xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 81ec384b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible(&queue->cm_done);
251 	if (ret)
252 		return ret;
253 	WARN_ON_ONCE(queue->cm_error > 0);
254 	return queue->cm_error;
255 }
256 
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 	struct nvme_rdma_device *dev = queue->device;
260 	struct ib_qp_init_attr init_attr;
261 	int ret;
262 
263 	memset(&init_attr, 0, sizeof(init_attr));
264 	init_attr.event_handler = nvme_rdma_qp_event;
265 	/* +1 for drain */
266 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 	/* +1 for drain */
268 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 	init_attr.cap.max_recv_sge = 1;
270 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 	init_attr.qp_type = IB_QPT_RC;
273 	init_attr.send_cq = queue->ib_cq;
274 	init_attr.recv_cq = queue->ib_cq;
275 	if (queue->pi_support)
276 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 	init_attr.qp_context = queue;
278 
279 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280 
281 	queue->qp = queue->cm_id->qp;
282 	return ret;
283 }
284 
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 		struct request *rq, unsigned int hctx_idx)
287 {
288 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289 
290 	kfree(req->sqe.data);
291 }
292 
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 		struct request *rq, unsigned int hctx_idx,
295 		unsigned int numa_node)
296 {
297 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301 
302 	nvme_req(rq)->ctrl = &ctrl->ctrl;
303 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 	if (!req->sqe.data)
305 		return -ENOMEM;
306 
307 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 	if (queue->pi_support)
309 		req->metadata_sgl = (void *)nvme_req(rq) +
310 			sizeof(struct nvme_rdma_request) +
311 			NVME_RDMA_DATA_SGL_SIZE;
312 
313 	req->queue = queue;
314 	nvme_req(rq)->cmd = req->sqe.data;
315 
316 	return 0;
317 }
318 
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 		unsigned int hctx_idx)
321 {
322 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324 
325 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326 
327 	hctx->driver_data = queue;
328 	return 0;
329 }
330 
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 		unsigned int hctx_idx)
333 {
334 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
336 
337 	BUG_ON(hctx_idx != 0);
338 
339 	hctx->driver_data = queue;
340 	return 0;
341 }
342 
343 static void nvme_rdma_free_dev(struct kref *ref)
344 {
345 	struct nvme_rdma_device *ndev =
346 		container_of(ref, struct nvme_rdma_device, ref);
347 
348 	mutex_lock(&device_list_mutex);
349 	list_del(&ndev->entry);
350 	mutex_unlock(&device_list_mutex);
351 
352 	ib_dealloc_pd(ndev->pd);
353 	kfree(ndev);
354 }
355 
356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357 {
358 	kref_put(&dev->ref, nvme_rdma_free_dev);
359 }
360 
361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362 {
363 	return kref_get_unless_zero(&dev->ref);
364 }
365 
366 static struct nvme_rdma_device *
367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368 {
369 	struct nvme_rdma_device *ndev;
370 
371 	mutex_lock(&device_list_mutex);
372 	list_for_each_entry(ndev, &device_list, entry) {
373 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 		    nvme_rdma_dev_get(ndev))
375 			goto out_unlock;
376 	}
377 
378 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 	if (!ndev)
380 		goto out_err;
381 
382 	ndev->dev = cm_id->device;
383 	kref_init(&ndev->ref);
384 
385 	ndev->pd = ib_alloc_pd(ndev->dev,
386 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 	if (IS_ERR(ndev->pd))
388 		goto out_free_dev;
389 
390 	if (!(ndev->dev->attrs.device_cap_flags &
391 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 		dev_err(&ndev->dev->dev,
393 			"Memory registrations not supported.\n");
394 		goto out_free_pd;
395 	}
396 
397 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 					ndev->dev->attrs.max_send_sge - 1);
399 	list_add(&ndev->entry, &device_list);
400 out_unlock:
401 	mutex_unlock(&device_list_mutex);
402 	return ndev;
403 
404 out_free_pd:
405 	ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407 	kfree(ndev);
408 out_err:
409 	mutex_unlock(&device_list_mutex);
410 	return NULL;
411 }
412 
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414 {
415 	if (nvme_rdma_poll_queue(queue))
416 		ib_free_cq(queue->ib_cq);
417 	else
418 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419 }
420 
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422 {
423 	struct nvme_rdma_device *dev;
424 	struct ib_device *ibdev;
425 
426 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427 		return;
428 
429 	dev = queue->device;
430 	ibdev = dev->dev;
431 
432 	if (queue->pi_support)
433 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435 
436 	/*
437 	 * The cm_id object might have been destroyed during RDMA connection
438 	 * establishment error flow to avoid getting other cma events, thus
439 	 * the destruction of the QP shouldn't use rdma_cm API.
440 	 */
441 	ib_destroy_qp(queue->qp);
442 	nvme_rdma_free_cq(queue);
443 
444 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446 
447 	nvme_rdma_dev_put(dev);
448 }
449 
450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451 {
452 	u32 max_page_list_len;
453 
454 	if (pi_support)
455 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 	else
457 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458 
459 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460 }
461 
462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 		struct nvme_rdma_queue *queue)
464 {
465 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466 
467 	/*
468 	 * Spread I/O queues completion vectors according their queue index.
469 	 * Admin queues can always go on completion vector 0.
470 	 */
471 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472 
473 	/* Polling queues need direct cq polling context */
474 	if (nvme_rdma_poll_queue(queue))
475 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 					   comp_vector, IB_POLL_DIRECT);
477 	else
478 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 					      comp_vector, IB_POLL_SOFTIRQ);
480 
481 	if (IS_ERR(queue->ib_cq)) {
482 		ret = PTR_ERR(queue->ib_cq);
483 		return ret;
484 	}
485 
486 	return 0;
487 }
488 
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490 {
491 	struct ib_device *ibdev;
492 	const int send_wr_factor = 3;			/* MR, SEND, INV */
493 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494 	int ret, pages_per_mr;
495 
496 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 	if (!queue->device) {
498 		dev_err(queue->cm_id->device->dev.parent,
499 			"no client data found!\n");
500 		return -ECONNREFUSED;
501 	}
502 	ibdev = queue->device->dev;
503 
504 	/* +1 for ib_drain_qp */
505 	queue->cq_size = cq_factor * queue->queue_size + 1;
506 
507 	ret = nvme_rdma_create_cq(ibdev, queue);
508 	if (ret)
509 		goto out_put_dev;
510 
511 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
512 	if (ret)
513 		goto out_destroy_ib_cq;
514 
515 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 	if (!queue->rsp_ring) {
518 		ret = -ENOMEM;
519 		goto out_destroy_qp;
520 	}
521 
522 	/*
523 	 * Currently we don't use SG_GAPS MR's so if the first entry is
524 	 * misaligned we'll end up using two entries for a single data page,
525 	 * so one additional entry is required.
526 	 */
527 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529 			      queue->queue_size,
530 			      IB_MR_TYPE_MEM_REG,
531 			      pages_per_mr, 0);
532 	if (ret) {
533 		dev_err(queue->ctrl->ctrl.device,
534 			"failed to initialize MR pool sized %d for QID %d\n",
535 			queue->queue_size, nvme_rdma_queue_idx(queue));
536 		goto out_destroy_ring;
537 	}
538 
539 	if (queue->pi_support) {
540 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 				      pages_per_mr, pages_per_mr);
543 		if (ret) {
544 			dev_err(queue->ctrl->ctrl.device,
545 				"failed to initialize PI MR pool sized %d for QID %d\n",
546 				queue->queue_size, nvme_rdma_queue_idx(queue));
547 			goto out_destroy_mr_pool;
548 		}
549 	}
550 
551 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552 
553 	return 0;
554 
555 out_destroy_mr_pool:
556 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561 	rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563 	nvme_rdma_free_cq(queue);
564 out_put_dev:
565 	nvme_rdma_dev_put(queue->device);
566 	return ret;
567 }
568 
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 		int idx, size_t queue_size)
571 {
572 	struct nvme_rdma_queue *queue;
573 	struct sockaddr *src_addr = NULL;
574 	int ret;
575 
576 	queue = &ctrl->queues[idx];
577 	mutex_init(&queue->queue_lock);
578 	queue->ctrl = ctrl;
579 	if (idx && ctrl->ctrl.max_integrity_segments)
580 		queue->pi_support = true;
581 	else
582 		queue->pi_support = false;
583 	init_completion(&queue->cm_done);
584 
585 	if (idx > 0)
586 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 	else
588 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
589 
590 	queue->queue_size = queue_size;
591 
592 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 			RDMA_PS_TCP, IB_QPT_RC);
594 	if (IS_ERR(queue->cm_id)) {
595 		dev_info(ctrl->ctrl.device,
596 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 		ret = PTR_ERR(queue->cm_id);
598 		goto out_destroy_mutex;
599 	}
600 
601 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 		src_addr = (struct sockaddr *)&ctrl->src_addr;
603 
604 	queue->cm_error = -ETIMEDOUT;
605 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 			(struct sockaddr *)&ctrl->addr,
607 			NVME_RDMA_CM_TIMEOUT_MS);
608 	if (ret) {
609 		dev_info(ctrl->ctrl.device,
610 			"rdma_resolve_addr failed (%d).\n", ret);
611 		goto out_destroy_cm_id;
612 	}
613 
614 	ret = nvme_rdma_wait_for_cm(queue);
615 	if (ret) {
616 		dev_info(ctrl->ctrl.device,
617 			"rdma connection establishment failed (%d)\n", ret);
618 		goto out_destroy_cm_id;
619 	}
620 
621 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622 
623 	return 0;
624 
625 out_destroy_cm_id:
626 	rdma_destroy_id(queue->cm_id);
627 	nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629 	mutex_destroy(&queue->queue_lock);
630 	return ret;
631 }
632 
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634 {
635 	rdma_disconnect(queue->cm_id);
636 	ib_drain_qp(queue->qp);
637 }
638 
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 	mutex_lock(&queue->queue_lock);
642 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
643 		__nvme_rdma_stop_queue(queue);
644 	mutex_unlock(&queue->queue_lock);
645 }
646 
647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
648 {
649 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
650 		return;
651 
652 	rdma_destroy_id(queue->cm_id);
653 	nvme_rdma_destroy_queue_ib(queue);
654 	mutex_destroy(&queue->queue_lock);
655 }
656 
657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658 {
659 	int i;
660 
661 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
662 		nvme_rdma_free_queue(&ctrl->queues[i]);
663 }
664 
665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 {
667 	int i;
668 
669 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
670 		nvme_rdma_stop_queue(&ctrl->queues[i]);
671 }
672 
673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
674 {
675 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 	int ret;
677 
678 	if (idx)
679 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
680 	else
681 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
682 
683 	if (!ret) {
684 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
685 	} else {
686 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
687 			__nvme_rdma_stop_queue(queue);
688 		dev_info(ctrl->ctrl.device,
689 			"failed to connect queue: %d ret=%d\n", idx, ret);
690 	}
691 	return ret;
692 }
693 
694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
695 				     int first, int last)
696 {
697 	int i, ret = 0;
698 
699 	for (i = first; i < last; i++) {
700 		ret = nvme_rdma_start_queue(ctrl, i);
701 		if (ret)
702 			goto out_stop_queues;
703 	}
704 
705 	return 0;
706 
707 out_stop_queues:
708 	for (i--; i >= first; i--)
709 		nvme_rdma_stop_queue(&ctrl->queues[i]);
710 	return ret;
711 }
712 
713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714 {
715 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716 	unsigned int nr_io_queues;
717 	int i, ret;
718 
719 	nr_io_queues = nvmf_nr_io_queues(opts);
720 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
721 	if (ret)
722 		return ret;
723 
724 	if (nr_io_queues == 0) {
725 		dev_err(ctrl->ctrl.device,
726 			"unable to set any I/O queues\n");
727 		return -ENOMEM;
728 	}
729 
730 	ctrl->ctrl.queue_count = nr_io_queues + 1;
731 	dev_info(ctrl->ctrl.device,
732 		"creating %d I/O queues.\n", nr_io_queues);
733 
734 	nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
735 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
736 		ret = nvme_rdma_alloc_queue(ctrl, i,
737 				ctrl->ctrl.sqsize + 1);
738 		if (ret)
739 			goto out_free_queues;
740 	}
741 
742 	return 0;
743 
744 out_free_queues:
745 	for (i--; i >= 1; i--)
746 		nvme_rdma_free_queue(&ctrl->queues[i]);
747 
748 	return ret;
749 }
750 
751 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
752 {
753 	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
754 				NVME_RDMA_DATA_SGL_SIZE;
755 
756 	if (ctrl->max_integrity_segments)
757 		cmd_size += sizeof(struct nvme_rdma_sgl) +
758 			    NVME_RDMA_METADATA_SGL_SIZE;
759 
760 	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
761 			&nvme_rdma_mq_ops,
762 			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
763 			cmd_size);
764 }
765 
766 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
767 {
768 	if (ctrl->async_event_sqe.data) {
769 		cancel_work_sync(&ctrl->ctrl.async_event_work);
770 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
771 				sizeof(struct nvme_command), DMA_TO_DEVICE);
772 		ctrl->async_event_sqe.data = NULL;
773 	}
774 	nvme_rdma_free_queue(&ctrl->queues[0]);
775 }
776 
777 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
778 		bool new)
779 {
780 	bool pi_capable = false;
781 	int error;
782 
783 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
784 	if (error)
785 		return error;
786 
787 	ctrl->device = ctrl->queues[0].device;
788 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
789 
790 	/* T10-PI support */
791 	if (ctrl->device->dev->attrs.kernel_cap_flags &
792 	    IBK_INTEGRITY_HANDOVER)
793 		pi_capable = true;
794 
795 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
796 							pi_capable);
797 
798 	/*
799 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
800 	 * It's safe, since any chage in the underlying RDMA device will issue
801 	 * error recovery and queue re-creation.
802 	 */
803 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
804 			sizeof(struct nvme_command), DMA_TO_DEVICE);
805 	if (error)
806 		goto out_free_queue;
807 
808 	if (new) {
809 		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
810 				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
811 				sizeof(struct nvme_rdma_request) +
812 				NVME_RDMA_DATA_SGL_SIZE);
813 		if (error)
814 			goto out_free_async_qe;
815 
816 	}
817 
818 	error = nvme_rdma_start_queue(ctrl, 0);
819 	if (error)
820 		goto out_remove_admin_tag_set;
821 
822 	error = nvme_enable_ctrl(&ctrl->ctrl);
823 	if (error)
824 		goto out_stop_queue;
825 
826 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
827 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
828 	if (pi_capable)
829 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
830 	else
831 		ctrl->ctrl.max_integrity_segments = 0;
832 
833 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
834 
835 	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
836 	if (error)
837 		goto out_quiesce_queue;
838 
839 	return 0;
840 
841 out_quiesce_queue:
842 	nvme_quiesce_admin_queue(&ctrl->ctrl);
843 	blk_sync_queue(ctrl->ctrl.admin_q);
844 out_stop_queue:
845 	nvme_rdma_stop_queue(&ctrl->queues[0]);
846 	nvme_cancel_admin_tagset(&ctrl->ctrl);
847 out_remove_admin_tag_set:
848 	if (new)
849 		nvme_remove_admin_tag_set(&ctrl->ctrl);
850 out_free_async_qe:
851 	if (ctrl->async_event_sqe.data) {
852 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
853 			sizeof(struct nvme_command), DMA_TO_DEVICE);
854 		ctrl->async_event_sqe.data = NULL;
855 	}
856 out_free_queue:
857 	nvme_rdma_free_queue(&ctrl->queues[0]);
858 	return error;
859 }
860 
861 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
862 {
863 	int ret, nr_queues;
864 
865 	ret = nvme_rdma_alloc_io_queues(ctrl);
866 	if (ret)
867 		return ret;
868 
869 	if (new) {
870 		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
871 		if (ret)
872 			goto out_free_io_queues;
873 	}
874 
875 	/*
876 	 * Only start IO queues for which we have allocated the tagset
877 	 * and limitted it to the available queues. On reconnects, the
878 	 * queue number might have changed.
879 	 */
880 	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
881 	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
882 	if (ret)
883 		goto out_cleanup_tagset;
884 
885 	if (!new) {
886 		nvme_start_freeze(&ctrl->ctrl);
887 		nvme_unquiesce_io_queues(&ctrl->ctrl);
888 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
889 			/*
890 			 * If we timed out waiting for freeze we are likely to
891 			 * be stuck.  Fail the controller initialization just
892 			 * to be safe.
893 			 */
894 			ret = -ENODEV;
895 			nvme_unfreeze(&ctrl->ctrl);
896 			goto out_wait_freeze_timed_out;
897 		}
898 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
899 			ctrl->ctrl.queue_count - 1);
900 		nvme_unfreeze(&ctrl->ctrl);
901 	}
902 
903 	/*
904 	 * If the number of queues has increased (reconnect case)
905 	 * start all new queues now.
906 	 */
907 	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
908 					ctrl->tag_set.nr_hw_queues + 1);
909 	if (ret)
910 		goto out_wait_freeze_timed_out;
911 
912 	return 0;
913 
914 out_wait_freeze_timed_out:
915 	nvme_quiesce_io_queues(&ctrl->ctrl);
916 	nvme_sync_io_queues(&ctrl->ctrl);
917 	nvme_rdma_stop_io_queues(ctrl);
918 out_cleanup_tagset:
919 	nvme_cancel_tagset(&ctrl->ctrl);
920 	if (new)
921 		nvme_remove_io_tag_set(&ctrl->ctrl);
922 out_free_io_queues:
923 	nvme_rdma_free_io_queues(ctrl);
924 	return ret;
925 }
926 
927 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
928 		bool remove)
929 {
930 	nvme_quiesce_admin_queue(&ctrl->ctrl);
931 	blk_sync_queue(ctrl->ctrl.admin_q);
932 	nvme_rdma_stop_queue(&ctrl->queues[0]);
933 	nvme_cancel_admin_tagset(&ctrl->ctrl);
934 	if (remove) {
935 		nvme_unquiesce_admin_queue(&ctrl->ctrl);
936 		nvme_remove_admin_tag_set(&ctrl->ctrl);
937 	}
938 	nvme_rdma_destroy_admin_queue(ctrl);
939 }
940 
941 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
942 		bool remove)
943 {
944 	if (ctrl->ctrl.queue_count > 1) {
945 		nvme_quiesce_io_queues(&ctrl->ctrl);
946 		nvme_sync_io_queues(&ctrl->ctrl);
947 		nvme_rdma_stop_io_queues(ctrl);
948 		nvme_cancel_tagset(&ctrl->ctrl);
949 		if (remove) {
950 			nvme_unquiesce_io_queues(&ctrl->ctrl);
951 			nvme_remove_io_tag_set(&ctrl->ctrl);
952 		}
953 		nvme_rdma_free_io_queues(ctrl);
954 	}
955 }
956 
957 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
958 {
959 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
960 
961 	flush_work(&ctrl->err_work);
962 	cancel_delayed_work_sync(&ctrl->reconnect_work);
963 }
964 
965 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
966 {
967 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
968 
969 	if (list_empty(&ctrl->list))
970 		goto free_ctrl;
971 
972 	mutex_lock(&nvme_rdma_ctrl_mutex);
973 	list_del(&ctrl->list);
974 	mutex_unlock(&nvme_rdma_ctrl_mutex);
975 
976 	nvmf_free_options(nctrl->opts);
977 free_ctrl:
978 	kfree(ctrl->queues);
979 	kfree(ctrl);
980 }
981 
982 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
983 {
984 	/* If we are resetting/deleting then do nothing */
985 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
986 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
987 			ctrl->ctrl.state == NVME_CTRL_LIVE);
988 		return;
989 	}
990 
991 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
992 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
993 			ctrl->ctrl.opts->reconnect_delay);
994 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
995 				ctrl->ctrl.opts->reconnect_delay * HZ);
996 	} else {
997 		nvme_delete_ctrl(&ctrl->ctrl);
998 	}
999 }
1000 
1001 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1002 {
1003 	int ret;
1004 	bool changed;
1005 
1006 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1007 	if (ret)
1008 		return ret;
1009 
1010 	if (ctrl->ctrl.icdoff) {
1011 		ret = -EOPNOTSUPP;
1012 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1013 		goto destroy_admin;
1014 	}
1015 
1016 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1017 		ret = -EOPNOTSUPP;
1018 		dev_err(ctrl->ctrl.device,
1019 			"Mandatory keyed sgls are not supported!\n");
1020 		goto destroy_admin;
1021 	}
1022 
1023 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1024 		dev_warn(ctrl->ctrl.device,
1025 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1026 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1027 	}
1028 
1029 	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1030 		dev_warn(ctrl->ctrl.device,
1031 			"ctrl sqsize %u > max queue size %u, clamping down\n",
1032 			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1033 		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1034 	}
1035 
1036 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1037 		dev_warn(ctrl->ctrl.device,
1038 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1039 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1040 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1041 	}
1042 
1043 	if (ctrl->ctrl.sgls & (1 << 20))
1044 		ctrl->use_inline_data = true;
1045 
1046 	if (ctrl->ctrl.queue_count > 1) {
1047 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1048 		if (ret)
1049 			goto destroy_admin;
1050 	}
1051 
1052 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1053 	if (!changed) {
1054 		/*
1055 		 * state change failure is ok if we started ctrl delete,
1056 		 * unless we're during creation of a new controller to
1057 		 * avoid races with teardown flow.
1058 		 */
1059 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1060 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1061 		WARN_ON_ONCE(new);
1062 		ret = -EINVAL;
1063 		goto destroy_io;
1064 	}
1065 
1066 	nvme_start_ctrl(&ctrl->ctrl);
1067 	return 0;
1068 
1069 destroy_io:
1070 	if (ctrl->ctrl.queue_count > 1) {
1071 		nvme_quiesce_io_queues(&ctrl->ctrl);
1072 		nvme_sync_io_queues(&ctrl->ctrl);
1073 		nvme_rdma_stop_io_queues(ctrl);
1074 		nvme_cancel_tagset(&ctrl->ctrl);
1075 		if (new)
1076 			nvme_remove_io_tag_set(&ctrl->ctrl);
1077 		nvme_rdma_free_io_queues(ctrl);
1078 	}
1079 destroy_admin:
1080 	nvme_quiesce_admin_queue(&ctrl->ctrl);
1081 	blk_sync_queue(ctrl->ctrl.admin_q);
1082 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1083 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1084 	if (new)
1085 		nvme_remove_admin_tag_set(&ctrl->ctrl);
1086 	nvme_rdma_destroy_admin_queue(ctrl);
1087 	return ret;
1088 }
1089 
1090 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1091 {
1092 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1093 			struct nvme_rdma_ctrl, reconnect_work);
1094 
1095 	++ctrl->ctrl.nr_reconnects;
1096 
1097 	if (nvme_rdma_setup_ctrl(ctrl, false))
1098 		goto requeue;
1099 
1100 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1101 			ctrl->ctrl.nr_reconnects);
1102 
1103 	ctrl->ctrl.nr_reconnects = 0;
1104 
1105 	return;
1106 
1107 requeue:
1108 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1109 			ctrl->ctrl.nr_reconnects);
1110 	nvme_rdma_reconnect_or_remove(ctrl);
1111 }
1112 
1113 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1114 {
1115 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1116 			struct nvme_rdma_ctrl, err_work);
1117 
1118 	nvme_stop_keep_alive(&ctrl->ctrl);
1119 	flush_work(&ctrl->ctrl.async_event_work);
1120 	nvme_rdma_teardown_io_queues(ctrl, false);
1121 	nvme_unquiesce_io_queues(&ctrl->ctrl);
1122 	nvme_rdma_teardown_admin_queue(ctrl, false);
1123 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1124 	nvme_auth_stop(&ctrl->ctrl);
1125 
1126 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1127 		/* state change failure is ok if we started ctrl delete */
1128 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1129 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1130 		return;
1131 	}
1132 
1133 	nvme_rdma_reconnect_or_remove(ctrl);
1134 }
1135 
1136 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1137 {
1138 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1139 		return;
1140 
1141 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1142 	queue_work(nvme_reset_wq, &ctrl->err_work);
1143 }
1144 
1145 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1146 {
1147 	struct request *rq = blk_mq_rq_from_pdu(req);
1148 
1149 	if (!refcount_dec_and_test(&req->ref))
1150 		return;
1151 	if (!nvme_try_complete_req(rq, req->status, req->result))
1152 		nvme_rdma_complete_rq(rq);
1153 }
1154 
1155 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1156 		const char *op)
1157 {
1158 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1159 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1160 
1161 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1162 		dev_info(ctrl->ctrl.device,
1163 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1164 			     op, wc->wr_cqe,
1165 			     ib_wc_status_msg(wc->status), wc->status);
1166 	nvme_rdma_error_recovery(ctrl);
1167 }
1168 
1169 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1170 {
1171 	if (unlikely(wc->status != IB_WC_SUCCESS))
1172 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1173 }
1174 
1175 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1176 {
1177 	struct nvme_rdma_request *req =
1178 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1179 
1180 	if (unlikely(wc->status != IB_WC_SUCCESS))
1181 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1182 	else
1183 		nvme_rdma_end_request(req);
1184 }
1185 
1186 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1187 		struct nvme_rdma_request *req)
1188 {
1189 	struct ib_send_wr wr = {
1190 		.opcode		    = IB_WR_LOCAL_INV,
1191 		.next		    = NULL,
1192 		.num_sge	    = 0,
1193 		.send_flags	    = IB_SEND_SIGNALED,
1194 		.ex.invalidate_rkey = req->mr->rkey,
1195 	};
1196 
1197 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1198 	wr.wr_cqe = &req->reg_cqe;
1199 
1200 	return ib_post_send(queue->qp, &wr, NULL);
1201 }
1202 
1203 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1204 {
1205 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1206 
1207 	if (blk_integrity_rq(rq)) {
1208 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1209 				req->metadata_sgl->nents, rq_dma_dir(rq));
1210 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1211 				      NVME_INLINE_METADATA_SG_CNT);
1212 	}
1213 
1214 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1215 			rq_dma_dir(rq));
1216 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1217 }
1218 
1219 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1220 		struct request *rq)
1221 {
1222 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1223 	struct nvme_rdma_device *dev = queue->device;
1224 	struct ib_device *ibdev = dev->dev;
1225 	struct list_head *pool = &queue->qp->rdma_mrs;
1226 
1227 	if (!blk_rq_nr_phys_segments(rq))
1228 		return;
1229 
1230 	if (req->use_sig_mr)
1231 		pool = &queue->qp->sig_mrs;
1232 
1233 	if (req->mr) {
1234 		ib_mr_pool_put(queue->qp, pool, req->mr);
1235 		req->mr = NULL;
1236 	}
1237 
1238 	nvme_rdma_dma_unmap_req(ibdev, rq);
1239 }
1240 
1241 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1242 {
1243 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1244 
1245 	sg->addr = 0;
1246 	put_unaligned_le24(0, sg->length);
1247 	put_unaligned_le32(0, sg->key);
1248 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1249 	return 0;
1250 }
1251 
1252 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1253 		struct nvme_rdma_request *req, struct nvme_command *c,
1254 		int count)
1255 {
1256 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1257 	struct ib_sge *sge = &req->sge[1];
1258 	struct scatterlist *sgl;
1259 	u32 len = 0;
1260 	int i;
1261 
1262 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1263 		sge->addr = sg_dma_address(sgl);
1264 		sge->length = sg_dma_len(sgl);
1265 		sge->lkey = queue->device->pd->local_dma_lkey;
1266 		len += sge->length;
1267 		sge++;
1268 	}
1269 
1270 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1271 	sg->length = cpu_to_le32(len);
1272 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1273 
1274 	req->num_sge += count;
1275 	return 0;
1276 }
1277 
1278 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1279 		struct nvme_rdma_request *req, struct nvme_command *c)
1280 {
1281 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1282 
1283 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1284 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1285 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1286 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1287 	return 0;
1288 }
1289 
1290 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1291 		struct nvme_rdma_request *req, struct nvme_command *c,
1292 		int count)
1293 {
1294 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1295 	int nr;
1296 
1297 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1298 	if (WARN_ON_ONCE(!req->mr))
1299 		return -EAGAIN;
1300 
1301 	/*
1302 	 * Align the MR to a 4K page size to match the ctrl page size and
1303 	 * the block virtual boundary.
1304 	 */
1305 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1306 			  SZ_4K);
1307 	if (unlikely(nr < count)) {
1308 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1309 		req->mr = NULL;
1310 		if (nr < 0)
1311 			return nr;
1312 		return -EINVAL;
1313 	}
1314 
1315 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1316 
1317 	req->reg_cqe.done = nvme_rdma_memreg_done;
1318 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1319 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1320 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1321 	req->reg_wr.wr.num_sge = 0;
1322 	req->reg_wr.mr = req->mr;
1323 	req->reg_wr.key = req->mr->rkey;
1324 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1325 			     IB_ACCESS_REMOTE_READ |
1326 			     IB_ACCESS_REMOTE_WRITE;
1327 
1328 	sg->addr = cpu_to_le64(req->mr->iova);
1329 	put_unaligned_le24(req->mr->length, sg->length);
1330 	put_unaligned_le32(req->mr->rkey, sg->key);
1331 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1332 			NVME_SGL_FMT_INVALIDATE;
1333 
1334 	return 0;
1335 }
1336 
1337 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1338 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1339 		u16 control, u8 pi_type)
1340 {
1341 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1342 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1343 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1344 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1345 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1346 		domain->sig.dif.ref_remap = true;
1347 
1348 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1349 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1350 	domain->sig.dif.app_escape = true;
1351 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1352 		domain->sig.dif.ref_escape = true;
1353 }
1354 
1355 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1356 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1357 		u8 pi_type)
1358 {
1359 	u16 control = le16_to_cpu(cmd->rw.control);
1360 
1361 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1362 	if (control & NVME_RW_PRINFO_PRACT) {
1363 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1364 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1365 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1366 					 pi_type);
1367 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1368 		control &= ~NVME_RW_PRINFO_PRACT;
1369 		cmd->rw.control = cpu_to_le16(control);
1370 	} else {
1371 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1372 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1373 					 pi_type);
1374 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1375 					 pi_type);
1376 	}
1377 }
1378 
1379 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1380 {
1381 	*mask = 0;
1382 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1383 		*mask |= IB_SIG_CHECK_REFTAG;
1384 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1385 		*mask |= IB_SIG_CHECK_GUARD;
1386 }
1387 
1388 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1389 {
1390 	if (unlikely(wc->status != IB_WC_SUCCESS))
1391 		nvme_rdma_wr_error(cq, wc, "SIG");
1392 }
1393 
1394 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1395 		struct nvme_rdma_request *req, struct nvme_command *c,
1396 		int count, int pi_count)
1397 {
1398 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1399 	struct ib_reg_wr *wr = &req->reg_wr;
1400 	struct request *rq = blk_mq_rq_from_pdu(req);
1401 	struct nvme_ns *ns = rq->q->queuedata;
1402 	struct bio *bio = rq->bio;
1403 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1404 	int nr;
1405 
1406 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1407 	if (WARN_ON_ONCE(!req->mr))
1408 		return -EAGAIN;
1409 
1410 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1411 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1412 			     SZ_4K);
1413 	if (unlikely(nr))
1414 		goto mr_put;
1415 
1416 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1417 				req->mr->sig_attrs, ns->pi_type);
1418 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1419 
1420 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1421 
1422 	req->reg_cqe.done = nvme_rdma_sig_done;
1423 	memset(wr, 0, sizeof(*wr));
1424 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1425 	wr->wr.wr_cqe = &req->reg_cqe;
1426 	wr->wr.num_sge = 0;
1427 	wr->wr.send_flags = 0;
1428 	wr->mr = req->mr;
1429 	wr->key = req->mr->rkey;
1430 	wr->access = IB_ACCESS_LOCAL_WRITE |
1431 		     IB_ACCESS_REMOTE_READ |
1432 		     IB_ACCESS_REMOTE_WRITE;
1433 
1434 	sg->addr = cpu_to_le64(req->mr->iova);
1435 	put_unaligned_le24(req->mr->length, sg->length);
1436 	put_unaligned_le32(req->mr->rkey, sg->key);
1437 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1438 
1439 	return 0;
1440 
1441 mr_put:
1442 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1443 	req->mr = NULL;
1444 	if (nr < 0)
1445 		return nr;
1446 	return -EINVAL;
1447 }
1448 
1449 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1450 		int *count, int *pi_count)
1451 {
1452 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1453 	int ret;
1454 
1455 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1456 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1457 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1458 			NVME_INLINE_SG_CNT);
1459 	if (ret)
1460 		return -ENOMEM;
1461 
1462 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1463 					    req->data_sgl.sg_table.sgl);
1464 
1465 	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1466 			       req->data_sgl.nents, rq_dma_dir(rq));
1467 	if (unlikely(*count <= 0)) {
1468 		ret = -EIO;
1469 		goto out_free_table;
1470 	}
1471 
1472 	if (blk_integrity_rq(rq)) {
1473 		req->metadata_sgl->sg_table.sgl =
1474 			(struct scatterlist *)(req->metadata_sgl + 1);
1475 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1476 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1477 				req->metadata_sgl->sg_table.sgl,
1478 				NVME_INLINE_METADATA_SG_CNT);
1479 		if (unlikely(ret)) {
1480 			ret = -ENOMEM;
1481 			goto out_unmap_sg;
1482 		}
1483 
1484 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1485 				rq->bio, req->metadata_sgl->sg_table.sgl);
1486 		*pi_count = ib_dma_map_sg(ibdev,
1487 					  req->metadata_sgl->sg_table.sgl,
1488 					  req->metadata_sgl->nents,
1489 					  rq_dma_dir(rq));
1490 		if (unlikely(*pi_count <= 0)) {
1491 			ret = -EIO;
1492 			goto out_free_pi_table;
1493 		}
1494 	}
1495 
1496 	return 0;
1497 
1498 out_free_pi_table:
1499 	sg_free_table_chained(&req->metadata_sgl->sg_table,
1500 			      NVME_INLINE_METADATA_SG_CNT);
1501 out_unmap_sg:
1502 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1503 			rq_dma_dir(rq));
1504 out_free_table:
1505 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1506 	return ret;
1507 }
1508 
1509 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1510 		struct request *rq, struct nvme_command *c)
1511 {
1512 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1513 	struct nvme_rdma_device *dev = queue->device;
1514 	struct ib_device *ibdev = dev->dev;
1515 	int pi_count = 0;
1516 	int count, ret;
1517 
1518 	req->num_sge = 1;
1519 	refcount_set(&req->ref, 2); /* send and recv completions */
1520 
1521 	c->common.flags |= NVME_CMD_SGL_METABUF;
1522 
1523 	if (!blk_rq_nr_phys_segments(rq))
1524 		return nvme_rdma_set_sg_null(c);
1525 
1526 	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1527 	if (unlikely(ret))
1528 		return ret;
1529 
1530 	if (req->use_sig_mr) {
1531 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1532 		goto out;
1533 	}
1534 
1535 	if (count <= dev->num_inline_segments) {
1536 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1537 		    queue->ctrl->use_inline_data &&
1538 		    blk_rq_payload_bytes(rq) <=
1539 				nvme_rdma_inline_data_size(queue)) {
1540 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1541 			goto out;
1542 		}
1543 
1544 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1545 			ret = nvme_rdma_map_sg_single(queue, req, c);
1546 			goto out;
1547 		}
1548 	}
1549 
1550 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1551 out:
1552 	if (unlikely(ret))
1553 		goto out_dma_unmap_req;
1554 
1555 	return 0;
1556 
1557 out_dma_unmap_req:
1558 	nvme_rdma_dma_unmap_req(ibdev, rq);
1559 	return ret;
1560 }
1561 
1562 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1563 {
1564 	struct nvme_rdma_qe *qe =
1565 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1566 	struct nvme_rdma_request *req =
1567 		container_of(qe, struct nvme_rdma_request, sqe);
1568 
1569 	if (unlikely(wc->status != IB_WC_SUCCESS))
1570 		nvme_rdma_wr_error(cq, wc, "SEND");
1571 	else
1572 		nvme_rdma_end_request(req);
1573 }
1574 
1575 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1576 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1577 		struct ib_send_wr *first)
1578 {
1579 	struct ib_send_wr wr;
1580 	int ret;
1581 
1582 	sge->addr   = qe->dma;
1583 	sge->length = sizeof(struct nvme_command);
1584 	sge->lkey   = queue->device->pd->local_dma_lkey;
1585 
1586 	wr.next       = NULL;
1587 	wr.wr_cqe     = &qe->cqe;
1588 	wr.sg_list    = sge;
1589 	wr.num_sge    = num_sge;
1590 	wr.opcode     = IB_WR_SEND;
1591 	wr.send_flags = IB_SEND_SIGNALED;
1592 
1593 	if (first)
1594 		first->next = &wr;
1595 	else
1596 		first = &wr;
1597 
1598 	ret = ib_post_send(queue->qp, first, NULL);
1599 	if (unlikely(ret)) {
1600 		dev_err(queue->ctrl->ctrl.device,
1601 			     "%s failed with error code %d\n", __func__, ret);
1602 	}
1603 	return ret;
1604 }
1605 
1606 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1607 		struct nvme_rdma_qe *qe)
1608 {
1609 	struct ib_recv_wr wr;
1610 	struct ib_sge list;
1611 	int ret;
1612 
1613 	list.addr   = qe->dma;
1614 	list.length = sizeof(struct nvme_completion);
1615 	list.lkey   = queue->device->pd->local_dma_lkey;
1616 
1617 	qe->cqe.done = nvme_rdma_recv_done;
1618 
1619 	wr.next     = NULL;
1620 	wr.wr_cqe   = &qe->cqe;
1621 	wr.sg_list  = &list;
1622 	wr.num_sge  = 1;
1623 
1624 	ret = ib_post_recv(queue->qp, &wr, NULL);
1625 	if (unlikely(ret)) {
1626 		dev_err(queue->ctrl->ctrl.device,
1627 			"%s failed with error code %d\n", __func__, ret);
1628 	}
1629 	return ret;
1630 }
1631 
1632 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1633 {
1634 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1635 
1636 	if (queue_idx == 0)
1637 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1638 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1639 }
1640 
1641 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1642 {
1643 	if (unlikely(wc->status != IB_WC_SUCCESS))
1644 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1645 }
1646 
1647 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1648 {
1649 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1650 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1651 	struct ib_device *dev = queue->device->dev;
1652 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1653 	struct nvme_command *cmd = sqe->data;
1654 	struct ib_sge sge;
1655 	int ret;
1656 
1657 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1658 
1659 	memset(cmd, 0, sizeof(*cmd));
1660 	cmd->common.opcode = nvme_admin_async_event;
1661 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1662 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1663 	nvme_rdma_set_sg_null(cmd);
1664 
1665 	sqe->cqe.done = nvme_rdma_async_done;
1666 
1667 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1668 			DMA_TO_DEVICE);
1669 
1670 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1671 	WARN_ON_ONCE(ret);
1672 }
1673 
1674 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1675 		struct nvme_completion *cqe, struct ib_wc *wc)
1676 {
1677 	struct request *rq;
1678 	struct nvme_rdma_request *req;
1679 
1680 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1681 	if (!rq) {
1682 		dev_err(queue->ctrl->ctrl.device,
1683 			"got bad command_id %#x on QP %#x\n",
1684 			cqe->command_id, queue->qp->qp_num);
1685 		nvme_rdma_error_recovery(queue->ctrl);
1686 		return;
1687 	}
1688 	req = blk_mq_rq_to_pdu(rq);
1689 
1690 	req->status = cqe->status;
1691 	req->result = cqe->result;
1692 
1693 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1694 		if (unlikely(!req->mr ||
1695 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1696 			dev_err(queue->ctrl->ctrl.device,
1697 				"Bogus remote invalidation for rkey %#x\n",
1698 				req->mr ? req->mr->rkey : 0);
1699 			nvme_rdma_error_recovery(queue->ctrl);
1700 		}
1701 	} else if (req->mr) {
1702 		int ret;
1703 
1704 		ret = nvme_rdma_inv_rkey(queue, req);
1705 		if (unlikely(ret < 0)) {
1706 			dev_err(queue->ctrl->ctrl.device,
1707 				"Queueing INV WR for rkey %#x failed (%d)\n",
1708 				req->mr->rkey, ret);
1709 			nvme_rdma_error_recovery(queue->ctrl);
1710 		}
1711 		/* the local invalidation completion will end the request */
1712 		return;
1713 	}
1714 
1715 	nvme_rdma_end_request(req);
1716 }
1717 
1718 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1719 {
1720 	struct nvme_rdma_qe *qe =
1721 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1722 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1723 	struct ib_device *ibdev = queue->device->dev;
1724 	struct nvme_completion *cqe = qe->data;
1725 	const size_t len = sizeof(struct nvme_completion);
1726 
1727 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1728 		nvme_rdma_wr_error(cq, wc, "RECV");
1729 		return;
1730 	}
1731 
1732 	/* sanity checking for received data length */
1733 	if (unlikely(wc->byte_len < len)) {
1734 		dev_err(queue->ctrl->ctrl.device,
1735 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1736 		nvme_rdma_error_recovery(queue->ctrl);
1737 		return;
1738 	}
1739 
1740 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1741 	/*
1742 	 * AEN requests are special as they don't time out and can
1743 	 * survive any kind of queue freeze and often don't respond to
1744 	 * aborts.  We don't even bother to allocate a struct request
1745 	 * for them but rather special case them here.
1746 	 */
1747 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1748 				     cqe->command_id)))
1749 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1750 				&cqe->result);
1751 	else
1752 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1753 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1754 
1755 	nvme_rdma_post_recv(queue, qe);
1756 }
1757 
1758 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1759 {
1760 	int ret, i;
1761 
1762 	for (i = 0; i < queue->queue_size; i++) {
1763 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1764 		if (ret)
1765 			return ret;
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1772 		struct rdma_cm_event *ev)
1773 {
1774 	struct rdma_cm_id *cm_id = queue->cm_id;
1775 	int status = ev->status;
1776 	const char *rej_msg;
1777 	const struct nvme_rdma_cm_rej *rej_data;
1778 	u8 rej_data_len;
1779 
1780 	rej_msg = rdma_reject_msg(cm_id, status);
1781 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1782 
1783 	if (rej_data && rej_data_len >= sizeof(u16)) {
1784 		u16 sts = le16_to_cpu(rej_data->sts);
1785 
1786 		dev_err(queue->ctrl->ctrl.device,
1787 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1788 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1789 	} else {
1790 		dev_err(queue->ctrl->ctrl.device,
1791 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1792 	}
1793 
1794 	return -ECONNRESET;
1795 }
1796 
1797 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1798 {
1799 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1800 	int ret;
1801 
1802 	ret = nvme_rdma_create_queue_ib(queue);
1803 	if (ret)
1804 		return ret;
1805 
1806 	if (ctrl->opts->tos >= 0)
1807 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1808 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1809 	if (ret) {
1810 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1811 			queue->cm_error);
1812 		goto out_destroy_queue;
1813 	}
1814 
1815 	return 0;
1816 
1817 out_destroy_queue:
1818 	nvme_rdma_destroy_queue_ib(queue);
1819 	return ret;
1820 }
1821 
1822 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1823 {
1824 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1825 	struct rdma_conn_param param = { };
1826 	struct nvme_rdma_cm_req priv = { };
1827 	int ret;
1828 
1829 	param.qp_num = queue->qp->qp_num;
1830 	param.flow_control = 1;
1831 
1832 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1833 	/* maximum retry count */
1834 	param.retry_count = 7;
1835 	param.rnr_retry_count = 7;
1836 	param.private_data = &priv;
1837 	param.private_data_len = sizeof(priv);
1838 
1839 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1840 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1841 	/*
1842 	 * set the admin queue depth to the minimum size
1843 	 * specified by the Fabrics standard.
1844 	 */
1845 	if (priv.qid == 0) {
1846 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1847 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1848 	} else {
1849 		/*
1850 		 * current interpretation of the fabrics spec
1851 		 * is at minimum you make hrqsize sqsize+1, or a
1852 		 * 1's based representation of sqsize.
1853 		 */
1854 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1855 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1856 	}
1857 
1858 	ret = rdma_connect_locked(queue->cm_id, &param);
1859 	if (ret) {
1860 		dev_err(ctrl->ctrl.device,
1861 			"rdma_connect_locked failed (%d).\n", ret);
1862 		return ret;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1869 		struct rdma_cm_event *ev)
1870 {
1871 	struct nvme_rdma_queue *queue = cm_id->context;
1872 	int cm_error = 0;
1873 
1874 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1875 		rdma_event_msg(ev->event), ev->event,
1876 		ev->status, cm_id);
1877 
1878 	switch (ev->event) {
1879 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1880 		cm_error = nvme_rdma_addr_resolved(queue);
1881 		break;
1882 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1883 		cm_error = nvme_rdma_route_resolved(queue);
1884 		break;
1885 	case RDMA_CM_EVENT_ESTABLISHED:
1886 		queue->cm_error = nvme_rdma_conn_established(queue);
1887 		/* complete cm_done regardless of success/failure */
1888 		complete(&queue->cm_done);
1889 		return 0;
1890 	case RDMA_CM_EVENT_REJECTED:
1891 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1892 		break;
1893 	case RDMA_CM_EVENT_ROUTE_ERROR:
1894 	case RDMA_CM_EVENT_CONNECT_ERROR:
1895 	case RDMA_CM_EVENT_UNREACHABLE:
1896 	case RDMA_CM_EVENT_ADDR_ERROR:
1897 		dev_dbg(queue->ctrl->ctrl.device,
1898 			"CM error event %d\n", ev->event);
1899 		cm_error = -ECONNRESET;
1900 		break;
1901 	case RDMA_CM_EVENT_DISCONNECTED:
1902 	case RDMA_CM_EVENT_ADDR_CHANGE:
1903 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1904 		dev_dbg(queue->ctrl->ctrl.device,
1905 			"disconnect received - connection closed\n");
1906 		nvme_rdma_error_recovery(queue->ctrl);
1907 		break;
1908 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1909 		/* device removal is handled via the ib_client API */
1910 		break;
1911 	default:
1912 		dev_err(queue->ctrl->ctrl.device,
1913 			"Unexpected RDMA CM event (%d)\n", ev->event);
1914 		nvme_rdma_error_recovery(queue->ctrl);
1915 		break;
1916 	}
1917 
1918 	if (cm_error) {
1919 		queue->cm_error = cm_error;
1920 		complete(&queue->cm_done);
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static void nvme_rdma_complete_timed_out(struct request *rq)
1927 {
1928 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1929 	struct nvme_rdma_queue *queue = req->queue;
1930 
1931 	nvme_rdma_stop_queue(queue);
1932 	nvmf_complete_timed_out_request(rq);
1933 }
1934 
1935 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1936 {
1937 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1938 	struct nvme_rdma_queue *queue = req->queue;
1939 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1940 
1941 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1942 		 rq->tag, nvme_rdma_queue_idx(queue));
1943 
1944 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1945 		/*
1946 		 * If we are resetting, connecting or deleting we should
1947 		 * complete immediately because we may block controller
1948 		 * teardown or setup sequence
1949 		 * - ctrl disable/shutdown fabrics requests
1950 		 * - connect requests
1951 		 * - initialization admin requests
1952 		 * - I/O requests that entered after unquiescing and
1953 		 *   the controller stopped responding
1954 		 *
1955 		 * All other requests should be cancelled by the error
1956 		 * recovery work, so it's fine that we fail it here.
1957 		 */
1958 		nvme_rdma_complete_timed_out(rq);
1959 		return BLK_EH_DONE;
1960 	}
1961 
1962 	/*
1963 	 * LIVE state should trigger the normal error recovery which will
1964 	 * handle completing this request.
1965 	 */
1966 	nvme_rdma_error_recovery(ctrl);
1967 	return BLK_EH_RESET_TIMER;
1968 }
1969 
1970 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1971 		const struct blk_mq_queue_data *bd)
1972 {
1973 	struct nvme_ns *ns = hctx->queue->queuedata;
1974 	struct nvme_rdma_queue *queue = hctx->driver_data;
1975 	struct request *rq = bd->rq;
1976 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1977 	struct nvme_rdma_qe *sqe = &req->sqe;
1978 	struct nvme_command *c = nvme_req(rq)->cmd;
1979 	struct ib_device *dev;
1980 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1981 	blk_status_t ret;
1982 	int err;
1983 
1984 	WARN_ON_ONCE(rq->tag < 0);
1985 
1986 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1987 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1988 
1989 	dev = queue->device->dev;
1990 
1991 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1992 					 sizeof(struct nvme_command),
1993 					 DMA_TO_DEVICE);
1994 	err = ib_dma_mapping_error(dev, req->sqe.dma);
1995 	if (unlikely(err))
1996 		return BLK_STS_RESOURCE;
1997 
1998 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1999 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2000 
2001 	ret = nvme_setup_cmd(ns, rq);
2002 	if (ret)
2003 		goto unmap_qe;
2004 
2005 	nvme_start_request(rq);
2006 
2007 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2008 	    queue->pi_support &&
2009 	    (c->common.opcode == nvme_cmd_write ||
2010 	     c->common.opcode == nvme_cmd_read) &&
2011 	    nvme_ns_has_pi(ns))
2012 		req->use_sig_mr = true;
2013 	else
2014 		req->use_sig_mr = false;
2015 
2016 	err = nvme_rdma_map_data(queue, rq, c);
2017 	if (unlikely(err < 0)) {
2018 		dev_err(queue->ctrl->ctrl.device,
2019 			     "Failed to map data (%d)\n", err);
2020 		goto err;
2021 	}
2022 
2023 	sqe->cqe.done = nvme_rdma_send_done;
2024 
2025 	ib_dma_sync_single_for_device(dev, sqe->dma,
2026 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2027 
2028 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2029 			req->mr ? &req->reg_wr.wr : NULL);
2030 	if (unlikely(err))
2031 		goto err_unmap;
2032 
2033 	return BLK_STS_OK;
2034 
2035 err_unmap:
2036 	nvme_rdma_unmap_data(queue, rq);
2037 err:
2038 	if (err == -EIO)
2039 		ret = nvme_host_path_error(rq);
2040 	else if (err == -ENOMEM || err == -EAGAIN)
2041 		ret = BLK_STS_RESOURCE;
2042 	else
2043 		ret = BLK_STS_IOERR;
2044 	nvme_cleanup_cmd(rq);
2045 unmap_qe:
2046 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2047 			    DMA_TO_DEVICE);
2048 	return ret;
2049 }
2050 
2051 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2052 {
2053 	struct nvme_rdma_queue *queue = hctx->driver_data;
2054 
2055 	return ib_process_cq_direct(queue->ib_cq, -1);
2056 }
2057 
2058 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2059 {
2060 	struct request *rq = blk_mq_rq_from_pdu(req);
2061 	struct ib_mr_status mr_status;
2062 	int ret;
2063 
2064 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2065 	if (ret) {
2066 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2067 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2068 		return;
2069 	}
2070 
2071 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2072 		switch (mr_status.sig_err.err_type) {
2073 		case IB_SIG_BAD_GUARD:
2074 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2075 			break;
2076 		case IB_SIG_BAD_REFTAG:
2077 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2078 			break;
2079 		case IB_SIG_BAD_APPTAG:
2080 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2081 			break;
2082 		}
2083 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2084 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2085 		       mr_status.sig_err.actual);
2086 	}
2087 }
2088 
2089 static void nvme_rdma_complete_rq(struct request *rq)
2090 {
2091 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2092 	struct nvme_rdma_queue *queue = req->queue;
2093 	struct ib_device *ibdev = queue->device->dev;
2094 
2095 	if (req->use_sig_mr)
2096 		nvme_rdma_check_pi_status(req);
2097 
2098 	nvme_rdma_unmap_data(queue, rq);
2099 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2100 			    DMA_TO_DEVICE);
2101 	nvme_complete_rq(rq);
2102 }
2103 
2104 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2105 {
2106 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2107 
2108 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2109 }
2110 
2111 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2112 	.queue_rq	= nvme_rdma_queue_rq,
2113 	.complete	= nvme_rdma_complete_rq,
2114 	.init_request	= nvme_rdma_init_request,
2115 	.exit_request	= nvme_rdma_exit_request,
2116 	.init_hctx	= nvme_rdma_init_hctx,
2117 	.timeout	= nvme_rdma_timeout,
2118 	.map_queues	= nvme_rdma_map_queues,
2119 	.poll		= nvme_rdma_poll,
2120 };
2121 
2122 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2123 	.queue_rq	= nvme_rdma_queue_rq,
2124 	.complete	= nvme_rdma_complete_rq,
2125 	.init_request	= nvme_rdma_init_request,
2126 	.exit_request	= nvme_rdma_exit_request,
2127 	.init_hctx	= nvme_rdma_init_admin_hctx,
2128 	.timeout	= nvme_rdma_timeout,
2129 };
2130 
2131 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2132 {
2133 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2134 	nvme_quiesce_admin_queue(&ctrl->ctrl);
2135 	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2136 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2137 }
2138 
2139 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2140 {
2141 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2142 }
2143 
2144 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2145 {
2146 	struct nvme_rdma_ctrl *ctrl =
2147 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2148 
2149 	nvme_stop_ctrl(&ctrl->ctrl);
2150 	nvme_rdma_shutdown_ctrl(ctrl, false);
2151 
2152 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2153 		/* state change failure should never happen */
2154 		WARN_ON_ONCE(1);
2155 		return;
2156 	}
2157 
2158 	if (nvme_rdma_setup_ctrl(ctrl, false))
2159 		goto out_fail;
2160 
2161 	return;
2162 
2163 out_fail:
2164 	++ctrl->ctrl.nr_reconnects;
2165 	nvme_rdma_reconnect_or_remove(ctrl);
2166 }
2167 
2168 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2169 	.name			= "rdma",
2170 	.module			= THIS_MODULE,
2171 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2172 	.reg_read32		= nvmf_reg_read32,
2173 	.reg_read64		= nvmf_reg_read64,
2174 	.reg_write32		= nvmf_reg_write32,
2175 	.free_ctrl		= nvme_rdma_free_ctrl,
2176 	.submit_async_event	= nvme_rdma_submit_async_event,
2177 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2178 	.get_address		= nvmf_get_address,
2179 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2180 };
2181 
2182 /*
2183  * Fails a connection request if it matches an existing controller
2184  * (association) with the same tuple:
2185  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2186  *
2187  * if local address is not specified in the request, it will match an
2188  * existing controller with all the other parameters the same and no
2189  * local port address specified as well.
2190  *
2191  * The ports don't need to be compared as they are intrinsically
2192  * already matched by the port pointers supplied.
2193  */
2194 static bool
2195 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2196 {
2197 	struct nvme_rdma_ctrl *ctrl;
2198 	bool found = false;
2199 
2200 	mutex_lock(&nvme_rdma_ctrl_mutex);
2201 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2202 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2203 		if (found)
2204 			break;
2205 	}
2206 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2207 
2208 	return found;
2209 }
2210 
2211 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2212 		struct nvmf_ctrl_options *opts)
2213 {
2214 	struct nvme_rdma_ctrl *ctrl;
2215 	int ret;
2216 	bool changed;
2217 
2218 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2219 	if (!ctrl)
2220 		return ERR_PTR(-ENOMEM);
2221 	ctrl->ctrl.opts = opts;
2222 	INIT_LIST_HEAD(&ctrl->list);
2223 
2224 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2225 		opts->trsvcid =
2226 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2227 		if (!opts->trsvcid) {
2228 			ret = -ENOMEM;
2229 			goto out_free_ctrl;
2230 		}
2231 		opts->mask |= NVMF_OPT_TRSVCID;
2232 	}
2233 
2234 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2235 			opts->traddr, opts->trsvcid, &ctrl->addr);
2236 	if (ret) {
2237 		pr_err("malformed address passed: %s:%s\n",
2238 			opts->traddr, opts->trsvcid);
2239 		goto out_free_ctrl;
2240 	}
2241 
2242 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2243 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2244 			opts->host_traddr, NULL, &ctrl->src_addr);
2245 		if (ret) {
2246 			pr_err("malformed src address passed: %s\n",
2247 			       opts->host_traddr);
2248 			goto out_free_ctrl;
2249 		}
2250 	}
2251 
2252 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2253 		ret = -EALREADY;
2254 		goto out_free_ctrl;
2255 	}
2256 
2257 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2258 			nvme_rdma_reconnect_ctrl_work);
2259 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2260 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2261 
2262 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2263 				opts->nr_poll_queues + 1;
2264 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2265 	ctrl->ctrl.kato = opts->kato;
2266 
2267 	ret = -ENOMEM;
2268 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2269 				GFP_KERNEL);
2270 	if (!ctrl->queues)
2271 		goto out_free_ctrl;
2272 
2273 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2274 				0 /* no quirks, we're perfect! */);
2275 	if (ret)
2276 		goto out_kfree_queues;
2277 
2278 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2279 	WARN_ON_ONCE(!changed);
2280 
2281 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2282 	if (ret)
2283 		goto out_uninit_ctrl;
2284 
2285 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2286 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2287 
2288 	mutex_lock(&nvme_rdma_ctrl_mutex);
2289 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2290 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2291 
2292 	return &ctrl->ctrl;
2293 
2294 out_uninit_ctrl:
2295 	nvme_uninit_ctrl(&ctrl->ctrl);
2296 	nvme_put_ctrl(&ctrl->ctrl);
2297 	if (ret > 0)
2298 		ret = -EIO;
2299 	return ERR_PTR(ret);
2300 out_kfree_queues:
2301 	kfree(ctrl->queues);
2302 out_free_ctrl:
2303 	kfree(ctrl);
2304 	return ERR_PTR(ret);
2305 }
2306 
2307 static struct nvmf_transport_ops nvme_rdma_transport = {
2308 	.name		= "rdma",
2309 	.module		= THIS_MODULE,
2310 	.required_opts	= NVMF_OPT_TRADDR,
2311 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2312 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2313 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2314 			  NVMF_OPT_TOS,
2315 	.create_ctrl	= nvme_rdma_create_ctrl,
2316 };
2317 
2318 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2319 {
2320 	struct nvme_rdma_ctrl *ctrl;
2321 	struct nvme_rdma_device *ndev;
2322 	bool found = false;
2323 
2324 	mutex_lock(&device_list_mutex);
2325 	list_for_each_entry(ndev, &device_list, entry) {
2326 		if (ndev->dev == ib_device) {
2327 			found = true;
2328 			break;
2329 		}
2330 	}
2331 	mutex_unlock(&device_list_mutex);
2332 
2333 	if (!found)
2334 		return;
2335 
2336 	/* Delete all controllers using this device */
2337 	mutex_lock(&nvme_rdma_ctrl_mutex);
2338 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2339 		if (ctrl->device->dev != ib_device)
2340 			continue;
2341 		nvme_delete_ctrl(&ctrl->ctrl);
2342 	}
2343 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2344 
2345 	flush_workqueue(nvme_delete_wq);
2346 }
2347 
2348 static struct ib_client nvme_rdma_ib_client = {
2349 	.name   = "nvme_rdma",
2350 	.remove = nvme_rdma_remove_one
2351 };
2352 
2353 static int __init nvme_rdma_init_module(void)
2354 {
2355 	int ret;
2356 
2357 	ret = ib_register_client(&nvme_rdma_ib_client);
2358 	if (ret)
2359 		return ret;
2360 
2361 	ret = nvmf_register_transport(&nvme_rdma_transport);
2362 	if (ret)
2363 		goto err_unreg_client;
2364 
2365 	return 0;
2366 
2367 err_unreg_client:
2368 	ib_unregister_client(&nvme_rdma_ib_client);
2369 	return ret;
2370 }
2371 
2372 static void __exit nvme_rdma_cleanup_module(void)
2373 {
2374 	struct nvme_rdma_ctrl *ctrl;
2375 
2376 	nvmf_unregister_transport(&nvme_rdma_transport);
2377 	ib_unregister_client(&nvme_rdma_ib_client);
2378 
2379 	mutex_lock(&nvme_rdma_ctrl_mutex);
2380 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2381 		nvme_delete_ctrl(&ctrl->ctrl);
2382 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2383 	flush_workqueue(nvme_delete_wq);
2384 }
2385 
2386 module_init(nvme_rdma_init_module);
2387 module_exit(nvme_rdma_cleanup_module);
2388 
2389 MODULE_LICENSE("GPL v2");
2390