1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <linux/nvme-rdma.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 38 39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 static const char *const nvme_rdma_cm_status_strs[] = { 46 [NVME_RDMA_CM_INVALID_LEN] = "invalid length", 47 [NVME_RDMA_CM_INVALID_RECFMT] = "invalid record format", 48 [NVME_RDMA_CM_INVALID_QID] = "invalid queue ID", 49 [NVME_RDMA_CM_INVALID_HSQSIZE] = "invalid host SQ size", 50 [NVME_RDMA_CM_INVALID_HRQSIZE] = "invalid host RQ size", 51 [NVME_RDMA_CM_NO_RSC] = "resource not found", 52 [NVME_RDMA_CM_INVALID_IRD] = "invalid IRD", 53 [NVME_RDMA_CM_INVALID_ORD] = "Invalid ORD", 54 }; 55 56 static const char *nvme_rdma_cm_msg(enum nvme_rdma_cm_status status) 57 { 58 size_t index = status; 59 60 if (index < ARRAY_SIZE(nvme_rdma_cm_status_strs) && 61 nvme_rdma_cm_status_strs[index]) 62 return nvme_rdma_cm_status_strs[index]; 63 else 64 return "unrecognized reason"; 65 }; 66 67 /* 68 * We handle AEN commands ourselves and don't even let the 69 * block layer know about them. 70 */ 71 #define NVME_RDMA_NR_AEN_COMMANDS 1 72 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 73 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 74 75 struct nvme_rdma_device { 76 struct ib_device *dev; 77 struct ib_pd *pd; 78 struct kref ref; 79 struct list_head entry; 80 }; 81 82 struct nvme_rdma_qe { 83 struct ib_cqe cqe; 84 void *data; 85 u64 dma; 86 }; 87 88 struct nvme_rdma_queue; 89 struct nvme_rdma_request { 90 struct nvme_request req; 91 struct ib_mr *mr; 92 struct nvme_rdma_qe sqe; 93 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 94 u32 num_sge; 95 int nents; 96 bool inline_data; 97 struct ib_reg_wr reg_wr; 98 struct ib_cqe reg_cqe; 99 struct nvme_rdma_queue *queue; 100 struct sg_table sg_table; 101 struct scatterlist first_sgl[]; 102 }; 103 104 enum nvme_rdma_queue_flags { 105 NVME_RDMA_Q_CONNECTED = (1 << 0), 106 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 107 NVME_RDMA_Q_DELETING = (1 << 2), 108 NVME_RDMA_Q_LIVE = (1 << 3), 109 }; 110 111 struct nvme_rdma_queue { 112 struct nvme_rdma_qe *rsp_ring; 113 u8 sig_count; 114 int queue_size; 115 size_t cmnd_capsule_len; 116 struct nvme_rdma_ctrl *ctrl; 117 struct nvme_rdma_device *device; 118 struct ib_cq *ib_cq; 119 struct ib_qp *qp; 120 121 unsigned long flags; 122 struct rdma_cm_id *cm_id; 123 int cm_error; 124 struct completion cm_done; 125 }; 126 127 struct nvme_rdma_ctrl { 128 /* read and written in the hot path */ 129 spinlock_t lock; 130 131 /* read only in the hot path */ 132 struct nvme_rdma_queue *queues; 133 u32 queue_count; 134 135 /* other member variables */ 136 struct blk_mq_tag_set tag_set; 137 struct work_struct delete_work; 138 struct work_struct reset_work; 139 struct work_struct err_work; 140 141 struct nvme_rdma_qe async_event_sqe; 142 143 int reconnect_delay; 144 struct delayed_work reconnect_work; 145 146 struct list_head list; 147 148 struct blk_mq_tag_set admin_tag_set; 149 struct nvme_rdma_device *device; 150 151 u64 cap; 152 u32 max_fr_pages; 153 154 union { 155 struct sockaddr addr; 156 struct sockaddr_in addr_in; 157 }; 158 159 struct nvme_ctrl ctrl; 160 }; 161 162 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 163 { 164 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 165 } 166 167 static LIST_HEAD(device_list); 168 static DEFINE_MUTEX(device_list_mutex); 169 170 static LIST_HEAD(nvme_rdma_ctrl_list); 171 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 172 173 static struct workqueue_struct *nvme_rdma_wq; 174 175 /* 176 * Disabling this option makes small I/O goes faster, but is fundamentally 177 * unsafe. With it turned off we will have to register a global rkey that 178 * allows read and write access to all physical memory. 179 */ 180 static bool register_always = true; 181 module_param(register_always, bool, 0444); 182 MODULE_PARM_DESC(register_always, 183 "Use memory registration even for contiguous memory regions"); 184 185 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 186 struct rdma_cm_event *event); 187 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 188 189 /* XXX: really should move to a generic header sooner or later.. */ 190 static inline void put_unaligned_le24(u32 val, u8 *p) 191 { 192 *p++ = val; 193 *p++ = val >> 8; 194 *p++ = val >> 16; 195 } 196 197 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 198 { 199 return queue - queue->ctrl->queues; 200 } 201 202 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 203 { 204 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 205 } 206 207 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 208 size_t capsule_size, enum dma_data_direction dir) 209 { 210 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 211 kfree(qe->data); 212 } 213 214 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 215 size_t capsule_size, enum dma_data_direction dir) 216 { 217 qe->data = kzalloc(capsule_size, GFP_KERNEL); 218 if (!qe->data) 219 return -ENOMEM; 220 221 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 222 if (ib_dma_mapping_error(ibdev, qe->dma)) { 223 kfree(qe->data); 224 return -ENOMEM; 225 } 226 227 return 0; 228 } 229 230 static void nvme_rdma_free_ring(struct ib_device *ibdev, 231 struct nvme_rdma_qe *ring, size_t ib_queue_size, 232 size_t capsule_size, enum dma_data_direction dir) 233 { 234 int i; 235 236 for (i = 0; i < ib_queue_size; i++) 237 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 238 kfree(ring); 239 } 240 241 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 242 size_t ib_queue_size, size_t capsule_size, 243 enum dma_data_direction dir) 244 { 245 struct nvme_rdma_qe *ring; 246 int i; 247 248 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 249 if (!ring) 250 return NULL; 251 252 for (i = 0; i < ib_queue_size; i++) { 253 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 254 goto out_free_ring; 255 } 256 257 return ring; 258 259 out_free_ring: 260 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 261 return NULL; 262 } 263 264 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 265 { 266 pr_debug("QP event %s (%d)\n", 267 ib_event_msg(event->event), event->event); 268 269 } 270 271 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 272 { 273 wait_for_completion_interruptible_timeout(&queue->cm_done, 274 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 275 return queue->cm_error; 276 } 277 278 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 279 { 280 struct nvme_rdma_device *dev = queue->device; 281 struct ib_qp_init_attr init_attr; 282 int ret; 283 284 memset(&init_attr, 0, sizeof(init_attr)); 285 init_attr.event_handler = nvme_rdma_qp_event; 286 /* +1 for drain */ 287 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 288 /* +1 for drain */ 289 init_attr.cap.max_recv_wr = queue->queue_size + 1; 290 init_attr.cap.max_recv_sge = 1; 291 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 292 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 293 init_attr.qp_type = IB_QPT_RC; 294 init_attr.send_cq = queue->ib_cq; 295 init_attr.recv_cq = queue->ib_cq; 296 297 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 298 299 queue->qp = queue->cm_id->qp; 300 return ret; 301 } 302 303 static int nvme_rdma_reinit_request(void *data, struct request *rq) 304 { 305 struct nvme_rdma_ctrl *ctrl = data; 306 struct nvme_rdma_device *dev = ctrl->device; 307 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 308 int ret = 0; 309 310 if (!req->mr->need_inval) 311 goto out; 312 313 ib_dereg_mr(req->mr); 314 315 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 316 ctrl->max_fr_pages); 317 if (IS_ERR(req->mr)) { 318 ret = PTR_ERR(req->mr); 319 req->mr = NULL; 320 goto out; 321 } 322 323 req->mr->need_inval = false; 324 325 out: 326 return ret; 327 } 328 329 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 330 struct request *rq, unsigned int queue_idx) 331 { 332 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 333 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 334 struct nvme_rdma_device *dev = queue->device; 335 336 if (req->mr) 337 ib_dereg_mr(req->mr); 338 339 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 340 DMA_TO_DEVICE); 341 } 342 343 static void nvme_rdma_exit_request(void *data, struct request *rq, 344 unsigned int hctx_idx, unsigned int rq_idx) 345 { 346 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 347 } 348 349 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 350 unsigned int hctx_idx, unsigned int rq_idx) 351 { 352 return __nvme_rdma_exit_request(data, rq, 0); 353 } 354 355 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 356 struct request *rq, unsigned int queue_idx) 357 { 358 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 359 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 360 struct nvme_rdma_device *dev = queue->device; 361 struct ib_device *ibdev = dev->dev; 362 int ret; 363 364 BUG_ON(queue_idx >= ctrl->queue_count); 365 366 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 367 DMA_TO_DEVICE); 368 if (ret) 369 return ret; 370 371 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 372 ctrl->max_fr_pages); 373 if (IS_ERR(req->mr)) { 374 ret = PTR_ERR(req->mr); 375 goto out_free_qe; 376 } 377 378 req->queue = queue; 379 380 return 0; 381 382 out_free_qe: 383 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 384 DMA_TO_DEVICE); 385 return -ENOMEM; 386 } 387 388 static int nvme_rdma_init_request(void *data, struct request *rq, 389 unsigned int hctx_idx, unsigned int rq_idx, 390 unsigned int numa_node) 391 { 392 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 393 } 394 395 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 396 unsigned int hctx_idx, unsigned int rq_idx, 397 unsigned int numa_node) 398 { 399 return __nvme_rdma_init_request(data, rq, 0); 400 } 401 402 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 403 unsigned int hctx_idx) 404 { 405 struct nvme_rdma_ctrl *ctrl = data; 406 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 407 408 BUG_ON(hctx_idx >= ctrl->queue_count); 409 410 hctx->driver_data = queue; 411 return 0; 412 } 413 414 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 415 unsigned int hctx_idx) 416 { 417 struct nvme_rdma_ctrl *ctrl = data; 418 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 419 420 BUG_ON(hctx_idx != 0); 421 422 hctx->driver_data = queue; 423 return 0; 424 } 425 426 static void nvme_rdma_free_dev(struct kref *ref) 427 { 428 struct nvme_rdma_device *ndev = 429 container_of(ref, struct nvme_rdma_device, ref); 430 431 mutex_lock(&device_list_mutex); 432 list_del(&ndev->entry); 433 mutex_unlock(&device_list_mutex); 434 435 ib_dealloc_pd(ndev->pd); 436 kfree(ndev); 437 } 438 439 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 440 { 441 kref_put(&dev->ref, nvme_rdma_free_dev); 442 } 443 444 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 445 { 446 return kref_get_unless_zero(&dev->ref); 447 } 448 449 static struct nvme_rdma_device * 450 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 451 { 452 struct nvme_rdma_device *ndev; 453 454 mutex_lock(&device_list_mutex); 455 list_for_each_entry(ndev, &device_list, entry) { 456 if (ndev->dev->node_guid == cm_id->device->node_guid && 457 nvme_rdma_dev_get(ndev)) 458 goto out_unlock; 459 } 460 461 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 462 if (!ndev) 463 goto out_err; 464 465 ndev->dev = cm_id->device; 466 kref_init(&ndev->ref); 467 468 ndev->pd = ib_alloc_pd(ndev->dev, 469 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 470 if (IS_ERR(ndev->pd)) 471 goto out_free_dev; 472 473 if (!(ndev->dev->attrs.device_cap_flags & 474 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 475 dev_err(&ndev->dev->dev, 476 "Memory registrations not supported.\n"); 477 goto out_free_pd; 478 } 479 480 list_add(&ndev->entry, &device_list); 481 out_unlock: 482 mutex_unlock(&device_list_mutex); 483 return ndev; 484 485 out_free_pd: 486 ib_dealloc_pd(ndev->pd); 487 out_free_dev: 488 kfree(ndev); 489 out_err: 490 mutex_unlock(&device_list_mutex); 491 return NULL; 492 } 493 494 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 495 { 496 struct nvme_rdma_device *dev; 497 struct ib_device *ibdev; 498 499 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 500 return; 501 502 dev = queue->device; 503 ibdev = dev->dev; 504 rdma_destroy_qp(queue->cm_id); 505 ib_free_cq(queue->ib_cq); 506 507 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 508 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 509 510 nvme_rdma_dev_put(dev); 511 } 512 513 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 514 struct nvme_rdma_device *dev) 515 { 516 struct ib_device *ibdev = dev->dev; 517 const int send_wr_factor = 3; /* MR, SEND, INV */ 518 const int cq_factor = send_wr_factor + 1; /* + RECV */ 519 int comp_vector, idx = nvme_rdma_queue_idx(queue); 520 521 int ret; 522 523 queue->device = dev; 524 525 /* 526 * The admin queue is barely used once the controller is live, so don't 527 * bother to spread it out. 528 */ 529 if (idx == 0) 530 comp_vector = 0; 531 else 532 comp_vector = idx % ibdev->num_comp_vectors; 533 534 535 /* +1 for ib_stop_cq */ 536 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 537 cq_factor * queue->queue_size + 1, comp_vector, 538 IB_POLL_SOFTIRQ); 539 if (IS_ERR(queue->ib_cq)) { 540 ret = PTR_ERR(queue->ib_cq); 541 goto out; 542 } 543 544 ret = nvme_rdma_create_qp(queue, send_wr_factor); 545 if (ret) 546 goto out_destroy_ib_cq; 547 548 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 549 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 550 if (!queue->rsp_ring) { 551 ret = -ENOMEM; 552 goto out_destroy_qp; 553 } 554 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 555 556 return 0; 557 558 out_destroy_qp: 559 ib_destroy_qp(queue->qp); 560 out_destroy_ib_cq: 561 ib_free_cq(queue->ib_cq); 562 out: 563 return ret; 564 } 565 566 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 567 int idx, size_t queue_size) 568 { 569 struct nvme_rdma_queue *queue; 570 int ret; 571 572 queue = &ctrl->queues[idx]; 573 queue->ctrl = ctrl; 574 init_completion(&queue->cm_done); 575 576 if (idx > 0) 577 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 578 else 579 queue->cmnd_capsule_len = sizeof(struct nvme_command); 580 581 queue->queue_size = queue_size; 582 583 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 584 RDMA_PS_TCP, IB_QPT_RC); 585 if (IS_ERR(queue->cm_id)) { 586 dev_info(ctrl->ctrl.device, 587 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 588 return PTR_ERR(queue->cm_id); 589 } 590 591 queue->cm_error = -ETIMEDOUT; 592 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 593 NVME_RDMA_CONNECT_TIMEOUT_MS); 594 if (ret) { 595 dev_info(ctrl->ctrl.device, 596 "rdma_resolve_addr failed (%d).\n", ret); 597 goto out_destroy_cm_id; 598 } 599 600 ret = nvme_rdma_wait_for_cm(queue); 601 if (ret) { 602 dev_info(ctrl->ctrl.device, 603 "rdma_resolve_addr wait failed (%d).\n", ret); 604 goto out_destroy_cm_id; 605 } 606 607 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 608 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 609 610 return 0; 611 612 out_destroy_cm_id: 613 nvme_rdma_destroy_queue_ib(queue); 614 rdma_destroy_id(queue->cm_id); 615 return ret; 616 } 617 618 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 619 { 620 rdma_disconnect(queue->cm_id); 621 ib_drain_qp(queue->qp); 622 } 623 624 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 625 { 626 nvme_rdma_destroy_queue_ib(queue); 627 rdma_destroy_id(queue->cm_id); 628 } 629 630 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 631 { 632 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 633 return; 634 nvme_rdma_stop_queue(queue); 635 nvme_rdma_free_queue(queue); 636 } 637 638 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 639 { 640 int i; 641 642 for (i = 1; i < ctrl->queue_count; i++) 643 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 644 } 645 646 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 647 { 648 int i, ret = 0; 649 650 for (i = 1; i < ctrl->queue_count; i++) { 651 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 652 if (ret) { 653 dev_info(ctrl->ctrl.device, 654 "failed to connect i/o queue: %d\n", ret); 655 goto out_free_queues; 656 } 657 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 658 } 659 660 return 0; 661 662 out_free_queues: 663 nvme_rdma_free_io_queues(ctrl); 664 return ret; 665 } 666 667 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 668 { 669 int i, ret; 670 671 for (i = 1; i < ctrl->queue_count; i++) { 672 ret = nvme_rdma_init_queue(ctrl, i, 673 ctrl->ctrl.opts->queue_size); 674 if (ret) { 675 dev_info(ctrl->ctrl.device, 676 "failed to initialize i/o queue: %d\n", ret); 677 goto out_free_queues; 678 } 679 } 680 681 return 0; 682 683 out_free_queues: 684 for (i--; i >= 1; i--) 685 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 686 687 return ret; 688 } 689 690 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 691 { 692 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 693 sizeof(struct nvme_command), DMA_TO_DEVICE); 694 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 695 blk_cleanup_queue(ctrl->ctrl.admin_q); 696 blk_mq_free_tag_set(&ctrl->admin_tag_set); 697 nvme_rdma_dev_put(ctrl->device); 698 } 699 700 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 701 { 702 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 703 704 if (list_empty(&ctrl->list)) 705 goto free_ctrl; 706 707 mutex_lock(&nvme_rdma_ctrl_mutex); 708 list_del(&ctrl->list); 709 mutex_unlock(&nvme_rdma_ctrl_mutex); 710 711 kfree(ctrl->queues); 712 nvmf_free_options(nctrl->opts); 713 free_ctrl: 714 kfree(ctrl); 715 } 716 717 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 718 { 719 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 720 struct nvme_rdma_ctrl, reconnect_work); 721 bool changed; 722 int ret; 723 724 if (ctrl->queue_count > 1) { 725 nvme_rdma_free_io_queues(ctrl); 726 727 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 728 if (ret) 729 goto requeue; 730 } 731 732 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 733 734 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 735 if (ret) 736 goto requeue; 737 738 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 739 if (ret) 740 goto requeue; 741 742 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 743 744 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 745 if (ret) 746 goto stop_admin_q; 747 748 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 749 750 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 751 if (ret) 752 goto stop_admin_q; 753 754 nvme_start_keep_alive(&ctrl->ctrl); 755 756 if (ctrl->queue_count > 1) { 757 ret = nvme_rdma_init_io_queues(ctrl); 758 if (ret) 759 goto stop_admin_q; 760 761 ret = nvme_rdma_connect_io_queues(ctrl); 762 if (ret) 763 goto stop_admin_q; 764 } 765 766 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 767 WARN_ON_ONCE(!changed); 768 769 if (ctrl->queue_count > 1) { 770 nvme_start_queues(&ctrl->ctrl); 771 nvme_queue_scan(&ctrl->ctrl); 772 nvme_queue_async_events(&ctrl->ctrl); 773 } 774 775 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 776 777 return; 778 779 stop_admin_q: 780 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 781 requeue: 782 /* Make sure we are not resetting/deleting */ 783 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 784 dev_info(ctrl->ctrl.device, 785 "Failed reconnect attempt, requeueing...\n"); 786 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 787 ctrl->reconnect_delay * HZ); 788 } 789 } 790 791 static void nvme_rdma_error_recovery_work(struct work_struct *work) 792 { 793 struct nvme_rdma_ctrl *ctrl = container_of(work, 794 struct nvme_rdma_ctrl, err_work); 795 int i; 796 797 nvme_stop_keep_alive(&ctrl->ctrl); 798 799 for (i = 0; i < ctrl->queue_count; i++) { 800 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 801 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 802 } 803 804 if (ctrl->queue_count > 1) 805 nvme_stop_queues(&ctrl->ctrl); 806 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 807 808 /* We must take care of fastfail/requeue all our inflight requests */ 809 if (ctrl->queue_count > 1) 810 blk_mq_tagset_busy_iter(&ctrl->tag_set, 811 nvme_cancel_request, &ctrl->ctrl); 812 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 813 nvme_cancel_request, &ctrl->ctrl); 814 815 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 816 ctrl->reconnect_delay); 817 818 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 819 ctrl->reconnect_delay * HZ); 820 } 821 822 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 823 { 824 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 825 return; 826 827 queue_work(nvme_rdma_wq, &ctrl->err_work); 828 } 829 830 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 831 const char *op) 832 { 833 struct nvme_rdma_queue *queue = cq->cq_context; 834 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 835 836 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 837 dev_info(ctrl->ctrl.device, 838 "%s for CQE 0x%p failed with status %s (%d)\n", 839 op, wc->wr_cqe, 840 ib_wc_status_msg(wc->status), wc->status); 841 nvme_rdma_error_recovery(ctrl); 842 } 843 844 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 845 { 846 if (unlikely(wc->status != IB_WC_SUCCESS)) 847 nvme_rdma_wr_error(cq, wc, "MEMREG"); 848 } 849 850 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 851 { 852 if (unlikely(wc->status != IB_WC_SUCCESS)) 853 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 854 } 855 856 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 857 struct nvme_rdma_request *req) 858 { 859 struct ib_send_wr *bad_wr; 860 struct ib_send_wr wr = { 861 .opcode = IB_WR_LOCAL_INV, 862 .next = NULL, 863 .num_sge = 0, 864 .send_flags = 0, 865 .ex.invalidate_rkey = req->mr->rkey, 866 }; 867 868 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 869 wr.wr_cqe = &req->reg_cqe; 870 871 return ib_post_send(queue->qp, &wr, &bad_wr); 872 } 873 874 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 875 struct request *rq) 876 { 877 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 878 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 879 struct nvme_rdma_device *dev = queue->device; 880 struct ib_device *ibdev = dev->dev; 881 int res; 882 883 if (!blk_rq_bytes(rq)) 884 return; 885 886 if (req->mr->need_inval) { 887 res = nvme_rdma_inv_rkey(queue, req); 888 if (res < 0) { 889 dev_err(ctrl->ctrl.device, 890 "Queueing INV WR for rkey %#x failed (%d)\n", 891 req->mr->rkey, res); 892 nvme_rdma_error_recovery(queue->ctrl); 893 } 894 } 895 896 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 897 req->nents, rq_data_dir(rq) == 898 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 899 900 nvme_cleanup_cmd(rq); 901 sg_free_table_chained(&req->sg_table, true); 902 } 903 904 static int nvme_rdma_set_sg_null(struct nvme_command *c) 905 { 906 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 907 908 sg->addr = 0; 909 put_unaligned_le24(0, sg->length); 910 put_unaligned_le32(0, sg->key); 911 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 912 return 0; 913 } 914 915 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 916 struct nvme_rdma_request *req, struct nvme_command *c) 917 { 918 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 919 920 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 921 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 922 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 923 924 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 925 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 926 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 927 928 req->inline_data = true; 929 req->num_sge++; 930 return 0; 931 } 932 933 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 934 struct nvme_rdma_request *req, struct nvme_command *c) 935 { 936 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 937 938 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 939 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 940 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 941 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 942 return 0; 943 } 944 945 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 946 struct nvme_rdma_request *req, struct nvme_command *c, 947 int count) 948 { 949 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 950 int nr; 951 952 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 953 if (nr < count) { 954 if (nr < 0) 955 return nr; 956 return -EINVAL; 957 } 958 959 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 960 961 req->reg_cqe.done = nvme_rdma_memreg_done; 962 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 963 req->reg_wr.wr.opcode = IB_WR_REG_MR; 964 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 965 req->reg_wr.wr.num_sge = 0; 966 req->reg_wr.mr = req->mr; 967 req->reg_wr.key = req->mr->rkey; 968 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 969 IB_ACCESS_REMOTE_READ | 970 IB_ACCESS_REMOTE_WRITE; 971 972 req->mr->need_inval = true; 973 974 sg->addr = cpu_to_le64(req->mr->iova); 975 put_unaligned_le24(req->mr->length, sg->length); 976 put_unaligned_le32(req->mr->rkey, sg->key); 977 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 978 NVME_SGL_FMT_INVALIDATE; 979 980 return 0; 981 } 982 983 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 984 struct request *rq, struct nvme_command *c) 985 { 986 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 987 struct nvme_rdma_device *dev = queue->device; 988 struct ib_device *ibdev = dev->dev; 989 int count, ret; 990 991 req->num_sge = 1; 992 req->inline_data = false; 993 req->mr->need_inval = false; 994 995 c->common.flags |= NVME_CMD_SGL_METABUF; 996 997 if (!blk_rq_bytes(rq)) 998 return nvme_rdma_set_sg_null(c); 999 1000 req->sg_table.sgl = req->first_sgl; 1001 ret = sg_alloc_table_chained(&req->sg_table, 1002 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1003 if (ret) 1004 return -ENOMEM; 1005 1006 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1007 1008 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1009 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1010 if (unlikely(count <= 0)) { 1011 sg_free_table_chained(&req->sg_table, true); 1012 return -EIO; 1013 } 1014 1015 if (count == 1) { 1016 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1017 blk_rq_payload_bytes(rq) <= 1018 nvme_rdma_inline_data_size(queue)) 1019 return nvme_rdma_map_sg_inline(queue, req, c); 1020 1021 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1022 return nvme_rdma_map_sg_single(queue, req, c); 1023 } 1024 1025 return nvme_rdma_map_sg_fr(queue, req, c, count); 1026 } 1027 1028 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1029 { 1030 if (unlikely(wc->status != IB_WC_SUCCESS)) 1031 nvme_rdma_wr_error(cq, wc, "SEND"); 1032 } 1033 1034 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1035 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1036 struct ib_send_wr *first, bool flush) 1037 { 1038 struct ib_send_wr wr, *bad_wr; 1039 int ret; 1040 1041 sge->addr = qe->dma; 1042 sge->length = sizeof(struct nvme_command), 1043 sge->lkey = queue->device->pd->local_dma_lkey; 1044 1045 qe->cqe.done = nvme_rdma_send_done; 1046 1047 wr.next = NULL; 1048 wr.wr_cqe = &qe->cqe; 1049 wr.sg_list = sge; 1050 wr.num_sge = num_sge; 1051 wr.opcode = IB_WR_SEND; 1052 wr.send_flags = 0; 1053 1054 /* 1055 * Unsignalled send completions are another giant desaster in the 1056 * IB Verbs spec: If we don't regularly post signalled sends 1057 * the send queue will fill up and only a QP reset will rescue us. 1058 * Would have been way to obvious to handle this in hardware or 1059 * at least the RDMA stack.. 1060 * 1061 * This messy and racy code sniplet is copy and pasted from the iSER 1062 * initiator, and the magic '32' comes from there as well. 1063 * 1064 * Always signal the flushes. The magic request used for the flush 1065 * sequencer is not allocated in our driver's tagset and it's 1066 * triggered to be freed by blk_cleanup_queue(). So we need to 1067 * always mark it as signaled to ensure that the "wr_cqe", which is 1068 * embeded in request's payload, is not freed when __ib_process_cq() 1069 * calls wr_cqe->done(). 1070 */ 1071 if ((++queue->sig_count % 32) == 0 || flush) 1072 wr.send_flags |= IB_SEND_SIGNALED; 1073 1074 if (first) 1075 first->next = ≀ 1076 else 1077 first = ≀ 1078 1079 ret = ib_post_send(queue->qp, first, &bad_wr); 1080 if (ret) { 1081 dev_err(queue->ctrl->ctrl.device, 1082 "%s failed with error code %d\n", __func__, ret); 1083 } 1084 return ret; 1085 } 1086 1087 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1088 struct nvme_rdma_qe *qe) 1089 { 1090 struct ib_recv_wr wr, *bad_wr; 1091 struct ib_sge list; 1092 int ret; 1093 1094 list.addr = qe->dma; 1095 list.length = sizeof(struct nvme_completion); 1096 list.lkey = queue->device->pd->local_dma_lkey; 1097 1098 qe->cqe.done = nvme_rdma_recv_done; 1099 1100 wr.next = NULL; 1101 wr.wr_cqe = &qe->cqe; 1102 wr.sg_list = &list; 1103 wr.num_sge = 1; 1104 1105 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1106 if (ret) { 1107 dev_err(queue->ctrl->ctrl.device, 1108 "%s failed with error code %d\n", __func__, ret); 1109 } 1110 return ret; 1111 } 1112 1113 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1114 { 1115 u32 queue_idx = nvme_rdma_queue_idx(queue); 1116 1117 if (queue_idx == 0) 1118 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1119 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1120 } 1121 1122 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1123 { 1124 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1125 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1126 struct ib_device *dev = queue->device->dev; 1127 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1128 struct nvme_command *cmd = sqe->data; 1129 struct ib_sge sge; 1130 int ret; 1131 1132 if (WARN_ON_ONCE(aer_idx != 0)) 1133 return; 1134 1135 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1136 1137 memset(cmd, 0, sizeof(*cmd)); 1138 cmd->common.opcode = nvme_admin_async_event; 1139 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1140 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1141 nvme_rdma_set_sg_null(cmd); 1142 1143 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1144 DMA_TO_DEVICE); 1145 1146 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1147 WARN_ON_ONCE(ret); 1148 } 1149 1150 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1151 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1152 { 1153 struct request *rq; 1154 struct nvme_rdma_request *req; 1155 int ret = 0; 1156 1157 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1158 if (!rq) { 1159 dev_err(queue->ctrl->ctrl.device, 1160 "tag 0x%x on QP %#x not found\n", 1161 cqe->command_id, queue->qp->qp_num); 1162 nvme_rdma_error_recovery(queue->ctrl); 1163 return ret; 1164 } 1165 req = blk_mq_rq_to_pdu(rq); 1166 1167 if (rq->tag == tag) 1168 ret = 1; 1169 1170 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1171 wc->ex.invalidate_rkey == req->mr->rkey) 1172 req->mr->need_inval = false; 1173 1174 req->req.result = cqe->result; 1175 blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1); 1176 return ret; 1177 } 1178 1179 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1180 { 1181 struct nvme_rdma_qe *qe = 1182 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1183 struct nvme_rdma_queue *queue = cq->cq_context; 1184 struct ib_device *ibdev = queue->device->dev; 1185 struct nvme_completion *cqe = qe->data; 1186 const size_t len = sizeof(struct nvme_completion); 1187 int ret = 0; 1188 1189 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1190 nvme_rdma_wr_error(cq, wc, "RECV"); 1191 return 0; 1192 } 1193 1194 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1195 /* 1196 * AEN requests are special as they don't time out and can 1197 * survive any kind of queue freeze and often don't respond to 1198 * aborts. We don't even bother to allocate a struct request 1199 * for them but rather special case them here. 1200 */ 1201 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1202 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1203 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1204 &cqe->result); 1205 else 1206 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1207 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1208 1209 nvme_rdma_post_recv(queue, qe); 1210 return ret; 1211 } 1212 1213 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1214 { 1215 __nvme_rdma_recv_done(cq, wc, -1); 1216 } 1217 1218 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1219 { 1220 int ret, i; 1221 1222 for (i = 0; i < queue->queue_size; i++) { 1223 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1224 if (ret) 1225 goto out_destroy_queue_ib; 1226 } 1227 1228 return 0; 1229 1230 out_destroy_queue_ib: 1231 nvme_rdma_destroy_queue_ib(queue); 1232 return ret; 1233 } 1234 1235 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1236 struct rdma_cm_event *ev) 1237 { 1238 struct rdma_cm_id *cm_id = queue->cm_id; 1239 int status = ev->status; 1240 const char *rej_msg; 1241 const struct nvme_rdma_cm_rej *rej_data; 1242 u8 rej_data_len; 1243 1244 rej_msg = rdma_reject_msg(cm_id, status); 1245 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1246 1247 if (rej_data && rej_data_len >= sizeof(u16)) { 1248 u16 sts = le16_to_cpu(rej_data->sts); 1249 1250 dev_err(queue->ctrl->ctrl.device, 1251 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1252 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1253 } else { 1254 dev_err(queue->ctrl->ctrl.device, 1255 "Connect rejected: status %d (%s).\n", status, rej_msg); 1256 } 1257 1258 return -ECONNRESET; 1259 } 1260 1261 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1262 { 1263 struct nvme_rdma_device *dev; 1264 int ret; 1265 1266 dev = nvme_rdma_find_get_device(queue->cm_id); 1267 if (!dev) { 1268 dev_err(queue->cm_id->device->dma_device, 1269 "no client data found!\n"); 1270 return -ECONNREFUSED; 1271 } 1272 1273 ret = nvme_rdma_create_queue_ib(queue, dev); 1274 if (ret) { 1275 nvme_rdma_dev_put(dev); 1276 goto out; 1277 } 1278 1279 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1280 if (ret) { 1281 dev_err(queue->ctrl->ctrl.device, 1282 "rdma_resolve_route failed (%d).\n", 1283 queue->cm_error); 1284 goto out_destroy_queue; 1285 } 1286 1287 return 0; 1288 1289 out_destroy_queue: 1290 nvme_rdma_destroy_queue_ib(queue); 1291 out: 1292 return ret; 1293 } 1294 1295 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1296 { 1297 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1298 struct rdma_conn_param param = { }; 1299 struct nvme_rdma_cm_req priv = { }; 1300 int ret; 1301 1302 param.qp_num = queue->qp->qp_num; 1303 param.flow_control = 1; 1304 1305 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1306 /* maximum retry count */ 1307 param.retry_count = 7; 1308 param.rnr_retry_count = 7; 1309 param.private_data = &priv; 1310 param.private_data_len = sizeof(priv); 1311 1312 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1313 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1314 /* 1315 * set the admin queue depth to the minimum size 1316 * specified by the Fabrics standard. 1317 */ 1318 if (priv.qid == 0) { 1319 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1320 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1321 } else { 1322 /* 1323 * current interpretation of the fabrics spec 1324 * is at minimum you make hrqsize sqsize+1, or a 1325 * 1's based representation of sqsize. 1326 */ 1327 priv.hrqsize = cpu_to_le16(queue->queue_size); 1328 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1329 } 1330 1331 ret = rdma_connect(queue->cm_id, ¶m); 1332 if (ret) { 1333 dev_err(ctrl->ctrl.device, 1334 "rdma_connect failed (%d).\n", ret); 1335 goto out_destroy_queue_ib; 1336 } 1337 1338 return 0; 1339 1340 out_destroy_queue_ib: 1341 nvme_rdma_destroy_queue_ib(queue); 1342 return ret; 1343 } 1344 1345 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1346 struct rdma_cm_event *ev) 1347 { 1348 struct nvme_rdma_queue *queue = cm_id->context; 1349 int cm_error = 0; 1350 1351 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1352 rdma_event_msg(ev->event), ev->event, 1353 ev->status, cm_id); 1354 1355 switch (ev->event) { 1356 case RDMA_CM_EVENT_ADDR_RESOLVED: 1357 cm_error = nvme_rdma_addr_resolved(queue); 1358 break; 1359 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1360 cm_error = nvme_rdma_route_resolved(queue); 1361 break; 1362 case RDMA_CM_EVENT_ESTABLISHED: 1363 queue->cm_error = nvme_rdma_conn_established(queue); 1364 /* complete cm_done regardless of success/failure */ 1365 complete(&queue->cm_done); 1366 return 0; 1367 case RDMA_CM_EVENT_REJECTED: 1368 cm_error = nvme_rdma_conn_rejected(queue, ev); 1369 break; 1370 case RDMA_CM_EVENT_ADDR_ERROR: 1371 case RDMA_CM_EVENT_ROUTE_ERROR: 1372 case RDMA_CM_EVENT_CONNECT_ERROR: 1373 case RDMA_CM_EVENT_UNREACHABLE: 1374 dev_dbg(queue->ctrl->ctrl.device, 1375 "CM error event %d\n", ev->event); 1376 cm_error = -ECONNRESET; 1377 break; 1378 case RDMA_CM_EVENT_DISCONNECTED: 1379 case RDMA_CM_EVENT_ADDR_CHANGE: 1380 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1381 dev_dbg(queue->ctrl->ctrl.device, 1382 "disconnect received - connection closed\n"); 1383 nvme_rdma_error_recovery(queue->ctrl); 1384 break; 1385 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1386 /* device removal is handled via the ib_client API */ 1387 break; 1388 default: 1389 dev_err(queue->ctrl->ctrl.device, 1390 "Unexpected RDMA CM event (%d)\n", ev->event); 1391 nvme_rdma_error_recovery(queue->ctrl); 1392 break; 1393 } 1394 1395 if (cm_error) { 1396 queue->cm_error = cm_error; 1397 complete(&queue->cm_done); 1398 } 1399 1400 return 0; 1401 } 1402 1403 static enum blk_eh_timer_return 1404 nvme_rdma_timeout(struct request *rq, bool reserved) 1405 { 1406 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1407 1408 /* queue error recovery */ 1409 nvme_rdma_error_recovery(req->queue->ctrl); 1410 1411 /* fail with DNR on cmd timeout */ 1412 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1413 1414 return BLK_EH_HANDLED; 1415 } 1416 1417 /* 1418 * We cannot accept any other command until the Connect command has completed. 1419 */ 1420 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, 1421 struct request *rq) 1422 { 1423 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1424 struct nvme_command *cmd = nvme_req(rq)->cmd; 1425 1426 if (rq->cmd_type != REQ_TYPE_DRV_PRIV || 1427 cmd->common.opcode != nvme_fabrics_command || 1428 cmd->fabrics.fctype != nvme_fabrics_type_connect) 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1436 const struct blk_mq_queue_data *bd) 1437 { 1438 struct nvme_ns *ns = hctx->queue->queuedata; 1439 struct nvme_rdma_queue *queue = hctx->driver_data; 1440 struct request *rq = bd->rq; 1441 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1442 struct nvme_rdma_qe *sqe = &req->sqe; 1443 struct nvme_command *c = sqe->data; 1444 bool flush = false; 1445 struct ib_device *dev; 1446 int ret; 1447 1448 WARN_ON_ONCE(rq->tag < 0); 1449 1450 if (!nvme_rdma_queue_is_ready(queue, rq)) 1451 return BLK_MQ_RQ_QUEUE_BUSY; 1452 1453 dev = queue->device->dev; 1454 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1455 sizeof(struct nvme_command), DMA_TO_DEVICE); 1456 1457 ret = nvme_setup_cmd(ns, rq, c); 1458 if (ret != BLK_MQ_RQ_QUEUE_OK) 1459 return ret; 1460 1461 blk_mq_start_request(rq); 1462 1463 ret = nvme_rdma_map_data(queue, rq, c); 1464 if (ret < 0) { 1465 dev_err(queue->ctrl->ctrl.device, 1466 "Failed to map data (%d)\n", ret); 1467 nvme_cleanup_cmd(rq); 1468 goto err; 1469 } 1470 1471 ib_dma_sync_single_for_device(dev, sqe->dma, 1472 sizeof(struct nvme_command), DMA_TO_DEVICE); 1473 1474 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1475 flush = true; 1476 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1477 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1478 if (ret) { 1479 nvme_rdma_unmap_data(queue, rq); 1480 goto err; 1481 } 1482 1483 return BLK_MQ_RQ_QUEUE_OK; 1484 err: 1485 return (ret == -ENOMEM || ret == -EAGAIN) ? 1486 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1487 } 1488 1489 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1490 { 1491 struct nvme_rdma_queue *queue = hctx->driver_data; 1492 struct ib_cq *cq = queue->ib_cq; 1493 struct ib_wc wc; 1494 int found = 0; 1495 1496 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1497 while (ib_poll_cq(cq, 1, &wc) > 0) { 1498 struct ib_cqe *cqe = wc.wr_cqe; 1499 1500 if (cqe) { 1501 if (cqe->done == nvme_rdma_recv_done) 1502 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1503 else 1504 cqe->done(cq, &wc); 1505 } 1506 } 1507 1508 return found; 1509 } 1510 1511 static void nvme_rdma_complete_rq(struct request *rq) 1512 { 1513 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1514 struct nvme_rdma_queue *queue = req->queue; 1515 int error = 0; 1516 1517 nvme_rdma_unmap_data(queue, rq); 1518 1519 if (unlikely(rq->errors)) { 1520 if (nvme_req_needs_retry(rq, rq->errors)) { 1521 nvme_requeue_req(rq); 1522 return; 1523 } 1524 1525 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1526 error = rq->errors; 1527 else 1528 error = nvme_error_status(rq->errors); 1529 } 1530 1531 blk_mq_end_request(rq, error); 1532 } 1533 1534 static struct blk_mq_ops nvme_rdma_mq_ops = { 1535 .queue_rq = nvme_rdma_queue_rq, 1536 .complete = nvme_rdma_complete_rq, 1537 .init_request = nvme_rdma_init_request, 1538 .exit_request = nvme_rdma_exit_request, 1539 .reinit_request = nvme_rdma_reinit_request, 1540 .init_hctx = nvme_rdma_init_hctx, 1541 .poll = nvme_rdma_poll, 1542 .timeout = nvme_rdma_timeout, 1543 }; 1544 1545 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1546 .queue_rq = nvme_rdma_queue_rq, 1547 .complete = nvme_rdma_complete_rq, 1548 .init_request = nvme_rdma_init_admin_request, 1549 .exit_request = nvme_rdma_exit_admin_request, 1550 .reinit_request = nvme_rdma_reinit_request, 1551 .init_hctx = nvme_rdma_init_admin_hctx, 1552 .timeout = nvme_rdma_timeout, 1553 }; 1554 1555 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1556 { 1557 int error; 1558 1559 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1560 if (error) 1561 return error; 1562 1563 ctrl->device = ctrl->queues[0].device; 1564 1565 /* 1566 * We need a reference on the device as long as the tag_set is alive, 1567 * as the MRs in the request structures need a valid ib_device. 1568 */ 1569 error = -EINVAL; 1570 if (!nvme_rdma_dev_get(ctrl->device)) 1571 goto out_free_queue; 1572 1573 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1574 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1575 1576 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1577 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1578 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1579 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1580 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1581 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1582 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1583 ctrl->admin_tag_set.driver_data = ctrl; 1584 ctrl->admin_tag_set.nr_hw_queues = 1; 1585 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1586 1587 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1588 if (error) 1589 goto out_put_dev; 1590 1591 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1592 if (IS_ERR(ctrl->ctrl.admin_q)) { 1593 error = PTR_ERR(ctrl->ctrl.admin_q); 1594 goto out_free_tagset; 1595 } 1596 1597 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1598 if (error) 1599 goto out_cleanup_queue; 1600 1601 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1602 1603 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1604 if (error) { 1605 dev_err(ctrl->ctrl.device, 1606 "prop_get NVME_REG_CAP failed\n"); 1607 goto out_cleanup_queue; 1608 } 1609 1610 ctrl->ctrl.sqsize = 1611 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1612 1613 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1614 if (error) 1615 goto out_cleanup_queue; 1616 1617 ctrl->ctrl.max_hw_sectors = 1618 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1619 1620 error = nvme_init_identify(&ctrl->ctrl); 1621 if (error) 1622 goto out_cleanup_queue; 1623 1624 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1625 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1626 DMA_TO_DEVICE); 1627 if (error) 1628 goto out_cleanup_queue; 1629 1630 nvme_start_keep_alive(&ctrl->ctrl); 1631 1632 return 0; 1633 1634 out_cleanup_queue: 1635 blk_cleanup_queue(ctrl->ctrl.admin_q); 1636 out_free_tagset: 1637 /* disconnect and drain the queue before freeing the tagset */ 1638 nvme_rdma_stop_queue(&ctrl->queues[0]); 1639 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1640 out_put_dev: 1641 nvme_rdma_dev_put(ctrl->device); 1642 out_free_queue: 1643 nvme_rdma_free_queue(&ctrl->queues[0]); 1644 return error; 1645 } 1646 1647 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1648 { 1649 nvme_stop_keep_alive(&ctrl->ctrl); 1650 cancel_work_sync(&ctrl->err_work); 1651 cancel_delayed_work_sync(&ctrl->reconnect_work); 1652 1653 if (ctrl->queue_count > 1) { 1654 nvme_stop_queues(&ctrl->ctrl); 1655 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1656 nvme_cancel_request, &ctrl->ctrl); 1657 nvme_rdma_free_io_queues(ctrl); 1658 } 1659 1660 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1661 nvme_shutdown_ctrl(&ctrl->ctrl); 1662 1663 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1664 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1665 nvme_cancel_request, &ctrl->ctrl); 1666 nvme_rdma_destroy_admin_queue(ctrl); 1667 } 1668 1669 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1670 { 1671 nvme_uninit_ctrl(&ctrl->ctrl); 1672 if (shutdown) 1673 nvme_rdma_shutdown_ctrl(ctrl); 1674 1675 if (ctrl->ctrl.tagset) { 1676 blk_cleanup_queue(ctrl->ctrl.connect_q); 1677 blk_mq_free_tag_set(&ctrl->tag_set); 1678 nvme_rdma_dev_put(ctrl->device); 1679 } 1680 1681 nvme_put_ctrl(&ctrl->ctrl); 1682 } 1683 1684 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1685 { 1686 struct nvme_rdma_ctrl *ctrl = container_of(work, 1687 struct nvme_rdma_ctrl, delete_work); 1688 1689 __nvme_rdma_remove_ctrl(ctrl, true); 1690 } 1691 1692 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1693 { 1694 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1695 return -EBUSY; 1696 1697 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1698 return -EBUSY; 1699 1700 return 0; 1701 } 1702 1703 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1704 { 1705 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1706 int ret = 0; 1707 1708 /* 1709 * Keep a reference until all work is flushed since 1710 * __nvme_rdma_del_ctrl can free the ctrl mem 1711 */ 1712 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1713 return -EBUSY; 1714 ret = __nvme_rdma_del_ctrl(ctrl); 1715 if (!ret) 1716 flush_work(&ctrl->delete_work); 1717 nvme_put_ctrl(&ctrl->ctrl); 1718 return ret; 1719 } 1720 1721 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1722 { 1723 struct nvme_rdma_ctrl *ctrl = container_of(work, 1724 struct nvme_rdma_ctrl, delete_work); 1725 1726 __nvme_rdma_remove_ctrl(ctrl, false); 1727 } 1728 1729 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1730 { 1731 struct nvme_rdma_ctrl *ctrl = container_of(work, 1732 struct nvme_rdma_ctrl, reset_work); 1733 int ret; 1734 bool changed; 1735 1736 nvme_rdma_shutdown_ctrl(ctrl); 1737 1738 ret = nvme_rdma_configure_admin_queue(ctrl); 1739 if (ret) { 1740 /* ctrl is already shutdown, just remove the ctrl */ 1741 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1742 goto del_dead_ctrl; 1743 } 1744 1745 if (ctrl->queue_count > 1) { 1746 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1747 if (ret) 1748 goto del_dead_ctrl; 1749 1750 ret = nvme_rdma_init_io_queues(ctrl); 1751 if (ret) 1752 goto del_dead_ctrl; 1753 1754 ret = nvme_rdma_connect_io_queues(ctrl); 1755 if (ret) 1756 goto del_dead_ctrl; 1757 } 1758 1759 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1760 WARN_ON_ONCE(!changed); 1761 1762 if (ctrl->queue_count > 1) { 1763 nvme_start_queues(&ctrl->ctrl); 1764 nvme_queue_scan(&ctrl->ctrl); 1765 nvme_queue_async_events(&ctrl->ctrl); 1766 } 1767 1768 return; 1769 1770 del_dead_ctrl: 1771 /* Deleting this dead controller... */ 1772 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1773 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1774 } 1775 1776 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1777 { 1778 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1779 1780 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1781 return -EBUSY; 1782 1783 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1784 return -EBUSY; 1785 1786 flush_work(&ctrl->reset_work); 1787 1788 return 0; 1789 } 1790 1791 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1792 .name = "rdma", 1793 .module = THIS_MODULE, 1794 .is_fabrics = true, 1795 .reg_read32 = nvmf_reg_read32, 1796 .reg_read64 = nvmf_reg_read64, 1797 .reg_write32 = nvmf_reg_write32, 1798 .reset_ctrl = nvme_rdma_reset_ctrl, 1799 .free_ctrl = nvme_rdma_free_ctrl, 1800 .submit_async_event = nvme_rdma_submit_async_event, 1801 .delete_ctrl = nvme_rdma_del_ctrl, 1802 .get_subsysnqn = nvmf_get_subsysnqn, 1803 .get_address = nvmf_get_address, 1804 }; 1805 1806 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1807 { 1808 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1809 int ret; 1810 1811 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1812 if (ret) 1813 return ret; 1814 1815 ctrl->queue_count = opts->nr_io_queues + 1; 1816 if (ctrl->queue_count < 2) 1817 return 0; 1818 1819 dev_info(ctrl->ctrl.device, 1820 "creating %d I/O queues.\n", opts->nr_io_queues); 1821 1822 ret = nvme_rdma_init_io_queues(ctrl); 1823 if (ret) 1824 return ret; 1825 1826 /* 1827 * We need a reference on the device as long as the tag_set is alive, 1828 * as the MRs in the request structures need a valid ib_device. 1829 */ 1830 ret = -EINVAL; 1831 if (!nvme_rdma_dev_get(ctrl->device)) 1832 goto out_free_io_queues; 1833 1834 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1835 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1836 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1837 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1838 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1839 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1840 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1841 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1842 ctrl->tag_set.driver_data = ctrl; 1843 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1844 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1845 1846 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1847 if (ret) 1848 goto out_put_dev; 1849 ctrl->ctrl.tagset = &ctrl->tag_set; 1850 1851 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1852 if (IS_ERR(ctrl->ctrl.connect_q)) { 1853 ret = PTR_ERR(ctrl->ctrl.connect_q); 1854 goto out_free_tag_set; 1855 } 1856 1857 ret = nvme_rdma_connect_io_queues(ctrl); 1858 if (ret) 1859 goto out_cleanup_connect_q; 1860 1861 return 0; 1862 1863 out_cleanup_connect_q: 1864 blk_cleanup_queue(ctrl->ctrl.connect_q); 1865 out_free_tag_set: 1866 blk_mq_free_tag_set(&ctrl->tag_set); 1867 out_put_dev: 1868 nvme_rdma_dev_put(ctrl->device); 1869 out_free_io_queues: 1870 nvme_rdma_free_io_queues(ctrl); 1871 return ret; 1872 } 1873 1874 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1875 { 1876 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1877 size_t buflen = strlen(p); 1878 1879 /* XXX: handle IPv6 addresses */ 1880 1881 if (buflen > INET_ADDRSTRLEN) 1882 return -EINVAL; 1883 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1884 return -EINVAL; 1885 in_addr->sin_family = AF_INET; 1886 return 0; 1887 } 1888 1889 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1890 struct nvmf_ctrl_options *opts) 1891 { 1892 struct nvme_rdma_ctrl *ctrl; 1893 int ret; 1894 bool changed; 1895 1896 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1897 if (!ctrl) 1898 return ERR_PTR(-ENOMEM); 1899 ctrl->ctrl.opts = opts; 1900 INIT_LIST_HEAD(&ctrl->list); 1901 1902 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1903 if (ret) { 1904 pr_err("malformed IP address passed: %s\n", opts->traddr); 1905 goto out_free_ctrl; 1906 } 1907 1908 if (opts->mask & NVMF_OPT_TRSVCID) { 1909 u16 port; 1910 1911 ret = kstrtou16(opts->trsvcid, 0, &port); 1912 if (ret) 1913 goto out_free_ctrl; 1914 1915 ctrl->addr_in.sin_port = cpu_to_be16(port); 1916 } else { 1917 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1918 } 1919 1920 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1921 0 /* no quirks, we're perfect! */); 1922 if (ret) 1923 goto out_free_ctrl; 1924 1925 ctrl->reconnect_delay = opts->reconnect_delay; 1926 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1927 nvme_rdma_reconnect_ctrl_work); 1928 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1929 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1930 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1931 spin_lock_init(&ctrl->lock); 1932 1933 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1934 ctrl->ctrl.sqsize = opts->queue_size - 1; 1935 ctrl->ctrl.kato = opts->kato; 1936 1937 ret = -ENOMEM; 1938 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1939 GFP_KERNEL); 1940 if (!ctrl->queues) 1941 goto out_uninit_ctrl; 1942 1943 ret = nvme_rdma_configure_admin_queue(ctrl); 1944 if (ret) 1945 goto out_kfree_queues; 1946 1947 /* sanity check icdoff */ 1948 if (ctrl->ctrl.icdoff) { 1949 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1950 goto out_remove_admin_queue; 1951 } 1952 1953 /* sanity check keyed sgls */ 1954 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1955 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1956 goto out_remove_admin_queue; 1957 } 1958 1959 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1960 /* warn if maxcmd is lower than queue_size */ 1961 dev_warn(ctrl->ctrl.device, 1962 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1963 opts->queue_size, ctrl->ctrl.maxcmd); 1964 opts->queue_size = ctrl->ctrl.maxcmd; 1965 } 1966 1967 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1968 /* warn if sqsize is lower than queue_size */ 1969 dev_warn(ctrl->ctrl.device, 1970 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1971 opts->queue_size, ctrl->ctrl.sqsize + 1); 1972 opts->queue_size = ctrl->ctrl.sqsize + 1; 1973 } 1974 1975 if (opts->nr_io_queues) { 1976 ret = nvme_rdma_create_io_queues(ctrl); 1977 if (ret) 1978 goto out_remove_admin_queue; 1979 } 1980 1981 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1982 WARN_ON_ONCE(!changed); 1983 1984 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1985 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1986 1987 kref_get(&ctrl->ctrl.kref); 1988 1989 mutex_lock(&nvme_rdma_ctrl_mutex); 1990 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1991 mutex_unlock(&nvme_rdma_ctrl_mutex); 1992 1993 if (opts->nr_io_queues) { 1994 nvme_queue_scan(&ctrl->ctrl); 1995 nvme_queue_async_events(&ctrl->ctrl); 1996 } 1997 1998 return &ctrl->ctrl; 1999 2000 out_remove_admin_queue: 2001 nvme_stop_keep_alive(&ctrl->ctrl); 2002 nvme_rdma_destroy_admin_queue(ctrl); 2003 out_kfree_queues: 2004 kfree(ctrl->queues); 2005 out_uninit_ctrl: 2006 nvme_uninit_ctrl(&ctrl->ctrl); 2007 nvme_put_ctrl(&ctrl->ctrl); 2008 if (ret > 0) 2009 ret = -EIO; 2010 return ERR_PTR(ret); 2011 out_free_ctrl: 2012 kfree(ctrl); 2013 return ERR_PTR(ret); 2014 } 2015 2016 static struct nvmf_transport_ops nvme_rdma_transport = { 2017 .name = "rdma", 2018 .required_opts = NVMF_OPT_TRADDR, 2019 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 2020 .create_ctrl = nvme_rdma_create_ctrl, 2021 }; 2022 2023 static void nvme_rdma_add_one(struct ib_device *ib_device) 2024 { 2025 } 2026 2027 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2028 { 2029 struct nvme_rdma_ctrl *ctrl; 2030 2031 /* Delete all controllers using this device */ 2032 mutex_lock(&nvme_rdma_ctrl_mutex); 2033 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2034 if (ctrl->device->dev != ib_device) 2035 continue; 2036 dev_info(ctrl->ctrl.device, 2037 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2038 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2039 __nvme_rdma_del_ctrl(ctrl); 2040 } 2041 mutex_unlock(&nvme_rdma_ctrl_mutex); 2042 2043 flush_workqueue(nvme_rdma_wq); 2044 } 2045 2046 static struct ib_client nvme_rdma_ib_client = { 2047 .name = "nvme_rdma", 2048 .add = nvme_rdma_add_one, 2049 .remove = nvme_rdma_remove_one 2050 }; 2051 2052 static int __init nvme_rdma_init_module(void) 2053 { 2054 int ret; 2055 2056 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2057 if (!nvme_rdma_wq) 2058 return -ENOMEM; 2059 2060 ret = ib_register_client(&nvme_rdma_ib_client); 2061 if (ret) { 2062 destroy_workqueue(nvme_rdma_wq); 2063 return ret; 2064 } 2065 2066 nvmf_register_transport(&nvme_rdma_transport); 2067 return 0; 2068 } 2069 2070 static void __exit nvme_rdma_cleanup_module(void) 2071 { 2072 nvmf_unregister_transport(&nvme_rdma_transport); 2073 ib_unregister_client(&nvme_rdma_ib_client); 2074 destroy_workqueue(nvme_rdma_wq); 2075 } 2076 2077 module_init(nvme_rdma_init_module); 2078 module_exit(nvme_rdma_cleanup_module); 2079 2080 MODULE_LICENSE("GPL v2"); 2081