1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <rdma/ib_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 39 40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 41 42 #define NVME_RDMA_MAX_SEGMENTS 256 43 44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 45 46 /* 47 * We handle AEN commands ourselves and don't even let the 48 * block layer know about them. 49 */ 50 #define NVME_RDMA_NR_AEN_COMMANDS 1 51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 53 54 struct nvme_rdma_device { 55 struct ib_device *dev; 56 struct ib_pd *pd; 57 struct kref ref; 58 struct list_head entry; 59 }; 60 61 struct nvme_rdma_qe { 62 struct ib_cqe cqe; 63 void *data; 64 u64 dma; 65 }; 66 67 struct nvme_rdma_queue; 68 struct nvme_rdma_request { 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_CONNECTED = (1 << 0), 84 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 85 NVME_RDMA_Q_DELETING = (1 << 2), 86 }; 87 88 struct nvme_rdma_queue { 89 struct nvme_rdma_qe *rsp_ring; 90 u8 sig_count; 91 int queue_size; 92 size_t cmnd_capsule_len; 93 struct nvme_rdma_ctrl *ctrl; 94 struct nvme_rdma_device *device; 95 struct ib_cq *ib_cq; 96 struct ib_qp *qp; 97 98 unsigned long flags; 99 struct rdma_cm_id *cm_id; 100 int cm_error; 101 struct completion cm_done; 102 }; 103 104 struct nvme_rdma_ctrl { 105 /* read and written in the hot path */ 106 spinlock_t lock; 107 108 /* read only in the hot path */ 109 struct nvme_rdma_queue *queues; 110 u32 queue_count; 111 112 /* other member variables */ 113 struct blk_mq_tag_set tag_set; 114 struct work_struct delete_work; 115 struct work_struct reset_work; 116 struct work_struct err_work; 117 118 struct nvme_rdma_qe async_event_sqe; 119 120 int reconnect_delay; 121 struct delayed_work reconnect_work; 122 123 struct list_head list; 124 125 struct blk_mq_tag_set admin_tag_set; 126 struct nvme_rdma_device *device; 127 128 u64 cap; 129 u32 max_fr_pages; 130 131 union { 132 struct sockaddr addr; 133 struct sockaddr_in addr_in; 134 }; 135 136 struct nvme_ctrl ctrl; 137 }; 138 139 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 140 { 141 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 142 } 143 144 static LIST_HEAD(device_list); 145 static DEFINE_MUTEX(device_list_mutex); 146 147 static LIST_HEAD(nvme_rdma_ctrl_list); 148 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 149 150 static struct workqueue_struct *nvme_rdma_wq; 151 152 /* 153 * Disabling this option makes small I/O goes faster, but is fundamentally 154 * unsafe. With it turned off we will have to register a global rkey that 155 * allows read and write access to all physical memory. 156 */ 157 static bool register_always = true; 158 module_param(register_always, bool, 0444); 159 MODULE_PARM_DESC(register_always, 160 "Use memory registration even for contiguous memory regions"); 161 162 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 163 struct rdma_cm_event *event); 164 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 165 166 /* XXX: really should move to a generic header sooner or later.. */ 167 static inline void put_unaligned_le24(u32 val, u8 *p) 168 { 169 *p++ = val; 170 *p++ = val >> 8; 171 *p++ = val >> 16; 172 } 173 174 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 175 { 176 return queue - queue->ctrl->queues; 177 } 178 179 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 180 { 181 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 182 } 183 184 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 185 size_t capsule_size, enum dma_data_direction dir) 186 { 187 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 188 kfree(qe->data); 189 } 190 191 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 192 size_t capsule_size, enum dma_data_direction dir) 193 { 194 qe->data = kzalloc(capsule_size, GFP_KERNEL); 195 if (!qe->data) 196 return -ENOMEM; 197 198 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 199 if (ib_dma_mapping_error(ibdev, qe->dma)) { 200 kfree(qe->data); 201 return -ENOMEM; 202 } 203 204 return 0; 205 } 206 207 static void nvme_rdma_free_ring(struct ib_device *ibdev, 208 struct nvme_rdma_qe *ring, size_t ib_queue_size, 209 size_t capsule_size, enum dma_data_direction dir) 210 { 211 int i; 212 213 for (i = 0; i < ib_queue_size; i++) 214 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 215 kfree(ring); 216 } 217 218 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 219 size_t ib_queue_size, size_t capsule_size, 220 enum dma_data_direction dir) 221 { 222 struct nvme_rdma_qe *ring; 223 int i; 224 225 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 226 if (!ring) 227 return NULL; 228 229 for (i = 0; i < ib_queue_size; i++) { 230 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 231 goto out_free_ring; 232 } 233 234 return ring; 235 236 out_free_ring: 237 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 238 return NULL; 239 } 240 241 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 242 { 243 pr_debug("QP event %d\n", event->event); 244 } 245 246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 247 { 248 wait_for_completion_interruptible_timeout(&queue->cm_done, 249 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 250 return queue->cm_error; 251 } 252 253 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 254 { 255 struct nvme_rdma_device *dev = queue->device; 256 struct ib_qp_init_attr init_attr; 257 int ret; 258 259 memset(&init_attr, 0, sizeof(init_attr)); 260 init_attr.event_handler = nvme_rdma_qp_event; 261 /* +1 for drain */ 262 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 263 /* +1 for drain */ 264 init_attr.cap.max_recv_wr = queue->queue_size + 1; 265 init_attr.cap.max_recv_sge = 1; 266 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 267 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 268 init_attr.qp_type = IB_QPT_RC; 269 init_attr.send_cq = queue->ib_cq; 270 init_attr.recv_cq = queue->ib_cq; 271 272 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 273 274 queue->qp = queue->cm_id->qp; 275 return ret; 276 } 277 278 static int nvme_rdma_reinit_request(void *data, struct request *rq) 279 { 280 struct nvme_rdma_ctrl *ctrl = data; 281 struct nvme_rdma_device *dev = ctrl->device; 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 int ret = 0; 284 285 if (!req->mr->need_inval) 286 goto out; 287 288 ib_dereg_mr(req->mr); 289 290 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 291 ctrl->max_fr_pages); 292 if (IS_ERR(req->mr)) { 293 ret = PTR_ERR(req->mr); 294 req->mr = NULL; 295 goto out; 296 } 297 298 req->mr->need_inval = false; 299 300 out: 301 return ret; 302 } 303 304 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 305 struct request *rq, unsigned int queue_idx) 306 { 307 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 308 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 309 struct nvme_rdma_device *dev = queue->device; 310 311 if (req->mr) 312 ib_dereg_mr(req->mr); 313 314 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 315 DMA_TO_DEVICE); 316 } 317 318 static void nvme_rdma_exit_request(void *data, struct request *rq, 319 unsigned int hctx_idx, unsigned int rq_idx) 320 { 321 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 322 } 323 324 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 325 unsigned int hctx_idx, unsigned int rq_idx) 326 { 327 return __nvme_rdma_exit_request(data, rq, 0); 328 } 329 330 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 331 struct request *rq, unsigned int queue_idx) 332 { 333 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 334 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 335 struct nvme_rdma_device *dev = queue->device; 336 struct ib_device *ibdev = dev->dev; 337 int ret; 338 339 BUG_ON(queue_idx >= ctrl->queue_count); 340 341 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 342 DMA_TO_DEVICE); 343 if (ret) 344 return ret; 345 346 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 347 ctrl->max_fr_pages); 348 if (IS_ERR(req->mr)) { 349 ret = PTR_ERR(req->mr); 350 goto out_free_qe; 351 } 352 353 req->queue = queue; 354 355 return 0; 356 357 out_free_qe: 358 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 359 DMA_TO_DEVICE); 360 return -ENOMEM; 361 } 362 363 static int nvme_rdma_init_request(void *data, struct request *rq, 364 unsigned int hctx_idx, unsigned int rq_idx, 365 unsigned int numa_node) 366 { 367 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 368 } 369 370 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 371 unsigned int hctx_idx, unsigned int rq_idx, 372 unsigned int numa_node) 373 { 374 return __nvme_rdma_init_request(data, rq, 0); 375 } 376 377 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 378 unsigned int hctx_idx) 379 { 380 struct nvme_rdma_ctrl *ctrl = data; 381 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 382 383 BUG_ON(hctx_idx >= ctrl->queue_count); 384 385 hctx->driver_data = queue; 386 return 0; 387 } 388 389 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 390 unsigned int hctx_idx) 391 { 392 struct nvme_rdma_ctrl *ctrl = data; 393 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 394 395 BUG_ON(hctx_idx != 0); 396 397 hctx->driver_data = queue; 398 return 0; 399 } 400 401 static void nvme_rdma_free_dev(struct kref *ref) 402 { 403 struct nvme_rdma_device *ndev = 404 container_of(ref, struct nvme_rdma_device, ref); 405 406 mutex_lock(&device_list_mutex); 407 list_del(&ndev->entry); 408 mutex_unlock(&device_list_mutex); 409 410 ib_dealloc_pd(ndev->pd); 411 kfree(ndev); 412 } 413 414 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 415 { 416 kref_put(&dev->ref, nvme_rdma_free_dev); 417 } 418 419 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 420 { 421 return kref_get_unless_zero(&dev->ref); 422 } 423 424 static struct nvme_rdma_device * 425 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 426 { 427 struct nvme_rdma_device *ndev; 428 429 mutex_lock(&device_list_mutex); 430 list_for_each_entry(ndev, &device_list, entry) { 431 if (ndev->dev->node_guid == cm_id->device->node_guid && 432 nvme_rdma_dev_get(ndev)) 433 goto out_unlock; 434 } 435 436 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 437 if (!ndev) 438 goto out_err; 439 440 ndev->dev = cm_id->device; 441 kref_init(&ndev->ref); 442 443 ndev->pd = ib_alloc_pd(ndev->dev, 444 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 445 if (IS_ERR(ndev->pd)) 446 goto out_free_dev; 447 448 if (!(ndev->dev->attrs.device_cap_flags & 449 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 450 dev_err(&ndev->dev->dev, 451 "Memory registrations not supported.\n"); 452 goto out_free_pd; 453 } 454 455 list_add(&ndev->entry, &device_list); 456 out_unlock: 457 mutex_unlock(&device_list_mutex); 458 return ndev; 459 460 out_free_pd: 461 ib_dealloc_pd(ndev->pd); 462 out_free_dev: 463 kfree(ndev); 464 out_err: 465 mutex_unlock(&device_list_mutex); 466 return NULL; 467 } 468 469 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 470 { 471 struct nvme_rdma_device *dev; 472 struct ib_device *ibdev; 473 474 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 475 return; 476 477 dev = queue->device; 478 ibdev = dev->dev; 479 rdma_destroy_qp(queue->cm_id); 480 ib_free_cq(queue->ib_cq); 481 482 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 483 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 484 485 nvme_rdma_dev_put(dev); 486 } 487 488 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 489 struct nvme_rdma_device *dev) 490 { 491 struct ib_device *ibdev = dev->dev; 492 const int send_wr_factor = 3; /* MR, SEND, INV */ 493 const int cq_factor = send_wr_factor + 1; /* + RECV */ 494 int comp_vector, idx = nvme_rdma_queue_idx(queue); 495 496 int ret; 497 498 queue->device = dev; 499 500 /* 501 * The admin queue is barely used once the controller is live, so don't 502 * bother to spread it out. 503 */ 504 if (idx == 0) 505 comp_vector = 0; 506 else 507 comp_vector = idx % ibdev->num_comp_vectors; 508 509 510 /* +1 for ib_stop_cq */ 511 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 512 cq_factor * queue->queue_size + 1, comp_vector, 513 IB_POLL_SOFTIRQ); 514 if (IS_ERR(queue->ib_cq)) { 515 ret = PTR_ERR(queue->ib_cq); 516 goto out; 517 } 518 519 ret = nvme_rdma_create_qp(queue, send_wr_factor); 520 if (ret) 521 goto out_destroy_ib_cq; 522 523 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 524 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 525 if (!queue->rsp_ring) { 526 ret = -ENOMEM; 527 goto out_destroy_qp; 528 } 529 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 530 531 return 0; 532 533 out_destroy_qp: 534 ib_destroy_qp(queue->qp); 535 out_destroy_ib_cq: 536 ib_free_cq(queue->ib_cq); 537 out: 538 return ret; 539 } 540 541 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 542 int idx, size_t queue_size) 543 { 544 struct nvme_rdma_queue *queue; 545 int ret; 546 547 queue = &ctrl->queues[idx]; 548 queue->ctrl = ctrl; 549 init_completion(&queue->cm_done); 550 551 if (idx > 0) 552 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 553 else 554 queue->cmnd_capsule_len = sizeof(struct nvme_command); 555 556 queue->queue_size = queue_size; 557 558 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 559 RDMA_PS_TCP, IB_QPT_RC); 560 if (IS_ERR(queue->cm_id)) { 561 dev_info(ctrl->ctrl.device, 562 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 563 return PTR_ERR(queue->cm_id); 564 } 565 566 queue->cm_error = -ETIMEDOUT; 567 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 568 NVME_RDMA_CONNECT_TIMEOUT_MS); 569 if (ret) { 570 dev_info(ctrl->ctrl.device, 571 "rdma_resolve_addr failed (%d).\n", ret); 572 goto out_destroy_cm_id; 573 } 574 575 ret = nvme_rdma_wait_for_cm(queue); 576 if (ret) { 577 dev_info(ctrl->ctrl.device, 578 "rdma_resolve_addr wait failed (%d).\n", ret); 579 goto out_destroy_cm_id; 580 } 581 582 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 583 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 584 585 return 0; 586 587 out_destroy_cm_id: 588 nvme_rdma_destroy_queue_ib(queue); 589 rdma_destroy_id(queue->cm_id); 590 return ret; 591 } 592 593 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 594 { 595 rdma_disconnect(queue->cm_id); 596 ib_drain_qp(queue->qp); 597 } 598 599 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 600 { 601 nvme_rdma_destroy_queue_ib(queue); 602 rdma_destroy_id(queue->cm_id); 603 } 604 605 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 606 { 607 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 608 return; 609 nvme_rdma_stop_queue(queue); 610 nvme_rdma_free_queue(queue); 611 } 612 613 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 614 { 615 int i; 616 617 for (i = 1; i < ctrl->queue_count; i++) 618 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 619 } 620 621 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 622 { 623 int i, ret = 0; 624 625 for (i = 1; i < ctrl->queue_count; i++) { 626 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 627 if (ret) 628 break; 629 } 630 631 return ret; 632 } 633 634 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 635 { 636 int i, ret; 637 638 for (i = 1; i < ctrl->queue_count; i++) { 639 ret = nvme_rdma_init_queue(ctrl, i, 640 ctrl->ctrl.opts->queue_size); 641 if (ret) { 642 dev_info(ctrl->ctrl.device, 643 "failed to initialize i/o queue: %d\n", ret); 644 goto out_free_queues; 645 } 646 } 647 648 return 0; 649 650 out_free_queues: 651 for (i--; i >= 1; i--) 652 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 653 654 return ret; 655 } 656 657 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 658 { 659 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 660 sizeof(struct nvme_command), DMA_TO_DEVICE); 661 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 662 blk_cleanup_queue(ctrl->ctrl.admin_q); 663 blk_mq_free_tag_set(&ctrl->admin_tag_set); 664 nvme_rdma_dev_put(ctrl->device); 665 } 666 667 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 668 { 669 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 670 671 if (list_empty(&ctrl->list)) 672 goto free_ctrl; 673 674 mutex_lock(&nvme_rdma_ctrl_mutex); 675 list_del(&ctrl->list); 676 mutex_unlock(&nvme_rdma_ctrl_mutex); 677 678 kfree(ctrl->queues); 679 nvmf_free_options(nctrl->opts); 680 free_ctrl: 681 kfree(ctrl); 682 } 683 684 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 685 { 686 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 687 struct nvme_rdma_ctrl, reconnect_work); 688 bool changed; 689 int ret; 690 691 if (ctrl->queue_count > 1) { 692 nvme_rdma_free_io_queues(ctrl); 693 694 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 695 if (ret) 696 goto requeue; 697 } 698 699 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 700 701 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 702 if (ret) 703 goto requeue; 704 705 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 706 if (ret) 707 goto requeue; 708 709 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 710 711 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 712 if (ret) 713 goto stop_admin_q; 714 715 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 716 if (ret) 717 goto stop_admin_q; 718 719 nvme_start_keep_alive(&ctrl->ctrl); 720 721 if (ctrl->queue_count > 1) { 722 ret = nvme_rdma_init_io_queues(ctrl); 723 if (ret) 724 goto stop_admin_q; 725 726 ret = nvme_rdma_connect_io_queues(ctrl); 727 if (ret) 728 goto stop_admin_q; 729 } 730 731 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 732 WARN_ON_ONCE(!changed); 733 734 if (ctrl->queue_count > 1) { 735 nvme_start_queues(&ctrl->ctrl); 736 nvme_queue_scan(&ctrl->ctrl); 737 nvme_queue_async_events(&ctrl->ctrl); 738 } 739 740 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 741 742 return; 743 744 stop_admin_q: 745 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 746 requeue: 747 /* Make sure we are not resetting/deleting */ 748 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 749 dev_info(ctrl->ctrl.device, 750 "Failed reconnect attempt, requeueing...\n"); 751 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 752 ctrl->reconnect_delay * HZ); 753 } 754 } 755 756 static void nvme_rdma_error_recovery_work(struct work_struct *work) 757 { 758 struct nvme_rdma_ctrl *ctrl = container_of(work, 759 struct nvme_rdma_ctrl, err_work); 760 int i; 761 762 nvme_stop_keep_alive(&ctrl->ctrl); 763 764 for (i = 0; i < ctrl->queue_count; i++) 765 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 766 767 if (ctrl->queue_count > 1) 768 nvme_stop_queues(&ctrl->ctrl); 769 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 770 771 /* We must take care of fastfail/requeue all our inflight requests */ 772 if (ctrl->queue_count > 1) 773 blk_mq_tagset_busy_iter(&ctrl->tag_set, 774 nvme_cancel_request, &ctrl->ctrl); 775 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 776 nvme_cancel_request, &ctrl->ctrl); 777 778 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 779 ctrl->reconnect_delay); 780 781 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 782 ctrl->reconnect_delay * HZ); 783 } 784 785 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 786 { 787 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 788 return; 789 790 queue_work(nvme_rdma_wq, &ctrl->err_work); 791 } 792 793 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 794 const char *op) 795 { 796 struct nvme_rdma_queue *queue = cq->cq_context; 797 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 798 799 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 800 dev_info(ctrl->ctrl.device, 801 "%s for CQE 0x%p failed with status %s (%d)\n", 802 op, wc->wr_cqe, 803 ib_wc_status_msg(wc->status), wc->status); 804 nvme_rdma_error_recovery(ctrl); 805 } 806 807 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 808 { 809 if (unlikely(wc->status != IB_WC_SUCCESS)) 810 nvme_rdma_wr_error(cq, wc, "MEMREG"); 811 } 812 813 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 814 { 815 if (unlikely(wc->status != IB_WC_SUCCESS)) 816 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 817 } 818 819 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 820 struct nvme_rdma_request *req) 821 { 822 struct ib_send_wr *bad_wr; 823 struct ib_send_wr wr = { 824 .opcode = IB_WR_LOCAL_INV, 825 .next = NULL, 826 .num_sge = 0, 827 .send_flags = 0, 828 .ex.invalidate_rkey = req->mr->rkey, 829 }; 830 831 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 832 wr.wr_cqe = &req->reg_cqe; 833 834 return ib_post_send(queue->qp, &wr, &bad_wr); 835 } 836 837 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 838 struct request *rq) 839 { 840 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 841 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 842 struct nvme_rdma_device *dev = queue->device; 843 struct ib_device *ibdev = dev->dev; 844 int res; 845 846 if (!blk_rq_bytes(rq)) 847 return; 848 849 if (req->mr->need_inval) { 850 res = nvme_rdma_inv_rkey(queue, req); 851 if (res < 0) { 852 dev_err(ctrl->ctrl.device, 853 "Queueing INV WR for rkey %#x failed (%d)\n", 854 req->mr->rkey, res); 855 nvme_rdma_error_recovery(queue->ctrl); 856 } 857 } 858 859 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 860 req->nents, rq_data_dir(rq) == 861 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 862 863 nvme_cleanup_cmd(rq); 864 sg_free_table_chained(&req->sg_table, true); 865 } 866 867 static int nvme_rdma_set_sg_null(struct nvme_command *c) 868 { 869 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 870 871 sg->addr = 0; 872 put_unaligned_le24(0, sg->length); 873 put_unaligned_le32(0, sg->key); 874 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 875 return 0; 876 } 877 878 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 879 struct nvme_rdma_request *req, struct nvme_command *c) 880 { 881 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 882 883 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 884 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 885 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 886 887 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 888 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 889 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 890 891 req->inline_data = true; 892 req->num_sge++; 893 return 0; 894 } 895 896 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 897 struct nvme_rdma_request *req, struct nvme_command *c) 898 { 899 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 900 901 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 902 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 903 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 904 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 905 return 0; 906 } 907 908 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 909 struct nvme_rdma_request *req, struct nvme_command *c, 910 int count) 911 { 912 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 913 int nr; 914 915 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 916 if (nr < count) { 917 if (nr < 0) 918 return nr; 919 return -EINVAL; 920 } 921 922 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 923 924 req->reg_cqe.done = nvme_rdma_memreg_done; 925 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 926 req->reg_wr.wr.opcode = IB_WR_REG_MR; 927 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 928 req->reg_wr.wr.num_sge = 0; 929 req->reg_wr.mr = req->mr; 930 req->reg_wr.key = req->mr->rkey; 931 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 932 IB_ACCESS_REMOTE_READ | 933 IB_ACCESS_REMOTE_WRITE; 934 935 req->mr->need_inval = true; 936 937 sg->addr = cpu_to_le64(req->mr->iova); 938 put_unaligned_le24(req->mr->length, sg->length); 939 put_unaligned_le32(req->mr->rkey, sg->key); 940 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 941 NVME_SGL_FMT_INVALIDATE; 942 943 return 0; 944 } 945 946 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 947 struct request *rq, unsigned int map_len, 948 struct nvme_command *c) 949 { 950 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 951 struct nvme_rdma_device *dev = queue->device; 952 struct ib_device *ibdev = dev->dev; 953 int nents, count; 954 int ret; 955 956 req->num_sge = 1; 957 req->inline_data = false; 958 req->mr->need_inval = false; 959 960 c->common.flags |= NVME_CMD_SGL_METABUF; 961 962 if (!blk_rq_bytes(rq)) 963 return nvme_rdma_set_sg_null(c); 964 965 req->sg_table.sgl = req->first_sgl; 966 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments, 967 req->sg_table.sgl); 968 if (ret) 969 return -ENOMEM; 970 971 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 972 BUG_ON(nents > rq->nr_phys_segments); 973 req->nents = nents; 974 975 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents, 976 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 977 if (unlikely(count <= 0)) { 978 sg_free_table_chained(&req->sg_table, true); 979 return -EIO; 980 } 981 982 if (count == 1) { 983 if (rq_data_dir(rq) == WRITE && 984 map_len <= nvme_rdma_inline_data_size(queue) && 985 nvme_rdma_queue_idx(queue)) 986 return nvme_rdma_map_sg_inline(queue, req, c); 987 988 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 989 return nvme_rdma_map_sg_single(queue, req, c); 990 } 991 992 return nvme_rdma_map_sg_fr(queue, req, c, count); 993 } 994 995 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 996 { 997 if (unlikely(wc->status != IB_WC_SUCCESS)) 998 nvme_rdma_wr_error(cq, wc, "SEND"); 999 } 1000 1001 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1002 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1003 struct ib_send_wr *first, bool flush) 1004 { 1005 struct ib_send_wr wr, *bad_wr; 1006 int ret; 1007 1008 sge->addr = qe->dma; 1009 sge->length = sizeof(struct nvme_command), 1010 sge->lkey = queue->device->pd->local_dma_lkey; 1011 1012 qe->cqe.done = nvme_rdma_send_done; 1013 1014 wr.next = NULL; 1015 wr.wr_cqe = &qe->cqe; 1016 wr.sg_list = sge; 1017 wr.num_sge = num_sge; 1018 wr.opcode = IB_WR_SEND; 1019 wr.send_flags = 0; 1020 1021 /* 1022 * Unsignalled send completions are another giant desaster in the 1023 * IB Verbs spec: If we don't regularly post signalled sends 1024 * the send queue will fill up and only a QP reset will rescue us. 1025 * Would have been way to obvious to handle this in hardware or 1026 * at least the RDMA stack.. 1027 * 1028 * This messy and racy code sniplet is copy and pasted from the iSER 1029 * initiator, and the magic '32' comes from there as well. 1030 * 1031 * Always signal the flushes. The magic request used for the flush 1032 * sequencer is not allocated in our driver's tagset and it's 1033 * triggered to be freed by blk_cleanup_queue(). So we need to 1034 * always mark it as signaled to ensure that the "wr_cqe", which is 1035 * embeded in request's payload, is not freed when __ib_process_cq() 1036 * calls wr_cqe->done(). 1037 */ 1038 if ((++queue->sig_count % 32) == 0 || flush) 1039 wr.send_flags |= IB_SEND_SIGNALED; 1040 1041 if (first) 1042 first->next = ≀ 1043 else 1044 first = ≀ 1045 1046 ret = ib_post_send(queue->qp, first, &bad_wr); 1047 if (ret) { 1048 dev_err(queue->ctrl->ctrl.device, 1049 "%s failed with error code %d\n", __func__, ret); 1050 } 1051 return ret; 1052 } 1053 1054 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1055 struct nvme_rdma_qe *qe) 1056 { 1057 struct ib_recv_wr wr, *bad_wr; 1058 struct ib_sge list; 1059 int ret; 1060 1061 list.addr = qe->dma; 1062 list.length = sizeof(struct nvme_completion); 1063 list.lkey = queue->device->pd->local_dma_lkey; 1064 1065 qe->cqe.done = nvme_rdma_recv_done; 1066 1067 wr.next = NULL; 1068 wr.wr_cqe = &qe->cqe; 1069 wr.sg_list = &list; 1070 wr.num_sge = 1; 1071 1072 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1073 if (ret) { 1074 dev_err(queue->ctrl->ctrl.device, 1075 "%s failed with error code %d\n", __func__, ret); 1076 } 1077 return ret; 1078 } 1079 1080 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1081 { 1082 u32 queue_idx = nvme_rdma_queue_idx(queue); 1083 1084 if (queue_idx == 0) 1085 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1086 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1087 } 1088 1089 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1090 { 1091 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1092 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1093 struct ib_device *dev = queue->device->dev; 1094 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1095 struct nvme_command *cmd = sqe->data; 1096 struct ib_sge sge; 1097 int ret; 1098 1099 if (WARN_ON_ONCE(aer_idx != 0)) 1100 return; 1101 1102 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1103 1104 memset(cmd, 0, sizeof(*cmd)); 1105 cmd->common.opcode = nvme_admin_async_event; 1106 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1107 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1108 nvme_rdma_set_sg_null(cmd); 1109 1110 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1111 DMA_TO_DEVICE); 1112 1113 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1114 WARN_ON_ONCE(ret); 1115 } 1116 1117 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1118 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1119 { 1120 u16 status = le16_to_cpu(cqe->status); 1121 struct request *rq; 1122 struct nvme_rdma_request *req; 1123 int ret = 0; 1124 1125 status >>= 1; 1126 1127 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1128 if (!rq) { 1129 dev_err(queue->ctrl->ctrl.device, 1130 "tag 0x%x on QP %#x not found\n", 1131 cqe->command_id, queue->qp->qp_num); 1132 nvme_rdma_error_recovery(queue->ctrl); 1133 return ret; 1134 } 1135 req = blk_mq_rq_to_pdu(rq); 1136 1137 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special) 1138 memcpy(rq->special, cqe, sizeof(*cqe)); 1139 1140 if (rq->tag == tag) 1141 ret = 1; 1142 1143 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1144 wc->ex.invalidate_rkey == req->mr->rkey) 1145 req->mr->need_inval = false; 1146 1147 blk_mq_complete_request(rq, status); 1148 1149 return ret; 1150 } 1151 1152 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1153 { 1154 struct nvme_rdma_qe *qe = 1155 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1156 struct nvme_rdma_queue *queue = cq->cq_context; 1157 struct ib_device *ibdev = queue->device->dev; 1158 struct nvme_completion *cqe = qe->data; 1159 const size_t len = sizeof(struct nvme_completion); 1160 int ret = 0; 1161 1162 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1163 nvme_rdma_wr_error(cq, wc, "RECV"); 1164 return 0; 1165 } 1166 1167 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1168 /* 1169 * AEN requests are special as they don't time out and can 1170 * survive any kind of queue freeze and often don't respond to 1171 * aborts. We don't even bother to allocate a struct request 1172 * for them but rather special case them here. 1173 */ 1174 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1175 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1176 nvme_complete_async_event(&queue->ctrl->ctrl, cqe); 1177 else 1178 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1179 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1180 1181 nvme_rdma_post_recv(queue, qe); 1182 return ret; 1183 } 1184 1185 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1186 { 1187 __nvme_rdma_recv_done(cq, wc, -1); 1188 } 1189 1190 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1191 { 1192 int ret, i; 1193 1194 for (i = 0; i < queue->queue_size; i++) { 1195 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1196 if (ret) 1197 goto out_destroy_queue_ib; 1198 } 1199 1200 return 0; 1201 1202 out_destroy_queue_ib: 1203 nvme_rdma_destroy_queue_ib(queue); 1204 return ret; 1205 } 1206 1207 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1208 struct rdma_cm_event *ev) 1209 { 1210 if (ev->param.conn.private_data_len) { 1211 struct nvme_rdma_cm_rej *rej = 1212 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; 1213 1214 dev_err(queue->ctrl->ctrl.device, 1215 "Connect rejected, status %d.", le16_to_cpu(rej->sts)); 1216 /* XXX: Think of something clever to do here... */ 1217 } else { 1218 dev_err(queue->ctrl->ctrl.device, 1219 "Connect rejected, no private data.\n"); 1220 } 1221 1222 return -ECONNRESET; 1223 } 1224 1225 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1226 { 1227 struct nvme_rdma_device *dev; 1228 int ret; 1229 1230 dev = nvme_rdma_find_get_device(queue->cm_id); 1231 if (!dev) { 1232 dev_err(queue->cm_id->device->dma_device, 1233 "no client data found!\n"); 1234 return -ECONNREFUSED; 1235 } 1236 1237 ret = nvme_rdma_create_queue_ib(queue, dev); 1238 if (ret) { 1239 nvme_rdma_dev_put(dev); 1240 goto out; 1241 } 1242 1243 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1244 if (ret) { 1245 dev_err(queue->ctrl->ctrl.device, 1246 "rdma_resolve_route failed (%d).\n", 1247 queue->cm_error); 1248 goto out_destroy_queue; 1249 } 1250 1251 return 0; 1252 1253 out_destroy_queue: 1254 nvme_rdma_destroy_queue_ib(queue); 1255 out: 1256 return ret; 1257 } 1258 1259 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1260 { 1261 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1262 struct rdma_conn_param param = { }; 1263 struct nvme_rdma_cm_req priv = { }; 1264 int ret; 1265 1266 param.qp_num = queue->qp->qp_num; 1267 param.flow_control = 1; 1268 1269 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1270 /* maximum retry count */ 1271 param.retry_count = 7; 1272 param.rnr_retry_count = 7; 1273 param.private_data = &priv; 1274 param.private_data_len = sizeof(priv); 1275 1276 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1277 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1278 /* 1279 * set the admin queue depth to the minimum size 1280 * specified by the Fabrics standard. 1281 */ 1282 if (priv.qid == 0) { 1283 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1284 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1285 } else { 1286 /* 1287 * current interpretation of the fabrics spec 1288 * is at minimum you make hrqsize sqsize+1, or a 1289 * 1's based representation of sqsize. 1290 */ 1291 priv.hrqsize = cpu_to_le16(queue->queue_size); 1292 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1293 } 1294 1295 ret = rdma_connect(queue->cm_id, ¶m); 1296 if (ret) { 1297 dev_err(ctrl->ctrl.device, 1298 "rdma_connect failed (%d).\n", ret); 1299 goto out_destroy_queue_ib; 1300 } 1301 1302 return 0; 1303 1304 out_destroy_queue_ib: 1305 nvme_rdma_destroy_queue_ib(queue); 1306 return ret; 1307 } 1308 1309 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1310 struct rdma_cm_event *ev) 1311 { 1312 struct nvme_rdma_queue *queue = cm_id->context; 1313 int cm_error = 0; 1314 1315 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1316 rdma_event_msg(ev->event), ev->event, 1317 ev->status, cm_id); 1318 1319 switch (ev->event) { 1320 case RDMA_CM_EVENT_ADDR_RESOLVED: 1321 cm_error = nvme_rdma_addr_resolved(queue); 1322 break; 1323 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1324 cm_error = nvme_rdma_route_resolved(queue); 1325 break; 1326 case RDMA_CM_EVENT_ESTABLISHED: 1327 queue->cm_error = nvme_rdma_conn_established(queue); 1328 /* complete cm_done regardless of success/failure */ 1329 complete(&queue->cm_done); 1330 return 0; 1331 case RDMA_CM_EVENT_REJECTED: 1332 cm_error = nvme_rdma_conn_rejected(queue, ev); 1333 break; 1334 case RDMA_CM_EVENT_ADDR_ERROR: 1335 case RDMA_CM_EVENT_ROUTE_ERROR: 1336 case RDMA_CM_EVENT_CONNECT_ERROR: 1337 case RDMA_CM_EVENT_UNREACHABLE: 1338 dev_dbg(queue->ctrl->ctrl.device, 1339 "CM error event %d\n", ev->event); 1340 cm_error = -ECONNRESET; 1341 break; 1342 case RDMA_CM_EVENT_DISCONNECTED: 1343 case RDMA_CM_EVENT_ADDR_CHANGE: 1344 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1345 dev_dbg(queue->ctrl->ctrl.device, 1346 "disconnect received - connection closed\n"); 1347 nvme_rdma_error_recovery(queue->ctrl); 1348 break; 1349 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1350 /* device removal is handled via the ib_client API */ 1351 break; 1352 default: 1353 dev_err(queue->ctrl->ctrl.device, 1354 "Unexpected RDMA CM event (%d)\n", ev->event); 1355 nvme_rdma_error_recovery(queue->ctrl); 1356 break; 1357 } 1358 1359 if (cm_error) { 1360 queue->cm_error = cm_error; 1361 complete(&queue->cm_done); 1362 } 1363 1364 return 0; 1365 } 1366 1367 static enum blk_eh_timer_return 1368 nvme_rdma_timeout(struct request *rq, bool reserved) 1369 { 1370 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1371 1372 /* queue error recovery */ 1373 nvme_rdma_error_recovery(req->queue->ctrl); 1374 1375 /* fail with DNR on cmd timeout */ 1376 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1377 1378 return BLK_EH_HANDLED; 1379 } 1380 1381 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1382 const struct blk_mq_queue_data *bd) 1383 { 1384 struct nvme_ns *ns = hctx->queue->queuedata; 1385 struct nvme_rdma_queue *queue = hctx->driver_data; 1386 struct request *rq = bd->rq; 1387 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1388 struct nvme_rdma_qe *sqe = &req->sqe; 1389 struct nvme_command *c = sqe->data; 1390 bool flush = false; 1391 struct ib_device *dev; 1392 unsigned int map_len; 1393 int ret; 1394 1395 WARN_ON_ONCE(rq->tag < 0); 1396 1397 dev = queue->device->dev; 1398 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1399 sizeof(struct nvme_command), DMA_TO_DEVICE); 1400 1401 ret = nvme_setup_cmd(ns, rq, c); 1402 if (ret) 1403 return ret; 1404 1405 c->common.command_id = rq->tag; 1406 blk_mq_start_request(rq); 1407 1408 map_len = nvme_map_len(rq); 1409 ret = nvme_rdma_map_data(queue, rq, map_len, c); 1410 if (ret < 0) { 1411 dev_err(queue->ctrl->ctrl.device, 1412 "Failed to map data (%d)\n", ret); 1413 nvme_cleanup_cmd(rq); 1414 goto err; 1415 } 1416 1417 ib_dma_sync_single_for_device(dev, sqe->dma, 1418 sizeof(struct nvme_command), DMA_TO_DEVICE); 1419 1420 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1421 flush = true; 1422 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1423 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1424 if (ret) { 1425 nvme_rdma_unmap_data(queue, rq); 1426 goto err; 1427 } 1428 1429 return BLK_MQ_RQ_QUEUE_OK; 1430 err: 1431 return (ret == -ENOMEM || ret == -EAGAIN) ? 1432 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1433 } 1434 1435 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1436 { 1437 struct nvme_rdma_queue *queue = hctx->driver_data; 1438 struct ib_cq *cq = queue->ib_cq; 1439 struct ib_wc wc; 1440 int found = 0; 1441 1442 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1443 while (ib_poll_cq(cq, 1, &wc) > 0) { 1444 struct ib_cqe *cqe = wc.wr_cqe; 1445 1446 if (cqe) { 1447 if (cqe->done == nvme_rdma_recv_done) 1448 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1449 else 1450 cqe->done(cq, &wc); 1451 } 1452 } 1453 1454 return found; 1455 } 1456 1457 static void nvme_rdma_complete_rq(struct request *rq) 1458 { 1459 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1460 struct nvme_rdma_queue *queue = req->queue; 1461 int error = 0; 1462 1463 nvme_rdma_unmap_data(queue, rq); 1464 1465 if (unlikely(rq->errors)) { 1466 if (nvme_req_needs_retry(rq, rq->errors)) { 1467 nvme_requeue_req(rq); 1468 return; 1469 } 1470 1471 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1472 error = rq->errors; 1473 else 1474 error = nvme_error_status(rq->errors); 1475 } 1476 1477 blk_mq_end_request(rq, error); 1478 } 1479 1480 static struct blk_mq_ops nvme_rdma_mq_ops = { 1481 .queue_rq = nvme_rdma_queue_rq, 1482 .complete = nvme_rdma_complete_rq, 1483 .init_request = nvme_rdma_init_request, 1484 .exit_request = nvme_rdma_exit_request, 1485 .reinit_request = nvme_rdma_reinit_request, 1486 .init_hctx = nvme_rdma_init_hctx, 1487 .poll = nvme_rdma_poll, 1488 .timeout = nvme_rdma_timeout, 1489 }; 1490 1491 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1492 .queue_rq = nvme_rdma_queue_rq, 1493 .complete = nvme_rdma_complete_rq, 1494 .init_request = nvme_rdma_init_admin_request, 1495 .exit_request = nvme_rdma_exit_admin_request, 1496 .reinit_request = nvme_rdma_reinit_request, 1497 .init_hctx = nvme_rdma_init_admin_hctx, 1498 .timeout = nvme_rdma_timeout, 1499 }; 1500 1501 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1502 { 1503 int error; 1504 1505 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1506 if (error) 1507 return error; 1508 1509 ctrl->device = ctrl->queues[0].device; 1510 1511 /* 1512 * We need a reference on the device as long as the tag_set is alive, 1513 * as the MRs in the request structures need a valid ib_device. 1514 */ 1515 error = -EINVAL; 1516 if (!nvme_rdma_dev_get(ctrl->device)) 1517 goto out_free_queue; 1518 1519 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1520 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1521 1522 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1523 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1524 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1525 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1526 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1527 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1528 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1529 ctrl->admin_tag_set.driver_data = ctrl; 1530 ctrl->admin_tag_set.nr_hw_queues = 1; 1531 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1532 1533 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1534 if (error) 1535 goto out_put_dev; 1536 1537 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1538 if (IS_ERR(ctrl->ctrl.admin_q)) { 1539 error = PTR_ERR(ctrl->ctrl.admin_q); 1540 goto out_free_tagset; 1541 } 1542 1543 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1544 if (error) 1545 goto out_cleanup_queue; 1546 1547 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1548 if (error) { 1549 dev_err(ctrl->ctrl.device, 1550 "prop_get NVME_REG_CAP failed\n"); 1551 goto out_cleanup_queue; 1552 } 1553 1554 ctrl->ctrl.sqsize = 1555 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1556 1557 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1558 if (error) 1559 goto out_cleanup_queue; 1560 1561 ctrl->ctrl.max_hw_sectors = 1562 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1563 1564 error = nvme_init_identify(&ctrl->ctrl); 1565 if (error) 1566 goto out_cleanup_queue; 1567 1568 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1569 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1570 DMA_TO_DEVICE); 1571 if (error) 1572 goto out_cleanup_queue; 1573 1574 nvme_start_keep_alive(&ctrl->ctrl); 1575 1576 return 0; 1577 1578 out_cleanup_queue: 1579 blk_cleanup_queue(ctrl->ctrl.admin_q); 1580 out_free_tagset: 1581 /* disconnect and drain the queue before freeing the tagset */ 1582 nvme_rdma_stop_queue(&ctrl->queues[0]); 1583 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1584 out_put_dev: 1585 nvme_rdma_dev_put(ctrl->device); 1586 out_free_queue: 1587 nvme_rdma_free_queue(&ctrl->queues[0]); 1588 return error; 1589 } 1590 1591 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1592 { 1593 nvme_stop_keep_alive(&ctrl->ctrl); 1594 cancel_work_sync(&ctrl->err_work); 1595 cancel_delayed_work_sync(&ctrl->reconnect_work); 1596 1597 if (ctrl->queue_count > 1) { 1598 nvme_stop_queues(&ctrl->ctrl); 1599 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1600 nvme_cancel_request, &ctrl->ctrl); 1601 nvme_rdma_free_io_queues(ctrl); 1602 } 1603 1604 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1605 nvme_shutdown_ctrl(&ctrl->ctrl); 1606 1607 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1608 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1609 nvme_cancel_request, &ctrl->ctrl); 1610 nvme_rdma_destroy_admin_queue(ctrl); 1611 } 1612 1613 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1614 { 1615 nvme_uninit_ctrl(&ctrl->ctrl); 1616 if (shutdown) 1617 nvme_rdma_shutdown_ctrl(ctrl); 1618 1619 if (ctrl->ctrl.tagset) { 1620 blk_cleanup_queue(ctrl->ctrl.connect_q); 1621 blk_mq_free_tag_set(&ctrl->tag_set); 1622 nvme_rdma_dev_put(ctrl->device); 1623 } 1624 1625 nvme_put_ctrl(&ctrl->ctrl); 1626 } 1627 1628 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1629 { 1630 struct nvme_rdma_ctrl *ctrl = container_of(work, 1631 struct nvme_rdma_ctrl, delete_work); 1632 1633 __nvme_rdma_remove_ctrl(ctrl, true); 1634 } 1635 1636 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1637 { 1638 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1639 return -EBUSY; 1640 1641 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1642 return -EBUSY; 1643 1644 return 0; 1645 } 1646 1647 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1648 { 1649 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1650 int ret = 0; 1651 1652 /* 1653 * Keep a reference until all work is flushed since 1654 * __nvme_rdma_del_ctrl can free the ctrl mem 1655 */ 1656 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1657 return -EBUSY; 1658 ret = __nvme_rdma_del_ctrl(ctrl); 1659 if (!ret) 1660 flush_work(&ctrl->delete_work); 1661 nvme_put_ctrl(&ctrl->ctrl); 1662 return ret; 1663 } 1664 1665 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1666 { 1667 struct nvme_rdma_ctrl *ctrl = container_of(work, 1668 struct nvme_rdma_ctrl, delete_work); 1669 1670 __nvme_rdma_remove_ctrl(ctrl, false); 1671 } 1672 1673 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1674 { 1675 struct nvme_rdma_ctrl *ctrl = container_of(work, 1676 struct nvme_rdma_ctrl, reset_work); 1677 int ret; 1678 bool changed; 1679 1680 nvme_rdma_shutdown_ctrl(ctrl); 1681 1682 ret = nvme_rdma_configure_admin_queue(ctrl); 1683 if (ret) { 1684 /* ctrl is already shutdown, just remove the ctrl */ 1685 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1686 goto del_dead_ctrl; 1687 } 1688 1689 if (ctrl->queue_count > 1) { 1690 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1691 if (ret) 1692 goto del_dead_ctrl; 1693 1694 ret = nvme_rdma_init_io_queues(ctrl); 1695 if (ret) 1696 goto del_dead_ctrl; 1697 1698 ret = nvme_rdma_connect_io_queues(ctrl); 1699 if (ret) 1700 goto del_dead_ctrl; 1701 } 1702 1703 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1704 WARN_ON_ONCE(!changed); 1705 1706 if (ctrl->queue_count > 1) { 1707 nvme_start_queues(&ctrl->ctrl); 1708 nvme_queue_scan(&ctrl->ctrl); 1709 nvme_queue_async_events(&ctrl->ctrl); 1710 } 1711 1712 return; 1713 1714 del_dead_ctrl: 1715 /* Deleting this dead controller... */ 1716 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1717 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1718 } 1719 1720 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1721 { 1722 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1723 1724 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1725 return -EBUSY; 1726 1727 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1728 return -EBUSY; 1729 1730 flush_work(&ctrl->reset_work); 1731 1732 return 0; 1733 } 1734 1735 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1736 .name = "rdma", 1737 .module = THIS_MODULE, 1738 .is_fabrics = true, 1739 .reg_read32 = nvmf_reg_read32, 1740 .reg_read64 = nvmf_reg_read64, 1741 .reg_write32 = nvmf_reg_write32, 1742 .reset_ctrl = nvme_rdma_reset_ctrl, 1743 .free_ctrl = nvme_rdma_free_ctrl, 1744 .submit_async_event = nvme_rdma_submit_async_event, 1745 .delete_ctrl = nvme_rdma_del_ctrl, 1746 .get_subsysnqn = nvmf_get_subsysnqn, 1747 .get_address = nvmf_get_address, 1748 }; 1749 1750 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1751 { 1752 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1753 int ret; 1754 1755 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1756 if (ret) 1757 return ret; 1758 1759 ctrl->queue_count = opts->nr_io_queues + 1; 1760 if (ctrl->queue_count < 2) 1761 return 0; 1762 1763 dev_info(ctrl->ctrl.device, 1764 "creating %d I/O queues.\n", opts->nr_io_queues); 1765 1766 ret = nvme_rdma_init_io_queues(ctrl); 1767 if (ret) 1768 return ret; 1769 1770 /* 1771 * We need a reference on the device as long as the tag_set is alive, 1772 * as the MRs in the request structures need a valid ib_device. 1773 */ 1774 ret = -EINVAL; 1775 if (!nvme_rdma_dev_get(ctrl->device)) 1776 goto out_free_io_queues; 1777 1778 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1779 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1780 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1781 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1782 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1783 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1784 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1785 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1786 ctrl->tag_set.driver_data = ctrl; 1787 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1788 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1789 1790 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1791 if (ret) 1792 goto out_put_dev; 1793 ctrl->ctrl.tagset = &ctrl->tag_set; 1794 1795 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1796 if (IS_ERR(ctrl->ctrl.connect_q)) { 1797 ret = PTR_ERR(ctrl->ctrl.connect_q); 1798 goto out_free_tag_set; 1799 } 1800 1801 ret = nvme_rdma_connect_io_queues(ctrl); 1802 if (ret) 1803 goto out_cleanup_connect_q; 1804 1805 return 0; 1806 1807 out_cleanup_connect_q: 1808 blk_cleanup_queue(ctrl->ctrl.connect_q); 1809 out_free_tag_set: 1810 blk_mq_free_tag_set(&ctrl->tag_set); 1811 out_put_dev: 1812 nvme_rdma_dev_put(ctrl->device); 1813 out_free_io_queues: 1814 nvme_rdma_free_io_queues(ctrl); 1815 return ret; 1816 } 1817 1818 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1819 { 1820 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1821 size_t buflen = strlen(p); 1822 1823 /* XXX: handle IPv6 addresses */ 1824 1825 if (buflen > INET_ADDRSTRLEN) 1826 return -EINVAL; 1827 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1828 return -EINVAL; 1829 in_addr->sin_family = AF_INET; 1830 return 0; 1831 } 1832 1833 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1834 struct nvmf_ctrl_options *opts) 1835 { 1836 struct nvme_rdma_ctrl *ctrl; 1837 int ret; 1838 bool changed; 1839 1840 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1841 if (!ctrl) 1842 return ERR_PTR(-ENOMEM); 1843 ctrl->ctrl.opts = opts; 1844 INIT_LIST_HEAD(&ctrl->list); 1845 1846 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1847 if (ret) { 1848 pr_err("malformed IP address passed: %s\n", opts->traddr); 1849 goto out_free_ctrl; 1850 } 1851 1852 if (opts->mask & NVMF_OPT_TRSVCID) { 1853 u16 port; 1854 1855 ret = kstrtou16(opts->trsvcid, 0, &port); 1856 if (ret) 1857 goto out_free_ctrl; 1858 1859 ctrl->addr_in.sin_port = cpu_to_be16(port); 1860 } else { 1861 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1862 } 1863 1864 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1865 0 /* no quirks, we're perfect! */); 1866 if (ret) 1867 goto out_free_ctrl; 1868 1869 ctrl->reconnect_delay = opts->reconnect_delay; 1870 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1871 nvme_rdma_reconnect_ctrl_work); 1872 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1873 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1874 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1875 spin_lock_init(&ctrl->lock); 1876 1877 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1878 ctrl->ctrl.sqsize = opts->queue_size - 1; 1879 ctrl->ctrl.kato = opts->kato; 1880 1881 ret = -ENOMEM; 1882 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1883 GFP_KERNEL); 1884 if (!ctrl->queues) 1885 goto out_uninit_ctrl; 1886 1887 ret = nvme_rdma_configure_admin_queue(ctrl); 1888 if (ret) 1889 goto out_kfree_queues; 1890 1891 /* sanity check icdoff */ 1892 if (ctrl->ctrl.icdoff) { 1893 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1894 goto out_remove_admin_queue; 1895 } 1896 1897 /* sanity check keyed sgls */ 1898 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1899 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1900 goto out_remove_admin_queue; 1901 } 1902 1903 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1904 /* warn if maxcmd is lower than queue_size */ 1905 dev_warn(ctrl->ctrl.device, 1906 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1907 opts->queue_size, ctrl->ctrl.maxcmd); 1908 opts->queue_size = ctrl->ctrl.maxcmd; 1909 } 1910 1911 if (opts->nr_io_queues) { 1912 ret = nvme_rdma_create_io_queues(ctrl); 1913 if (ret) 1914 goto out_remove_admin_queue; 1915 } 1916 1917 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1918 WARN_ON_ONCE(!changed); 1919 1920 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1921 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1922 1923 kref_get(&ctrl->ctrl.kref); 1924 1925 mutex_lock(&nvme_rdma_ctrl_mutex); 1926 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1927 mutex_unlock(&nvme_rdma_ctrl_mutex); 1928 1929 if (opts->nr_io_queues) { 1930 nvme_queue_scan(&ctrl->ctrl); 1931 nvme_queue_async_events(&ctrl->ctrl); 1932 } 1933 1934 return &ctrl->ctrl; 1935 1936 out_remove_admin_queue: 1937 nvme_stop_keep_alive(&ctrl->ctrl); 1938 nvme_rdma_destroy_admin_queue(ctrl); 1939 out_kfree_queues: 1940 kfree(ctrl->queues); 1941 out_uninit_ctrl: 1942 nvme_uninit_ctrl(&ctrl->ctrl); 1943 nvme_put_ctrl(&ctrl->ctrl); 1944 if (ret > 0) 1945 ret = -EIO; 1946 return ERR_PTR(ret); 1947 out_free_ctrl: 1948 kfree(ctrl); 1949 return ERR_PTR(ret); 1950 } 1951 1952 static struct nvmf_transport_ops nvme_rdma_transport = { 1953 .name = "rdma", 1954 .required_opts = NVMF_OPT_TRADDR, 1955 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 1956 .create_ctrl = nvme_rdma_create_ctrl, 1957 }; 1958 1959 static void nvme_rdma_add_one(struct ib_device *ib_device) 1960 { 1961 } 1962 1963 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1964 { 1965 struct nvme_rdma_ctrl *ctrl; 1966 1967 /* Delete all controllers using this device */ 1968 mutex_lock(&nvme_rdma_ctrl_mutex); 1969 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1970 if (ctrl->device->dev != ib_device) 1971 continue; 1972 dev_info(ctrl->ctrl.device, 1973 "Removing ctrl: NQN \"%s\", addr %pISp\n", 1974 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1975 __nvme_rdma_del_ctrl(ctrl); 1976 } 1977 mutex_unlock(&nvme_rdma_ctrl_mutex); 1978 1979 flush_workqueue(nvme_rdma_wq); 1980 } 1981 1982 static struct ib_client nvme_rdma_ib_client = { 1983 .name = "nvme_rdma", 1984 .add = nvme_rdma_add_one, 1985 .remove = nvme_rdma_remove_one 1986 }; 1987 1988 static int __init nvme_rdma_init_module(void) 1989 { 1990 int ret; 1991 1992 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 1993 if (!nvme_rdma_wq) 1994 return -ENOMEM; 1995 1996 ret = ib_register_client(&nvme_rdma_ib_client); 1997 if (ret) { 1998 destroy_workqueue(nvme_rdma_wq); 1999 return ret; 2000 } 2001 2002 nvmf_register_transport(&nvme_rdma_transport); 2003 return 0; 2004 } 2005 2006 static void __exit nvme_rdma_cleanup_module(void) 2007 { 2008 nvmf_unregister_transport(&nvme_rdma_transport); 2009 ib_unregister_client(&nvme_rdma_ib_client); 2010 destroy_workqueue(nvme_rdma_wq); 2011 } 2012 2013 module_init(nvme_rdma_init_module); 2014 module_exit(nvme_rdma_cleanup_module); 2015 2016 MODULE_LICENSE("GPL v2"); 2017