xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 76426e23)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 struct nvme_rdma_device {
38 	struct ib_device	*dev;
39 	struct ib_pd		*pd;
40 	struct kref		ref;
41 	struct list_head	entry;
42 	unsigned int		num_inline_segments;
43 };
44 
45 struct nvme_rdma_qe {
46 	struct ib_cqe		cqe;
47 	void			*data;
48 	u64			dma;
49 };
50 
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 	struct nvme_request	req;
54 	struct ib_mr		*mr;
55 	struct nvme_rdma_qe	sqe;
56 	union nvme_result	result;
57 	__le16			status;
58 	refcount_t		ref;
59 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 	u32			num_sge;
61 	int			nents;
62 	struct ib_reg_wr	reg_wr;
63 	struct ib_cqe		reg_cqe;
64 	struct nvme_rdma_queue  *queue;
65 	struct sg_table		sg_table;
66 	struct scatterlist	first_sgl[];
67 };
68 
69 enum nvme_rdma_queue_flags {
70 	NVME_RDMA_Q_ALLOCATED		= 0,
71 	NVME_RDMA_Q_LIVE		= 1,
72 	NVME_RDMA_Q_TR_READY		= 2,
73 };
74 
75 struct nvme_rdma_queue {
76 	struct nvme_rdma_qe	*rsp_ring;
77 	int			queue_size;
78 	size_t			cmnd_capsule_len;
79 	struct nvme_rdma_ctrl	*ctrl;
80 	struct nvme_rdma_device	*device;
81 	struct ib_cq		*ib_cq;
82 	struct ib_qp		*qp;
83 
84 	unsigned long		flags;
85 	struct rdma_cm_id	*cm_id;
86 	int			cm_error;
87 	struct completion	cm_done;
88 };
89 
90 struct nvme_rdma_ctrl {
91 	/* read only in the hot path */
92 	struct nvme_rdma_queue	*queues;
93 
94 	/* other member variables */
95 	struct blk_mq_tag_set	tag_set;
96 	struct work_struct	err_work;
97 
98 	struct nvme_rdma_qe	async_event_sqe;
99 
100 	struct delayed_work	reconnect_work;
101 
102 	struct list_head	list;
103 
104 	struct blk_mq_tag_set	admin_tag_set;
105 	struct nvme_rdma_device	*device;
106 
107 	u32			max_fr_pages;
108 
109 	struct sockaddr_storage addr;
110 	struct sockaddr_storage src_addr;
111 
112 	struct nvme_ctrl	ctrl;
113 	bool			use_inline_data;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121 
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124 
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127 
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 	 "Use memory registration even for contiguous memory regions");
137 
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 		struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141 
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144 
145 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
146 {
147 	return queue - queue->ctrl->queues;
148 }
149 
150 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
151 {
152 	return nvme_rdma_queue_idx(queue) >
153 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
154 		queue->ctrl->io_queues[HCTX_TYPE_READ];
155 }
156 
157 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
158 {
159 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
160 }
161 
162 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
163 		size_t capsule_size, enum dma_data_direction dir)
164 {
165 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
166 	kfree(qe->data);
167 }
168 
169 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
170 		size_t capsule_size, enum dma_data_direction dir)
171 {
172 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
173 	if (!qe->data)
174 		return -ENOMEM;
175 
176 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
177 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
178 		kfree(qe->data);
179 		qe->data = NULL;
180 		return -ENOMEM;
181 	}
182 
183 	return 0;
184 }
185 
186 static void nvme_rdma_free_ring(struct ib_device *ibdev,
187 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
188 		size_t capsule_size, enum dma_data_direction dir)
189 {
190 	int i;
191 
192 	for (i = 0; i < ib_queue_size; i++)
193 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
194 	kfree(ring);
195 }
196 
197 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
198 		size_t ib_queue_size, size_t capsule_size,
199 		enum dma_data_direction dir)
200 {
201 	struct nvme_rdma_qe *ring;
202 	int i;
203 
204 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
205 	if (!ring)
206 		return NULL;
207 
208 	/*
209 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
210 	 * lifetime. It's safe, since any chage in the underlying RDMA device
211 	 * will issue error recovery and queue re-creation.
212 	 */
213 	for (i = 0; i < ib_queue_size; i++) {
214 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215 			goto out_free_ring;
216 	}
217 
218 	return ring;
219 
220 out_free_ring:
221 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222 	return NULL;
223 }
224 
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227 	pr_debug("QP event %s (%d)\n",
228 		 ib_event_msg(event->event), event->event);
229 
230 }
231 
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234 	int ret;
235 
236 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
237 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
238 	if (ret < 0)
239 		return ret;
240 	if (ret == 0)
241 		return -ETIMEDOUT;
242 	WARN_ON_ONCE(queue->cm_error > 0);
243 	return queue->cm_error;
244 }
245 
246 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
247 {
248 	struct nvme_rdma_device *dev = queue->device;
249 	struct ib_qp_init_attr init_attr;
250 	int ret;
251 
252 	memset(&init_attr, 0, sizeof(init_attr));
253 	init_attr.event_handler = nvme_rdma_qp_event;
254 	/* +1 for drain */
255 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
256 	/* +1 for drain */
257 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
258 	init_attr.cap.max_recv_sge = 1;
259 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
260 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
261 	init_attr.qp_type = IB_QPT_RC;
262 	init_attr.send_cq = queue->ib_cq;
263 	init_attr.recv_cq = queue->ib_cq;
264 
265 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
266 
267 	queue->qp = queue->cm_id->qp;
268 	return ret;
269 }
270 
271 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
272 		struct request *rq, unsigned int hctx_idx)
273 {
274 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
275 
276 	kfree(req->sqe.data);
277 }
278 
279 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
280 		struct request *rq, unsigned int hctx_idx,
281 		unsigned int numa_node)
282 {
283 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
284 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
285 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
286 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
287 
288 	nvme_req(rq)->ctrl = &ctrl->ctrl;
289 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
290 	if (!req->sqe.data)
291 		return -ENOMEM;
292 
293 	req->queue = queue;
294 
295 	return 0;
296 }
297 
298 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
299 		unsigned int hctx_idx)
300 {
301 	struct nvme_rdma_ctrl *ctrl = data;
302 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
303 
304 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
305 
306 	hctx->driver_data = queue;
307 	return 0;
308 }
309 
310 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311 		unsigned int hctx_idx)
312 {
313 	struct nvme_rdma_ctrl *ctrl = data;
314 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
315 
316 	BUG_ON(hctx_idx != 0);
317 
318 	hctx->driver_data = queue;
319 	return 0;
320 }
321 
322 static void nvme_rdma_free_dev(struct kref *ref)
323 {
324 	struct nvme_rdma_device *ndev =
325 		container_of(ref, struct nvme_rdma_device, ref);
326 
327 	mutex_lock(&device_list_mutex);
328 	list_del(&ndev->entry);
329 	mutex_unlock(&device_list_mutex);
330 
331 	ib_dealloc_pd(ndev->pd);
332 	kfree(ndev);
333 }
334 
335 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
336 {
337 	kref_put(&dev->ref, nvme_rdma_free_dev);
338 }
339 
340 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
341 {
342 	return kref_get_unless_zero(&dev->ref);
343 }
344 
345 static struct nvme_rdma_device *
346 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
347 {
348 	struct nvme_rdma_device *ndev;
349 
350 	mutex_lock(&device_list_mutex);
351 	list_for_each_entry(ndev, &device_list, entry) {
352 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
353 		    nvme_rdma_dev_get(ndev))
354 			goto out_unlock;
355 	}
356 
357 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
358 	if (!ndev)
359 		goto out_err;
360 
361 	ndev->dev = cm_id->device;
362 	kref_init(&ndev->ref);
363 
364 	ndev->pd = ib_alloc_pd(ndev->dev,
365 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
366 	if (IS_ERR(ndev->pd))
367 		goto out_free_dev;
368 
369 	if (!(ndev->dev->attrs.device_cap_flags &
370 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
371 		dev_err(&ndev->dev->dev,
372 			"Memory registrations not supported.\n");
373 		goto out_free_pd;
374 	}
375 
376 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
377 					ndev->dev->attrs.max_send_sge - 1);
378 	list_add(&ndev->entry, &device_list);
379 out_unlock:
380 	mutex_unlock(&device_list_mutex);
381 	return ndev;
382 
383 out_free_pd:
384 	ib_dealloc_pd(ndev->pd);
385 out_free_dev:
386 	kfree(ndev);
387 out_err:
388 	mutex_unlock(&device_list_mutex);
389 	return NULL;
390 }
391 
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
393 {
394 	struct nvme_rdma_device *dev;
395 	struct ib_device *ibdev;
396 
397 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
398 		return;
399 
400 	dev = queue->device;
401 	ibdev = dev->dev;
402 
403 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
404 
405 	/*
406 	 * The cm_id object might have been destroyed during RDMA connection
407 	 * establishment error flow to avoid getting other cma events, thus
408 	 * the destruction of the QP shouldn't use rdma_cm API.
409 	 */
410 	ib_destroy_qp(queue->qp);
411 	ib_free_cq(queue->ib_cq);
412 
413 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
414 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
415 
416 	nvme_rdma_dev_put(dev);
417 }
418 
419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
420 {
421 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
422 		     ibdev->attrs.max_fast_reg_page_list_len - 1);
423 }
424 
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
426 {
427 	struct ib_device *ibdev;
428 	const int send_wr_factor = 3;			/* MR, SEND, INV */
429 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
430 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
431 	enum ib_poll_context poll_ctx;
432 	int ret, pages_per_mr;
433 
434 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
435 	if (!queue->device) {
436 		dev_err(queue->cm_id->device->dev.parent,
437 			"no client data found!\n");
438 		return -ECONNREFUSED;
439 	}
440 	ibdev = queue->device->dev;
441 
442 	/*
443 	 * Spread I/O queues completion vectors according their queue index.
444 	 * Admin queues can always go on completion vector 0.
445 	 */
446 	comp_vector = idx == 0 ? idx : idx - 1;
447 
448 	/* Polling queues need direct cq polling context */
449 	if (nvme_rdma_poll_queue(queue))
450 		poll_ctx = IB_POLL_DIRECT;
451 	else
452 		poll_ctx = IB_POLL_SOFTIRQ;
453 
454 	/* +1 for ib_stop_cq */
455 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
456 				cq_factor * queue->queue_size + 1,
457 				comp_vector, poll_ctx);
458 	if (IS_ERR(queue->ib_cq)) {
459 		ret = PTR_ERR(queue->ib_cq);
460 		goto out_put_dev;
461 	}
462 
463 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
464 	if (ret)
465 		goto out_destroy_ib_cq;
466 
467 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
468 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
469 	if (!queue->rsp_ring) {
470 		ret = -ENOMEM;
471 		goto out_destroy_qp;
472 	}
473 
474 	/*
475 	 * Currently we don't use SG_GAPS MR's so if the first entry is
476 	 * misaligned we'll end up using two entries for a single data page,
477 	 * so one additional entry is required.
478 	 */
479 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
480 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
481 			      queue->queue_size,
482 			      IB_MR_TYPE_MEM_REG,
483 			      pages_per_mr, 0);
484 	if (ret) {
485 		dev_err(queue->ctrl->ctrl.device,
486 			"failed to initialize MR pool sized %d for QID %d\n",
487 			queue->queue_size, idx);
488 		goto out_destroy_ring;
489 	}
490 
491 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
492 
493 	return 0;
494 
495 out_destroy_ring:
496 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
497 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
498 out_destroy_qp:
499 	rdma_destroy_qp(queue->cm_id);
500 out_destroy_ib_cq:
501 	ib_free_cq(queue->ib_cq);
502 out_put_dev:
503 	nvme_rdma_dev_put(queue->device);
504 	return ret;
505 }
506 
507 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
508 		int idx, size_t queue_size)
509 {
510 	struct nvme_rdma_queue *queue;
511 	struct sockaddr *src_addr = NULL;
512 	int ret;
513 
514 	queue = &ctrl->queues[idx];
515 	queue->ctrl = ctrl;
516 	init_completion(&queue->cm_done);
517 
518 	if (idx > 0)
519 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
520 	else
521 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
522 
523 	queue->queue_size = queue_size;
524 
525 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
526 			RDMA_PS_TCP, IB_QPT_RC);
527 	if (IS_ERR(queue->cm_id)) {
528 		dev_info(ctrl->ctrl.device,
529 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
530 		return PTR_ERR(queue->cm_id);
531 	}
532 
533 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
534 		src_addr = (struct sockaddr *)&ctrl->src_addr;
535 
536 	queue->cm_error = -ETIMEDOUT;
537 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
538 			(struct sockaddr *)&ctrl->addr,
539 			NVME_RDMA_CONNECT_TIMEOUT_MS);
540 	if (ret) {
541 		dev_info(ctrl->ctrl.device,
542 			"rdma_resolve_addr failed (%d).\n", ret);
543 		goto out_destroy_cm_id;
544 	}
545 
546 	ret = nvme_rdma_wait_for_cm(queue);
547 	if (ret) {
548 		dev_info(ctrl->ctrl.device,
549 			"rdma connection establishment failed (%d)\n", ret);
550 		goto out_destroy_cm_id;
551 	}
552 
553 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
554 
555 	return 0;
556 
557 out_destroy_cm_id:
558 	rdma_destroy_id(queue->cm_id);
559 	nvme_rdma_destroy_queue_ib(queue);
560 	return ret;
561 }
562 
563 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
564 {
565 	rdma_disconnect(queue->cm_id);
566 	ib_drain_qp(queue->qp);
567 }
568 
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
570 {
571 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
572 		return;
573 	__nvme_rdma_stop_queue(queue);
574 }
575 
576 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
577 {
578 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
579 		return;
580 
581 	nvme_rdma_destroy_queue_ib(queue);
582 	rdma_destroy_id(queue->cm_id);
583 }
584 
585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
586 {
587 	int i;
588 
589 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
590 		nvme_rdma_free_queue(&ctrl->queues[i]);
591 }
592 
593 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595 	int i;
596 
597 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 		nvme_rdma_stop_queue(&ctrl->queues[i]);
599 }
600 
601 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
602 {
603 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
604 	bool poll = nvme_rdma_poll_queue(queue);
605 	int ret;
606 
607 	if (idx)
608 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
609 	else
610 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
611 
612 	if (!ret) {
613 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
614 	} else {
615 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
616 			__nvme_rdma_stop_queue(queue);
617 		dev_info(ctrl->ctrl.device,
618 			"failed to connect queue: %d ret=%d\n", idx, ret);
619 	}
620 	return ret;
621 }
622 
623 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
624 {
625 	int i, ret = 0;
626 
627 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
628 		ret = nvme_rdma_start_queue(ctrl, i);
629 		if (ret)
630 			goto out_stop_queues;
631 	}
632 
633 	return 0;
634 
635 out_stop_queues:
636 	for (i--; i >= 1; i--)
637 		nvme_rdma_stop_queue(&ctrl->queues[i]);
638 	return ret;
639 }
640 
641 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
642 {
643 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
644 	struct ib_device *ibdev = ctrl->device->dev;
645 	unsigned int nr_io_queues, nr_default_queues;
646 	unsigned int nr_read_queues, nr_poll_queues;
647 	int i, ret;
648 
649 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
650 				min(opts->nr_io_queues, num_online_cpus()));
651 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
652 				min(opts->nr_write_queues, num_online_cpus()));
653 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
654 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
655 
656 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
657 	if (ret)
658 		return ret;
659 
660 	ctrl->ctrl.queue_count = nr_io_queues + 1;
661 	if (ctrl->ctrl.queue_count < 2)
662 		return 0;
663 
664 	dev_info(ctrl->ctrl.device,
665 		"creating %d I/O queues.\n", nr_io_queues);
666 
667 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
668 		/*
669 		 * separate read/write queues
670 		 * hand out dedicated default queues only after we have
671 		 * sufficient read queues.
672 		 */
673 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
674 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
675 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
676 			min(nr_default_queues, nr_io_queues);
677 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
678 	} else {
679 		/*
680 		 * shared read/write queues
681 		 * either no write queues were requested, or we don't have
682 		 * sufficient queue count to have dedicated default queues.
683 		 */
684 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
685 			min(nr_read_queues, nr_io_queues);
686 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
687 	}
688 
689 	if (opts->nr_poll_queues && nr_io_queues) {
690 		/* map dedicated poll queues only if we have queues left */
691 		ctrl->io_queues[HCTX_TYPE_POLL] =
692 			min(nr_poll_queues, nr_io_queues);
693 	}
694 
695 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
696 		ret = nvme_rdma_alloc_queue(ctrl, i,
697 				ctrl->ctrl.sqsize + 1);
698 		if (ret)
699 			goto out_free_queues;
700 	}
701 
702 	return 0;
703 
704 out_free_queues:
705 	for (i--; i >= 1; i--)
706 		nvme_rdma_free_queue(&ctrl->queues[i]);
707 
708 	return ret;
709 }
710 
711 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
712 		bool admin)
713 {
714 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
715 	struct blk_mq_tag_set *set;
716 	int ret;
717 
718 	if (admin) {
719 		set = &ctrl->admin_tag_set;
720 		memset(set, 0, sizeof(*set));
721 		set->ops = &nvme_rdma_admin_mq_ops;
722 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
723 		set->reserved_tags = 2; /* connect + keep-alive */
724 		set->numa_node = nctrl->numa_node;
725 		set->cmd_size = sizeof(struct nvme_rdma_request) +
726 			NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
727 		set->driver_data = ctrl;
728 		set->nr_hw_queues = 1;
729 		set->timeout = ADMIN_TIMEOUT;
730 		set->flags = BLK_MQ_F_NO_SCHED;
731 	} else {
732 		set = &ctrl->tag_set;
733 		memset(set, 0, sizeof(*set));
734 		set->ops = &nvme_rdma_mq_ops;
735 		set->queue_depth = nctrl->sqsize + 1;
736 		set->reserved_tags = 1; /* fabric connect */
737 		set->numa_node = nctrl->numa_node;
738 		set->flags = BLK_MQ_F_SHOULD_MERGE;
739 		set->cmd_size = sizeof(struct nvme_rdma_request) +
740 			NVME_INLINE_SG_CNT * sizeof(struct scatterlist);
741 		set->driver_data = ctrl;
742 		set->nr_hw_queues = nctrl->queue_count - 1;
743 		set->timeout = NVME_IO_TIMEOUT;
744 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
745 	}
746 
747 	ret = blk_mq_alloc_tag_set(set);
748 	if (ret)
749 		return ERR_PTR(ret);
750 
751 	return set;
752 }
753 
754 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
755 		bool remove)
756 {
757 	if (remove) {
758 		blk_cleanup_queue(ctrl->ctrl.admin_q);
759 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
760 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
761 	}
762 	if (ctrl->async_event_sqe.data) {
763 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
764 				sizeof(struct nvme_command), DMA_TO_DEVICE);
765 		ctrl->async_event_sqe.data = NULL;
766 	}
767 	nvme_rdma_free_queue(&ctrl->queues[0]);
768 }
769 
770 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
771 		bool new)
772 {
773 	int error;
774 
775 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
776 	if (error)
777 		return error;
778 
779 	ctrl->device = ctrl->queues[0].device;
780 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
781 
782 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
783 
784 	/*
785 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
786 	 * It's safe, since any chage in the underlying RDMA device will issue
787 	 * error recovery and queue re-creation.
788 	 */
789 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
790 			sizeof(struct nvme_command), DMA_TO_DEVICE);
791 	if (error)
792 		goto out_free_queue;
793 
794 	if (new) {
795 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
796 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
797 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
798 			goto out_free_async_qe;
799 		}
800 
801 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
802 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
803 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
804 			goto out_free_tagset;
805 		}
806 
807 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
808 		if (IS_ERR(ctrl->ctrl.admin_q)) {
809 			error = PTR_ERR(ctrl->ctrl.admin_q);
810 			goto out_cleanup_fabrics_q;
811 		}
812 	}
813 
814 	error = nvme_rdma_start_queue(ctrl, 0);
815 	if (error)
816 		goto out_cleanup_queue;
817 
818 	error = nvme_enable_ctrl(&ctrl->ctrl);
819 	if (error)
820 		goto out_stop_queue;
821 
822 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
823 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
824 
825 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
826 
827 	error = nvme_init_identify(&ctrl->ctrl);
828 	if (error)
829 		goto out_stop_queue;
830 
831 	return 0;
832 
833 out_stop_queue:
834 	nvme_rdma_stop_queue(&ctrl->queues[0]);
835 out_cleanup_queue:
836 	if (new)
837 		blk_cleanup_queue(ctrl->ctrl.admin_q);
838 out_cleanup_fabrics_q:
839 	if (new)
840 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
841 out_free_tagset:
842 	if (new)
843 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
844 out_free_async_qe:
845 	if (ctrl->async_event_sqe.data) {
846 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
847 			sizeof(struct nvme_command), DMA_TO_DEVICE);
848 		ctrl->async_event_sqe.data = NULL;
849 	}
850 out_free_queue:
851 	nvme_rdma_free_queue(&ctrl->queues[0]);
852 	return error;
853 }
854 
855 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
856 		bool remove)
857 {
858 	if (remove) {
859 		blk_cleanup_queue(ctrl->ctrl.connect_q);
860 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
861 	}
862 	nvme_rdma_free_io_queues(ctrl);
863 }
864 
865 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
866 {
867 	int ret;
868 
869 	ret = nvme_rdma_alloc_io_queues(ctrl);
870 	if (ret)
871 		return ret;
872 
873 	if (new) {
874 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
875 		if (IS_ERR(ctrl->ctrl.tagset)) {
876 			ret = PTR_ERR(ctrl->ctrl.tagset);
877 			goto out_free_io_queues;
878 		}
879 
880 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
881 		if (IS_ERR(ctrl->ctrl.connect_q)) {
882 			ret = PTR_ERR(ctrl->ctrl.connect_q);
883 			goto out_free_tag_set;
884 		}
885 	} else {
886 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
887 			ctrl->ctrl.queue_count - 1);
888 	}
889 
890 	ret = nvme_rdma_start_io_queues(ctrl);
891 	if (ret)
892 		goto out_cleanup_connect_q;
893 
894 	return 0;
895 
896 out_cleanup_connect_q:
897 	if (new)
898 		blk_cleanup_queue(ctrl->ctrl.connect_q);
899 out_free_tag_set:
900 	if (new)
901 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
902 out_free_io_queues:
903 	nvme_rdma_free_io_queues(ctrl);
904 	return ret;
905 }
906 
907 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
908 		bool remove)
909 {
910 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
911 	nvme_rdma_stop_queue(&ctrl->queues[0]);
912 	if (ctrl->ctrl.admin_tagset) {
913 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
914 			nvme_cancel_request, &ctrl->ctrl);
915 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
916 	}
917 	if (remove)
918 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
919 	nvme_rdma_destroy_admin_queue(ctrl, remove);
920 }
921 
922 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
923 		bool remove)
924 {
925 	if (ctrl->ctrl.queue_count > 1) {
926 		nvme_stop_queues(&ctrl->ctrl);
927 		nvme_rdma_stop_io_queues(ctrl);
928 		if (ctrl->ctrl.tagset) {
929 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
930 				nvme_cancel_request, &ctrl->ctrl);
931 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
932 		}
933 		if (remove)
934 			nvme_start_queues(&ctrl->ctrl);
935 		nvme_rdma_destroy_io_queues(ctrl, remove);
936 	}
937 }
938 
939 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
940 {
941 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
942 
943 	if (list_empty(&ctrl->list))
944 		goto free_ctrl;
945 
946 	mutex_lock(&nvme_rdma_ctrl_mutex);
947 	list_del(&ctrl->list);
948 	mutex_unlock(&nvme_rdma_ctrl_mutex);
949 
950 	nvmf_free_options(nctrl->opts);
951 free_ctrl:
952 	kfree(ctrl->queues);
953 	kfree(ctrl);
954 }
955 
956 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
957 {
958 	/* If we are resetting/deleting then do nothing */
959 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
960 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
961 			ctrl->ctrl.state == NVME_CTRL_LIVE);
962 		return;
963 	}
964 
965 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
966 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
967 			ctrl->ctrl.opts->reconnect_delay);
968 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
969 				ctrl->ctrl.opts->reconnect_delay * HZ);
970 	} else {
971 		nvme_delete_ctrl(&ctrl->ctrl);
972 	}
973 }
974 
975 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
976 {
977 	int ret = -EINVAL;
978 	bool changed;
979 
980 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
981 	if (ret)
982 		return ret;
983 
984 	if (ctrl->ctrl.icdoff) {
985 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
986 		goto destroy_admin;
987 	}
988 
989 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
990 		dev_err(ctrl->ctrl.device,
991 			"Mandatory keyed sgls are not supported!\n");
992 		goto destroy_admin;
993 	}
994 
995 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
996 		dev_warn(ctrl->ctrl.device,
997 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
998 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
999 	}
1000 
1001 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1002 		dev_warn(ctrl->ctrl.device,
1003 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1004 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1005 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1006 	}
1007 
1008 	if (ctrl->ctrl.sgls & (1 << 20))
1009 		ctrl->use_inline_data = true;
1010 
1011 	if (ctrl->ctrl.queue_count > 1) {
1012 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1013 		if (ret)
1014 			goto destroy_admin;
1015 	}
1016 
1017 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1018 	if (!changed) {
1019 		/*
1020 		 * state change failure is ok if we're in DELETING state,
1021 		 * unless we're during creation of a new controller to
1022 		 * avoid races with teardown flow.
1023 		 */
1024 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1025 		WARN_ON_ONCE(new);
1026 		ret = -EINVAL;
1027 		goto destroy_io;
1028 	}
1029 
1030 	nvme_start_ctrl(&ctrl->ctrl);
1031 	return 0;
1032 
1033 destroy_io:
1034 	if (ctrl->ctrl.queue_count > 1)
1035 		nvme_rdma_destroy_io_queues(ctrl, new);
1036 destroy_admin:
1037 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1038 	nvme_rdma_destroy_admin_queue(ctrl, new);
1039 	return ret;
1040 }
1041 
1042 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1043 {
1044 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1045 			struct nvme_rdma_ctrl, reconnect_work);
1046 
1047 	++ctrl->ctrl.nr_reconnects;
1048 
1049 	if (nvme_rdma_setup_ctrl(ctrl, false))
1050 		goto requeue;
1051 
1052 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1053 			ctrl->ctrl.nr_reconnects);
1054 
1055 	ctrl->ctrl.nr_reconnects = 0;
1056 
1057 	return;
1058 
1059 requeue:
1060 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1061 			ctrl->ctrl.nr_reconnects);
1062 	nvme_rdma_reconnect_or_remove(ctrl);
1063 }
1064 
1065 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1066 {
1067 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1068 			struct nvme_rdma_ctrl, err_work);
1069 
1070 	nvme_stop_keep_alive(&ctrl->ctrl);
1071 	nvme_rdma_teardown_io_queues(ctrl, false);
1072 	nvme_start_queues(&ctrl->ctrl);
1073 	nvme_rdma_teardown_admin_queue(ctrl, false);
1074 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1075 
1076 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1077 		/* state change failure is ok if we're in DELETING state */
1078 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1079 		return;
1080 	}
1081 
1082 	nvme_rdma_reconnect_or_remove(ctrl);
1083 }
1084 
1085 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1086 {
1087 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1088 		return;
1089 
1090 	queue_work(nvme_reset_wq, &ctrl->err_work);
1091 }
1092 
1093 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1094 		const char *op)
1095 {
1096 	struct nvme_rdma_queue *queue = cq->cq_context;
1097 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1098 
1099 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1100 		dev_info(ctrl->ctrl.device,
1101 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1102 			     op, wc->wr_cqe,
1103 			     ib_wc_status_msg(wc->status), wc->status);
1104 	nvme_rdma_error_recovery(ctrl);
1105 }
1106 
1107 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1108 {
1109 	if (unlikely(wc->status != IB_WC_SUCCESS))
1110 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1111 }
1112 
1113 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1114 {
1115 	struct nvme_rdma_request *req =
1116 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1117 	struct request *rq = blk_mq_rq_from_pdu(req);
1118 
1119 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1120 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1121 		return;
1122 	}
1123 
1124 	if (refcount_dec_and_test(&req->ref))
1125 		nvme_end_request(rq, req->status, req->result);
1126 
1127 }
1128 
1129 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1130 		struct nvme_rdma_request *req)
1131 {
1132 	struct ib_send_wr wr = {
1133 		.opcode		    = IB_WR_LOCAL_INV,
1134 		.next		    = NULL,
1135 		.num_sge	    = 0,
1136 		.send_flags	    = IB_SEND_SIGNALED,
1137 		.ex.invalidate_rkey = req->mr->rkey,
1138 	};
1139 
1140 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1141 	wr.wr_cqe = &req->reg_cqe;
1142 
1143 	return ib_post_send(queue->qp, &wr, NULL);
1144 }
1145 
1146 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1147 		struct request *rq)
1148 {
1149 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1150 	struct nvme_rdma_device *dev = queue->device;
1151 	struct ib_device *ibdev = dev->dev;
1152 
1153 	if (!blk_rq_nr_phys_segments(rq))
1154 		return;
1155 
1156 	if (req->mr) {
1157 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1158 		req->mr = NULL;
1159 	}
1160 
1161 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1162 	sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1163 }
1164 
1165 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1166 {
1167 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1168 
1169 	sg->addr = 0;
1170 	put_unaligned_le24(0, sg->length);
1171 	put_unaligned_le32(0, sg->key);
1172 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1173 	return 0;
1174 }
1175 
1176 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1177 		struct nvme_rdma_request *req, struct nvme_command *c,
1178 		int count)
1179 {
1180 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1181 	struct scatterlist *sgl = req->sg_table.sgl;
1182 	struct ib_sge *sge = &req->sge[1];
1183 	u32 len = 0;
1184 	int i;
1185 
1186 	for (i = 0; i < count; i++, sgl++, sge++) {
1187 		sge->addr = sg_dma_address(sgl);
1188 		sge->length = sg_dma_len(sgl);
1189 		sge->lkey = queue->device->pd->local_dma_lkey;
1190 		len += sge->length;
1191 	}
1192 
1193 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1194 	sg->length = cpu_to_le32(len);
1195 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1196 
1197 	req->num_sge += count;
1198 	return 0;
1199 }
1200 
1201 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1202 		struct nvme_rdma_request *req, struct nvme_command *c)
1203 {
1204 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1205 
1206 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1207 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1208 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1209 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1210 	return 0;
1211 }
1212 
1213 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1214 		struct nvme_rdma_request *req, struct nvme_command *c,
1215 		int count)
1216 {
1217 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1218 	int nr;
1219 
1220 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1221 	if (WARN_ON_ONCE(!req->mr))
1222 		return -EAGAIN;
1223 
1224 	/*
1225 	 * Align the MR to a 4K page size to match the ctrl page size and
1226 	 * the block virtual boundary.
1227 	 */
1228 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1229 	if (unlikely(nr < count)) {
1230 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1231 		req->mr = NULL;
1232 		if (nr < 0)
1233 			return nr;
1234 		return -EINVAL;
1235 	}
1236 
1237 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1238 
1239 	req->reg_cqe.done = nvme_rdma_memreg_done;
1240 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1241 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1242 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1243 	req->reg_wr.wr.num_sge = 0;
1244 	req->reg_wr.mr = req->mr;
1245 	req->reg_wr.key = req->mr->rkey;
1246 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1247 			     IB_ACCESS_REMOTE_READ |
1248 			     IB_ACCESS_REMOTE_WRITE;
1249 
1250 	sg->addr = cpu_to_le64(req->mr->iova);
1251 	put_unaligned_le24(req->mr->length, sg->length);
1252 	put_unaligned_le32(req->mr->rkey, sg->key);
1253 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1254 			NVME_SGL_FMT_INVALIDATE;
1255 
1256 	return 0;
1257 }
1258 
1259 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1260 		struct request *rq, struct nvme_command *c)
1261 {
1262 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1263 	struct nvme_rdma_device *dev = queue->device;
1264 	struct ib_device *ibdev = dev->dev;
1265 	int count, ret;
1266 
1267 	req->num_sge = 1;
1268 	refcount_set(&req->ref, 2); /* send and recv completions */
1269 
1270 	c->common.flags |= NVME_CMD_SGL_METABUF;
1271 
1272 	if (!blk_rq_nr_phys_segments(rq))
1273 		return nvme_rdma_set_sg_null(c);
1274 
1275 	req->sg_table.sgl = req->first_sgl;
1276 	ret = sg_alloc_table_chained(&req->sg_table,
1277 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1278 			NVME_INLINE_SG_CNT);
1279 	if (ret)
1280 		return -ENOMEM;
1281 
1282 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1283 
1284 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1285 			      rq_dma_dir(rq));
1286 	if (unlikely(count <= 0)) {
1287 		ret = -EIO;
1288 		goto out_free_table;
1289 	}
1290 
1291 	if (count <= dev->num_inline_segments) {
1292 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1293 		    queue->ctrl->use_inline_data &&
1294 		    blk_rq_payload_bytes(rq) <=
1295 				nvme_rdma_inline_data_size(queue)) {
1296 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1297 			goto out;
1298 		}
1299 
1300 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1301 			ret = nvme_rdma_map_sg_single(queue, req, c);
1302 			goto out;
1303 		}
1304 	}
1305 
1306 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1307 out:
1308 	if (unlikely(ret))
1309 		goto out_unmap_sg;
1310 
1311 	return 0;
1312 
1313 out_unmap_sg:
1314 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1315 out_free_table:
1316 	sg_free_table_chained(&req->sg_table, NVME_INLINE_SG_CNT);
1317 	return ret;
1318 }
1319 
1320 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1321 {
1322 	struct nvme_rdma_qe *qe =
1323 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1324 	struct nvme_rdma_request *req =
1325 		container_of(qe, struct nvme_rdma_request, sqe);
1326 	struct request *rq = blk_mq_rq_from_pdu(req);
1327 
1328 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1329 		nvme_rdma_wr_error(cq, wc, "SEND");
1330 		return;
1331 	}
1332 
1333 	if (refcount_dec_and_test(&req->ref))
1334 		nvme_end_request(rq, req->status, req->result);
1335 }
1336 
1337 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1338 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1339 		struct ib_send_wr *first)
1340 {
1341 	struct ib_send_wr wr;
1342 	int ret;
1343 
1344 	sge->addr   = qe->dma;
1345 	sge->length = sizeof(struct nvme_command),
1346 	sge->lkey   = queue->device->pd->local_dma_lkey;
1347 
1348 	wr.next       = NULL;
1349 	wr.wr_cqe     = &qe->cqe;
1350 	wr.sg_list    = sge;
1351 	wr.num_sge    = num_sge;
1352 	wr.opcode     = IB_WR_SEND;
1353 	wr.send_flags = IB_SEND_SIGNALED;
1354 
1355 	if (first)
1356 		first->next = &wr;
1357 	else
1358 		first = &wr;
1359 
1360 	ret = ib_post_send(queue->qp, first, NULL);
1361 	if (unlikely(ret)) {
1362 		dev_err(queue->ctrl->ctrl.device,
1363 			     "%s failed with error code %d\n", __func__, ret);
1364 	}
1365 	return ret;
1366 }
1367 
1368 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1369 		struct nvme_rdma_qe *qe)
1370 {
1371 	struct ib_recv_wr wr;
1372 	struct ib_sge list;
1373 	int ret;
1374 
1375 	list.addr   = qe->dma;
1376 	list.length = sizeof(struct nvme_completion);
1377 	list.lkey   = queue->device->pd->local_dma_lkey;
1378 
1379 	qe->cqe.done = nvme_rdma_recv_done;
1380 
1381 	wr.next     = NULL;
1382 	wr.wr_cqe   = &qe->cqe;
1383 	wr.sg_list  = &list;
1384 	wr.num_sge  = 1;
1385 
1386 	ret = ib_post_recv(queue->qp, &wr, NULL);
1387 	if (unlikely(ret)) {
1388 		dev_err(queue->ctrl->ctrl.device,
1389 			"%s failed with error code %d\n", __func__, ret);
1390 	}
1391 	return ret;
1392 }
1393 
1394 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1395 {
1396 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1397 
1398 	if (queue_idx == 0)
1399 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1400 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1401 }
1402 
1403 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1404 {
1405 	if (unlikely(wc->status != IB_WC_SUCCESS))
1406 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1407 }
1408 
1409 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1410 {
1411 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1412 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1413 	struct ib_device *dev = queue->device->dev;
1414 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1415 	struct nvme_command *cmd = sqe->data;
1416 	struct ib_sge sge;
1417 	int ret;
1418 
1419 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1420 
1421 	memset(cmd, 0, sizeof(*cmd));
1422 	cmd->common.opcode = nvme_admin_async_event;
1423 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1424 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1425 	nvme_rdma_set_sg_null(cmd);
1426 
1427 	sqe->cqe.done = nvme_rdma_async_done;
1428 
1429 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1430 			DMA_TO_DEVICE);
1431 
1432 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1433 	WARN_ON_ONCE(ret);
1434 }
1435 
1436 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1437 		struct nvme_completion *cqe, struct ib_wc *wc)
1438 {
1439 	struct request *rq;
1440 	struct nvme_rdma_request *req;
1441 
1442 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1443 	if (!rq) {
1444 		dev_err(queue->ctrl->ctrl.device,
1445 			"tag 0x%x on QP %#x not found\n",
1446 			cqe->command_id, queue->qp->qp_num);
1447 		nvme_rdma_error_recovery(queue->ctrl);
1448 		return;
1449 	}
1450 	req = blk_mq_rq_to_pdu(rq);
1451 
1452 	req->status = cqe->status;
1453 	req->result = cqe->result;
1454 
1455 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1456 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1457 			dev_err(queue->ctrl->ctrl.device,
1458 				"Bogus remote invalidation for rkey %#x\n",
1459 				req->mr->rkey);
1460 			nvme_rdma_error_recovery(queue->ctrl);
1461 		}
1462 	} else if (req->mr) {
1463 		int ret;
1464 
1465 		ret = nvme_rdma_inv_rkey(queue, req);
1466 		if (unlikely(ret < 0)) {
1467 			dev_err(queue->ctrl->ctrl.device,
1468 				"Queueing INV WR for rkey %#x failed (%d)\n",
1469 				req->mr->rkey, ret);
1470 			nvme_rdma_error_recovery(queue->ctrl);
1471 		}
1472 		/* the local invalidation completion will end the request */
1473 		return;
1474 	}
1475 
1476 	if (refcount_dec_and_test(&req->ref))
1477 		nvme_end_request(rq, req->status, req->result);
1478 }
1479 
1480 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1481 {
1482 	struct nvme_rdma_qe *qe =
1483 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1484 	struct nvme_rdma_queue *queue = cq->cq_context;
1485 	struct ib_device *ibdev = queue->device->dev;
1486 	struct nvme_completion *cqe = qe->data;
1487 	const size_t len = sizeof(struct nvme_completion);
1488 
1489 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1490 		nvme_rdma_wr_error(cq, wc, "RECV");
1491 		return;
1492 	}
1493 
1494 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1495 	/*
1496 	 * AEN requests are special as they don't time out and can
1497 	 * survive any kind of queue freeze and often don't respond to
1498 	 * aborts.  We don't even bother to allocate a struct request
1499 	 * for them but rather special case them here.
1500 	 */
1501 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1502 				     cqe->command_id)))
1503 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1504 				&cqe->result);
1505 	else
1506 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1507 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1508 
1509 	nvme_rdma_post_recv(queue, qe);
1510 }
1511 
1512 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1513 {
1514 	int ret, i;
1515 
1516 	for (i = 0; i < queue->queue_size; i++) {
1517 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1518 		if (ret)
1519 			goto out_destroy_queue_ib;
1520 	}
1521 
1522 	return 0;
1523 
1524 out_destroy_queue_ib:
1525 	nvme_rdma_destroy_queue_ib(queue);
1526 	return ret;
1527 }
1528 
1529 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1530 		struct rdma_cm_event *ev)
1531 {
1532 	struct rdma_cm_id *cm_id = queue->cm_id;
1533 	int status = ev->status;
1534 	const char *rej_msg;
1535 	const struct nvme_rdma_cm_rej *rej_data;
1536 	u8 rej_data_len;
1537 
1538 	rej_msg = rdma_reject_msg(cm_id, status);
1539 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1540 
1541 	if (rej_data && rej_data_len >= sizeof(u16)) {
1542 		u16 sts = le16_to_cpu(rej_data->sts);
1543 
1544 		dev_err(queue->ctrl->ctrl.device,
1545 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1546 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1547 	} else {
1548 		dev_err(queue->ctrl->ctrl.device,
1549 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1550 	}
1551 
1552 	return -ECONNRESET;
1553 }
1554 
1555 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1556 {
1557 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1558 	int ret;
1559 
1560 	ret = nvme_rdma_create_queue_ib(queue);
1561 	if (ret)
1562 		return ret;
1563 
1564 	if (ctrl->opts->tos >= 0)
1565 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1566 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1567 	if (ret) {
1568 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1569 			queue->cm_error);
1570 		goto out_destroy_queue;
1571 	}
1572 
1573 	return 0;
1574 
1575 out_destroy_queue:
1576 	nvme_rdma_destroy_queue_ib(queue);
1577 	return ret;
1578 }
1579 
1580 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1581 {
1582 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1583 	struct rdma_conn_param param = { };
1584 	struct nvme_rdma_cm_req priv = { };
1585 	int ret;
1586 
1587 	param.qp_num = queue->qp->qp_num;
1588 	param.flow_control = 1;
1589 
1590 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1591 	/* maximum retry count */
1592 	param.retry_count = 7;
1593 	param.rnr_retry_count = 7;
1594 	param.private_data = &priv;
1595 	param.private_data_len = sizeof(priv);
1596 
1597 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1598 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1599 	/*
1600 	 * set the admin queue depth to the minimum size
1601 	 * specified by the Fabrics standard.
1602 	 */
1603 	if (priv.qid == 0) {
1604 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1605 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1606 	} else {
1607 		/*
1608 		 * current interpretation of the fabrics spec
1609 		 * is at minimum you make hrqsize sqsize+1, or a
1610 		 * 1's based representation of sqsize.
1611 		 */
1612 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1613 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1614 	}
1615 
1616 	ret = rdma_connect(queue->cm_id, &param);
1617 	if (ret) {
1618 		dev_err(ctrl->ctrl.device,
1619 			"rdma_connect failed (%d).\n", ret);
1620 		goto out_destroy_queue_ib;
1621 	}
1622 
1623 	return 0;
1624 
1625 out_destroy_queue_ib:
1626 	nvme_rdma_destroy_queue_ib(queue);
1627 	return ret;
1628 }
1629 
1630 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1631 		struct rdma_cm_event *ev)
1632 {
1633 	struct nvme_rdma_queue *queue = cm_id->context;
1634 	int cm_error = 0;
1635 
1636 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1637 		rdma_event_msg(ev->event), ev->event,
1638 		ev->status, cm_id);
1639 
1640 	switch (ev->event) {
1641 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1642 		cm_error = nvme_rdma_addr_resolved(queue);
1643 		break;
1644 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1645 		cm_error = nvme_rdma_route_resolved(queue);
1646 		break;
1647 	case RDMA_CM_EVENT_ESTABLISHED:
1648 		queue->cm_error = nvme_rdma_conn_established(queue);
1649 		/* complete cm_done regardless of success/failure */
1650 		complete(&queue->cm_done);
1651 		return 0;
1652 	case RDMA_CM_EVENT_REJECTED:
1653 		nvme_rdma_destroy_queue_ib(queue);
1654 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1655 		break;
1656 	case RDMA_CM_EVENT_ROUTE_ERROR:
1657 	case RDMA_CM_EVENT_CONNECT_ERROR:
1658 	case RDMA_CM_EVENT_UNREACHABLE:
1659 		nvme_rdma_destroy_queue_ib(queue);
1660 		/* fall through */
1661 	case RDMA_CM_EVENT_ADDR_ERROR:
1662 		dev_dbg(queue->ctrl->ctrl.device,
1663 			"CM error event %d\n", ev->event);
1664 		cm_error = -ECONNRESET;
1665 		break;
1666 	case RDMA_CM_EVENT_DISCONNECTED:
1667 	case RDMA_CM_EVENT_ADDR_CHANGE:
1668 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1669 		dev_dbg(queue->ctrl->ctrl.device,
1670 			"disconnect received - connection closed\n");
1671 		nvme_rdma_error_recovery(queue->ctrl);
1672 		break;
1673 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1674 		/* device removal is handled via the ib_client API */
1675 		break;
1676 	default:
1677 		dev_err(queue->ctrl->ctrl.device,
1678 			"Unexpected RDMA CM event (%d)\n", ev->event);
1679 		nvme_rdma_error_recovery(queue->ctrl);
1680 		break;
1681 	}
1682 
1683 	if (cm_error) {
1684 		queue->cm_error = cm_error;
1685 		complete(&queue->cm_done);
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 static enum blk_eh_timer_return
1692 nvme_rdma_timeout(struct request *rq, bool reserved)
1693 {
1694 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1695 	struct nvme_rdma_queue *queue = req->queue;
1696 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1697 
1698 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1699 		 rq->tag, nvme_rdma_queue_idx(queue));
1700 
1701 	/*
1702 	 * Restart the timer if a controller reset is already scheduled. Any
1703 	 * timed out commands would be handled before entering the connecting
1704 	 * state.
1705 	 */
1706 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1707 		return BLK_EH_RESET_TIMER;
1708 
1709 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1710 		/*
1711 		 * Teardown immediately if controller times out while starting
1712 		 * or we are already started error recovery. all outstanding
1713 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1714 		 */
1715 		flush_work(&ctrl->err_work);
1716 		nvme_rdma_teardown_io_queues(ctrl, false);
1717 		nvme_rdma_teardown_admin_queue(ctrl, false);
1718 		return BLK_EH_DONE;
1719 	}
1720 
1721 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1722 	nvme_rdma_error_recovery(ctrl);
1723 
1724 	return BLK_EH_RESET_TIMER;
1725 }
1726 
1727 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1728 		const struct blk_mq_queue_data *bd)
1729 {
1730 	struct nvme_ns *ns = hctx->queue->queuedata;
1731 	struct nvme_rdma_queue *queue = hctx->driver_data;
1732 	struct request *rq = bd->rq;
1733 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1734 	struct nvme_rdma_qe *sqe = &req->sqe;
1735 	struct nvme_command *c = sqe->data;
1736 	struct ib_device *dev;
1737 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1738 	blk_status_t ret;
1739 	int err;
1740 
1741 	WARN_ON_ONCE(rq->tag < 0);
1742 
1743 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1744 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1745 
1746 	dev = queue->device->dev;
1747 
1748 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1749 					 sizeof(struct nvme_command),
1750 					 DMA_TO_DEVICE);
1751 	err = ib_dma_mapping_error(dev, req->sqe.dma);
1752 	if (unlikely(err))
1753 		return BLK_STS_RESOURCE;
1754 
1755 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1756 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1757 
1758 	ret = nvme_setup_cmd(ns, rq, c);
1759 	if (ret)
1760 		goto unmap_qe;
1761 
1762 	blk_mq_start_request(rq);
1763 
1764 	err = nvme_rdma_map_data(queue, rq, c);
1765 	if (unlikely(err < 0)) {
1766 		dev_err(queue->ctrl->ctrl.device,
1767 			     "Failed to map data (%d)\n", err);
1768 		goto err;
1769 	}
1770 
1771 	sqe->cqe.done = nvme_rdma_send_done;
1772 
1773 	ib_dma_sync_single_for_device(dev, sqe->dma,
1774 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1775 
1776 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1777 			req->mr ? &req->reg_wr.wr : NULL);
1778 	if (unlikely(err))
1779 		goto err_unmap;
1780 
1781 	return BLK_STS_OK;
1782 
1783 err_unmap:
1784 	nvme_rdma_unmap_data(queue, rq);
1785 err:
1786 	if (err == -ENOMEM || err == -EAGAIN)
1787 		ret = BLK_STS_RESOURCE;
1788 	else
1789 		ret = BLK_STS_IOERR;
1790 	nvme_cleanup_cmd(rq);
1791 unmap_qe:
1792 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1793 			    DMA_TO_DEVICE);
1794 	return ret;
1795 }
1796 
1797 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1798 {
1799 	struct nvme_rdma_queue *queue = hctx->driver_data;
1800 
1801 	return ib_process_cq_direct(queue->ib_cq, -1);
1802 }
1803 
1804 static void nvme_rdma_complete_rq(struct request *rq)
1805 {
1806 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1807 	struct nvme_rdma_queue *queue = req->queue;
1808 	struct ib_device *ibdev = queue->device->dev;
1809 
1810 	nvme_rdma_unmap_data(queue, rq);
1811 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1812 			    DMA_TO_DEVICE);
1813 	nvme_complete_rq(rq);
1814 }
1815 
1816 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1817 {
1818 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1819 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1820 
1821 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1822 		/* separate read/write queues */
1823 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
1824 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1825 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1826 		set->map[HCTX_TYPE_READ].nr_queues =
1827 			ctrl->io_queues[HCTX_TYPE_READ];
1828 		set->map[HCTX_TYPE_READ].queue_offset =
1829 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1830 	} else {
1831 		/* shared read/write queues */
1832 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
1833 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1834 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1835 		set->map[HCTX_TYPE_READ].nr_queues =
1836 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1837 		set->map[HCTX_TYPE_READ].queue_offset = 0;
1838 	}
1839 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1840 			ctrl->device->dev, 0);
1841 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1842 			ctrl->device->dev, 0);
1843 
1844 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1845 		/* map dedicated poll queues only if we have queues left */
1846 		set->map[HCTX_TYPE_POLL].nr_queues =
1847 				ctrl->io_queues[HCTX_TYPE_POLL];
1848 		set->map[HCTX_TYPE_POLL].queue_offset =
1849 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1850 			ctrl->io_queues[HCTX_TYPE_READ];
1851 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1852 	}
1853 
1854 	dev_info(ctrl->ctrl.device,
1855 		"mapped %d/%d/%d default/read/poll queues.\n",
1856 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
1857 		ctrl->io_queues[HCTX_TYPE_READ],
1858 		ctrl->io_queues[HCTX_TYPE_POLL]);
1859 
1860 	return 0;
1861 }
1862 
1863 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1864 	.queue_rq	= nvme_rdma_queue_rq,
1865 	.complete	= nvme_rdma_complete_rq,
1866 	.init_request	= nvme_rdma_init_request,
1867 	.exit_request	= nvme_rdma_exit_request,
1868 	.init_hctx	= nvme_rdma_init_hctx,
1869 	.timeout	= nvme_rdma_timeout,
1870 	.map_queues	= nvme_rdma_map_queues,
1871 	.poll		= nvme_rdma_poll,
1872 };
1873 
1874 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1875 	.queue_rq	= nvme_rdma_queue_rq,
1876 	.complete	= nvme_rdma_complete_rq,
1877 	.init_request	= nvme_rdma_init_request,
1878 	.exit_request	= nvme_rdma_exit_request,
1879 	.init_hctx	= nvme_rdma_init_admin_hctx,
1880 	.timeout	= nvme_rdma_timeout,
1881 };
1882 
1883 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1884 {
1885 	cancel_work_sync(&ctrl->err_work);
1886 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1887 
1888 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1889 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1890 	if (shutdown)
1891 		nvme_shutdown_ctrl(&ctrl->ctrl);
1892 	else
1893 		nvme_disable_ctrl(&ctrl->ctrl);
1894 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1895 }
1896 
1897 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1898 {
1899 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1900 }
1901 
1902 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1903 {
1904 	struct nvme_rdma_ctrl *ctrl =
1905 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1906 
1907 	nvme_stop_ctrl(&ctrl->ctrl);
1908 	nvme_rdma_shutdown_ctrl(ctrl, false);
1909 
1910 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1911 		/* state change failure should never happen */
1912 		WARN_ON_ONCE(1);
1913 		return;
1914 	}
1915 
1916 	if (nvme_rdma_setup_ctrl(ctrl, false))
1917 		goto out_fail;
1918 
1919 	return;
1920 
1921 out_fail:
1922 	++ctrl->ctrl.nr_reconnects;
1923 	nvme_rdma_reconnect_or_remove(ctrl);
1924 }
1925 
1926 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1927 	.name			= "rdma",
1928 	.module			= THIS_MODULE,
1929 	.flags			= NVME_F_FABRICS,
1930 	.reg_read32		= nvmf_reg_read32,
1931 	.reg_read64		= nvmf_reg_read64,
1932 	.reg_write32		= nvmf_reg_write32,
1933 	.free_ctrl		= nvme_rdma_free_ctrl,
1934 	.submit_async_event	= nvme_rdma_submit_async_event,
1935 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1936 	.get_address		= nvmf_get_address,
1937 };
1938 
1939 /*
1940  * Fails a connection request if it matches an existing controller
1941  * (association) with the same tuple:
1942  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1943  *
1944  * if local address is not specified in the request, it will match an
1945  * existing controller with all the other parameters the same and no
1946  * local port address specified as well.
1947  *
1948  * The ports don't need to be compared as they are intrinsically
1949  * already matched by the port pointers supplied.
1950  */
1951 static bool
1952 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1953 {
1954 	struct nvme_rdma_ctrl *ctrl;
1955 	bool found = false;
1956 
1957 	mutex_lock(&nvme_rdma_ctrl_mutex);
1958 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1959 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1960 		if (found)
1961 			break;
1962 	}
1963 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1964 
1965 	return found;
1966 }
1967 
1968 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1969 		struct nvmf_ctrl_options *opts)
1970 {
1971 	struct nvme_rdma_ctrl *ctrl;
1972 	int ret;
1973 	bool changed;
1974 
1975 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1976 	if (!ctrl)
1977 		return ERR_PTR(-ENOMEM);
1978 	ctrl->ctrl.opts = opts;
1979 	INIT_LIST_HEAD(&ctrl->list);
1980 
1981 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1982 		opts->trsvcid =
1983 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1984 		if (!opts->trsvcid) {
1985 			ret = -ENOMEM;
1986 			goto out_free_ctrl;
1987 		}
1988 		opts->mask |= NVMF_OPT_TRSVCID;
1989 	}
1990 
1991 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1992 			opts->traddr, opts->trsvcid, &ctrl->addr);
1993 	if (ret) {
1994 		pr_err("malformed address passed: %s:%s\n",
1995 			opts->traddr, opts->trsvcid);
1996 		goto out_free_ctrl;
1997 	}
1998 
1999 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2000 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2001 			opts->host_traddr, NULL, &ctrl->src_addr);
2002 		if (ret) {
2003 			pr_err("malformed src address passed: %s\n",
2004 			       opts->host_traddr);
2005 			goto out_free_ctrl;
2006 		}
2007 	}
2008 
2009 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2010 		ret = -EALREADY;
2011 		goto out_free_ctrl;
2012 	}
2013 
2014 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2015 			nvme_rdma_reconnect_ctrl_work);
2016 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2017 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2018 
2019 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2020 				opts->nr_poll_queues + 1;
2021 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2022 	ctrl->ctrl.kato = opts->kato;
2023 
2024 	ret = -ENOMEM;
2025 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2026 				GFP_KERNEL);
2027 	if (!ctrl->queues)
2028 		goto out_free_ctrl;
2029 
2030 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2031 				0 /* no quirks, we're perfect! */);
2032 	if (ret)
2033 		goto out_kfree_queues;
2034 
2035 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2036 	WARN_ON_ONCE(!changed);
2037 
2038 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2039 	if (ret)
2040 		goto out_uninit_ctrl;
2041 
2042 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2043 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2044 
2045 	mutex_lock(&nvme_rdma_ctrl_mutex);
2046 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2047 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2048 
2049 	return &ctrl->ctrl;
2050 
2051 out_uninit_ctrl:
2052 	nvme_uninit_ctrl(&ctrl->ctrl);
2053 	nvme_put_ctrl(&ctrl->ctrl);
2054 	if (ret > 0)
2055 		ret = -EIO;
2056 	return ERR_PTR(ret);
2057 out_kfree_queues:
2058 	kfree(ctrl->queues);
2059 out_free_ctrl:
2060 	kfree(ctrl);
2061 	return ERR_PTR(ret);
2062 }
2063 
2064 static struct nvmf_transport_ops nvme_rdma_transport = {
2065 	.name		= "rdma",
2066 	.module		= THIS_MODULE,
2067 	.required_opts	= NVMF_OPT_TRADDR,
2068 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2069 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2070 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2071 			  NVMF_OPT_TOS,
2072 	.create_ctrl	= nvme_rdma_create_ctrl,
2073 };
2074 
2075 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2076 {
2077 	struct nvme_rdma_ctrl *ctrl;
2078 	struct nvme_rdma_device *ndev;
2079 	bool found = false;
2080 
2081 	mutex_lock(&device_list_mutex);
2082 	list_for_each_entry(ndev, &device_list, entry) {
2083 		if (ndev->dev == ib_device) {
2084 			found = true;
2085 			break;
2086 		}
2087 	}
2088 	mutex_unlock(&device_list_mutex);
2089 
2090 	if (!found)
2091 		return;
2092 
2093 	/* Delete all controllers using this device */
2094 	mutex_lock(&nvme_rdma_ctrl_mutex);
2095 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2096 		if (ctrl->device->dev != ib_device)
2097 			continue;
2098 		nvme_delete_ctrl(&ctrl->ctrl);
2099 	}
2100 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2101 
2102 	flush_workqueue(nvme_delete_wq);
2103 }
2104 
2105 static struct ib_client nvme_rdma_ib_client = {
2106 	.name   = "nvme_rdma",
2107 	.remove = nvme_rdma_remove_one
2108 };
2109 
2110 static int __init nvme_rdma_init_module(void)
2111 {
2112 	int ret;
2113 
2114 	ret = ib_register_client(&nvme_rdma_ib_client);
2115 	if (ret)
2116 		return ret;
2117 
2118 	ret = nvmf_register_transport(&nvme_rdma_transport);
2119 	if (ret)
2120 		goto err_unreg_client;
2121 
2122 	return 0;
2123 
2124 err_unreg_client:
2125 	ib_unregister_client(&nvme_rdma_ib_client);
2126 	return ret;
2127 }
2128 
2129 static void __exit nvme_rdma_cleanup_module(void)
2130 {
2131 	struct nvme_rdma_ctrl *ctrl;
2132 
2133 	nvmf_unregister_transport(&nvme_rdma_transport);
2134 	ib_unregister_client(&nvme_rdma_ib_client);
2135 
2136 	mutex_lock(&nvme_rdma_ctrl_mutex);
2137 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2138 		nvme_delete_ctrl(&ctrl->ctrl);
2139 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2140 	flush_workqueue(nvme_delete_wq);
2141 }
2142 
2143 module_init(nvme_rdma_init_module);
2144 module_exit(nvme_rdma_cleanup_module);
2145 
2146 MODULE_LICENSE("GPL v2");
2147