++) 201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 202 kfree(ring); 203 } 204 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 206 size_t ib_queue_size, size_t capsule_size, 207 enum dma_data_direction dir) 208 { 209 struct nvme_rdma_qe *ring; 210 int i; 211 212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 213 if (!ring) 214 return NULL; 215 216 /* 217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 218 * lifetime. It's safe, since any chage in the underlying RDMA device 219 * will issue error recovery and queue re-creation. 220 */ 221 for (i = 0; i < ib_queue_size; i++) { 222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 223 goto out_free_ring; 224 } 225 226 return ring; 227 228 out_free_ring: 229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 230 return NULL; 231 } 232 233 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 234 { 235 pr_debug("QP event %s (%d)\n", 236 ib_event_msg(event->event), event->event); 237 238 } 239 240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 241 { 242 int ret; 243 244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 246 if (ret < 0) 247 return ret; 248 if (ret == 0) 249 return -ETIMEDOUT; 250 WARN_ON_ONCE(queue->cm_error > 0); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 280 struct request *rq, unsigned int hctx_idx) 281 { 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 284 kfree(req->sqe.data); 285 } 286 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx, 289 unsigned int numa_node) 290 { 291 struct nvme_rdma_ctrl *ctrl = set->driver_data; 292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 295 296 nvme_req(rq)->ctrl = &ctrl->ctrl; 297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 298 if (!req->sqe.data) 299 return -ENOMEM; 300 301 req->queue = queue; 302 303 return 0; 304 } 305 306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 307 unsigned int hctx_idx) 308 { 309 struct nvme_rdma_ctrl *ctrl = data; 310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 311 312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 313 314 hctx->driver_data = queue; 315 return 0; 316 } 317 318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 319 unsigned int hctx_idx) 320 { 321 struct nvme_rdma_ctrl *ctrl = data; 322 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 323 324 BUG_ON(hctx_idx != 0); 325 326 hctx->driver_data = queue; 327 return 0; 328 } 329 330 static void nvme_rdma_free_dev(struct kref *ref) 331 { 332 struct nvme_rdma_device *ndev = 333 container_of(ref, struct nvme_rdma_device, ref); 334 335 mutex_lock(&device_list_mutex); 336 list_del(&ndev->entry); 337 mutex_unlock(&device_list_mutex); 338 339 ib_dealloc_pd(ndev->pd); 340 kfree(ndev); 341 } 342 343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 344 { 345 kref_put(&dev->ref, nvme_rdma_free_dev); 346 } 347 348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 349 { 350 return kref_get_unless_zero(&dev->ref); 351 } 352 353 static struct nvme_rdma_device * 354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 355 { 356 struct nvme_rdma_device *ndev; 357 358 mutex_lock(&device_list_mutex); 359 list_for_each_entry(ndev, &device_list, entry) { 360 if (ndev->dev->node_guid == cm_id->device->node_guid && 361 nvme_rdma_dev_get(ndev)) 362 goto out_unlock; 363 } 364 365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 366 if (!ndev) 367 goto out_err; 368 369 ndev->dev = cm_id->device; 370 kref_init(&ndev->ref); 371 372 ndev->pd = ib_alloc_pd(ndev->dev, 373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 374 if (IS_ERR(ndev->pd)) 375 goto out_free_dev; 376 377 if (!(ndev->dev->attrs.device_cap_flags & 378 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 379 dev_err(&ndev->dev->dev, 380 "Memory registrations not supported.\n"); 381 goto out_free_pd; 382 } 383 384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 385 ndev->dev->attrs.max_send_sge - 1); 386 list_add(&ndev->entry, &device_list); 387 out_unlock: 388 mutex_unlock(&device_list_mutex); 389 return ndev; 390 391 out_free_pd: 392 ib_dealloc_pd(ndev->pd); 393 out_free_dev: 394 kfree(ndev); 395 out_err: 396 mutex_unlock(&device_list_mutex); 397 return NULL; 398 } 399 400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 401 { 402 struct nvme_rdma_device *dev; 403 struct ib_device *ibdev; 404 405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 406 return; 407 408 dev = queue->device; 409 ibdev = dev->dev; 410 411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 412 413 /* 414 * The cm_id object might have been destroyed during RDMA connection 415 * establishment error flow to avoid getting other cma events, thus 416 * the destruction of the QP shouldn't use rdma_cm API. 417 */ 418 ib_destroy_qp(queue->qp); 419 ib_free_cq(queue->ib_cq); 420 421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 422 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 423 424 nvme_rdma_dev_put(dev); 425 } 426 427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 428 { 429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 430 ibdev->attrs.max_fast_reg_page_list_len - 1); 431 } 432 433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 434 { 435 struct ib_device *ibdev; 436 const int send_wr_factor = 3; /* MR, SEND, INV */ 437 const int cq_factor = send_wr_factor + 1; /* + RECV */ 438 int comp_vector, idx = nvme_rdma_queue_idx(queue); 439 enum ib_poll_context poll_ctx; 440 int ret, pages_per_mr; 441 442 queue->device = nvme_rdma_find_get_device(queue->cm_id); 443 if (!queue->device) { 444 dev_err(queue->cm_id->device->dev.parent, 445 "no client data found!\n"); 446 return -ECONNREFUSED; 447 } 448 ibdev = queue->device->dev; 449 450 /* 451 * Spread I/O queues completion vectors according their queue index. 452 * Admin queues can always go on completion vector 0. 453 */ 454 comp_vector = idx == 0 ? idx : idx - 1; 455 456 /* Polling queues need direct cq polling context */ 457 if (nvme_rdma_poll_queue(queue)) 458 poll_ctx = IB_POLL_DIRECT; 459 else 460 poll_ctx = IB_POLL_SOFTIRQ; 461 462 /* +1 for ib_stop_cq */ 463 queue->ib_cq = ib_alloc_cq(ibdev, queue, 464 cq_factor * queue->queue_size + 1, 465 comp_vector, poll_ctx); 466 if (IS_ERR(queue->ib_cq)) { 467 ret = PTR_ERR(queue->ib_cq); 468 goto out_put_dev; 469 } 470 471 ret = nvme_rdma_create_qp(queue, send_wr_factor); 472 if (ret) 473 goto out_destroy_ib_cq; 474 475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 476 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 477 if (!queue->rsp_ring) { 478 ret = -ENOMEM; 479 goto out_destroy_qp; 480 } 481 482 /* 483 * Currently we don't use SG_GAPS MR's so if the first entry is 484 * misaligned we'll end up using two entries for a single data page, 485 * so one additional entry is required. 486 */ 487 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1; 488 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 489 queue->queue_size, 490 IB_MR_TYPE_MEM_REG, 491 pages_per_mr, 0); 492 if (ret) { 493 dev_err(queue->ctrl->ctrl.device, 494 "failed to initialize MR pool sized %d for QID %d\n", 495 queue->queue_size, idx); 496 goto out_destroy_ring; 497 } 498 499 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 500 501 return 0; 502 503 out_destroy_ring: 504 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 505 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 506 out_destroy_qp: 507 rdma_destroy_qp(queue->cm_id); 508 out_destroy_ib_cq: 509 ib_free_cq(queue->ib_cq); 510 out_put_dev: 511 nvme_rdma_dev_put(queue->device); 512 return ret; 513 } 514 515 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 516 int idx, size_t queue_size) 517 { 518 struct nvme_rdma_queue *queue; 519 struct sockaddr *src_addr = NULL; 520 int ret; 521 522 queue = &ctrl->queues[idx]; 523 queue->ctrl = ctrl; 524 init_completion(&queue->cm_done); 525 526 if (idx > 0) 527 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 528 else 529 queue->cmnd_capsule_len = sizeof(struct nvme_command); 530 531 queue->queue_size = queue_size; 532 533 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 534 RDMA_PS_TCP, IB_QPT_RC); 535 if (IS_ERR(queue->cm_id)) { 536 dev_info(ctrl->ctrl.device, 537 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 538 return PTR_ERR(queue->cm_id); 539 } 540 541 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 542 src_addr = (struct sockaddr *)&ctrl->src_addr; 543 544 queue->cm_error = -ETIMEDOUT; 545 ret = rdma_resolve_addr(queue->cm_id, src_addr, 546 (struct sockaddr *)&ctrl->addr, 547 NVME_RDMA_CONNECT_TIMEOUT_MS); 548 if (ret) { 549 dev_info(ctrl->ctrl.device, 550 "rdma_resolve_addr failed (%d).\n", ret); 551 goto out_destroy_cm_id; 552 } 553 554 ret = nvme_rdma_wait_for_cm(queue); 555 if (ret) { 556 dev_info(ctrl->ctrl.device, 557 "rdma connection establishment failed (%d)\n", ret); 558 goto out_destroy_cm_id; 559 } 560 561 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 562 563 return 0; 564 565 out_destroy_cm_id: 566 rdma_destroy_id(queue->cm_id); 567 nvme_rdma_destroy_queue_ib(queue); 568 return ret; 569 } 570 571 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 572 { 573 rdma_disconnect(queue->cm_id); 574 ib_drain_qp(queue->qp); 575 } 576 577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 578 { 579 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 580 return; 581 __nvme_rdma_stop_queue(queue); 582 } 583 584 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 585 { 586 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 587 return; 588 589 nvme_rdma_destroy_queue_ib(queue); 590 rdma_destroy_id(queue->cm_id); 591 } 592 593 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 594 { 595 int i; 596 597 for (i = 1; i < ctrl->ctrl.queue_count; i++) 598 nvme_rdma_free_queue(&ctrl->queues[i]); 599 } 600 601 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 602 { 603 int i; 604 605 for (i = 1; i < ctrl->ctrl.queue_count; i++) 606 nvme_rdma_stop_queue(&ctrl->queues[i]); 607 } 608 609 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 610 { 611 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 612 bool poll = nvme_rdma_poll_queue(queue); 613 int ret; 614 615 if (idx) 616 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 617 else 618 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 619 620 if (!ret) { 621 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 622 } else { 623 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 624 __nvme_rdma_stop_queue(queue); 625 dev_info(ctrl->ctrl.device, 626 "failed to connect queue: %d ret=%d\n", idx, ret); 627 } 628 return ret; 629 } 630 631 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 632 { 633 int i, ret = 0; 634 635 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 636 ret = nvme_rdma_start_queue(ctrl, i); 637 if (ret) 638 goto out_stop_queues; 639 } 640 641 return 0; 642 643 out_stop_queues: 644 for (i--; i >= 1; i--) 645 nvme_rdma_stop_queue(&ctrl->queues[i]); 646 return ret; 647 } 648 649 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 650 { 651 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 652 struct ib_device *ibdev = ctrl->device->dev; 653 unsigned int nr_io_queues, nr_default_queues; 654 unsigned int nr_read_queues, nr_poll_queues; 655 int i, ret; 656 657 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 658 min(opts->nr_io_queues, num_online_cpus())); 659 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 660 min(opts->nr_write_queues, num_online_cpus())); 661 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 662 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 663 664 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 665 if (ret) 666 return ret; 667 668 ctrl->ctrl.queue_count = nr_io_queues + 1; 669 if (ctrl->ctrl.queue_count < 2) 670 return 0; 671 672 dev_info(ctrl->ctrl.device, 673 "creating %d I/O queues.\n", nr_io_queues); 674 675 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 676 /* 677 * separate read/write queues 678 * hand out dedicated default queues only after we have 679 * sufficient read queues. 680 */ 681 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 682 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 683 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 684 min(nr_default_queues, nr_io_queues); 685 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 686 } else { 687 /* 688 * shared read/write queues 689 * either no write queues were requested, or we don't have 690 * sufficient queue count to have dedicated default queues. 691 */ 692 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 693 min(nr_read_queues, nr_io_queues); 694 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 695 } 696 697 if (opts->nr_poll_queues && nr_io_queues) { 698 /* map dedicated poll queues only if we have queues left */ 699 ctrl->io_queues[HCTX_TYPE_POLL] = 700 min(nr_poll_queues, nr_io_queues); 701 } 702 703 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 704 ret = nvme_rdma_alloc_queue(ctrl, i, 705 ctrl->ctrl.sqsize + 1); 706 if (ret) 707 goto out_free_queues; 708 } 709 710 return 0; 711 712 out_free_queues: 713 for (i--; i >= 1; i--) 714 nvme_rdma_free_queue(&ctrl->queues[i]); 715 716 return ret; 717 } 718 719 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 720 bool admin) 721 { 722 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 723 struct blk_mq_tag_set *set; 724 int ret; 725 726 if (admin) { 727 set = &ctrl->admin_tag_set; 728 memset(set, 0, sizeof(*set)); 729 set->ops = &nvme_rdma_admin_mq_ops; 730 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 731 set->reserved_tags = 2; /* connect + keep-alive */ 732 set->numa_node = nctrl->numa_node; 733 set->cmd_size = sizeof(struct nvme_rdma_request) + 734 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 735 set->driver_data = ctrl; 736 set->nr_hw_queues = 1; 737 set->timeout = ADMIN_TIMEOUT; 738 set->flags = BLK_MQ_F_NO_SCHED; 739 } else { 740 set = &ctrl->tag_set; 741 memset(set, 0, sizeof(*set)); 742 set->ops = &nvme_rdma_mq_ops; 743 set->queue_depth = nctrl->sqsize + 1; 744 set->reserved_tags = 1; /* fabric connect */ 745 set->numa_node = nctrl->numa_node; 746 set->flags = BLK_MQ_F_SHOULD_MERGE; 747 set->cmd_size = sizeof(struct nvme_rdma_request) + 748 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 749 set->driver_data = ctrl; 750 set->nr_hw_queues = nctrl->queue_count - 1; 751 set->timeout = NVME_IO_TIMEOUT; 752 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 753 } 754 755 ret = blk_mq_alloc_tag_set(set); 756 if (ret) 757 return ERR_PTR(ret); 758 759 return set; 760 } 761 762 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 763 bool remove) 764 { 765 if (remove) { 766 blk_cleanup_queue(ctrl->ctrl.admin_q); 767 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 768 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 769 } 770 if (ctrl->async_event_sqe.data) { 771 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 772 sizeof(struct nvme_command), DMA_TO_DEVICE); 773 ctrl->async_event_sqe.data = NULL; 774 } 775 nvme_rdma_free_queue(&ctrl->queues[0]); 776 } 777 778 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 779 bool new) 780 { 781 int error; 782 783 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 784 if (error) 785 return error; 786 787 ctrl->device = ctrl->queues[0].device; 788 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 789 790 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 791 792 /* 793 * Bind the async event SQE DMA mapping to the admin queue lifetime. 794 * It's safe, since any chage in the underlying RDMA device will issue 795 * error recovery and queue re-creation. 796 */ 797 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 798 sizeof(struct nvme_command), DMA_TO_DEVICE); 799 if (error) 800 goto out_free_queue; 801 802 if (new) { 803 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 804 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 805 error = PTR_ERR(ctrl->ctrl.admin_tagset); 806 goto out_free_async_qe; 807 } 808 809 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 810 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 811 error = PTR_ERR(ctrl->ctrl.fabrics_q); 812 goto out_free_tagset; 813 } 814 815 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 816 if (IS_ERR(ctrl->ctrl.admin_q)) { 817 error = PTR_ERR(ctrl->ctrl.admin_q); 818 goto out_cleanup_fabrics_q; 819 } 820 } 821 822 error = nvme_rdma_start_queue(ctrl, 0); 823 if (error) 824 goto out_cleanup_queue; 825 826 error = nvme_enable_ctrl(&ctrl->ctrl); 827 if (error) 828 goto out_stop_queue; 829 830 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 831 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 832 833 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 834 835 error = nvme_init_identify(&ctrl->ctrl); 836 if (error) 837 goto out_stop_queue; 838 839 return 0; 840 841 out_stop_queue: 842 nvme_rdma_stop_queue(&ctrl->queues[0]); 843 out_cleanup_queue: 844 if (new) 845 blk_cleanup_queue(ctrl->ctrl.admin_q); 846 out_cleanup_fabrics_q: 847 if (new) 848 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 849 out_free_tagset: 850 if (new) 851 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 852 out_free_async_qe: 853 if (ctrl->async_event_sqe.data) { 854 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 855 sizeof(struct nvme_command), DMA_TO_DEVICE); 856 ctrl->async_event_sqe.data = NULL; 857 } 858 out_free_queue: 859 nvme_rdma_free_queue(&ctrl->queues[0]); 860 return error; 861 } 862 863 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 864 bool remove) 865 { 866 if (remove) { 867 blk_cleanup_queue(ctrl->ctrl.connect_q); 868 blk_mq_free_tag_set(ctrl->ctrl.tagset); 869 } 870 nvme_rdma_free_io_queues(ctrl); 871 } 872 873 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 874 { 875 int ret; 876 877 ret = nvme_rdma_alloc_io_queues(ctrl); 878 if (ret) 879 return ret; 880 881 if (new) { 882 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 883 if (IS_ERR(ctrl->ctrl.tagset)) { 884 ret = PTR_ERR(ctrl->ctrl.tagset); 885 goto out_free_io_queues; 886 } 887 888 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 889 if (IS_ERR(ctrl->ctrl.connect_q)) { 890 ret = PTR_ERR(ctrl->ctrl.connect_q); 891 goto out_free_tag_set; 892 } 893 } else { 894 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 895 ctrl->ctrl.queue_count - 1); 896 } 897 898 ret = nvme_rdma_start_io_queues(ctrl); 899 if (ret) 900 goto out_cleanup_connect_q; 901 902 return 0; 903 904 out_cleanup_connect_q: 905 if (new) 906 blk_cleanup_queue(ctrl->ctrl.connect_q); 907 out_free_tag_set: 908 if (new) 909 blk_mq_free_tag_set(ctrl->ctrl.tagset); 910 out_free_io_queues: 911 nvme_rdma_free_io_queues(ctrl); 912 return ret; 913 } 914 915 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 916 bool remove) 917 { 918 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 919 nvme_rdma_stop_queue(&ctrl->queues[0]); 920 if (ctrl->ctrl.admin_tagset) { 921 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 922 nvme_cancel_request, &ctrl->ctrl); 923 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 924 } 925 if (remove) 926 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 927 nvme_rdma_destroy_admin_queue(ctrl, remove); 928 } 929 930 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 931 bool remove) 932 { 933 if (ctrl->ctrl.queue_count > 1) { 934 nvme_stop_queues(&ctrl->ctrl); 935 nvme_rdma_stop_io_queues(ctrl); 936 if (ctrl->ctrl.tagset) { 937 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 938 nvme_cancel_request, &ctrl->ctrl); 939 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 940 } 941 if (remove) 942 nvme_start_queues(&ctrl->ctrl); 943 nvme_rdma_destroy_io_queues(ctrl, remove); 944 } 945 } 946 947 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 948 { 949 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 950 951 if (list_empty(&ctrl->list)) 952 goto free_ctrl; 953 954 mutex_lock(&nvme_rdma_ctrl_mutex); 955 list_del(&ctrl->list); 956 mutex_unlock(&nvme_rdma_ctrl_mutex); 957 958 nvmf_free_options(nctrl->opts); 959 free_ctrl: 960 kfree(ctrl->queues); 961 kfree(ctrl); 962 } 963 964 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 965 { 966 /* If we are resetting/deleting then do nothing */ 967 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 968 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 969 ctrl->ctrl.state == NVME_CTRL_LIVE); 970 return; 971 } 972 973 if (nvmf_should_reconnect(&ctrl->ctrl)) { 974 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 975 ctrl->ctrl.opts->reconnect_delay); 976 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 977 ctrl->ctrl.opts->reconnect_delay * HZ); 978 } else { 979 nvme_delete_ctrl(&ctrl->ctrl); 980 } 981 } 982 983 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 984 { 985 int ret = -EINVAL; 986 bool changed; 987 988 ret = nvme_rdma_configure_admin_queue(ctrl, new); 989 if (ret) 990 return ret; 991 992 if (ctrl->ctrl.icdoff) { 993 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 994 goto destroy_admin; 995 } 996 997 if (!(ctrl->ctrl.sgls & (1 << 2))) { 998 dev_err(ctrl->ctrl.device, 999 "Mandatory keyed sgls are not supported!\n"); 1000 goto destroy_admin; 1001 } 1002 1003 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1004 dev_warn(ctrl->ctrl.device, 1005 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1006 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1007 } 1008 1009 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1010 dev_warn(ctrl->ctrl.device, 1011 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1012 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1013 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1014 } 1015 1016 if (ctrl->ctrl.sgls & (1 << 20)) 1017 ctrl->use_inline_data = true; 1018 1019 if (ctrl->ctrl.queue_count > 1) { 1020 ret = nvme_rdma_configure_io_queues(ctrl, new); 1021 if (ret) 1022 goto destroy_admin; 1023 } 1024 1025 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1026 if (!changed) { 1027 /* 1028 * state change failure is ok if we're in DELETING state, 1029 * unless we're during creation of a new controller to 1030 * avoid races with teardown flow. 1031 */ 1032 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1033 WARN_ON_ONCE(new); 1034 ret = -EINVAL; 1035 goto destroy_io; 1036 } 1037 1038 nvme_start_ctrl(&ctrl->ctrl); 1039 return 0; 1040 1041 destroy_io: 1042 if (ctrl->ctrl.queue_count > 1) 1043 nvme_rdma_destroy_io_queues(ctrl, new); 1044 destroy_admin: 1045 nvme_rdma_stop_queue(&ctrl->queues[0]); 1046 nvme_rdma_destroy_admin_queue(ctrl, new); 1047 return ret; 1048 } 1049 1050 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1051 { 1052 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1053 struct nvme_rdma_ctrl, reconnect_work); 1054 1055 ++ctrl->ctrl.nr_reconnects; 1056 1057 if (nvme_rdma_setup_ctrl(ctrl, false)) 1058 goto requeue; 1059 1060 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1061 ctrl->ctrl.nr_reconnects); 1062 1063 ctrl->ctrl.nr_reconnects = 0; 1064 1065 return; 1066 1067 requeue: 1068 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1069 ctrl->ctrl.nr_reconnects); 1070 nvme_rdma_reconnect_or_remove(ctrl); 1071 } 1072 1073 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1074 { 1075 struct nvme_rdma_ctrl *ctrl = container_of(work, 1076 struct nvme_rdma_ctrl, err_work); 1077 1078 nvme_stop_keep_alive(&ctrl->ctrl); 1079 nvme_rdma_teardown_io_queues(ctrl, false); 1080 nvme_start_queues(&ctrl->ctrl); 1081 nvme_rdma_teardown_admin_queue(ctrl, false); 1082 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1083 1084 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1085 /* state change failure is ok if we're in DELETING state */ 1086 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1087 return; 1088 } 1089 1090 nvme_rdma_reconnect_or_remove(ctrl); 1091 } 1092 1093 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1094 { 1095 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1096 return; 1097 1098 queue_work(nvme_reset_wq, &ctrl->err_work); 1099 } 1100 1101 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1102 const char *op) 1103 { 1104 struct nvme_rdma_queue *queue = cq->cq_context; 1105 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1106 1107 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1108 dev_info(ctrl->ctrl.device, 1109 "%s for CQE 0x%p failed with status %s (%d)\n", 1110 op, wc->wr_cqe, 1111 ib_wc_status_msg(wc->status), wc->status); 1112 nvme_rdma_error_recovery(ctrl); 1113 } 1114 1115 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1116 { 1117 if (unlikely(wc->status != IB_WC_SUCCESS)) 1118 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1119 } 1120 1121 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1122 { 1123 struct nvme_rdma_request *req = 1124 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1125 struct request *rq = blk_mq_rq_from_pdu(req); 1126 1127 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1128 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1129 return; 1130 } 1131 1132 if (refcount_dec_and_test(&req->ref)) 1133 nvme_end_request(rq, req->status, req->result); 1134 1135 } 1136 1137 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1138 struct nvme_rdma_request *req) 1139 { 1140 struct ib_send_wr wr = { 1141 .opcode = IB_WR_LOCAL_INV, 1142 .next = NULL, 1143 .num_sge = 0, 1144 .send_flags = IB_SEND_SIGNALED, 1145 .ex.invalidate_rkey = req->mr->rkey, 1146 }; 1147 1148 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1149 wr.wr_cqe = &req->reg_cqe; 1150 1151 return ib_post_send(queue->qp, &wr, NULL); 1152 } 1153 1154 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1155 struct request *rq) 1156 { 1157 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1158 struct nvme_rdma_device *dev = queue->device; 1159 struct ib_device *ibdev = dev->dev; 1160 1161 if (!blk_rq_nr_phys_segments(rq)) 1162 return; 1163 1164 if (req->mr) { 1165 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1166 req->mr = NULL; 1167 } 1168 1169 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq)); 1170 sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT); 1171 } 1172 1173 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1174 { 1175 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1176 1177 sg->addr = 0; 1178 put_unaligned_le24(0, sg->length); 1179 put_unaligned_le32(0, sg->key); 1180 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1181 return 0; 1182 } 1183 1184 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1185 struct nvme_rdma_request *req, struct nvme_command *c, 1186 int count) 1187 { 1188 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1189 struct scatterlist *sgl = req->sg_table.sgl; 1190 struct ib_sge *sge = &req->sge[1]; 1191 u32 len = 0; 1192 int i; 1193 1194 for (i = 0; i < count; i++, sgl++, sge++) { 1195 sge->addr = sg_dma_address(sgl); 1196 sge->length = sg_dma_len(sgl); 1197 sge->lkey = queue->device->pd->local_dma_lkey; 1198 len += sge->length; 1199 } 1200 1201 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1202 sg->length = cpu_to_le32(len); 1203 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1204 1205 req->num_sge += count; 1206 return 0; 1207 } 1208 1209 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1210 struct nvme_rdma_request *req, struct nvme_command *c) 1211 { 1212 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1213 1214 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1215 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1216 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1217 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1218 return 0; 1219 } 1220 1221 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1222 struct nvme_rdma_request *req, struct nvme_command *c, 1223 int count) 1224 { 1225 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1226 int nr; 1227 1228 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1229 if (WARN_ON_ONCE(!req->mr)) 1230 return -EAGAIN; 1231 1232 /* 1233 * Align the MR to a 4K page size to match the ctrl page size and 1234 * the block virtual boundary. 1235 */ 1236 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1237 if (unlikely(nr < count)) { 1238 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1239 req->mr = NULL; 1240 if (nr < 0) 1241 return nr; 1242 return -EINVAL; 1243 } 1244 1245 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1246 1247 req->reg_cqe.done = nvme_rdma_memreg_done; 1248 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1249 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1250 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1251 req->reg_wr.wr.num_sge = 0; 1252 req->reg_wr.mr = req->mr; 1253 req->reg_wr.key = req->mr->rkey; 1254 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1255 IB_ACCESS_REMOTE_READ | 1256 IB_ACCESS_REMOTE_WRITE; 1257 1258 sg->addr = cpu_to_le64(req->mr->iova); 1259 put_unaligned_le24(req->mr->length, sg->length); 1260 put_unaligned_le32(req->mr->rkey, sg->key); 1261 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1262 NVME_SGL_FMT_INVALIDATE; 1263 1264 return 0; 1265 } 1266 1267 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1268 struct request *rq, struct nvme_command *c) 1269 { 1270 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1271 struct nvme_rdma_device *dev = queue->device; 1272 struct ib_device *ibdev = dev->dev; 1273 int count, ret; 1274 1275 req->num_sge = 1; 1276 refcount_set(&req->ref, 2); /* send and recv completions */ 1277 1278 c->common.flags |= NVME_CMD_SGL_METABUF; 1279 1280 if (!blk_rq_nr_phys_segments(rq)) 1281 return nvme_rdma_set_sg_null(c); 1282 1283 req->sg_table.sgl = req->first_sgl; 1284 ret = sg_alloc_table_chained(&req->sg_table, 1285 blk_rq_nr_phys_segments(rq), req->sg_table.sgl, 1286 NVME_INLINE_SG_CNT); 1287 if (ret) 1288 return -ENOMEM; 1289 1290 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1291 1292 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1293 rq_dma_dir(rq)); 1294 if (unlikely(count <= 0)) { 1295 ret = -EIO; 1296 goto out_free_table; 1297 } 1298 1299 if (count <= dev->num_inline_segments) { 1300 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1301 queue->ctrl->use_inline_data && 1302 blk_rq_payload_bytes(rq) <= 1303 nvme_rdma_inline_data_size(queue)) { 1304 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1305 goto out; 1306 } 1307 1308 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1309 ret = nvme_rdma_map_sg_single(queue, req, c); 1310 goto out; 1311 } 1312 } 1313 1314 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1315 out: 1316 if (unlikely(ret)) 1317 goto out_unmap_sg; 1318 1319 return 0; 1320 1321 out_unmap_sg: 1322 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq)); 1323 out_free_table: 1324 sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT); 1325 return ret; 1326 } 1327 1328 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1329 { 1330 struct nvme_rdma_qe *qe = 1331 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1332 struct nvme_rdma_request *req = 1333 container_of(qe, struct nvme_rdma_request, sqe); 1334 struct request *rq = blk_mq_rq_from_pdu(req); 1335 1336 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1337 nvme_rdma_wr_error(cq, wc, "SEND"); 1338 return; 1339 } 1340 1341 if (refcount_dec_and_test(&req->ref)) 1342 nvme_end_request(rq, req->status, req->result); 1343 } 1344 1345 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1346 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1347 struct ib_send_wr *first) 1348 { 1349 struct ib_send_wr wr; 1350 int ret; 1351 1352 sge->addr = qe->dma; 1353 sge->length = sizeof(struct nvme_command), 1354 sge->lkey = queue->device->pd->local_dma_lkey; 1355 1356 wr.next = NULL; 1357 wr.wr_cqe = &qe->cqe; 1358 wr.sg_list = sge; 1359 wr.num_sge = num_sge; 1360 wr.opcode = IB_WR_SEND; 1361 wr.send_flags = IB_SEND_SIGNALED; 1362 1363 if (first) 1364 first->next = ≀ 1365 else 1366 first = ≀ 1367 1368 ret = ib_post_send(queue->qp, first, NULL); 1369 if (unlikely(ret)) { 1370 dev_err(queue->ctrl->ctrl.device, 1371 "%s failed with error code %d\n", __func__, ret); 1372 } 1373 return ret; 1374 } 1375 1376 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1377 struct nvme_rdma_qe *qe) 1378 { 1379 struct ib_recv_wr wr; 1380 struct ib_sge list; 1381 int ret; 1382 1383 list.addr = qe->dma; 1384 list.length = sizeof(struct nvme_completion); 1385 list.lkey = queue->device->pd->local_dma_lkey; 1386 1387 qe->cqe.done = nvme_rdma_recv_done; 1388 1389 wr.next = NULL; 1390 wr.wr_cqe = &qe->cqe; 1391 wr.sg_list = &list; 1392 wr.num_sge = 1; 1393 1394 ret = ib_post_recv(queue->qp, &wr, NULL); 1395 if (unlikely(ret)) { 1396 dev_err(queue->ctrl->ctrl.device, 1397 "%s failed with error code %d\n", __func__, ret); 1398 } 1399 return ret; 1400 } 1401 1402 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1403 { 1404 u32 queue_idx = nvme_rdma_queue_idx(queue); 1405 1406 if (queue_idx == 0) 1407 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1408 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1409 } 1410 1411 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1412 { 1413 if (unlikely(wc->status != IB_WC_SUCCESS)) 1414 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1415 } 1416 1417 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1418 { 1419 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1420 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1421 struct ib_device *dev = queue->device->dev; 1422 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1423 struct nvme_command *cmd = sqe->data; 1424 struct ib_sge sge; 1425 int ret; 1426 1427 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1428 1429 memset(cmd, 0, sizeof(*cmd)); 1430 cmd->common.opcode = nvme_admin_async_event; 1431 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1432 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1433 nvme_rdma_set_sg_null(cmd); 1434 1435 sqe->cqe.done = nvme_rdma_async_done; 1436 1437 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1438 DMA_TO_DEVICE); 1439 1440 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1441 WARN_ON_ONCE(ret); 1442 } 1443 1444 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1445 struct nvme_completion *cqe, struct ib_wc *wc) 1446 { 1447 struct request *rq; 1448 struct nvme_rdma_request *req; 1449 1450 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1451 if (!rq) { 1452 dev_err(queue->ctrl->ctrl.device, 1453 "tag 0x%x on QP %#x not found\n", 1454 cqe->command_id, queue->qp->qp_num); 1455 nvme_rdma_error_recovery(queue->ctrl); 1456 return; 1457 } 1458 req = blk_mq_rq_to_pdu(rq); 1459 1460 req->status = cqe->status; 1461 req->result = cqe->result; 1462 1463 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1464 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1465 dev_err(queue->ctrl->ctrl.device, 1466 "Bogus remote invalidation for rkey %#x\n", 1467 req->mr->rkey); 1468 nvme_rdma_error_recovery(queue->ctrl); 1469 } 1470 } else if (req->mr) { 1471 int ret; 1472 1473 ret = nvme_rdma_inv_rkey(queue, req); 1474 if (unlikely(ret < 0)) { 1475 dev_err(queue->ctrl->ctrl.device, 1476 "Queueing INV WR for rkey %#x failed (%d)\n", 1477 req->mr->rkey, ret); 1478 nvme_rdma_error_recovery(queue->ctrl); 1479 } 1480 /* the local invalidation completion will end the request */ 1481 return; 1482 } 1483 1484 if (refcount_dec_and_test(&req->ref)) 1485 nvme_end_request(rq, req->status, req->result); 1486 } 1487 1488 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1489 { 1490 struct nvme_rdma_qe *qe = 1491 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1492 struct nvme_rdma_queue *queue = cq->cq_context; 1493 struct ib_device *ibdev = queue->device->dev; 1494 struct nvme_completion *cqe = qe->data; 1495 const size_t len = sizeof(struct nvme_completion); 1496 1497 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1498 nvme_rdma_wr_error(cq, wc, "RECV"); 1499 return; 1500 } 1501 1502 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1503 /* 1504 * AEN requests are special as they don't time out and can 1505 * survive any kind of queue freeze and often don't respond to 1506 * aborts. We don't even bother to allocate a struct request 1507 * for them but rather special case them here. 1508 */ 1509 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1510 cqe->command_id))) 1511 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1512 &cqe->result); 1513 else 1514 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1515 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1516 1517 nvme_rdma_post_recv(queue, qe); 1518 } 1519 1520 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1521 { 1522 int ret, i; 1523 1524 for (i = 0; i < queue->queue_size; i++) { 1525 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1526 if (ret) 1527 goto out_destroy_queue_ib; 1528 } 1529 1530 return 0; 1531 1532 out_destroy_queue_ib: 1533 nvme_rdma_destroy_queue_ib(queue); 1534 return ret; 1535 } 1536 1537 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1538 struct rdma_cm_event *ev) 1539 { 1540 struct rdma_cm_id *cm_id = queue->cm_id; 1541 int status = ev->status; 1542 const char *rej_msg; 1543 const struct nvme_rdma_cm_rej *rej_data; 1544 u8 rej_data_len; 1545 1546 rej_msg = rdma_reject_msg(cm_id, status); 1547 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1548 1549 if (rej_data && rej_data_len >= sizeof(u16)) { 1550 u16 sts = le16_to_cpu(rej_data->sts); 1551 1552 dev_err(queue->ctrl->ctrl.device, 1553 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1554 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1555 } else { 1556 dev_err(queue->ctrl->ctrl.device, 1557 "Connect rejected: status %d (%s).\n", status, rej_msg); 1558 } 1559 1560 return -ECONNRESET; 1561 } 1562 1563 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1564 { 1565 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1566 int ret; 1567 1568 ret = nvme_rdma_create_queue_ib(queue); 1569 if (ret) 1570 return ret; 1571 1572 if (ctrl->opts->tos >= 0) 1573 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1574 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1575 if (ret) { 1576 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1577 queue->cm_error); 1578 goto out_destroy_queue; 1579 } 1580 1581 return 0; 1582 1583 out_destroy_queue: 1584 nvme_rdma_destroy_queue_ib(queue); 1585 return ret; 1586 } 1587 1588 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1589 { 1590 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1591 struct rdma_conn_param param = { }; 1592 struct nvme_rdma_cm_req priv = { }; 1593 int ret; 1594 1595 param.qp_num = queue->qp->qp_num; 1596 param.flow_control = 1; 1597 1598 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1599 /* maximum retry count */ 1600 param.retry_count = 7; 1601 param.rnr_retry_count = 7; 1602 param.private_data = &priv; 1603 param.private_data_len = sizeof(priv); 1604 1605 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1606 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1607 /* 1608 * set the admin queue depth to the minimum size 1609 * specified by the Fabrics standard. 1610 */ 1611 if (priv.qid == 0) { 1612 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1613 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1614 } else { 1615 /* 1616 * current interpretation of the fabrics spec 1617 * is at minimum you make hrqsize sqsize+1, or a 1618 * 1's based representation of sqsize. 1619 */ 1620 priv.hrqsize = cpu_to_le16(queue->queue_size); 1621 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1622 } 1623 1624 ret = rdma_connect(queue->cm_id, ¶m); 1625 if (ret) { 1626 dev_err(ctrl->ctrl.device, 1627 "rdma_connect failed (%d).\n", ret); 1628 goto out_destroy_queue_ib; 1629 } 1630 1631 return 0; 1632 1633 out_destroy_queue_ib: 1634 nvme_rdma_destroy_queue_ib(queue); 1635 return ret; 1636 } 1637 1638 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1639 struct rdma_cm_event *ev) 1640 { 1641 struct nvme_rdma_queue *queue = cm_id->context; 1642 int cm_error = 0; 1643 1644 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1645 rdma_event_msg(ev->event), ev->event, 1646 ev->status, cm_id); 1647 1648 switch (ev->event) { 1649 case RDMA_CM_EVENT_ADDR_RESOLVED: 1650 cm_error = nvme_rdma_addr_resolved(queue); 1651 break; 1652 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1653 cm_error = nvme_rdma_route_resolved(queue); 1654 break; 1655 case RDMA_CM_EVENT_ESTABLISHED: 1656 queue->cm_error = nvme_rdma_conn_established(queue); 1657 /* complete cm_done regardless of success/failure */ 1658 complete(&queue->cm_done); 1659 return 0; 1660 case RDMA_CM_EVENT_REJECTED: 1661 nvme_rdma_destroy_queue_ib(queue); 1662 cm_error = nvme_rdma_conn_rejected(queue, ev); 1663 break; 1664 case RDMA_CM_EVENT_ROUTE_ERROR: 1665 case RDMA_CM_EVENT_CONNECT_ERROR: 1666 case RDMA_CM_EVENT_UNREACHABLE: 1667 nvme_rdma_destroy_queue_ib(queue); 1668 /* fall through */ 1669 case RDMA_CM_EVENT_ADDR_ERROR: 1670 dev_dbg(queue->ctrl->ctrl.device, 1671 "CM error event %d\n", ev->event); 1672 cm_error = -ECONNRESET; 1673 break; 1674 case RDMA_CM_EVENT_DISCONNECTED: 1675 case RDMA_CM_EVENT_ADDR_CHANGE: 1676 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1677 dev_dbg(queue->ctrl->ctrl.device, 1678 "disconnect received - connection closed\n"); 1679 nvme_rdma_error_recovery(queue->ctrl); 1680 break; 1681 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1682 /* device removal is handled via the ib_client API */ 1683 break; 1684 default: 1685 dev_err(queue->ctrl->ctrl.device, 1686 "Unexpected RDMA CM event (%d)\n", ev->event); 1687 nvme_rdma_error_recovery(queue->ctrl); 1688 break; 1689 } 1690 1691 if (cm_error) { 1692 queue->cm_error = cm_error; 1693 complete(&queue->cm_done); 1694 } 1695 1696 return 0; 1697 } 1698 1699 static enum blk_eh_timer_return 1700 nvme_rdma_timeout(struct request *rq, bool reserved) 1701 { 1702 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1703 struct nvme_rdma_queue *queue = req->queue; 1704 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1705 1706 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1707 rq->tag, nvme_rdma_queue_idx(queue)); 1708 1709 /* 1710 * Restart the timer if a controller reset is already scheduled. Any 1711 * timed out commands would be handled before entering the connecting 1712 * state. 1713 */ 1714 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 1715 return BLK_EH_RESET_TIMER; 1716 1717 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1718 /* 1719 * Teardown immediately if controller times out while starting 1720 * or we are already started error recovery. all outstanding 1721 * requests are completed on shutdown, so we return BLK_EH_DONE. 1722 */ 1723 flush_work(&ctrl->err_work); 1724 nvme_rdma_teardown_io_queues(ctrl, false); 1725 nvme_rdma_teardown_admin_queue(ctrl, false); 1726 return BLK_EH_DONE; 1727 } 1728 1729 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1730 nvme_rdma_error_recovery(ctrl); 1731 1732 return BLK_EH_RESET_TIMER; 1733 } 1734 1735 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1736 const struct blk_mq_queue_data *bd) 1737 { 1738 struct nvme_ns *ns = hctx->queue->queuedata; 1739 struct nvme_rdma_queue *queue = hctx->driver_data; 1740 struct request *rq = bd->rq; 1741 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1742 struct nvme_rdma_qe *sqe = &req->sqe; 1743 struct nvme_command *c = sqe->data; 1744 struct ib_device *dev; 1745 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1746 blk_status_t ret; 1747 int err; 1748 1749 WARN_ON_ONCE(rq->tag < 0); 1750 1751 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1752 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1753 1754 dev = queue->device->dev; 1755 1756 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 1757 sizeof(struct nvme_command), 1758 DMA_TO_DEVICE); 1759 err = ib_dma_mapping_error(dev, req->sqe.dma); 1760 if (unlikely(err)) 1761 return BLK_STS_RESOURCE; 1762 1763 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1764 sizeof(struct nvme_command), DMA_TO_DEVICE); 1765 1766 ret = nvme_setup_cmd(ns, rq, c); 1767 if (ret) 1768 goto unmap_qe; 1769 1770 blk_mq_start_request(rq); 1771 1772 err = nvme_rdma_map_data(queue, rq, c); 1773 if (unlikely(err < 0)) { 1774 dev_err(queue->ctrl->ctrl.device, 1775 "Failed to map data (%d)\n", err); 1776 goto err; 1777 } 1778 1779 sqe->cqe.done = nvme_rdma_send_done; 1780 1781 ib_dma_sync_single_for_device(dev, sqe->dma, 1782 sizeof(struct nvme_command), DMA_TO_DEVICE); 1783 1784 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1785 req->mr ? &req->reg_wr.wr : NULL); 1786 if (unlikely(err)) 1787 goto err_unmap; 1788 1789 return BLK_STS_OK; 1790 1791 err_unmap: 1792 nvme_rdma_unmap_data(queue, rq); 1793 err: 1794 if (err == -ENOMEM || err == -EAGAIN) 1795 ret = BLK_STS_RESOURCE; 1796 else 1797 ret = BLK_STS_IOERR; 1798 nvme_cleanup_cmd(rq); 1799 unmap_qe: 1800 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 1801 DMA_TO_DEVICE); 1802 return ret; 1803 } 1804 1805 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1806 { 1807 struct nvme_rdma_queue *queue = hctx->driver_data; 1808 1809 return ib_process_cq_direct(queue->ib_cq, -1); 1810 } 1811 1812 static void nvme_rdma_complete_rq(struct request *rq) 1813 { 1814 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1815 struct nvme_rdma_queue *queue = req->queue; 1816 struct ib_device *ibdev = queue->device->dev; 1817 1818 nvme_rdma_unmap_data(queue, rq); 1819 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 1820 DMA_TO_DEVICE); 1821 nvme_complete_rq(rq); 1822 } 1823 1824 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1825 { 1826 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1827 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1828 1829 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 1830 /* separate read/write queues */ 1831 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1832 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1833 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1834 set->map[HCTX_TYPE_READ].nr_queues = 1835 ctrl->io_queues[HCTX_TYPE_READ]; 1836 set->map[HCTX_TYPE_READ].queue_offset = 1837 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1838 } else { 1839 /* shared read/write queues */ 1840 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1841 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1842 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1843 set->map[HCTX_TYPE_READ].nr_queues = 1844 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1845 set->map[HCTX_TYPE_READ].queue_offset = 0; 1846 } 1847 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1848 ctrl->device->dev, 0); 1849 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1850 ctrl->device->dev, 0); 1851 1852 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 1853 /* map dedicated poll queues only if we have queues left */ 1854 set->map[HCTX_TYPE_POLL].nr_queues = 1855 ctrl->io_queues[HCTX_TYPE_POLL]; 1856 set->map[HCTX_TYPE_POLL].queue_offset = 1857 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1858 ctrl->io_queues[HCTX_TYPE_READ]; 1859 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1860 } 1861 1862 dev_info(ctrl->ctrl.device, 1863 "mapped %d/%d/%d default/read/poll queues.\n", 1864 ctrl->io_queues[HCTX_TYPE_DEFAULT], 1865 ctrl->io_queues[HCTX_TYPE_READ], 1866 ctrl->io_queues[HCTX_TYPE_POLL]); 1867 1868 return 0; 1869 } 1870 1871 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1872 .queue_rq = nvme_rdma_queue_rq, 1873 .complete = nvme_rdma_complete_rq, 1874 .init_request = nvme_rdma_init_request, 1875 .exit_request = nvme_rdma_exit_request, 1876 .init_hctx = nvme_rdma_init_hctx, 1877 .timeout = nvme_rdma_timeout, 1878 .map_queues = nvme_rdma_map_queues, 1879 .poll = nvme_rdma_poll, 1880 }; 1881 1882 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1883 .queue_rq = nvme_rdma_queue_rq, 1884 .complete = nvme_rdma_complete_rq, 1885 .init_request = nvme_rdma_init_request, 1886 .exit_request = nvme_rdma_exit_request, 1887 .init_hctx = nvme_rdma_init_admin_hctx, 1888 .timeout = nvme_rdma_timeout, 1889 }; 1890 1891 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1892 { 1893 cancel_work_sync(&ctrl->err_work); 1894 cancel_delayed_work_sync(&ctrl->reconnect_work); 1895 1896 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1897 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1898 if (shutdown) 1899 nvme_shutdown_ctrl(&ctrl->ctrl); 1900 else 1901 nvme_disable_ctrl(&ctrl->ctrl); 1902 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1903 } 1904 1905 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1906 { 1907 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1908 } 1909 1910 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1911 { 1912 struct nvme_rdma_ctrl *ctrl = 1913 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1914 1915 nvme_stop_ctrl(&ctrl->ctrl); 1916 nvme_rdma_shutdown_ctrl(ctrl, false); 1917 1918 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1919 /* state change failure should never happen */ 1920 WARN_ON_ONCE(1); 1921 return; 1922 } 1923 1924 if (nvme_rdma_setup_ctrl(ctrl, false)) 1925 goto out_fail; 1926 1927 return; 1928 1929 out_fail: 1930 ++ctrl->ctrl.nr_reconnects; 1931 nvme_rdma_reconnect_or_remove(ctrl); 1932 } 1933 1934 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1935 .name = "rdma", 1936 .module = THIS_MODULE, 1937 .flags = NVME_F_FABRICS, 1938 .reg_read32 = nvmf_reg_read32, 1939 .reg_read64 = nvmf_reg_read64, 1940 .reg_write32 = nvmf_reg_write32, 1941 .free_ctrl = nvme_rdma_free_ctrl, 1942 .submit_async_event = nvme_rdma_submit_async_event, 1943 .delete_ctrl = nvme_rdma_delete_ctrl, 1944 .get_address = nvmf_get_address, 1945 }; 1946 1947 /* 1948 * Fails a connection request if it matches an existing controller 1949 * (association) with the same tuple: 1950 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1951 * 1952 * if local address is not specified in the request, it will match an 1953 * existing controller with all the other parameters the same and no 1954 * local port address specified as well. 1955 * 1956 * The ports don't need to be compared as they are intrinsically 1957 * already matched by the port pointers supplied. 1958 */ 1959 static bool 1960 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1961 { 1962 struct nvme_rdma_ctrl *ctrl; 1963 bool found = false; 1964 1965 mutex_lock(&nvme_rdma_ctrl_mutex); 1966 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1967 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1968 if (found) 1969 break; 1970 } 1971 mutex_unlock(&nvme_rdma_ctrl_mutex); 1972 1973 return found; 1974 } 1975 1976 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1977 struct nvmf_ctrl_options *opts) 1978 { 1979 struct nvme_rdma_ctrl *ctrl; 1980 int ret; 1981 bool changed; 1982 1983 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1984 if (!ctrl) 1985 return ERR_PTR(-ENOMEM); 1986 ctrl->ctrl.opts = opts; 1987 INIT_LIST_HEAD(&ctrl->list); 1988 1989 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1990 opts->trsvcid = 1991 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1992 if (!opts->trsvcid) { 1993 ret = -ENOMEM; 1994 goto out_free_ctrl; 1995 } 1996 opts->mask |= NVMF_OPT_TRSVCID; 1997 } 1998 1999 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2000 opts->traddr, opts->trsvcid, &ctrl->addr); 2001 if (ret) { 2002 pr_err("malformed address passed: %s:%s\n", 2003 opts->traddr, opts->trsvcid); 2004 goto out_free_ctrl; 2005 } 2006 2007 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2008 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2009 opts->host_traddr, NULL, &ctrl->src_addr); 2010 if (ret) { 2011 pr_err("malformed src address passed: %s\n", 2012 opts->host_traddr); 2013 goto out_free_ctrl; 2014 } 2015 } 2016 2017 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2018 ret = -EALREADY; 2019 goto out_free_ctrl; 2020 } 2021 2022 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2023 nvme_rdma_reconnect_ctrl_work); 2024 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2025 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2026 2027 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2028 opts->nr_poll_queues + 1; 2029 ctrl->ctrl.sqsize = opts->queue_size - 1; 2030 ctrl->ctrl.kato = opts->kato; 2031 2032 ret = -ENOMEM; 2033 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2034 GFP_KERNEL); 2035 if (!ctrl->queues) 2036 goto out_free_ctrl; 2037 2038 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2039 0 /* no quirks, we're perfect! */); 2040 if (ret) 2041 goto out_kfree_queues; 2042 2043 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2044 WARN_ON_ONCE(!changed); 2045 2046 ret = nvme_rdma_setup_ctrl(ctrl, true); 2047 if (ret) 2048 goto out_uninit_ctrl; 2049 2050 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2051 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2052 2053 mutex_lock(&nvme_rdma_ctrl_mutex); 2054 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2055 mutex_unlock(&nvme_rdma_ctrl_mutex); 2056 2057 return &ctrl->ctrl; 2058 2059 out_uninit_ctrl: 2060 nvme_uninit_ctrl(&ctrl->ctrl); 2061 nvme_put_ctrl(&ctrl->ctrl); 2062 if (ret > 0) 2063 ret = -EIO; 2064 return ERR_PTR(ret); 2065 out_kfree_queues: 2066 kfree(ctrl->queues); 2067 out_free_ctrl: 2068 kfree(ctrl); 2069 return ERR_PTR(ret); 2070 } 2071 2072 static struct nvmf_transport_ops nvme_rdma_transport = { 2073 .name = "rdma", 2074 .module = THIS_MODULE, 2075 .required_opts = NVMF_OPT_TRADDR, 2076 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2077 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2078 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2079 NVMF_OPT_TOS, 2080 .create_ctrl = nvme_rdma_create_ctrl, 2081 }; 2082 2083 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2084 { 2085 struct nvme_rdma_ctrl *ctrl; 2086 struct nvme_rdma_device *ndev; 2087 bool found = false; 2088 2089 mutex_lock(&device_list_mutex); 2090 list_for_each_entry(ndev, &device_list, entry) { 2091 if (ndev->dev == ib_device) { 2092 found = true; 2093 break; 2094 } 2095 } 2096 mutex_unlock(&device_list_mutex); 2097 2098 if (!found) 2099 return; 2100 2101 /* Delete all controllers using this device */ 2102 mutex_lock(&nvme_rdma_ctrl_mutex); 2103 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2104 if (ctrl->device->dev != ib_device) 2105 continue; 2106 nvme_delete_ctrl(&ctrl->ctrl); 2107 } 2108 mutex_unlock(&nvme_rdma_ctrl_mutex); 2109 2110 flush_workqueue(nvme_delete_wq); 2111 } 2112 2113 static struct ib_client nvme_rdma_ib_client = { 2114 .name = "nvme_rdma", 2115 .remove = nvme_rdma_remove_one 2116 }; 2117 2118 static int __init nvme_rdma_init_module(void) 2119 { 2120 int ret; 2121 2122 ret = ib_register_client(&nvme_rdma_ib_client); 2123 if (ret) 2124 return ret; 2125 2126 ret = nvmf_register_transport(&nvme_rdma_transport); 2127 if (ret) 2128 goto err_unreg_client; 2129 2130 return 0; 2131 2132 err_unreg_client: 2133 ib_unregister_client(&nvme_rdma_ib_client); 2134 return ret; 2135 } 2136 2137 static void __exit nvme_rdma_cleanup_module(void) 2138 { 2139 struct nvme_rdma_ctrl *ctrl; 2140 2141 nvmf_unregister_transport(&nvme_rdma_transport); 2142 ib_unregister_client(&nvme_rdma_ib_client); 2143 2144 mutex_lock(&nvme_rdma_ctrl_mutex); 2145 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2146 nvme_delete_ctrl(&ctrl->ctrl); 2147 mutex_unlock(&nvme_rdma_ctrl_mutex); 2148 flush_workqueue(nvme_delete_wq); 2149 } 2150 2151 module_init(nvme_rdma_init_module); 2152 module_exit(nvme_rdma_cleanup_module); 2153 2154 MODULE_LICENSE("GPL v2"); 2155