1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 struct nvme_rdma_device { 38 struct ib_device *dev; 39 struct ib_pd *pd; 40 struct kref ref; 41 struct list_head entry; 42 unsigned int num_inline_segments; 43 }; 44 45 struct nvme_rdma_qe { 46 struct ib_cqe cqe; 47 void *data; 48 u64 dma; 49 }; 50 51 struct nvme_rdma_queue; 52 struct nvme_rdma_request { 53 struct nvme_request req; 54 struct ib_mr *mr; 55 struct nvme_rdma_qe sqe; 56 union nvme_result result; 57 __le16 status; 58 refcount_t ref; 59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 60 u32 num_sge; 61 int nents; 62 struct ib_reg_wr reg_wr; 63 struct ib_cqe reg_cqe; 64 struct nvme_rdma_queue *queue; 65 struct sg_table sg_table; 66 struct scatterlist first_sgl[]; 67 }; 68 69 enum nvme_rdma_queue_flags { 70 NVME_RDMA_Q_ALLOCATED = 0, 71 NVME_RDMA_Q_LIVE = 1, 72 NVME_RDMA_Q_TR_READY = 2, 73 }; 74 75 struct nvme_rdma_queue { 76 struct nvme_rdma_qe *rsp_ring; 77 int queue_size; 78 size_t cmnd_capsule_len; 79 struct nvme_rdma_ctrl *ctrl; 80 struct nvme_rdma_device *device; 81 struct ib_cq *ib_cq; 82 struct ib_qp *qp; 83 84 unsigned long flags; 85 struct rdma_cm_id *cm_id; 86 int cm_error; 87 struct completion cm_done; 88 }; 89 90 struct nvme_rdma_ctrl { 91 /* read only in the hot path */ 92 struct nvme_rdma_queue *queues; 93 94 /* other member variables */ 95 struct blk_mq_tag_set tag_set; 96 struct work_struct err_work; 97 98 struct nvme_rdma_qe async_event_sqe; 99 100 struct delayed_work reconnect_work; 101 102 struct list_head list; 103 104 struct blk_mq_tag_set admin_tag_set; 105 struct nvme_rdma_device *device; 106 107 u32 max_fr_pages; 108 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 112 struct nvme_ctrl ctrl; 113 bool use_inline_data; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 118 { 119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 120 } 121 122 static LIST_HEAD(device_list); 123 static DEFINE_MUTEX(device_list_mutex); 124 125 static LIST_HEAD(nvme_rdma_ctrl_list); 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 127 128 /* 129 * Disabling this option makes small I/O goes faster, but is fundamentally 130 * unsafe. With it turned off we will have to register a global rkey that 131 * allows read and write access to all physical memory. 132 */ 133 static bool register_always = true; 134 module_param(register_always, bool, 0444); 135 MODULE_PARM_DESC(register_always, 136 "Use memory registration even for contiguous memory regions"); 137 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 139 struct rdma_cm_event *event); 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 141 142 static const struct blk_mq_ops nvme_rdma_mq_ops; 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 144 145 /* XXX: really should move to a generic header sooner or later.. */ 146 static inline void put_unaligned_le24(u32 val, u8 *p) 147 { 148 *p++ = val; 149 *p++ = val >> 8; 150 *p++ = val >> 16; 151 } 152 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 154 { 155 return queue - queue->ctrl->queues; 156 } 157 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 159 { 160 return nvme_rdma_queue_idx(queue) > 161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 162 queue->ctrl->io_queues[HCTX_TYPE_READ]; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 qe->data = NULL; 188 return -ENOMEM; 189 } 190 191 return 0; 192 } 193 194 static void nvme_rdma_free_ring(struct ib_device *ibdev, 195 struct nvme_rdma_qe *ring, size_t ib_queue_size, 196 size_t capsule_size, enum dma_data_direction dir) 197 { 198 int i; 199 200 for (i = 0; i < ib_queue_size; i++) 201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 202 kfree(ring); 203 } 204 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 206 size_t ib_queue_size, size_t capsule_size, 207 enum dma_data_direction dir) 208 { 209 struct nvme_rdma_qe *ring; 210 int i; 211 212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 213 if (!ring) 214 return NULL; 215 216 for (i = 0; i < ib_queue_size; i++) { 217 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 218 goto out_free_ring; 219 } 220 221 return ring; 222 223 out_free_ring: 224 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 225 return NULL; 226 } 227 228 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 229 { 230 pr_debug("QP event %s (%d)\n", 231 ib_event_msg(event->event), event->event); 232 233 } 234 235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 236 { 237 int ret; 238 239 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 240 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 241 if (ret < 0) 242 return ret; 243 if (ret == 0) 244 return -ETIMEDOUT; 245 WARN_ON_ONCE(queue->cm_error > 0); 246 return queue->cm_error; 247 } 248 249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 250 { 251 struct nvme_rdma_device *dev = queue->device; 252 struct ib_qp_init_attr init_attr; 253 int ret; 254 255 memset(&init_attr, 0, sizeof(init_attr)); 256 init_attr.event_handler = nvme_rdma_qp_event; 257 /* +1 for drain */ 258 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 259 /* +1 for drain */ 260 init_attr.cap.max_recv_wr = queue->queue_size + 1; 261 init_attr.cap.max_recv_sge = 1; 262 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 263 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 264 init_attr.qp_type = IB_QPT_RC; 265 init_attr.send_cq = queue->ib_cq; 266 init_attr.recv_cq = queue->ib_cq; 267 268 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 269 270 queue->qp = queue->cm_id->qp; 271 return ret; 272 } 273 274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 275 struct request *rq, unsigned int hctx_idx) 276 { 277 struct nvme_rdma_ctrl *ctrl = set->driver_data; 278 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 279 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 280 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 281 struct nvme_rdma_device *dev = queue->device; 282 283 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 284 DMA_TO_DEVICE); 285 } 286 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx, 289 unsigned int numa_node) 290 { 291 struct nvme_rdma_ctrl *ctrl = set->driver_data; 292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 295 struct nvme_rdma_device *dev = queue->device; 296 struct ib_device *ibdev = dev->dev; 297 int ret; 298 299 nvme_req(rq)->ctrl = &ctrl->ctrl; 300 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 301 DMA_TO_DEVICE); 302 if (ret) 303 return ret; 304 305 req->queue = queue; 306 307 return 0; 308 } 309 310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 311 unsigned int hctx_idx) 312 { 313 struct nvme_rdma_ctrl *ctrl = data; 314 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 315 316 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 317 318 hctx->driver_data = queue; 319 return 0; 320 } 321 322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 323 unsigned int hctx_idx) 324 { 325 struct nvme_rdma_ctrl *ctrl = data; 326 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 327 328 BUG_ON(hctx_idx != 0); 329 330 hctx->driver_data = queue; 331 return 0; 332 } 333 334 static void nvme_rdma_free_dev(struct kref *ref) 335 { 336 struct nvme_rdma_device *ndev = 337 container_of(ref, struct nvme_rdma_device, ref); 338 339 mutex_lock(&device_list_mutex); 340 list_del(&ndev->entry); 341 mutex_unlock(&device_list_mutex); 342 343 ib_dealloc_pd(ndev->pd); 344 kfree(ndev); 345 } 346 347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 348 { 349 kref_put(&dev->ref, nvme_rdma_free_dev); 350 } 351 352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 353 { 354 return kref_get_unless_zero(&dev->ref); 355 } 356 357 static struct nvme_rdma_device * 358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 359 { 360 struct nvme_rdma_device *ndev; 361 362 mutex_lock(&device_list_mutex); 363 list_for_each_entry(ndev, &device_list, entry) { 364 if (ndev->dev->node_guid == cm_id->device->node_guid && 365 nvme_rdma_dev_get(ndev)) 366 goto out_unlock; 367 } 368 369 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 370 if (!ndev) 371 goto out_err; 372 373 ndev->dev = cm_id->device; 374 kref_init(&ndev->ref); 375 376 ndev->pd = ib_alloc_pd(ndev->dev, 377 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 378 if (IS_ERR(ndev->pd)) 379 goto out_free_dev; 380 381 if (!(ndev->dev->attrs.device_cap_flags & 382 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 383 dev_err(&ndev->dev->dev, 384 "Memory registrations not supported.\n"); 385 goto out_free_pd; 386 } 387 388 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 389 ndev->dev->attrs.max_send_sge - 1); 390 list_add(&ndev->entry, &device_list); 391 out_unlock: 392 mutex_unlock(&device_list_mutex); 393 return ndev; 394 395 out_free_pd: 396 ib_dealloc_pd(ndev->pd); 397 out_free_dev: 398 kfree(ndev); 399 out_err: 400 mutex_unlock(&device_list_mutex); 401 return NULL; 402 } 403 404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 405 { 406 struct nvme_rdma_device *dev; 407 struct ib_device *ibdev; 408 409 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 410 return; 411 412 dev = queue->device; 413 ibdev = dev->dev; 414 415 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 416 417 /* 418 * The cm_id object might have been destroyed during RDMA connection 419 * establishment error flow to avoid getting other cma events, thus 420 * the destruction of the QP shouldn't use rdma_cm API. 421 */ 422 ib_destroy_qp(queue->qp); 423 ib_free_cq(queue->ib_cq); 424 425 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 426 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 427 428 nvme_rdma_dev_put(dev); 429 } 430 431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 432 { 433 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 434 ibdev->attrs.max_fast_reg_page_list_len); 435 } 436 437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 438 { 439 struct ib_device *ibdev; 440 const int send_wr_factor = 3; /* MR, SEND, INV */ 441 const int cq_factor = send_wr_factor + 1; /* + RECV */ 442 int comp_vector, idx = nvme_rdma_queue_idx(queue); 443 enum ib_poll_context poll_ctx; 444 int ret; 445 446 queue->device = nvme_rdma_find_get_device(queue->cm_id); 447 if (!queue->device) { 448 dev_err(queue->cm_id->device->dev.parent, 449 "no client data found!\n"); 450 return -ECONNREFUSED; 451 } 452 ibdev = queue->device->dev; 453 454 /* 455 * Spread I/O queues completion vectors according their queue index. 456 * Admin queues can always go on completion vector 0. 457 */ 458 comp_vector = idx == 0 ? idx : idx - 1; 459 460 /* Polling queues need direct cq polling context */ 461 if (nvme_rdma_poll_queue(queue)) 462 poll_ctx = IB_POLL_DIRECT; 463 else 464 poll_ctx = IB_POLL_SOFTIRQ; 465 466 /* +1 for ib_stop_cq */ 467 queue->ib_cq = ib_alloc_cq(ibdev, queue, 468 cq_factor * queue->queue_size + 1, 469 comp_vector, poll_ctx); 470 if (IS_ERR(queue->ib_cq)) { 471 ret = PTR_ERR(queue->ib_cq); 472 goto out_put_dev; 473 } 474 475 ret = nvme_rdma_create_qp(queue, send_wr_factor); 476 if (ret) 477 goto out_destroy_ib_cq; 478 479 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 480 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 481 if (!queue->rsp_ring) { 482 ret = -ENOMEM; 483 goto out_destroy_qp; 484 } 485 486 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 487 queue->queue_size, 488 IB_MR_TYPE_MEM_REG, 489 nvme_rdma_get_max_fr_pages(ibdev)); 490 if (ret) { 491 dev_err(queue->ctrl->ctrl.device, 492 "failed to initialize MR pool sized %d for QID %d\n", 493 queue->queue_size, idx); 494 goto out_destroy_ring; 495 } 496 497 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 498 499 return 0; 500 501 out_destroy_ring: 502 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 503 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 504 out_destroy_qp: 505 rdma_destroy_qp(queue->cm_id); 506 out_destroy_ib_cq: 507 ib_free_cq(queue->ib_cq); 508 out_put_dev: 509 nvme_rdma_dev_put(queue->device); 510 return ret; 511 } 512 513 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 514 int idx, size_t queue_size) 515 { 516 struct nvme_rdma_queue *queue; 517 struct sockaddr *src_addr = NULL; 518 int ret; 519 520 queue = &ctrl->queues[idx]; 521 queue->ctrl = ctrl; 522 init_completion(&queue->cm_done); 523 524 if (idx > 0) 525 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 526 else 527 queue->cmnd_capsule_len = sizeof(struct nvme_command); 528 529 queue->queue_size = queue_size; 530 531 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 532 RDMA_PS_TCP, IB_QPT_RC); 533 if (IS_ERR(queue->cm_id)) { 534 dev_info(ctrl->ctrl.device, 535 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 536 return PTR_ERR(queue->cm_id); 537 } 538 539 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 540 src_addr = (struct sockaddr *)&ctrl->src_addr; 541 542 queue->cm_error = -ETIMEDOUT; 543 ret = rdma_resolve_addr(queue->cm_id, src_addr, 544 (struct sockaddr *)&ctrl->addr, 545 NVME_RDMA_CONNECT_TIMEOUT_MS); 546 if (ret) { 547 dev_info(ctrl->ctrl.device, 548 "rdma_resolve_addr failed (%d).\n", ret); 549 goto out_destroy_cm_id; 550 } 551 552 ret = nvme_rdma_wait_for_cm(queue); 553 if (ret) { 554 dev_info(ctrl->ctrl.device, 555 "rdma connection establishment failed (%d)\n", ret); 556 goto out_destroy_cm_id; 557 } 558 559 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 560 561 return 0; 562 563 out_destroy_cm_id: 564 rdma_destroy_id(queue->cm_id); 565 nvme_rdma_destroy_queue_ib(queue); 566 return ret; 567 } 568 569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 570 { 571 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 572 return; 573 574 rdma_disconnect(queue->cm_id); 575 ib_drain_qp(queue->qp); 576 } 577 578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 579 { 580 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 581 return; 582 583 nvme_rdma_destroy_queue_ib(queue); 584 rdma_destroy_id(queue->cm_id); 585 } 586 587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 588 { 589 int i; 590 591 for (i = 1; i < ctrl->ctrl.queue_count; i++) 592 nvme_rdma_free_queue(&ctrl->queues[i]); 593 } 594 595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 596 { 597 int i; 598 599 for (i = 1; i < ctrl->ctrl.queue_count; i++) 600 nvme_rdma_stop_queue(&ctrl->queues[i]); 601 } 602 603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 604 { 605 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 606 bool poll = nvme_rdma_poll_queue(queue); 607 int ret; 608 609 if (idx) 610 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 611 else 612 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 613 614 if (!ret) 615 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 616 else 617 dev_info(ctrl->ctrl.device, 618 "failed to connect queue: %d ret=%d\n", idx, ret); 619 return ret; 620 } 621 622 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 623 { 624 int i, ret = 0; 625 626 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 627 ret = nvme_rdma_start_queue(ctrl, i); 628 if (ret) 629 goto out_stop_queues; 630 } 631 632 return 0; 633 634 out_stop_queues: 635 for (i--; i >= 1; i--) 636 nvme_rdma_stop_queue(&ctrl->queues[i]); 637 return ret; 638 } 639 640 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 641 { 642 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 643 struct ib_device *ibdev = ctrl->device->dev; 644 unsigned int nr_io_queues; 645 int i, ret; 646 647 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 648 649 /* 650 * we map queues according to the device irq vectors for 651 * optimal locality so we don't need more queues than 652 * completion vectors. 653 */ 654 nr_io_queues = min_t(unsigned int, nr_io_queues, 655 ibdev->num_comp_vectors); 656 657 if (opts->nr_write_queues) { 658 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 659 min(opts->nr_write_queues, nr_io_queues); 660 nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT]; 661 } else { 662 ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues; 663 } 664 665 ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues; 666 667 if (opts->nr_poll_queues) { 668 ctrl->io_queues[HCTX_TYPE_POLL] = 669 min(opts->nr_poll_queues, num_online_cpus()); 670 nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL]; 671 } 672 673 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 674 if (ret) 675 return ret; 676 677 ctrl->ctrl.queue_count = nr_io_queues + 1; 678 if (ctrl->ctrl.queue_count < 2) 679 return 0; 680 681 dev_info(ctrl->ctrl.device, 682 "creating %d I/O queues.\n", nr_io_queues); 683 684 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 685 ret = nvme_rdma_alloc_queue(ctrl, i, 686 ctrl->ctrl.sqsize + 1); 687 if (ret) 688 goto out_free_queues; 689 } 690 691 return 0; 692 693 out_free_queues: 694 for (i--; i >= 1; i--) 695 nvme_rdma_free_queue(&ctrl->queues[i]); 696 697 return ret; 698 } 699 700 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 701 struct blk_mq_tag_set *set) 702 { 703 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 704 705 blk_mq_free_tag_set(set); 706 nvme_rdma_dev_put(ctrl->device); 707 } 708 709 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 710 bool admin) 711 { 712 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 713 struct blk_mq_tag_set *set; 714 int ret; 715 716 if (admin) { 717 set = &ctrl->admin_tag_set; 718 memset(set, 0, sizeof(*set)); 719 set->ops = &nvme_rdma_admin_mq_ops; 720 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 721 set->reserved_tags = 2; /* connect + keep-alive */ 722 set->numa_node = nctrl->numa_node; 723 set->cmd_size = sizeof(struct nvme_rdma_request) + 724 SG_CHUNK_SIZE * sizeof(struct scatterlist); 725 set->driver_data = ctrl; 726 set->nr_hw_queues = 1; 727 set->timeout = ADMIN_TIMEOUT; 728 set->flags = BLK_MQ_F_NO_SCHED; 729 } else { 730 set = &ctrl->tag_set; 731 memset(set, 0, sizeof(*set)); 732 set->ops = &nvme_rdma_mq_ops; 733 set->queue_depth = nctrl->sqsize + 1; 734 set->reserved_tags = 1; /* fabric connect */ 735 set->numa_node = nctrl->numa_node; 736 set->flags = BLK_MQ_F_SHOULD_MERGE; 737 set->cmd_size = sizeof(struct nvme_rdma_request) + 738 SG_CHUNK_SIZE * sizeof(struct scatterlist); 739 set->driver_data = ctrl; 740 set->nr_hw_queues = nctrl->queue_count - 1; 741 set->timeout = NVME_IO_TIMEOUT; 742 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 743 } 744 745 ret = blk_mq_alloc_tag_set(set); 746 if (ret) 747 goto out; 748 749 /* 750 * We need a reference on the device as long as the tag_set is alive, 751 * as the MRs in the request structures need a valid ib_device. 752 */ 753 ret = nvme_rdma_dev_get(ctrl->device); 754 if (!ret) { 755 ret = -EINVAL; 756 goto out_free_tagset; 757 } 758 759 return set; 760 761 out_free_tagset: 762 blk_mq_free_tag_set(set); 763 out: 764 return ERR_PTR(ret); 765 } 766 767 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 768 bool remove) 769 { 770 if (remove) { 771 blk_cleanup_queue(ctrl->ctrl.admin_q); 772 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 773 } 774 if (ctrl->async_event_sqe.data) { 775 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 776 sizeof(struct nvme_command), DMA_TO_DEVICE); 777 ctrl->async_event_sqe.data = NULL; 778 } 779 nvme_rdma_free_queue(&ctrl->queues[0]); 780 } 781 782 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 783 bool new) 784 { 785 int error; 786 787 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 788 if (error) 789 return error; 790 791 ctrl->device = ctrl->queues[0].device; 792 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 793 794 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 795 796 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 797 sizeof(struct nvme_command), DMA_TO_DEVICE); 798 if (error) 799 goto out_free_queue; 800 801 if (new) { 802 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 803 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 804 error = PTR_ERR(ctrl->ctrl.admin_tagset); 805 goto out_free_async_qe; 806 } 807 808 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 809 if (IS_ERR(ctrl->ctrl.admin_q)) { 810 error = PTR_ERR(ctrl->ctrl.admin_q); 811 goto out_free_tagset; 812 } 813 } 814 815 error = nvme_rdma_start_queue(ctrl, 0); 816 if (error) 817 goto out_cleanup_queue; 818 819 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 820 &ctrl->ctrl.cap); 821 if (error) { 822 dev_err(ctrl->ctrl.device, 823 "prop_get NVME_REG_CAP failed\n"); 824 goto out_stop_queue; 825 } 826 827 ctrl->ctrl.sqsize = 828 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 829 830 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 831 if (error) 832 goto out_stop_queue; 833 834 ctrl->ctrl.max_hw_sectors = 835 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 836 837 error = nvme_init_identify(&ctrl->ctrl); 838 if (error) 839 goto out_stop_queue; 840 841 return 0; 842 843 out_stop_queue: 844 nvme_rdma_stop_queue(&ctrl->queues[0]); 845 out_cleanup_queue: 846 if (new) 847 blk_cleanup_queue(ctrl->ctrl.admin_q); 848 out_free_tagset: 849 if (new) 850 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 851 out_free_async_qe: 852 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 853 sizeof(struct nvme_command), DMA_TO_DEVICE); 854 ctrl->async_event_sqe.data = NULL; 855 out_free_queue: 856 nvme_rdma_free_queue(&ctrl->queues[0]); 857 return error; 858 } 859 860 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 861 bool remove) 862 { 863 if (remove) { 864 blk_cleanup_queue(ctrl->ctrl.connect_q); 865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 866 } 867 nvme_rdma_free_io_queues(ctrl); 868 } 869 870 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 871 { 872 int ret; 873 874 ret = nvme_rdma_alloc_io_queues(ctrl); 875 if (ret) 876 return ret; 877 878 if (new) { 879 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 880 if (IS_ERR(ctrl->ctrl.tagset)) { 881 ret = PTR_ERR(ctrl->ctrl.tagset); 882 goto out_free_io_queues; 883 } 884 885 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 886 if (IS_ERR(ctrl->ctrl.connect_q)) { 887 ret = PTR_ERR(ctrl->ctrl.connect_q); 888 goto out_free_tag_set; 889 } 890 } else { 891 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 892 ctrl->ctrl.queue_count - 1); 893 } 894 895 ret = nvme_rdma_start_io_queues(ctrl); 896 if (ret) 897 goto out_cleanup_connect_q; 898 899 return 0; 900 901 out_cleanup_connect_q: 902 if (new) 903 blk_cleanup_queue(ctrl->ctrl.connect_q); 904 out_free_tag_set: 905 if (new) 906 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 907 out_free_io_queues: 908 nvme_rdma_free_io_queues(ctrl); 909 return ret; 910 } 911 912 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 913 bool remove) 914 { 915 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 916 nvme_rdma_stop_queue(&ctrl->queues[0]); 917 if (ctrl->ctrl.admin_tagset) 918 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 919 nvme_cancel_request, &ctrl->ctrl); 920 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 921 nvme_rdma_destroy_admin_queue(ctrl, remove); 922 } 923 924 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 925 bool remove) 926 { 927 if (ctrl->ctrl.queue_count > 1) { 928 nvme_stop_queues(&ctrl->ctrl); 929 nvme_rdma_stop_io_queues(ctrl); 930 if (ctrl->ctrl.tagset) 931 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 932 nvme_cancel_request, &ctrl->ctrl); 933 if (remove) 934 nvme_start_queues(&ctrl->ctrl); 935 nvme_rdma_destroy_io_queues(ctrl, remove); 936 } 937 } 938 939 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 940 { 941 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 942 943 if (list_empty(&ctrl->list)) 944 goto free_ctrl; 945 946 mutex_lock(&nvme_rdma_ctrl_mutex); 947 list_del(&ctrl->list); 948 mutex_unlock(&nvme_rdma_ctrl_mutex); 949 950 nvmf_free_options(nctrl->opts); 951 free_ctrl: 952 kfree(ctrl->queues); 953 kfree(ctrl); 954 } 955 956 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 957 { 958 /* If we are resetting/deleting then do nothing */ 959 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 960 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 961 ctrl->ctrl.state == NVME_CTRL_LIVE); 962 return; 963 } 964 965 if (nvmf_should_reconnect(&ctrl->ctrl)) { 966 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 967 ctrl->ctrl.opts->reconnect_delay); 968 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 969 ctrl->ctrl.opts->reconnect_delay * HZ); 970 } else { 971 nvme_delete_ctrl(&ctrl->ctrl); 972 } 973 } 974 975 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 976 { 977 int ret = -EINVAL; 978 bool changed; 979 980 ret = nvme_rdma_configure_admin_queue(ctrl, new); 981 if (ret) 982 return ret; 983 984 if (ctrl->ctrl.icdoff) { 985 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 986 goto destroy_admin; 987 } 988 989 if (!(ctrl->ctrl.sgls & (1 << 2))) { 990 dev_err(ctrl->ctrl.device, 991 "Mandatory keyed sgls are not supported!\n"); 992 goto destroy_admin; 993 } 994 995 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 996 dev_warn(ctrl->ctrl.device, 997 "queue_size %zu > ctrl sqsize %u, clamping down\n", 998 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 999 } 1000 1001 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1002 dev_warn(ctrl->ctrl.device, 1003 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1004 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1005 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1006 } 1007 1008 if (ctrl->ctrl.sgls & (1 << 20)) 1009 ctrl->use_inline_data = true; 1010 1011 if (ctrl->ctrl.queue_count > 1) { 1012 ret = nvme_rdma_configure_io_queues(ctrl, new); 1013 if (ret) 1014 goto destroy_admin; 1015 } 1016 1017 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1018 if (!changed) { 1019 /* state change failure is ok if we're in DELETING state */ 1020 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1021 ret = -EINVAL; 1022 goto destroy_io; 1023 } 1024 1025 nvme_start_ctrl(&ctrl->ctrl); 1026 return 0; 1027 1028 destroy_io: 1029 if (ctrl->ctrl.queue_count > 1) 1030 nvme_rdma_destroy_io_queues(ctrl, new); 1031 destroy_admin: 1032 nvme_rdma_stop_queue(&ctrl->queues[0]); 1033 nvme_rdma_destroy_admin_queue(ctrl, new); 1034 return ret; 1035 } 1036 1037 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1038 { 1039 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1040 struct nvme_rdma_ctrl, reconnect_work); 1041 1042 ++ctrl->ctrl.nr_reconnects; 1043 1044 if (nvme_rdma_setup_ctrl(ctrl, false)) 1045 goto requeue; 1046 1047 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1048 ctrl->ctrl.nr_reconnects); 1049 1050 ctrl->ctrl.nr_reconnects = 0; 1051 1052 return; 1053 1054 requeue: 1055 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1056 ctrl->ctrl.nr_reconnects); 1057 nvme_rdma_reconnect_or_remove(ctrl); 1058 } 1059 1060 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1061 { 1062 struct nvme_rdma_ctrl *ctrl = container_of(work, 1063 struct nvme_rdma_ctrl, err_work); 1064 1065 nvme_stop_keep_alive(&ctrl->ctrl); 1066 nvme_rdma_teardown_io_queues(ctrl, false); 1067 nvme_start_queues(&ctrl->ctrl); 1068 nvme_rdma_teardown_admin_queue(ctrl, false); 1069 1070 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1071 /* state change failure is ok if we're in DELETING state */ 1072 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1073 return; 1074 } 1075 1076 nvme_rdma_reconnect_or_remove(ctrl); 1077 } 1078 1079 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1080 { 1081 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1082 return; 1083 1084 queue_work(nvme_wq, &ctrl->err_work); 1085 } 1086 1087 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1088 const char *op) 1089 { 1090 struct nvme_rdma_queue *queue = cq->cq_context; 1091 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1092 1093 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1094 dev_info(ctrl->ctrl.device, 1095 "%s for CQE 0x%p failed with status %s (%d)\n", 1096 op, wc->wr_cqe, 1097 ib_wc_status_msg(wc->status), wc->status); 1098 nvme_rdma_error_recovery(ctrl); 1099 } 1100 1101 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1102 { 1103 if (unlikely(wc->status != IB_WC_SUCCESS)) 1104 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1105 } 1106 1107 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1108 { 1109 struct nvme_rdma_request *req = 1110 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1111 struct request *rq = blk_mq_rq_from_pdu(req); 1112 1113 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1114 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1115 return; 1116 } 1117 1118 if (refcount_dec_and_test(&req->ref)) 1119 nvme_end_request(rq, req->status, req->result); 1120 1121 } 1122 1123 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1124 struct nvme_rdma_request *req) 1125 { 1126 struct ib_send_wr wr = { 1127 .opcode = IB_WR_LOCAL_INV, 1128 .next = NULL, 1129 .num_sge = 0, 1130 .send_flags = IB_SEND_SIGNALED, 1131 .ex.invalidate_rkey = req->mr->rkey, 1132 }; 1133 1134 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1135 wr.wr_cqe = &req->reg_cqe; 1136 1137 return ib_post_send(queue->qp, &wr, NULL); 1138 } 1139 1140 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1141 struct request *rq) 1142 { 1143 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1144 struct nvme_rdma_device *dev = queue->device; 1145 struct ib_device *ibdev = dev->dev; 1146 1147 if (!blk_rq_nr_phys_segments(rq)) 1148 return; 1149 1150 if (req->mr) { 1151 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1152 req->mr = NULL; 1153 } 1154 1155 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1156 req->nents, rq_data_dir(rq) == 1157 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1158 1159 nvme_cleanup_cmd(rq); 1160 sg_free_table_chained(&req->sg_table, true); 1161 } 1162 1163 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1164 { 1165 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1166 1167 sg->addr = 0; 1168 put_unaligned_le24(0, sg->length); 1169 put_unaligned_le32(0, sg->key); 1170 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1171 return 0; 1172 } 1173 1174 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1175 struct nvme_rdma_request *req, struct nvme_command *c, 1176 int count) 1177 { 1178 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1179 struct scatterlist *sgl = req->sg_table.sgl; 1180 struct ib_sge *sge = &req->sge[1]; 1181 u32 len = 0; 1182 int i; 1183 1184 for (i = 0; i < count; i++, sgl++, sge++) { 1185 sge->addr = sg_dma_address(sgl); 1186 sge->length = sg_dma_len(sgl); 1187 sge->lkey = queue->device->pd->local_dma_lkey; 1188 len += sge->length; 1189 } 1190 1191 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1192 sg->length = cpu_to_le32(len); 1193 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1194 1195 req->num_sge += count; 1196 return 0; 1197 } 1198 1199 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1200 struct nvme_rdma_request *req, struct nvme_command *c) 1201 { 1202 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1203 1204 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1205 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1206 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1207 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1208 return 0; 1209 } 1210 1211 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1212 struct nvme_rdma_request *req, struct nvme_command *c, 1213 int count) 1214 { 1215 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1216 int nr; 1217 1218 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1219 if (WARN_ON_ONCE(!req->mr)) 1220 return -EAGAIN; 1221 1222 /* 1223 * Align the MR to a 4K page size to match the ctrl page size and 1224 * the block virtual boundary. 1225 */ 1226 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1227 if (unlikely(nr < count)) { 1228 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1229 req->mr = NULL; 1230 if (nr < 0) 1231 return nr; 1232 return -EINVAL; 1233 } 1234 1235 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1236 1237 req->reg_cqe.done = nvme_rdma_memreg_done; 1238 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1239 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1240 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1241 req->reg_wr.wr.num_sge = 0; 1242 req->reg_wr.mr = req->mr; 1243 req->reg_wr.key = req->mr->rkey; 1244 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1245 IB_ACCESS_REMOTE_READ | 1246 IB_ACCESS_REMOTE_WRITE; 1247 1248 sg->addr = cpu_to_le64(req->mr->iova); 1249 put_unaligned_le24(req->mr->length, sg->length); 1250 put_unaligned_le32(req->mr->rkey, sg->key); 1251 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1252 NVME_SGL_FMT_INVALIDATE; 1253 1254 return 0; 1255 } 1256 1257 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1258 struct request *rq, struct nvme_command *c) 1259 { 1260 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1261 struct nvme_rdma_device *dev = queue->device; 1262 struct ib_device *ibdev = dev->dev; 1263 int count, ret; 1264 1265 req->num_sge = 1; 1266 refcount_set(&req->ref, 2); /* send and recv completions */ 1267 1268 c->common.flags |= NVME_CMD_SGL_METABUF; 1269 1270 if (!blk_rq_nr_phys_segments(rq)) 1271 return nvme_rdma_set_sg_null(c); 1272 1273 req->sg_table.sgl = req->first_sgl; 1274 ret = sg_alloc_table_chained(&req->sg_table, 1275 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1276 if (ret) 1277 return -ENOMEM; 1278 1279 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1280 1281 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1282 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1283 if (unlikely(count <= 0)) { 1284 ret = -EIO; 1285 goto out_free_table; 1286 } 1287 1288 if (count <= dev->num_inline_segments) { 1289 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1290 queue->ctrl->use_inline_data && 1291 blk_rq_payload_bytes(rq) <= 1292 nvme_rdma_inline_data_size(queue)) { 1293 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1294 goto out; 1295 } 1296 1297 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1298 ret = nvme_rdma_map_sg_single(queue, req, c); 1299 goto out; 1300 } 1301 } 1302 1303 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1304 out: 1305 if (unlikely(ret)) 1306 goto out_unmap_sg; 1307 1308 return 0; 1309 1310 out_unmap_sg: 1311 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1312 req->nents, rq_data_dir(rq) == 1313 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1314 out_free_table: 1315 sg_free_table_chained(&req->sg_table, true); 1316 return ret; 1317 } 1318 1319 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1320 { 1321 struct nvme_rdma_qe *qe = 1322 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1323 struct nvme_rdma_request *req = 1324 container_of(qe, struct nvme_rdma_request, sqe); 1325 struct request *rq = blk_mq_rq_from_pdu(req); 1326 1327 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1328 nvme_rdma_wr_error(cq, wc, "SEND"); 1329 return; 1330 } 1331 1332 if (refcount_dec_and_test(&req->ref)) 1333 nvme_end_request(rq, req->status, req->result); 1334 } 1335 1336 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1337 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1338 struct ib_send_wr *first) 1339 { 1340 struct ib_send_wr wr; 1341 int ret; 1342 1343 sge->addr = qe->dma; 1344 sge->length = sizeof(struct nvme_command), 1345 sge->lkey = queue->device->pd->local_dma_lkey; 1346 1347 wr.next = NULL; 1348 wr.wr_cqe = &qe->cqe; 1349 wr.sg_list = sge; 1350 wr.num_sge = num_sge; 1351 wr.opcode = IB_WR_SEND; 1352 wr.send_flags = IB_SEND_SIGNALED; 1353 1354 if (first) 1355 first->next = ≀ 1356 else 1357 first = ≀ 1358 1359 ret = ib_post_send(queue->qp, first, NULL); 1360 if (unlikely(ret)) { 1361 dev_err(queue->ctrl->ctrl.device, 1362 "%s failed with error code %d\n", __func__, ret); 1363 } 1364 return ret; 1365 } 1366 1367 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1368 struct nvme_rdma_qe *qe) 1369 { 1370 struct ib_recv_wr wr; 1371 struct ib_sge list; 1372 int ret; 1373 1374 list.addr = qe->dma; 1375 list.length = sizeof(struct nvme_completion); 1376 list.lkey = queue->device->pd->local_dma_lkey; 1377 1378 qe->cqe.done = nvme_rdma_recv_done; 1379 1380 wr.next = NULL; 1381 wr.wr_cqe = &qe->cqe; 1382 wr.sg_list = &list; 1383 wr.num_sge = 1; 1384 1385 ret = ib_post_recv(queue->qp, &wr, NULL); 1386 if (unlikely(ret)) { 1387 dev_err(queue->ctrl->ctrl.device, 1388 "%s failed with error code %d\n", __func__, ret); 1389 } 1390 return ret; 1391 } 1392 1393 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1394 { 1395 u32 queue_idx = nvme_rdma_queue_idx(queue); 1396 1397 if (queue_idx == 0) 1398 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1399 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1400 } 1401 1402 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1403 { 1404 if (unlikely(wc->status != IB_WC_SUCCESS)) 1405 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1406 } 1407 1408 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1409 { 1410 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1411 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1412 struct ib_device *dev = queue->device->dev; 1413 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1414 struct nvme_command *cmd = sqe->data; 1415 struct ib_sge sge; 1416 int ret; 1417 1418 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1419 1420 memset(cmd, 0, sizeof(*cmd)); 1421 cmd->common.opcode = nvme_admin_async_event; 1422 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1423 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1424 nvme_rdma_set_sg_null(cmd); 1425 1426 sqe->cqe.done = nvme_rdma_async_done; 1427 1428 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1429 DMA_TO_DEVICE); 1430 1431 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1432 WARN_ON_ONCE(ret); 1433 } 1434 1435 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1436 struct nvme_completion *cqe, struct ib_wc *wc) 1437 { 1438 struct request *rq; 1439 struct nvme_rdma_request *req; 1440 1441 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1442 if (!rq) { 1443 dev_err(queue->ctrl->ctrl.device, 1444 "tag 0x%x on QP %#x not found\n", 1445 cqe->command_id, queue->qp->qp_num); 1446 nvme_rdma_error_recovery(queue->ctrl); 1447 return; 1448 } 1449 req = blk_mq_rq_to_pdu(rq); 1450 1451 req->status = cqe->status; 1452 req->result = cqe->result; 1453 1454 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1455 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1456 dev_err(queue->ctrl->ctrl.device, 1457 "Bogus remote invalidation for rkey %#x\n", 1458 req->mr->rkey); 1459 nvme_rdma_error_recovery(queue->ctrl); 1460 } 1461 } else if (req->mr) { 1462 int ret; 1463 1464 ret = nvme_rdma_inv_rkey(queue, req); 1465 if (unlikely(ret < 0)) { 1466 dev_err(queue->ctrl->ctrl.device, 1467 "Queueing INV WR for rkey %#x failed (%d)\n", 1468 req->mr->rkey, ret); 1469 nvme_rdma_error_recovery(queue->ctrl); 1470 } 1471 /* the local invalidation completion will end the request */ 1472 return; 1473 } 1474 1475 if (refcount_dec_and_test(&req->ref)) 1476 nvme_end_request(rq, req->status, req->result); 1477 } 1478 1479 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1480 { 1481 struct nvme_rdma_qe *qe = 1482 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1483 struct nvme_rdma_queue *queue = cq->cq_context; 1484 struct ib_device *ibdev = queue->device->dev; 1485 struct nvme_completion *cqe = qe->data; 1486 const size_t len = sizeof(struct nvme_completion); 1487 1488 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1489 nvme_rdma_wr_error(cq, wc, "RECV"); 1490 return; 1491 } 1492 1493 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1494 /* 1495 * AEN requests are special as they don't time out and can 1496 * survive any kind of queue freeze and often don't respond to 1497 * aborts. We don't even bother to allocate a struct request 1498 * for them but rather special case them here. 1499 */ 1500 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1501 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1502 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1503 &cqe->result); 1504 else 1505 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1506 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1507 1508 nvme_rdma_post_recv(queue, qe); 1509 } 1510 1511 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1512 { 1513 int ret, i; 1514 1515 for (i = 0; i < queue->queue_size; i++) { 1516 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1517 if (ret) 1518 goto out_destroy_queue_ib; 1519 } 1520 1521 return 0; 1522 1523 out_destroy_queue_ib: 1524 nvme_rdma_destroy_queue_ib(queue); 1525 return ret; 1526 } 1527 1528 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1529 struct rdma_cm_event *ev) 1530 { 1531 struct rdma_cm_id *cm_id = queue->cm_id; 1532 int status = ev->status; 1533 const char *rej_msg; 1534 const struct nvme_rdma_cm_rej *rej_data; 1535 u8 rej_data_len; 1536 1537 rej_msg = rdma_reject_msg(cm_id, status); 1538 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1539 1540 if (rej_data && rej_data_len >= sizeof(u16)) { 1541 u16 sts = le16_to_cpu(rej_data->sts); 1542 1543 dev_err(queue->ctrl->ctrl.device, 1544 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1545 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1546 } else { 1547 dev_err(queue->ctrl->ctrl.device, 1548 "Connect rejected: status %d (%s).\n", status, rej_msg); 1549 } 1550 1551 return -ECONNRESET; 1552 } 1553 1554 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1555 { 1556 int ret; 1557 1558 ret = nvme_rdma_create_queue_ib(queue); 1559 if (ret) 1560 return ret; 1561 1562 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1563 if (ret) { 1564 dev_err(queue->ctrl->ctrl.device, 1565 "rdma_resolve_route failed (%d).\n", 1566 queue->cm_error); 1567 goto out_destroy_queue; 1568 } 1569 1570 return 0; 1571 1572 out_destroy_queue: 1573 nvme_rdma_destroy_queue_ib(queue); 1574 return ret; 1575 } 1576 1577 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1578 { 1579 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1580 struct rdma_conn_param param = { }; 1581 struct nvme_rdma_cm_req priv = { }; 1582 int ret; 1583 1584 param.qp_num = queue->qp->qp_num; 1585 param.flow_control = 1; 1586 1587 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1588 /* maximum retry count */ 1589 param.retry_count = 7; 1590 param.rnr_retry_count = 7; 1591 param.private_data = &priv; 1592 param.private_data_len = sizeof(priv); 1593 1594 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1595 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1596 /* 1597 * set the admin queue depth to the minimum size 1598 * specified by the Fabrics standard. 1599 */ 1600 if (priv.qid == 0) { 1601 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1602 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1603 } else { 1604 /* 1605 * current interpretation of the fabrics spec 1606 * is at minimum you make hrqsize sqsize+1, or a 1607 * 1's based representation of sqsize. 1608 */ 1609 priv.hrqsize = cpu_to_le16(queue->queue_size); 1610 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1611 } 1612 1613 ret = rdma_connect(queue->cm_id, ¶m); 1614 if (ret) { 1615 dev_err(ctrl->ctrl.device, 1616 "rdma_connect failed (%d).\n", ret); 1617 goto out_destroy_queue_ib; 1618 } 1619 1620 return 0; 1621 1622 out_destroy_queue_ib: 1623 nvme_rdma_destroy_queue_ib(queue); 1624 return ret; 1625 } 1626 1627 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1628 struct rdma_cm_event *ev) 1629 { 1630 struct nvme_rdma_queue *queue = cm_id->context; 1631 int cm_error = 0; 1632 1633 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1634 rdma_event_msg(ev->event), ev->event, 1635 ev->status, cm_id); 1636 1637 switch (ev->event) { 1638 case RDMA_CM_EVENT_ADDR_RESOLVED: 1639 cm_error = nvme_rdma_addr_resolved(queue); 1640 break; 1641 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1642 cm_error = nvme_rdma_route_resolved(queue); 1643 break; 1644 case RDMA_CM_EVENT_ESTABLISHED: 1645 queue->cm_error = nvme_rdma_conn_established(queue); 1646 /* complete cm_done regardless of success/failure */ 1647 complete(&queue->cm_done); 1648 return 0; 1649 case RDMA_CM_EVENT_REJECTED: 1650 nvme_rdma_destroy_queue_ib(queue); 1651 cm_error = nvme_rdma_conn_rejected(queue, ev); 1652 break; 1653 case RDMA_CM_EVENT_ROUTE_ERROR: 1654 case RDMA_CM_EVENT_CONNECT_ERROR: 1655 case RDMA_CM_EVENT_UNREACHABLE: 1656 nvme_rdma_destroy_queue_ib(queue); 1657 /* fall through */ 1658 case RDMA_CM_EVENT_ADDR_ERROR: 1659 dev_dbg(queue->ctrl->ctrl.device, 1660 "CM error event %d\n", ev->event); 1661 cm_error = -ECONNRESET; 1662 break; 1663 case RDMA_CM_EVENT_DISCONNECTED: 1664 case RDMA_CM_EVENT_ADDR_CHANGE: 1665 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1666 dev_dbg(queue->ctrl->ctrl.device, 1667 "disconnect received - connection closed\n"); 1668 nvme_rdma_error_recovery(queue->ctrl); 1669 break; 1670 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1671 /* device removal is handled via the ib_client API */ 1672 break; 1673 default: 1674 dev_err(queue->ctrl->ctrl.device, 1675 "Unexpected RDMA CM event (%d)\n", ev->event); 1676 nvme_rdma_error_recovery(queue->ctrl); 1677 break; 1678 } 1679 1680 if (cm_error) { 1681 queue->cm_error = cm_error; 1682 complete(&queue->cm_done); 1683 } 1684 1685 return 0; 1686 } 1687 1688 static enum blk_eh_timer_return 1689 nvme_rdma_timeout(struct request *rq, bool reserved) 1690 { 1691 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1692 struct nvme_rdma_queue *queue = req->queue; 1693 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1694 1695 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1696 rq->tag, nvme_rdma_queue_idx(queue)); 1697 1698 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1699 /* 1700 * Teardown immediately if controller times out while starting 1701 * or we are already started error recovery. all outstanding 1702 * requests are completed on shutdown, so we return BLK_EH_DONE. 1703 */ 1704 flush_work(&ctrl->err_work); 1705 nvme_rdma_teardown_io_queues(ctrl, false); 1706 nvme_rdma_teardown_admin_queue(ctrl, false); 1707 return BLK_EH_DONE; 1708 } 1709 1710 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1711 nvme_rdma_error_recovery(ctrl); 1712 1713 return BLK_EH_RESET_TIMER; 1714 } 1715 1716 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1717 const struct blk_mq_queue_data *bd) 1718 { 1719 struct nvme_ns *ns = hctx->queue->queuedata; 1720 struct nvme_rdma_queue *queue = hctx->driver_data; 1721 struct request *rq = bd->rq; 1722 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1723 struct nvme_rdma_qe *sqe = &req->sqe; 1724 struct nvme_command *c = sqe->data; 1725 struct ib_device *dev; 1726 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1727 blk_status_t ret; 1728 int err; 1729 1730 WARN_ON_ONCE(rq->tag < 0); 1731 1732 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1733 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1734 1735 dev = queue->device->dev; 1736 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1737 sizeof(struct nvme_command), DMA_TO_DEVICE); 1738 1739 ret = nvme_setup_cmd(ns, rq, c); 1740 if (ret) 1741 return ret; 1742 1743 blk_mq_start_request(rq); 1744 1745 err = nvme_rdma_map_data(queue, rq, c); 1746 if (unlikely(err < 0)) { 1747 dev_err(queue->ctrl->ctrl.device, 1748 "Failed to map data (%d)\n", err); 1749 nvme_cleanup_cmd(rq); 1750 goto err; 1751 } 1752 1753 sqe->cqe.done = nvme_rdma_send_done; 1754 1755 ib_dma_sync_single_for_device(dev, sqe->dma, 1756 sizeof(struct nvme_command), DMA_TO_DEVICE); 1757 1758 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1759 req->mr ? &req->reg_wr.wr : NULL); 1760 if (unlikely(err)) { 1761 nvme_rdma_unmap_data(queue, rq); 1762 goto err; 1763 } 1764 1765 return BLK_STS_OK; 1766 err: 1767 if (err == -ENOMEM || err == -EAGAIN) 1768 return BLK_STS_RESOURCE; 1769 return BLK_STS_IOERR; 1770 } 1771 1772 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1773 { 1774 struct nvme_rdma_queue *queue = hctx->driver_data; 1775 1776 return ib_process_cq_direct(queue->ib_cq, -1); 1777 } 1778 1779 static void nvme_rdma_complete_rq(struct request *rq) 1780 { 1781 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1782 1783 nvme_rdma_unmap_data(req->queue, rq); 1784 nvme_complete_rq(rq); 1785 } 1786 1787 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1788 { 1789 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1790 1791 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1792 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1793 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1794 set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ]; 1795 if (ctrl->ctrl.opts->nr_write_queues) { 1796 /* separate read/write queues */ 1797 set->map[HCTX_TYPE_READ].queue_offset = 1798 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1799 } else { 1800 /* mixed read/write queues */ 1801 set->map[HCTX_TYPE_READ].queue_offset = 0; 1802 } 1803 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1804 ctrl->device->dev, 0); 1805 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1806 ctrl->device->dev, 0); 1807 1808 if (ctrl->ctrl.opts->nr_poll_queues) { 1809 set->map[HCTX_TYPE_POLL].nr_queues = 1810 ctrl->io_queues[HCTX_TYPE_POLL]; 1811 set->map[HCTX_TYPE_POLL].queue_offset = 1812 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1813 if (ctrl->ctrl.opts->nr_write_queues) 1814 set->map[HCTX_TYPE_POLL].queue_offset += 1815 ctrl->io_queues[HCTX_TYPE_READ]; 1816 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1817 } 1818 return 0; 1819 } 1820 1821 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1822 .queue_rq = nvme_rdma_queue_rq, 1823 .complete = nvme_rdma_complete_rq, 1824 .init_request = nvme_rdma_init_request, 1825 .exit_request = nvme_rdma_exit_request, 1826 .init_hctx = nvme_rdma_init_hctx, 1827 .timeout = nvme_rdma_timeout, 1828 .map_queues = nvme_rdma_map_queues, 1829 .poll = nvme_rdma_poll, 1830 }; 1831 1832 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1833 .queue_rq = nvme_rdma_queue_rq, 1834 .complete = nvme_rdma_complete_rq, 1835 .init_request = nvme_rdma_init_request, 1836 .exit_request = nvme_rdma_exit_request, 1837 .init_hctx = nvme_rdma_init_admin_hctx, 1838 .timeout = nvme_rdma_timeout, 1839 }; 1840 1841 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1842 { 1843 cancel_work_sync(&ctrl->err_work); 1844 cancel_delayed_work_sync(&ctrl->reconnect_work); 1845 1846 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1847 if (shutdown) 1848 nvme_shutdown_ctrl(&ctrl->ctrl); 1849 else 1850 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1851 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1852 } 1853 1854 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1855 { 1856 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1857 } 1858 1859 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1860 { 1861 struct nvme_rdma_ctrl *ctrl = 1862 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1863 1864 nvme_stop_ctrl(&ctrl->ctrl); 1865 nvme_rdma_shutdown_ctrl(ctrl, false); 1866 1867 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1868 /* state change failure should never happen */ 1869 WARN_ON_ONCE(1); 1870 return; 1871 } 1872 1873 if (nvme_rdma_setup_ctrl(ctrl, false)) 1874 goto out_fail; 1875 1876 return; 1877 1878 out_fail: 1879 ++ctrl->ctrl.nr_reconnects; 1880 nvme_rdma_reconnect_or_remove(ctrl); 1881 } 1882 1883 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1884 .name = "rdma", 1885 .module = THIS_MODULE, 1886 .flags = NVME_F_FABRICS, 1887 .reg_read32 = nvmf_reg_read32, 1888 .reg_read64 = nvmf_reg_read64, 1889 .reg_write32 = nvmf_reg_write32, 1890 .free_ctrl = nvme_rdma_free_ctrl, 1891 .submit_async_event = nvme_rdma_submit_async_event, 1892 .delete_ctrl = nvme_rdma_delete_ctrl, 1893 .get_address = nvmf_get_address, 1894 }; 1895 1896 /* 1897 * Fails a connection request if it matches an existing controller 1898 * (association) with the same tuple: 1899 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1900 * 1901 * if local address is not specified in the request, it will match an 1902 * existing controller with all the other parameters the same and no 1903 * local port address specified as well. 1904 * 1905 * The ports don't need to be compared as they are intrinsically 1906 * already matched by the port pointers supplied. 1907 */ 1908 static bool 1909 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1910 { 1911 struct nvme_rdma_ctrl *ctrl; 1912 bool found = false; 1913 1914 mutex_lock(&nvme_rdma_ctrl_mutex); 1915 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1916 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1917 if (found) 1918 break; 1919 } 1920 mutex_unlock(&nvme_rdma_ctrl_mutex); 1921 1922 return found; 1923 } 1924 1925 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1926 struct nvmf_ctrl_options *opts) 1927 { 1928 struct nvme_rdma_ctrl *ctrl; 1929 int ret; 1930 bool changed; 1931 1932 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1933 if (!ctrl) 1934 return ERR_PTR(-ENOMEM); 1935 ctrl->ctrl.opts = opts; 1936 INIT_LIST_HEAD(&ctrl->list); 1937 1938 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1939 opts->trsvcid = 1940 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1941 if (!opts->trsvcid) { 1942 ret = -ENOMEM; 1943 goto out_free_ctrl; 1944 } 1945 opts->mask |= NVMF_OPT_TRSVCID; 1946 } 1947 1948 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1949 opts->traddr, opts->trsvcid, &ctrl->addr); 1950 if (ret) { 1951 pr_err("malformed address passed: %s:%s\n", 1952 opts->traddr, opts->trsvcid); 1953 goto out_free_ctrl; 1954 } 1955 1956 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1957 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1958 opts->host_traddr, NULL, &ctrl->src_addr); 1959 if (ret) { 1960 pr_err("malformed src address passed: %s\n", 1961 opts->host_traddr); 1962 goto out_free_ctrl; 1963 } 1964 } 1965 1966 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1967 ret = -EALREADY; 1968 goto out_free_ctrl; 1969 } 1970 1971 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1972 nvme_rdma_reconnect_ctrl_work); 1973 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1974 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1975 1976 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1977 opts->nr_poll_queues + 1; 1978 ctrl->ctrl.sqsize = opts->queue_size - 1; 1979 ctrl->ctrl.kato = opts->kato; 1980 1981 ret = -ENOMEM; 1982 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1983 GFP_KERNEL); 1984 if (!ctrl->queues) 1985 goto out_free_ctrl; 1986 1987 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1988 0 /* no quirks, we're perfect! */); 1989 if (ret) 1990 goto out_kfree_queues; 1991 1992 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1993 WARN_ON_ONCE(!changed); 1994 1995 ret = nvme_rdma_setup_ctrl(ctrl, true); 1996 if (ret) 1997 goto out_uninit_ctrl; 1998 1999 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2000 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2001 2002 nvme_get_ctrl(&ctrl->ctrl); 2003 2004 mutex_lock(&nvme_rdma_ctrl_mutex); 2005 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2006 mutex_unlock(&nvme_rdma_ctrl_mutex); 2007 2008 return &ctrl->ctrl; 2009 2010 out_uninit_ctrl: 2011 nvme_uninit_ctrl(&ctrl->ctrl); 2012 nvme_put_ctrl(&ctrl->ctrl); 2013 if (ret > 0) 2014 ret = -EIO; 2015 return ERR_PTR(ret); 2016 out_kfree_queues: 2017 kfree(ctrl->queues); 2018 out_free_ctrl: 2019 kfree(ctrl); 2020 return ERR_PTR(ret); 2021 } 2022 2023 static struct nvmf_transport_ops nvme_rdma_transport = { 2024 .name = "rdma", 2025 .module = THIS_MODULE, 2026 .required_opts = NVMF_OPT_TRADDR, 2027 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2028 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2029 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES, 2030 .create_ctrl = nvme_rdma_create_ctrl, 2031 }; 2032 2033 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2034 { 2035 struct nvme_rdma_ctrl *ctrl; 2036 struct nvme_rdma_device *ndev; 2037 bool found = false; 2038 2039 mutex_lock(&device_list_mutex); 2040 list_for_each_entry(ndev, &device_list, entry) { 2041 if (ndev->dev == ib_device) { 2042 found = true; 2043 break; 2044 } 2045 } 2046 mutex_unlock(&device_list_mutex); 2047 2048 if (!found) 2049 return; 2050 2051 /* Delete all controllers using this device */ 2052 mutex_lock(&nvme_rdma_ctrl_mutex); 2053 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2054 if (ctrl->device->dev != ib_device) 2055 continue; 2056 nvme_delete_ctrl(&ctrl->ctrl); 2057 } 2058 mutex_unlock(&nvme_rdma_ctrl_mutex); 2059 2060 flush_workqueue(nvme_delete_wq); 2061 } 2062 2063 static struct ib_client nvme_rdma_ib_client = { 2064 .name = "nvme_rdma", 2065 .remove = nvme_rdma_remove_one 2066 }; 2067 2068 static int __init nvme_rdma_init_module(void) 2069 { 2070 int ret; 2071 2072 ret = ib_register_client(&nvme_rdma_ib_client); 2073 if (ret) 2074 return ret; 2075 2076 ret = nvmf_register_transport(&nvme_rdma_transport); 2077 if (ret) 2078 goto err_unreg_client; 2079 2080 return 0; 2081 2082 err_unreg_client: 2083 ib_unregister_client(&nvme_rdma_ib_client); 2084 return ret; 2085 } 2086 2087 static void __exit nvme_rdma_cleanup_module(void) 2088 { 2089 nvmf_unregister_transport(&nvme_rdma_transport); 2090 ib_unregister_client(&nvme_rdma_ib_client); 2091 } 2092 2093 module_init(nvme_rdma_init_module); 2094 module_exit(nvme_rdma_cleanup_module); 2095 2096 MODULE_LICENSE("GPL v2"); 2097