1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 struct nvme_rdma_device { 38 struct ib_device *dev; 39 struct ib_pd *pd; 40 struct kref ref; 41 struct list_head entry; 42 unsigned int num_inline_segments; 43 }; 44 45 struct nvme_rdma_qe { 46 struct ib_cqe cqe; 47 void *data; 48 u64 dma; 49 }; 50 51 struct nvme_rdma_queue; 52 struct nvme_rdma_request { 53 struct nvme_request req; 54 struct ib_mr *mr; 55 struct nvme_rdma_qe sqe; 56 union nvme_result result; 57 __le16 status; 58 refcount_t ref; 59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 60 u32 num_sge; 61 int nents; 62 struct ib_reg_wr reg_wr; 63 struct ib_cqe reg_cqe; 64 struct nvme_rdma_queue *queue; 65 struct sg_table sg_table; 66 struct scatterlist first_sgl[]; 67 }; 68 69 enum nvme_rdma_queue_flags { 70 NVME_RDMA_Q_ALLOCATED = 0, 71 NVME_RDMA_Q_LIVE = 1, 72 NVME_RDMA_Q_TR_READY = 2, 73 }; 74 75 struct nvme_rdma_queue { 76 struct nvme_rdma_qe *rsp_ring; 77 int queue_size; 78 size_t cmnd_capsule_len; 79 struct nvme_rdma_ctrl *ctrl; 80 struct nvme_rdma_device *device; 81 struct ib_cq *ib_cq; 82 struct ib_qp *qp; 83 84 unsigned long flags; 85 struct rdma_cm_id *cm_id; 86 int cm_error; 87 struct completion cm_done; 88 }; 89 90 struct nvme_rdma_ctrl { 91 /* read only in the hot path */ 92 struct nvme_rdma_queue *queues; 93 94 /* other member variables */ 95 struct blk_mq_tag_set tag_set; 96 struct work_struct err_work; 97 98 struct nvme_rdma_qe async_event_sqe; 99 100 struct delayed_work reconnect_work; 101 102 struct list_head list; 103 104 struct blk_mq_tag_set admin_tag_set; 105 struct nvme_rdma_device *device; 106 107 u32 max_fr_pages; 108 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 112 struct nvme_ctrl ctrl; 113 bool use_inline_data; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 118 { 119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 120 } 121 122 static LIST_HEAD(device_list); 123 static DEFINE_MUTEX(device_list_mutex); 124 125 static LIST_HEAD(nvme_rdma_ctrl_list); 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 127 128 /* 129 * Disabling this option makes small I/O goes faster, but is fundamentally 130 * unsafe. With it turned off we will have to register a global rkey that 131 * allows read and write access to all physical memory. 132 */ 133 static bool register_always = true; 134 module_param(register_always, bool, 0444); 135 MODULE_PARM_DESC(register_always, 136 "Use memory registration even for contiguous memory regions"); 137 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 139 struct rdma_cm_event *event); 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 141 142 static const struct blk_mq_ops nvme_rdma_mq_ops; 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 144 145 /* XXX: really should move to a generic header sooner or later.. */ 146 static inline void put_unaligned_le24(u32 val, u8 *p) 147 { 148 *p++ = val; 149 *p++ = val >> 8; 150 *p++ = val >> 16; 151 } 152 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 154 { 155 return queue - queue->ctrl->queues; 156 } 157 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 159 { 160 return nvme_rdma_queue_idx(queue) > 161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 162 queue->ctrl->io_queues[HCTX_TYPE_READ]; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 qe->data = NULL; 188 return -ENOMEM; 189 } 190 191 return 0; 192 } 193 194 static void nvme_rdma_free_ring(struct ib_device *ibdev, 195 struct nvme_rdma_qe *ring, size_t ib_queue_size, 196 size_t capsule_size, enum dma_data_direction dir) 197 { 198 int i; 199 200 for (i = 0; i < ib_queue_size; i++) 201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 202 kfree(ring); 203 } 204 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 206 size_t ib_queue_size, size_t capsule_size, 207 enum dma_data_direction dir) 208 { 209 struct nvme_rdma_qe *ring; 210 int i; 211 212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 213 if (!ring) 214 return NULL; 215 216 /* 217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 218 * lifetime. It's safe, since any chage in the underlying RDMA device 219 * will issue error recovery and queue re-creation. 220 */ 221 for (i = 0; i < ib_queue_size; i++) { 222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 223 goto out_free_ring; 224 } 225 226 return ring; 227 228 out_free_ring: 229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 230 return NULL; 231 } 232 233 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 234 { 235 pr_debug("QP event %s (%d)\n", 236 ib_event_msg(event->event), event->event); 237 238 } 239 240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 241 { 242 int ret; 243 244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 246 if (ret < 0) 247 return ret; 248 if (ret == 0) 249 return -ETIMEDOUT; 250 WARN_ON_ONCE(queue->cm_error > 0); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 280 struct request *rq, unsigned int hctx_idx) 281 { 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 284 kfree(req->sqe.data); 285 } 286 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx, 289 unsigned int numa_node) 290 { 291 struct nvme_rdma_ctrl *ctrl = set->driver_data; 292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 295 296 nvme_req(rq)->ctrl = &ctrl->ctrl; 297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 298 if (!req->sqe.data) 299 return -ENOMEM; 300 301 req->queue = queue; 302 303 return 0; 304 } 305 306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 307 unsigned int hctx_idx) 308 { 309 struct nvme_rdma_ctrl *ctrl = data; 310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 311 312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 313 314 hctx->driver_data = queue; 315 return 0; 316 } 317 318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 319 unsigned int hctx_idx) 320 { 321 struct nvme_rdma_ctrl *ctrl = data; 322 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 323 324 BUG_ON(hctx_idx != 0); 325 326 hctx->driver_data = queue; 327 return 0; 328 } 329 330 static void nvme_rdma_free_dev(struct kref *ref) 331 { 332 struct nvme_rdma_device *ndev = 333 container_of(ref, struct nvme_rdma_device, ref); 334 335 mutex_lock(&device_list_mutex); 336 list_del(&ndev->entry); 337 mutex_unlock(&device_list_mutex); 338 339 ib_dealloc_pd(ndev->pd); 340 kfree(ndev); 341 } 342 343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 344 { 345 kref_put(&dev->ref, nvme_rdma_free_dev); 346 } 347 348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 349 { 350 return kref_get_unless_zero(&dev->ref); 351 } 352 353 static struct nvme_rdma_device * 354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 355 { 356 struct nvme_rdma_device *ndev; 357 358 mutex_lock(&device_list_mutex); 359 list_for_each_entry(ndev, &device_list, entry) { 360 if (ndev->dev->node_guid == cm_id->device->node_guid && 361 nvme_rdma_dev_get(ndev)) 362 goto out_unlock; 363 } 364 365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 366 if (!ndev) 367 goto out_err; 368 369 ndev->dev = cm_id->device; 370 kref_init(&ndev->ref); 371 372 ndev->pd = ib_alloc_pd(ndev->dev, 373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 374 if (IS_ERR(ndev->pd)) 375 goto out_free_dev; 376 377 if (!(ndev->dev->attrs.device_cap_flags & 378 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 379 dev_err(&ndev->dev->dev, 380 "Memory registrations not supported.\n"); 381 goto out_free_pd; 382 } 383 384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 385 ndev->dev->attrs.max_send_sge - 1); 386 list_add(&ndev->entry, &device_list); 387 out_unlock: 388 mutex_unlock(&device_list_mutex); 389 return ndev; 390 391 out_free_pd: 392 ib_dealloc_pd(ndev->pd); 393 out_free_dev: 394 kfree(ndev); 395 out_err: 396 mutex_unlock(&device_list_mutex); 397 return NULL; 398 } 399 400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 401 { 402 struct nvme_rdma_device *dev; 403 struct ib_device *ibdev; 404 405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 406 return; 407 408 dev = queue->device; 409 ibdev = dev->dev; 410 411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 412 413 /* 414 * The cm_id object might have been destroyed during RDMA connection 415 * establishment error flow to avoid getting other cma events, thus 416 * the destruction of the QP shouldn't use rdma_cm API. 417 */ 418 ib_destroy_qp(queue->qp); 419 ib_free_cq(queue->ib_cq); 420 421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 422 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 423 424 nvme_rdma_dev_put(dev); 425 } 426 427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 428 { 429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 430 ibdev->attrs.max_fast_reg_page_list_len - 1); 431 } 432 433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 434 { 435 struct ib_device *ibdev; 436 const int send_wr_factor = 3; /* MR, SEND, INV */ 437 const int cq_factor = send_wr_factor + 1; /* + RECV */ 438 int comp_vector, idx = nvme_rdma_queue_idx(queue); 439 enum ib_poll_context poll_ctx; 440 int ret, pages_per_mr; 441 442 queue->device = nvme_rdma_find_get_device(queue->cm_id); 443 if (!queue->device) { 444 dev_err(queue->cm_id->device->dev.parent, 445 "no client data found!\n"); 446 return -ECONNREFUSED; 447 } 448 ibdev = queue->device->dev; 449 450 /* 451 * Spread I/O queues completion vectors according their queue index. 452 * Admin queues can always go on completion vector 0. 453 */ 454 comp_vector = idx == 0 ? idx : idx - 1; 455 456 /* Polling queues need direct cq polling context */ 457 if (nvme_rdma_poll_queue(queue)) 458 poll_ctx = IB_POLL_DIRECT; 459 else 460 poll_ctx = IB_POLL_SOFTIRQ; 461 462 /* +1 for ib_stop_cq */ 463 queue->ib_cq = ib_alloc_cq(ibdev, queue, 464 cq_factor * queue->queue_size + 1, 465 comp_vector, poll_ctx); 466 if (IS_ERR(queue->ib_cq)) { 467 ret = PTR_ERR(queue->ib_cq); 468 goto out_put_dev; 469 } 470 471 ret = nvme_rdma_create_qp(queue, send_wr_factor); 472 if (ret) 473 goto out_destroy_ib_cq; 474 475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 476 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 477 if (!queue->rsp_ring) { 478 ret = -ENOMEM; 479 goto out_destroy_qp; 480 } 481 482 /* 483 * Currently we don't use SG_GAPS MR's so if the first entry is 484 * misaligned we'll end up using two entries for a single data page, 485 * so one additional entry is required. 486 */ 487 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1; 488 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 489 queue->queue_size, 490 IB_MR_TYPE_MEM_REG, 491 pages_per_mr, 0); 492 if (ret) { 493 dev_err(queue->ctrl->ctrl.device, 494 "failed to initialize MR pool sized %d for QID %d\n", 495 queue->queue_size, idx); 496 goto out_destroy_ring; 497 } 498 499 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 500 501 return 0; 502 503 out_destroy_ring: 504 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 505 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 506 out_destroy_qp: 507 rdma_destroy_qp(queue->cm_id); 508 out_destroy_ib_cq: 509 ib_free_cq(queue->ib_cq); 510 out_put_dev: 511 nvme_rdma_dev_put(queue->device); 512 return ret; 513 } 514 515 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 516 int idx, size_t queue_size) 517 { 518 struct nvme_rdma_queue *queue; 519 struct sockaddr *src_addr = NULL; 520 int ret; 521 522 queue = &ctrl->queues[idx]; 523 queue->ctrl = ctrl; 524 init_completion(&queue->cm_done); 525 526 if (idx > 0) 527 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 528 else 529 queue->cmnd_capsule_len = sizeof(struct nvme_command); 530 531 queue->queue_size = queue_size; 532 533 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 534 RDMA_PS_TCP, IB_QPT_RC); 535 if (IS_ERR(queue->cm_id)) { 536 dev_info(ctrl->ctrl.device, 537 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 538 return PTR_ERR(queue->cm_id); 539 } 540 541 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 542 src_addr = (struct sockaddr *)&ctrl->src_addr; 543 544 queue->cm_error = -ETIMEDOUT; 545 ret = rdma_resolve_addr(queue->cm_id, src_addr, 546 (struct sockaddr *)&ctrl->addr, 547 NVME_RDMA_CONNECT_TIMEOUT_MS); 548 if (ret) { 549 dev_info(ctrl->ctrl.device, 550 "rdma_resolve_addr failed (%d).\n", ret); 551 goto out_destroy_cm_id; 552 } 553 554 ret = nvme_rdma_wait_for_cm(queue); 555 if (ret) { 556 dev_info(ctrl->ctrl.device, 557 "rdma connection establishment failed (%d)\n", ret); 558 goto out_destroy_cm_id; 559 } 560 561 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 562 563 return 0; 564 565 out_destroy_cm_id: 566 rdma_destroy_id(queue->cm_id); 567 nvme_rdma_destroy_queue_ib(queue); 568 return ret; 569 } 570 571 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 572 { 573 rdma_disconnect(queue->cm_id); 574 ib_drain_qp(queue->qp); 575 } 576 577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 578 { 579 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 580 return; 581 __nvme_rdma_stop_queue(queue); 582 } 583 584 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 585 { 586 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 587 return; 588 589 nvme_rdma_destroy_queue_ib(queue); 590 rdma_destroy_id(queue->cm_id); 591 } 592 593 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 594 { 595 int i; 596 597 for (i = 1; i < ctrl->ctrl.queue_count; i++) 598 nvme_rdma_free_queue(&ctrl->queues[i]); 599 } 600 601 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 602 { 603 int i; 604 605 for (i = 1; i < ctrl->ctrl.queue_count; i++) 606 nvme_rdma_stop_queue(&ctrl->queues[i]); 607 } 608 609 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 610 { 611 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 612 bool poll = nvme_rdma_poll_queue(queue); 613 int ret; 614 615 if (idx) 616 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 617 else 618 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 619 620 if (!ret) { 621 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 622 } else { 623 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 624 __nvme_rdma_stop_queue(queue); 625 dev_info(ctrl->ctrl.device, 626 "failed to connect queue: %d ret=%d\n", idx, ret); 627 } 628 return ret; 629 } 630 631 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 632 { 633 int i, ret = 0; 634 635 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 636 ret = nvme_rdma_start_queue(ctrl, i); 637 if (ret) 638 goto out_stop_queues; 639 } 640 641 return 0; 642 643 out_stop_queues: 644 for (i--; i >= 1; i--) 645 nvme_rdma_stop_queue(&ctrl->queues[i]); 646 return ret; 647 } 648 649 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 650 { 651 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 652 struct ib_device *ibdev = ctrl->device->dev; 653 unsigned int nr_io_queues, nr_default_queues; 654 unsigned int nr_read_queues, nr_poll_queues; 655 int i, ret; 656 657 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 658 min(opts->nr_io_queues, num_online_cpus())); 659 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 660 min(opts->nr_write_queues, num_online_cpus())); 661 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 662 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 663 664 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 665 if (ret) 666 return ret; 667 668 ctrl->ctrl.queue_count = nr_io_queues + 1; 669 if (ctrl->ctrl.queue_count < 2) 670 return 0; 671 672 dev_info(ctrl->ctrl.device, 673 "creating %d I/O queues.\n", nr_io_queues); 674 675 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 676 /* 677 * separate read/write queues 678 * hand out dedicated default queues only after we have 679 * sufficient read queues. 680 */ 681 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 682 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 683 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 684 min(nr_default_queues, nr_io_queues); 685 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 686 } else { 687 /* 688 * shared read/write queues 689 * either no write queues were requested, or we don't have 690 * sufficient queue count to have dedicated default queues. 691 */ 692 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 693 min(nr_read_queues, nr_io_queues); 694 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 695 } 696 697 if (opts->nr_poll_queues && nr_io_queues) { 698 /* map dedicated poll queues only if we have queues left */ 699 ctrl->io_queues[HCTX_TYPE_POLL] = 700 min(nr_poll_queues, nr_io_queues); 701 } 702 703 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 704 ret = nvme_rdma_alloc_queue(ctrl, i, 705 ctrl->ctrl.sqsize + 1); 706 if (ret) 707 goto out_free_queues; 708 } 709 710 return 0; 711 712 out_free_queues: 713 for (i--; i >= 1; i--) 714 nvme_rdma_free_queue(&ctrl->queues[i]); 715 716 return ret; 717 } 718 719 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 720 bool admin) 721 { 722 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 723 struct blk_mq_tag_set *set; 724 int ret; 725 726 if (admin) { 727 set = &ctrl->admin_tag_set; 728 memset(set, 0, sizeof(*set)); 729 set->ops = &nvme_rdma_admin_mq_ops; 730 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 731 set->reserved_tags = 2; /* connect + keep-alive */ 732 set->numa_node = nctrl->numa_node; 733 set->cmd_size = sizeof(struct nvme_rdma_request) + 734 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 735 set->driver_data = ctrl; 736 set->nr_hw_queues = 1; 737 set->timeout = ADMIN_TIMEOUT; 738 set->flags = BLK_MQ_F_NO_SCHED; 739 } else { 740 set = &ctrl->tag_set; 741 memset(set, 0, sizeof(*set)); 742 set->ops = &nvme_rdma_mq_ops; 743 set->queue_depth = nctrl->sqsize + 1; 744 set->reserved_tags = 1; /* fabric connect */ 745 set->numa_node = nctrl->numa_node; 746 set->flags = BLK_MQ_F_SHOULD_MERGE; 747 set->cmd_size = sizeof(struct nvme_rdma_request) + 748 NVME_INLINE_SG_CNT * sizeof(struct scatterlist); 749 set->driver_data = ctrl; 750 set->nr_hw_queues = nctrl->queue_count - 1; 751 set->timeout = NVME_IO_TIMEOUT; 752 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 753 } 754 755 ret = blk_mq_alloc_tag_set(set); 756 if (ret) 757 return ERR_PTR(ret); 758 759 return set; 760 } 761 762 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 763 bool remove) 764 { 765 if (remove) { 766 blk_cleanup_queue(ctrl->ctrl.admin_q); 767 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 768 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 769 } 770 if (ctrl->async_event_sqe.data) { 771 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 772 sizeof(struct nvme_command), DMA_TO_DEVICE); 773 ctrl->async_event_sqe.data = NULL; 774 } 775 nvme_rdma_free_queue(&ctrl->queues[0]); 776 } 777 778 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 779 bool new) 780 { 781 int error; 782 783 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 784 if (error) 785 return error; 786 787 ctrl->device = ctrl->queues[0].device; 788 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 789 790 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 791 792 /* 793 * Bind the async event SQE DMA mapping to the admin queue lifetime. 794 * It's safe, since any chage in the underlying RDMA device will issue 795 * error recovery and queue re-creation. 796 */ 797 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 798 sizeof(struct nvme_command), DMA_TO_DEVICE); 799 if (error) 800 goto out_free_queue; 801 802 if (new) { 803 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 804 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 805 error = PTR_ERR(ctrl->ctrl.admin_tagset); 806 goto out_free_async_qe; 807 } 808 809 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 810 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 811 error = PTR_ERR(ctrl->ctrl.fabrics_q); 812 goto out_free_tagset; 813 } 814 815 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 816 if (IS_ERR(ctrl->ctrl.admin_q)) { 817 error = PTR_ERR(ctrl->ctrl.admin_q); 818 goto out_cleanup_fabrics_q; 819 } 820 } 821 822 error = nvme_rdma_start_queue(ctrl, 0); 823 if (error) 824 goto out_cleanup_queue; 825 826 error = nvme_enable_ctrl(&ctrl->ctrl); 827 if (error) 828 goto out_stop_queue; 829 830 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 831 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 832 833 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 834 835 error = nvme_init_identify(&ctrl->ctrl); 836 if (error) 837 goto out_stop_queue; 838 839 return 0; 840 841 out_stop_queue: 842 nvme_rdma_stop_queue(&ctrl->queues[0]); 843 out_cleanup_queue: 844 if (new) 845 blk_cleanup_queue(ctrl->ctrl.admin_q); 846 out_cleanup_fabrics_q: 847 if (new) 848 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 849 out_free_tagset: 850 if (new) 851 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 852 out_free_async_qe: 853 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 854 sizeof(struct nvme_command), DMA_TO_DEVICE); 855 ctrl->async_event_sqe.data = NULL; 856 out_free_queue: 857 nvme_rdma_free_queue(&ctrl->queues[0]); 858 return error; 859 } 860 861 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 862 bool remove) 863 { 864 if (remove) { 865 blk_cleanup_queue(ctrl->ctrl.connect_q); 866 blk_mq_free_tag_set(ctrl->ctrl.tagset); 867 } 868 nvme_rdma_free_io_queues(ctrl); 869 } 870 871 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 872 { 873 int ret; 874 875 ret = nvme_rdma_alloc_io_queues(ctrl); 876 if (ret) 877 return ret; 878 879 if (new) { 880 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 881 if (IS_ERR(ctrl->ctrl.tagset)) { 882 ret = PTR_ERR(ctrl->ctrl.tagset); 883 goto out_free_io_queues; 884 } 885 886 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 887 if (IS_ERR(ctrl->ctrl.connect_q)) { 888 ret = PTR_ERR(ctrl->ctrl.connect_q); 889 goto out_free_tag_set; 890 } 891 } else { 892 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 893 ctrl->ctrl.queue_count - 1); 894 } 895 896 ret = nvme_rdma_start_io_queues(ctrl); 897 if (ret) 898 goto out_cleanup_connect_q; 899 900 return 0; 901 902 out_cleanup_connect_q: 903 if (new) 904 blk_cleanup_queue(ctrl->ctrl.connect_q); 905 out_free_tag_set: 906 if (new) 907 blk_mq_free_tag_set(ctrl->ctrl.tagset); 908 out_free_io_queues: 909 nvme_rdma_free_io_queues(ctrl); 910 return ret; 911 } 912 913 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 914 bool remove) 915 { 916 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 917 nvme_rdma_stop_queue(&ctrl->queues[0]); 918 if (ctrl->ctrl.admin_tagset) { 919 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 920 nvme_cancel_request, &ctrl->ctrl); 921 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 922 } 923 if (remove) 924 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 925 nvme_rdma_destroy_admin_queue(ctrl, remove); 926 } 927 928 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 929 bool remove) 930 { 931 if (ctrl->ctrl.queue_count > 1) { 932 nvme_stop_queues(&ctrl->ctrl); 933 nvme_rdma_stop_io_queues(ctrl); 934 if (ctrl->ctrl.tagset) { 935 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 936 nvme_cancel_request, &ctrl->ctrl); 937 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 938 } 939 if (remove) 940 nvme_start_queues(&ctrl->ctrl); 941 nvme_rdma_destroy_io_queues(ctrl, remove); 942 } 943 } 944 945 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 946 { 947 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 948 949 if (list_empty(&ctrl->list)) 950 goto free_ctrl; 951 952 mutex_lock(&nvme_rdma_ctrl_mutex); 953 list_del(&ctrl->list); 954 mutex_unlock(&nvme_rdma_ctrl_mutex); 955 956 nvmf_free_options(nctrl->opts); 957 free_ctrl: 958 kfree(ctrl->queues); 959 kfree(ctrl); 960 } 961 962 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 963 { 964 /* If we are resetting/deleting then do nothing */ 965 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 966 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 967 ctrl->ctrl.state == NVME_CTRL_LIVE); 968 return; 969 } 970 971 if (nvmf_should_reconnect(&ctrl->ctrl)) { 972 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 973 ctrl->ctrl.opts->reconnect_delay); 974 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 975 ctrl->ctrl.opts->reconnect_delay * HZ); 976 } else { 977 nvme_delete_ctrl(&ctrl->ctrl); 978 } 979 } 980 981 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 982 { 983 int ret = -EINVAL; 984 bool changed; 985 986 ret = nvme_rdma_configure_admin_queue(ctrl, new); 987 if (ret) 988 return ret; 989 990 if (ctrl->ctrl.icdoff) { 991 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 992 goto destroy_admin; 993 } 994 995 if (!(ctrl->ctrl.sgls & (1 << 2))) { 996 dev_err(ctrl->ctrl.device, 997 "Mandatory keyed sgls are not supported!\n"); 998 goto destroy_admin; 999 } 1000 1001 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1002 dev_warn(ctrl->ctrl.device, 1003 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1004 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1005 } 1006 1007 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1008 dev_warn(ctrl->ctrl.device, 1009 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1010 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1011 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1012 } 1013 1014 if (ctrl->ctrl.sgls & (1 << 20)) 1015 ctrl->use_inline_data = true; 1016 1017 if (ctrl->ctrl.queue_count > 1) { 1018 ret = nvme_rdma_configure_io_queues(ctrl, new); 1019 if (ret) 1020 goto destroy_admin; 1021 } 1022 1023 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1024 if (!changed) { 1025 /* state change failure is ok if we're in DELETING state */ 1026 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1027 ret = -EINVAL; 1028 goto destroy_io; 1029 } 1030 1031 nvme_start_ctrl(&ctrl->ctrl); 1032 return 0; 1033 1034 destroy_io: 1035 if (ctrl->ctrl.queue_count > 1) 1036 nvme_rdma_destroy_io_queues(ctrl, new); 1037 destroy_admin: 1038 nvme_rdma_stop_queue(&ctrl->queues[0]); 1039 nvme_rdma_destroy_admin_queue(ctrl, new); 1040 return ret; 1041 } 1042 1043 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1044 { 1045 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1046 struct nvme_rdma_ctrl, reconnect_work); 1047 1048 ++ctrl->ctrl.nr_reconnects; 1049 1050 if (nvme_rdma_setup_ctrl(ctrl, false)) 1051 goto requeue; 1052 1053 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1054 ctrl->ctrl.nr_reconnects); 1055 1056 ctrl->ctrl.nr_reconnects = 0; 1057 1058 return; 1059 1060 requeue: 1061 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1062 ctrl->ctrl.nr_reconnects); 1063 nvme_rdma_reconnect_or_remove(ctrl); 1064 } 1065 1066 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1067 { 1068 struct nvme_rdma_ctrl *ctrl = container_of(work, 1069 struct nvme_rdma_ctrl, err_work); 1070 1071 nvme_stop_keep_alive(&ctrl->ctrl); 1072 nvme_rdma_teardown_io_queues(ctrl, false); 1073 nvme_start_queues(&ctrl->ctrl); 1074 nvme_rdma_teardown_admin_queue(ctrl, false); 1075 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1076 1077 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1078 /* state change failure is ok if we're in DELETING state */ 1079 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1080 return; 1081 } 1082 1083 nvme_rdma_reconnect_or_remove(ctrl); 1084 } 1085 1086 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1087 { 1088 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1089 return; 1090 1091 queue_work(nvme_reset_wq, &ctrl->err_work); 1092 } 1093 1094 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1095 const char *op) 1096 { 1097 struct nvme_rdma_queue *queue = cq->cq_context; 1098 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1099 1100 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1101 dev_info(ctrl->ctrl.device, 1102 "%s for CQE 0x%p failed with status %s (%d)\n", 1103 op, wc->wr_cqe, 1104 ib_wc_status_msg(wc->status), wc->status); 1105 nvme_rdma_error_recovery(ctrl); 1106 } 1107 1108 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1109 { 1110 if (unlikely(wc->status != IB_WC_SUCCESS)) 1111 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1112 } 1113 1114 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1115 { 1116 struct nvme_rdma_request *req = 1117 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1118 struct request *rq = blk_mq_rq_from_pdu(req); 1119 1120 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1121 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1122 return; 1123 } 1124 1125 if (refcount_dec_and_test(&req->ref)) 1126 nvme_end_request(rq, req->status, req->result); 1127 1128 } 1129 1130 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1131 struct nvme_rdma_request *req) 1132 { 1133 struct ib_send_wr wr = { 1134 .opcode = IB_WR_LOCAL_INV, 1135 .next = NULL, 1136 .num_sge = 0, 1137 .send_flags = IB_SEND_SIGNALED, 1138 .ex.invalidate_rkey = req->mr->rkey, 1139 }; 1140 1141 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1142 wr.wr_cqe = &req->reg_cqe; 1143 1144 return ib_post_send(queue->qp, &wr, NULL); 1145 } 1146 1147 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1148 struct request *rq) 1149 { 1150 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1151 struct nvme_rdma_device *dev = queue->device; 1152 struct ib_device *ibdev = dev->dev; 1153 1154 if (!blk_rq_nr_phys_segments(rq)) 1155 return; 1156 1157 if (req->mr) { 1158 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1159 req->mr = NULL; 1160 } 1161 1162 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq)); 1163 sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT); 1164 } 1165 1166 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1167 { 1168 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1169 1170 sg->addr = 0; 1171 put_unaligned_le24(0, sg->length); 1172 put_unaligned_le32(0, sg->key); 1173 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1174 return 0; 1175 } 1176 1177 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1178 struct nvme_rdma_request *req, struct nvme_command *c, 1179 int count) 1180 { 1181 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1182 struct scatterlist *sgl = req->sg_table.sgl; 1183 struct ib_sge *sge = &req->sge[1]; 1184 u32 len = 0; 1185 int i; 1186 1187 for (i = 0; i < count; i++, sgl++, sge++) { 1188 sge->addr = sg_dma_address(sgl); 1189 sge->length = sg_dma_len(sgl); 1190 sge->lkey = queue->device->pd->local_dma_lkey; 1191 len += sge->length; 1192 } 1193 1194 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1195 sg->length = cpu_to_le32(len); 1196 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1197 1198 req->num_sge += count; 1199 return 0; 1200 } 1201 1202 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1203 struct nvme_rdma_request *req, struct nvme_command *c) 1204 { 1205 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1206 1207 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1208 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1209 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1210 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1211 return 0; 1212 } 1213 1214 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1215 struct nvme_rdma_request *req, struct nvme_command *c, 1216 int count) 1217 { 1218 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1219 int nr; 1220 1221 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1222 if (WARN_ON_ONCE(!req->mr)) 1223 return -EAGAIN; 1224 1225 /* 1226 * Align the MR to a 4K page size to match the ctrl page size and 1227 * the block virtual boundary. 1228 */ 1229 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1230 if (unlikely(nr < count)) { 1231 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1232 req->mr = NULL; 1233 if (nr < 0) 1234 return nr; 1235 return -EINVAL; 1236 } 1237 1238 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1239 1240 req->reg_cqe.done = nvme_rdma_memreg_done; 1241 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1242 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1243 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1244 req->reg_wr.wr.num_sge = 0; 1245 req->reg_wr.mr = req->mr; 1246 req->reg_wr.key = req->mr->rkey; 1247 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1248 IB_ACCESS_REMOTE_READ | 1249 IB_ACCESS_REMOTE_WRITE; 1250 1251 sg->addr = cpu_to_le64(req->mr->iova); 1252 put_unaligned_le24(req->mr->length, sg->length); 1253 put_unaligned_le32(req->mr->rkey, sg->key); 1254 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1255 NVME_SGL_FMT_INVALIDATE; 1256 1257 return 0; 1258 } 1259 1260 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1261 struct request *rq, struct nvme_command *c) 1262 { 1263 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1264 struct nvme_rdma_device *dev = queue->device; 1265 struct ib_device *ibdev = dev->dev; 1266 int count, ret; 1267 1268 req->num_sge = 1; 1269 refcount_set(&req->ref, 2); /* send and recv completions */ 1270 1271 c->common.flags |= NVME_CMD_SGL_METABUF; 1272 1273 if (!blk_rq_nr_phys_segments(rq)) 1274 return nvme_rdma_set_sg_null(c); 1275 1276 req->sg_table.sgl = req->first_sgl; 1277 ret = sg_alloc_table_chained(&req->sg_table, 1278 blk_rq_nr_phys_segments(rq), req->sg_table.sgl, 1279 NVME_INLINE_SG_CNT); 1280 if (ret) 1281 return -ENOMEM; 1282 1283 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1284 1285 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1286 rq_dma_dir(rq)); 1287 if (unlikely(count <= 0)) { 1288 ret = -EIO; 1289 goto out_free_table; 1290 } 1291 1292 if (count <= dev->num_inline_segments) { 1293 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1294 queue->ctrl->use_inline_data && 1295 blk_rq_payload_bytes(rq) <= 1296 nvme_rdma_inline_data_size(queue)) { 1297 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1298 goto out; 1299 } 1300 1301 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1302 ret = nvme_rdma_map_sg_single(queue, req, c); 1303 goto out; 1304 } 1305 } 1306 1307 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1308 out: 1309 if (unlikely(ret)) 1310 goto out_unmap_sg; 1311 1312 return 0; 1313 1314 out_unmap_sg: 1315 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq)); 1316 out_free_table: 1317 sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT); 1318 return ret; 1319 } 1320 1321 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1322 { 1323 struct nvme_rdma_qe *qe = 1324 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1325 struct nvme_rdma_request *req = 1326 container_of(qe, struct nvme_rdma_request, sqe); 1327 struct request *rq = blk_mq_rq_from_pdu(req); 1328 1329 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1330 nvme_rdma_wr_error(cq, wc, "SEND"); 1331 return; 1332 } 1333 1334 if (refcount_dec_and_test(&req->ref)) 1335 nvme_end_request(rq, req->status, req->result); 1336 } 1337 1338 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1339 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1340 struct ib_send_wr *first) 1341 { 1342 struct ib_send_wr wr; 1343 int ret; 1344 1345 sge->addr = qe->dma; 1346 sge->length = sizeof(struct nvme_command), 1347 sge->lkey = queue->device->pd->local_dma_lkey; 1348 1349 wr.next = NULL; 1350 wr.wr_cqe = &qe->cqe; 1351 wr.sg_list = sge; 1352 wr.num_sge = num_sge; 1353 wr.opcode = IB_WR_SEND; 1354 wr.send_flags = IB_SEND_SIGNALED; 1355 1356 if (first) 1357 first->next = ≀ 1358 else 1359 first = ≀ 1360 1361 ret = ib_post_send(queue->qp, first, NULL); 1362 if (unlikely(ret)) { 1363 dev_err(queue->ctrl->ctrl.device, 1364 "%s failed with error code %d\n", __func__, ret); 1365 } 1366 return ret; 1367 } 1368 1369 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1370 struct nvme_rdma_qe *qe) 1371 { 1372 struct ib_recv_wr wr; 1373 struct ib_sge list; 1374 int ret; 1375 1376 list.addr = qe->dma; 1377 list.length = sizeof(struct nvme_completion); 1378 list.lkey = queue->device->pd->local_dma_lkey; 1379 1380 qe->cqe.done = nvme_rdma_recv_done; 1381 1382 wr.next = NULL; 1383 wr.wr_cqe = &qe->cqe; 1384 wr.sg_list = &list; 1385 wr.num_sge = 1; 1386 1387 ret = ib_post_recv(queue->qp, &wr, NULL); 1388 if (unlikely(ret)) { 1389 dev_err(queue->ctrl->ctrl.device, 1390 "%s failed with error code %d\n", __func__, ret); 1391 } 1392 return ret; 1393 } 1394 1395 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1396 { 1397 u32 queue_idx = nvme_rdma_queue_idx(queue); 1398 1399 if (queue_idx == 0) 1400 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1401 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1402 } 1403 1404 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1405 { 1406 if (unlikely(wc->status != IB_WC_SUCCESS)) 1407 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1408 } 1409 1410 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1411 { 1412 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1413 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1414 struct ib_device *dev = queue->device->dev; 1415 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1416 struct nvme_command *cmd = sqe->data; 1417 struct ib_sge sge; 1418 int ret; 1419 1420 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1421 1422 memset(cmd, 0, sizeof(*cmd)); 1423 cmd->common.opcode = nvme_admin_async_event; 1424 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1425 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1426 nvme_rdma_set_sg_null(cmd); 1427 1428 sqe->cqe.done = nvme_rdma_async_done; 1429 1430 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1431 DMA_TO_DEVICE); 1432 1433 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1434 WARN_ON_ONCE(ret); 1435 } 1436 1437 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1438 struct nvme_completion *cqe, struct ib_wc *wc) 1439 { 1440 struct request *rq; 1441 struct nvme_rdma_request *req; 1442 1443 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1444 if (!rq) { 1445 dev_err(queue->ctrl->ctrl.device, 1446 "tag 0x%x on QP %#x not found\n", 1447 cqe->command_id, queue->qp->qp_num); 1448 nvme_rdma_error_recovery(queue->ctrl); 1449 return; 1450 } 1451 req = blk_mq_rq_to_pdu(rq); 1452 1453 req->status = cqe->status; 1454 req->result = cqe->result; 1455 1456 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1457 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1458 dev_err(queue->ctrl->ctrl.device, 1459 "Bogus remote invalidation for rkey %#x\n", 1460 req->mr->rkey); 1461 nvme_rdma_error_recovery(queue->ctrl); 1462 } 1463 } else if (req->mr) { 1464 int ret; 1465 1466 ret = nvme_rdma_inv_rkey(queue, req); 1467 if (unlikely(ret < 0)) { 1468 dev_err(queue->ctrl->ctrl.device, 1469 "Queueing INV WR for rkey %#x failed (%d)\n", 1470 req->mr->rkey, ret); 1471 nvme_rdma_error_recovery(queue->ctrl); 1472 } 1473 /* the local invalidation completion will end the request */ 1474 return; 1475 } 1476 1477 if (refcount_dec_and_test(&req->ref)) 1478 nvme_end_request(rq, req->status, req->result); 1479 } 1480 1481 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1482 { 1483 struct nvme_rdma_qe *qe = 1484 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1485 struct nvme_rdma_queue *queue = cq->cq_context; 1486 struct ib_device *ibdev = queue->device->dev; 1487 struct nvme_completion *cqe = qe->data; 1488 const size_t len = sizeof(struct nvme_completion); 1489 1490 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1491 nvme_rdma_wr_error(cq, wc, "RECV"); 1492 return; 1493 } 1494 1495 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1496 /* 1497 * AEN requests are special as they don't time out and can 1498 * survive any kind of queue freeze and often don't respond to 1499 * aborts. We don't even bother to allocate a struct request 1500 * for them but rather special case them here. 1501 */ 1502 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1503 cqe->command_id))) 1504 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1505 &cqe->result); 1506 else 1507 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1508 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1509 1510 nvme_rdma_post_recv(queue, qe); 1511 } 1512 1513 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1514 { 1515 int ret, i; 1516 1517 for (i = 0; i < queue->queue_size; i++) { 1518 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1519 if (ret) 1520 goto out_destroy_queue_ib; 1521 } 1522 1523 return 0; 1524 1525 out_destroy_queue_ib: 1526 nvme_rdma_destroy_queue_ib(queue); 1527 return ret; 1528 } 1529 1530 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1531 struct rdma_cm_event *ev) 1532 { 1533 struct rdma_cm_id *cm_id = queue->cm_id; 1534 int status = ev->status; 1535 const char *rej_msg; 1536 const struct nvme_rdma_cm_rej *rej_data; 1537 u8 rej_data_len; 1538 1539 rej_msg = rdma_reject_msg(cm_id, status); 1540 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1541 1542 if (rej_data && rej_data_len >= sizeof(u16)) { 1543 u16 sts = le16_to_cpu(rej_data->sts); 1544 1545 dev_err(queue->ctrl->ctrl.device, 1546 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1547 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1548 } else { 1549 dev_err(queue->ctrl->ctrl.device, 1550 "Connect rejected: status %d (%s).\n", status, rej_msg); 1551 } 1552 1553 return -ECONNRESET; 1554 } 1555 1556 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1557 { 1558 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1559 int ret; 1560 1561 ret = nvme_rdma_create_queue_ib(queue); 1562 if (ret) 1563 return ret; 1564 1565 if (ctrl->opts->tos >= 0) 1566 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1567 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1568 if (ret) { 1569 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1570 queue->cm_error); 1571 goto out_destroy_queue; 1572 } 1573 1574 return 0; 1575 1576 out_destroy_queue: 1577 nvme_rdma_destroy_queue_ib(queue); 1578 return ret; 1579 } 1580 1581 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1582 { 1583 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1584 struct rdma_conn_param param = { }; 1585 struct nvme_rdma_cm_req priv = { }; 1586 int ret; 1587 1588 param.qp_num = queue->qp->qp_num; 1589 param.flow_control = 1; 1590 1591 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1592 /* maximum retry count */ 1593 param.retry_count = 7; 1594 param.rnr_retry_count = 7; 1595 param.private_data = &priv; 1596 param.private_data_len = sizeof(priv); 1597 1598 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1599 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1600 /* 1601 * set the admin queue depth to the minimum size 1602 * specified by the Fabrics standard. 1603 */ 1604 if (priv.qid == 0) { 1605 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1606 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1607 } else { 1608 /* 1609 * current interpretation of the fabrics spec 1610 * is at minimum you make hrqsize sqsize+1, or a 1611 * 1's based representation of sqsize. 1612 */ 1613 priv.hrqsize = cpu_to_le16(queue->queue_size); 1614 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1615 } 1616 1617 ret = rdma_connect(queue->cm_id, ¶m); 1618 if (ret) { 1619 dev_err(ctrl->ctrl.device, 1620 "rdma_connect failed (%d).\n", ret); 1621 goto out_destroy_queue_ib; 1622 } 1623 1624 return 0; 1625 1626 out_destroy_queue_ib: 1627 nvme_rdma_destroy_queue_ib(queue); 1628 return ret; 1629 } 1630 1631 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1632 struct rdma_cm_event *ev) 1633 { 1634 struct nvme_rdma_queue *queue = cm_id->context; 1635 int cm_error = 0; 1636 1637 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1638 rdma_event_msg(ev->event), ev->event, 1639 ev->status, cm_id); 1640 1641 switch (ev->event) { 1642 case RDMA_CM_EVENT_ADDR_RESOLVED: 1643 cm_error = nvme_rdma_addr_resolved(queue); 1644 break; 1645 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1646 cm_error = nvme_rdma_route_resolved(queue); 1647 break; 1648 case RDMA_CM_EVENT_ESTABLISHED: 1649 queue->cm_error = nvme_rdma_conn_established(queue); 1650 /* complete cm_done regardless of success/failure */ 1651 complete(&queue->cm_done); 1652 return 0; 1653 case RDMA_CM_EVENT_REJECTED: 1654 nvme_rdma_destroy_queue_ib(queue); 1655 cm_error = nvme_rdma_conn_rejected(queue, ev); 1656 break; 1657 case RDMA_CM_EVENT_ROUTE_ERROR: 1658 case RDMA_CM_EVENT_CONNECT_ERROR: 1659 case RDMA_CM_EVENT_UNREACHABLE: 1660 nvme_rdma_destroy_queue_ib(queue); 1661 /* fall through */ 1662 case RDMA_CM_EVENT_ADDR_ERROR: 1663 dev_dbg(queue->ctrl->ctrl.device, 1664 "CM error event %d\n", ev->event); 1665 cm_error = -ECONNRESET; 1666 break; 1667 case RDMA_CM_EVENT_DISCONNECTED: 1668 case RDMA_CM_EVENT_ADDR_CHANGE: 1669 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1670 dev_dbg(queue->ctrl->ctrl.device, 1671 "disconnect received - connection closed\n"); 1672 nvme_rdma_error_recovery(queue->ctrl); 1673 break; 1674 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1675 /* device removal is handled via the ib_client API */ 1676 break; 1677 default: 1678 dev_err(queue->ctrl->ctrl.device, 1679 "Unexpected RDMA CM event (%d)\n", ev->event); 1680 nvme_rdma_error_recovery(queue->ctrl); 1681 break; 1682 } 1683 1684 if (cm_error) { 1685 queue->cm_error = cm_error; 1686 complete(&queue->cm_done); 1687 } 1688 1689 return 0; 1690 } 1691 1692 static enum blk_eh_timer_return 1693 nvme_rdma_timeout(struct request *rq, bool reserved) 1694 { 1695 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1696 struct nvme_rdma_queue *queue = req->queue; 1697 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1698 1699 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1700 rq->tag, nvme_rdma_queue_idx(queue)); 1701 1702 /* 1703 * Restart the timer if a controller reset is already scheduled. Any 1704 * timed out commands would be handled before entering the connecting 1705 * state. 1706 */ 1707 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 1708 return BLK_EH_RESET_TIMER; 1709 1710 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1711 /* 1712 * Teardown immediately if controller times out while starting 1713 * or we are already started error recovery. all outstanding 1714 * requests are completed on shutdown, so we return BLK_EH_DONE. 1715 */ 1716 flush_work(&ctrl->err_work); 1717 nvme_rdma_teardown_io_queues(ctrl, false); 1718 nvme_rdma_teardown_admin_queue(ctrl, false); 1719 return BLK_EH_DONE; 1720 } 1721 1722 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1723 nvme_rdma_error_recovery(ctrl); 1724 1725 return BLK_EH_RESET_TIMER; 1726 } 1727 1728 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1729 const struct blk_mq_queue_data *bd) 1730 { 1731 struct nvme_ns *ns = hctx->queue->queuedata; 1732 struct nvme_rdma_queue *queue = hctx->driver_data; 1733 struct request *rq = bd->rq; 1734 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1735 struct nvme_rdma_qe *sqe = &req->sqe; 1736 struct nvme_command *c = sqe->data; 1737 struct ib_device *dev; 1738 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1739 blk_status_t ret; 1740 int err; 1741 1742 WARN_ON_ONCE(rq->tag < 0); 1743 1744 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1745 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1746 1747 dev = queue->device->dev; 1748 1749 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 1750 sizeof(struct nvme_command), 1751 DMA_TO_DEVICE); 1752 err = ib_dma_mapping_error(dev, req->sqe.dma); 1753 if (unlikely(err)) 1754 return BLK_STS_RESOURCE; 1755 1756 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1757 sizeof(struct nvme_command), DMA_TO_DEVICE); 1758 1759 ret = nvme_setup_cmd(ns, rq, c); 1760 if (ret) 1761 goto unmap_qe; 1762 1763 blk_mq_start_request(rq); 1764 1765 err = nvme_rdma_map_data(queue, rq, c); 1766 if (unlikely(err < 0)) { 1767 dev_err(queue->ctrl->ctrl.device, 1768 "Failed to map data (%d)\n", err); 1769 goto err; 1770 } 1771 1772 sqe->cqe.done = nvme_rdma_send_done; 1773 1774 ib_dma_sync_single_for_device(dev, sqe->dma, 1775 sizeof(struct nvme_command), DMA_TO_DEVICE); 1776 1777 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1778 req->mr ? &req->reg_wr.wr : NULL); 1779 if (unlikely(err)) 1780 goto err_unmap; 1781 1782 return BLK_STS_OK; 1783 1784 err_unmap: 1785 nvme_rdma_unmap_data(queue, rq); 1786 err: 1787 if (err == -ENOMEM || err == -EAGAIN) 1788 ret = BLK_STS_RESOURCE; 1789 else 1790 ret = BLK_STS_IOERR; 1791 nvme_cleanup_cmd(rq); 1792 unmap_qe: 1793 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 1794 DMA_TO_DEVICE); 1795 return ret; 1796 } 1797 1798 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1799 { 1800 struct nvme_rdma_queue *queue = hctx->driver_data; 1801 1802 return ib_process_cq_direct(queue->ib_cq, -1); 1803 } 1804 1805 static void nvme_rdma_complete_rq(struct request *rq) 1806 { 1807 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1808 struct nvme_rdma_queue *queue = req->queue; 1809 struct ib_device *ibdev = queue->device->dev; 1810 1811 nvme_rdma_unmap_data(queue, rq); 1812 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 1813 DMA_TO_DEVICE); 1814 nvme_complete_rq(rq); 1815 } 1816 1817 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1818 { 1819 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1820 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1821 1822 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 1823 /* separate read/write queues */ 1824 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1825 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1826 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1827 set->map[HCTX_TYPE_READ].nr_queues = 1828 ctrl->io_queues[HCTX_TYPE_READ]; 1829 set->map[HCTX_TYPE_READ].queue_offset = 1830 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1831 } else { 1832 /* shared read/write queues */ 1833 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1834 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1835 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1836 set->map[HCTX_TYPE_READ].nr_queues = 1837 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1838 set->map[HCTX_TYPE_READ].queue_offset = 0; 1839 } 1840 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1841 ctrl->device->dev, 0); 1842 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1843 ctrl->device->dev, 0); 1844 1845 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 1846 /* map dedicated poll queues only if we have queues left */ 1847 set->map[HCTX_TYPE_POLL].nr_queues = 1848 ctrl->io_queues[HCTX_TYPE_POLL]; 1849 set->map[HCTX_TYPE_POLL].queue_offset = 1850 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1851 ctrl->io_queues[HCTX_TYPE_READ]; 1852 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1853 } 1854 1855 dev_info(ctrl->ctrl.device, 1856 "mapped %d/%d/%d default/read/poll queues.\n", 1857 ctrl->io_queues[HCTX_TYPE_DEFAULT], 1858 ctrl->io_queues[HCTX_TYPE_READ], 1859 ctrl->io_queues[HCTX_TYPE_POLL]); 1860 1861 return 0; 1862 } 1863 1864 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1865 .queue_rq = nvme_rdma_queue_rq, 1866 .complete = nvme_rdma_complete_rq, 1867 .init_request = nvme_rdma_init_request, 1868 .exit_request = nvme_rdma_exit_request, 1869 .init_hctx = nvme_rdma_init_hctx, 1870 .timeout = nvme_rdma_timeout, 1871 .map_queues = nvme_rdma_map_queues, 1872 .poll = nvme_rdma_poll, 1873 }; 1874 1875 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1876 .queue_rq = nvme_rdma_queue_rq, 1877 .complete = nvme_rdma_complete_rq, 1878 .init_request = nvme_rdma_init_request, 1879 .exit_request = nvme_rdma_exit_request, 1880 .init_hctx = nvme_rdma_init_admin_hctx, 1881 .timeout = nvme_rdma_timeout, 1882 }; 1883 1884 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1885 { 1886 cancel_work_sync(&ctrl->err_work); 1887 cancel_delayed_work_sync(&ctrl->reconnect_work); 1888 1889 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1890 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1891 if (shutdown) 1892 nvme_shutdown_ctrl(&ctrl->ctrl); 1893 else 1894 nvme_disable_ctrl(&ctrl->ctrl); 1895 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1896 } 1897 1898 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1899 { 1900 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1901 } 1902 1903 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1904 { 1905 struct nvme_rdma_ctrl *ctrl = 1906 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1907 1908 nvme_stop_ctrl(&ctrl->ctrl); 1909 nvme_rdma_shutdown_ctrl(ctrl, false); 1910 1911 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1912 /* state change failure should never happen */ 1913 WARN_ON_ONCE(1); 1914 return; 1915 } 1916 1917 if (nvme_rdma_setup_ctrl(ctrl, false)) 1918 goto out_fail; 1919 1920 return; 1921 1922 out_fail: 1923 ++ctrl->ctrl.nr_reconnects; 1924 nvme_rdma_reconnect_or_remove(ctrl); 1925 } 1926 1927 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1928 .name = "rdma", 1929 .module = THIS_MODULE, 1930 .flags = NVME_F_FABRICS, 1931 .reg_read32 = nvmf_reg_read32, 1932 .reg_read64 = nvmf_reg_read64, 1933 .reg_write32 = nvmf_reg_write32, 1934 .free_ctrl = nvme_rdma_free_ctrl, 1935 .submit_async_event = nvme_rdma_submit_async_event, 1936 .delete_ctrl = nvme_rdma_delete_ctrl, 1937 .get_address = nvmf_get_address, 1938 }; 1939 1940 /* 1941 * Fails a connection request if it matches an existing controller 1942 * (association) with the same tuple: 1943 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1944 * 1945 * if local address is not specified in the request, it will match an 1946 * existing controller with all the other parameters the same and no 1947 * local port address specified as well. 1948 * 1949 * The ports don't need to be compared as they are intrinsically 1950 * already matched by the port pointers supplied. 1951 */ 1952 static bool 1953 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1954 { 1955 struct nvme_rdma_ctrl *ctrl; 1956 bool found = false; 1957 1958 mutex_lock(&nvme_rdma_ctrl_mutex); 1959 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1960 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1961 if (found) 1962 break; 1963 } 1964 mutex_unlock(&nvme_rdma_ctrl_mutex); 1965 1966 return found; 1967 } 1968 1969 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1970 struct nvmf_ctrl_options *opts) 1971 { 1972 struct nvme_rdma_ctrl *ctrl; 1973 int ret; 1974 bool changed; 1975 1976 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1977 if (!ctrl) 1978 return ERR_PTR(-ENOMEM); 1979 ctrl->ctrl.opts = opts; 1980 INIT_LIST_HEAD(&ctrl->list); 1981 1982 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1983 opts->trsvcid = 1984 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1985 if (!opts->trsvcid) { 1986 ret = -ENOMEM; 1987 goto out_free_ctrl; 1988 } 1989 opts->mask |= NVMF_OPT_TRSVCID; 1990 } 1991 1992 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1993 opts->traddr, opts->trsvcid, &ctrl->addr); 1994 if (ret) { 1995 pr_err("malformed address passed: %s:%s\n", 1996 opts->traddr, opts->trsvcid); 1997 goto out_free_ctrl; 1998 } 1999 2000 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2001 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2002 opts->host_traddr, NULL, &ctrl->src_addr); 2003 if (ret) { 2004 pr_err("malformed src address passed: %s\n", 2005 opts->host_traddr); 2006 goto out_free_ctrl; 2007 } 2008 } 2009 2010 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2011 ret = -EALREADY; 2012 goto out_free_ctrl; 2013 } 2014 2015 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2016 nvme_rdma_reconnect_ctrl_work); 2017 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2018 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2019 2020 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2021 opts->nr_poll_queues + 1; 2022 ctrl->ctrl.sqsize = opts->queue_size - 1; 2023 ctrl->ctrl.kato = opts->kato; 2024 2025 ret = -ENOMEM; 2026 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2027 GFP_KERNEL); 2028 if (!ctrl->queues) 2029 goto out_free_ctrl; 2030 2031 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2032 0 /* no quirks, we're perfect! */); 2033 if (ret) 2034 goto out_kfree_queues; 2035 2036 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2037 WARN_ON_ONCE(!changed); 2038 2039 ret = nvme_rdma_setup_ctrl(ctrl, true); 2040 if (ret) 2041 goto out_uninit_ctrl; 2042 2043 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2044 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2045 2046 nvme_get_ctrl(&ctrl->ctrl); 2047 2048 mutex_lock(&nvme_rdma_ctrl_mutex); 2049 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2050 mutex_unlock(&nvme_rdma_ctrl_mutex); 2051 2052 return &ctrl->ctrl; 2053 2054 out_uninit_ctrl: 2055 nvme_uninit_ctrl(&ctrl->ctrl); 2056 nvme_put_ctrl(&ctrl->ctrl); 2057 if (ret > 0) 2058 ret = -EIO; 2059 return ERR_PTR(ret); 2060 out_kfree_queues: 2061 kfree(ctrl->queues); 2062 out_free_ctrl: 2063 kfree(ctrl); 2064 return ERR_PTR(ret); 2065 } 2066 2067 static struct nvmf_transport_ops nvme_rdma_transport = { 2068 .name = "rdma", 2069 .module = THIS_MODULE, 2070 .required_opts = NVMF_OPT_TRADDR, 2071 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2072 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2073 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2074 NVMF_OPT_TOS, 2075 .create_ctrl = nvme_rdma_create_ctrl, 2076 }; 2077 2078 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2079 { 2080 struct nvme_rdma_ctrl *ctrl; 2081 struct nvme_rdma_device *ndev; 2082 bool found = false; 2083 2084 mutex_lock(&device_list_mutex); 2085 list_for_each_entry(ndev, &device_list, entry) { 2086 if (ndev->dev == ib_device) { 2087 found = true; 2088 break; 2089 } 2090 } 2091 mutex_unlock(&device_list_mutex); 2092 2093 if (!found) 2094 return; 2095 2096 /* Delete all controllers using this device */ 2097 mutex_lock(&nvme_rdma_ctrl_mutex); 2098 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2099 if (ctrl->device->dev != ib_device) 2100 continue; 2101 nvme_delete_ctrl(&ctrl->ctrl); 2102 } 2103 mutex_unlock(&nvme_rdma_ctrl_mutex); 2104 2105 flush_workqueue(nvme_delete_wq); 2106 } 2107 2108 static struct ib_client nvme_rdma_ib_client = { 2109 .name = "nvme_rdma", 2110 .remove = nvme_rdma_remove_one 2111 }; 2112 2113 static int __init nvme_rdma_init_module(void) 2114 { 2115 int ret; 2116 2117 ret = ib_register_client(&nvme_rdma_ib_client); 2118 if (ret) 2119 return ret; 2120 2121 ret = nvmf_register_transport(&nvme_rdma_transport); 2122 if (ret) 2123 goto err_unreg_client; 2124 2125 return 0; 2126 2127 err_unreg_client: 2128 ib_unregister_client(&nvme_rdma_ib_client); 2129 return ret; 2130 } 2131 2132 static void __exit nvme_rdma_cleanup_module(void) 2133 { 2134 struct nvme_rdma_ctrl *ctrl; 2135 2136 nvmf_unregister_transport(&nvme_rdma_transport); 2137 ib_unregister_client(&nvme_rdma_ib_client); 2138 2139 mutex_lock(&nvme_rdma_ctrl_mutex); 2140 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2141 nvme_delete_ctrl(&ctrl->ctrl); 2142 mutex_unlock(&nvme_rdma_ctrl_mutex); 2143 flush_workqueue(nvme_delete_wq); 2144 } 2145 2146 module_init(nvme_rdma_init_module); 2147 module_exit(nvme_rdma_cleanup_module); 2148 2149 MODULE_LICENSE("GPL v2"); 2150