xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 6dfcd296)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33 
34 #include "nvme.h"
35 #include "fabrics.h"
36 
37 
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS	1000		/* 1 second */
39 
40 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
41 
42 #define NVME_RDMA_MAX_SEGMENTS		256
43 
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
45 
46 /*
47  * We handle AEN commands ourselves and don't even let the
48  * block layer know about them.
49  */
50 #define NVME_RDMA_NR_AEN_COMMANDS      1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
52 	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53 
54 struct nvme_rdma_device {
55 	struct ib_device       *dev;
56 	struct ib_pd	       *pd;
57 	struct kref		ref;
58 	struct list_head	entry;
59 };
60 
61 struct nvme_rdma_qe {
62 	struct ib_cqe		cqe;
63 	void			*data;
64 	u64			dma;
65 };
66 
67 struct nvme_rdma_queue;
68 struct nvme_rdma_request {
69 	struct ib_mr		*mr;
70 	struct nvme_rdma_qe	sqe;
71 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72 	u32			num_sge;
73 	int			nents;
74 	bool			inline_data;
75 	struct ib_reg_wr	reg_wr;
76 	struct ib_cqe		reg_cqe;
77 	struct nvme_rdma_queue  *queue;
78 	struct sg_table		sg_table;
79 	struct scatterlist	first_sgl[];
80 };
81 
82 enum nvme_rdma_queue_flags {
83 	NVME_RDMA_Q_CONNECTED = (1 << 0),
84 	NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85 	NVME_RDMA_Q_DELETING = (1 << 2),
86 };
87 
88 struct nvme_rdma_queue {
89 	struct nvme_rdma_qe	*rsp_ring;
90 	u8			sig_count;
91 	int			queue_size;
92 	size_t			cmnd_capsule_len;
93 	struct nvme_rdma_ctrl	*ctrl;
94 	struct nvme_rdma_device	*device;
95 	struct ib_cq		*ib_cq;
96 	struct ib_qp		*qp;
97 
98 	unsigned long		flags;
99 	struct rdma_cm_id	*cm_id;
100 	int			cm_error;
101 	struct completion	cm_done;
102 };
103 
104 struct nvme_rdma_ctrl {
105 	/* read and written in the hot path */
106 	spinlock_t		lock;
107 
108 	/* read only in the hot path */
109 	struct nvme_rdma_queue	*queues;
110 	u32			queue_count;
111 
112 	/* other member variables */
113 	struct blk_mq_tag_set	tag_set;
114 	struct work_struct	delete_work;
115 	struct work_struct	reset_work;
116 	struct work_struct	err_work;
117 
118 	struct nvme_rdma_qe	async_event_sqe;
119 
120 	int			reconnect_delay;
121 	struct delayed_work	reconnect_work;
122 
123 	struct list_head	list;
124 
125 	struct blk_mq_tag_set	admin_tag_set;
126 	struct nvme_rdma_device	*device;
127 
128 	u64			cap;
129 	u32			max_fr_pages;
130 
131 	union {
132 		struct sockaddr addr;
133 		struct sockaddr_in addr_in;
134 	};
135 
136 	struct nvme_ctrl	ctrl;
137 };
138 
139 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
142 }
143 
144 static LIST_HEAD(device_list);
145 static DEFINE_MUTEX(device_list_mutex);
146 
147 static LIST_HEAD(nvme_rdma_ctrl_list);
148 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
149 
150 static struct workqueue_struct *nvme_rdma_wq;
151 
152 /*
153  * Disabling this option makes small I/O goes faster, but is fundamentally
154  * unsafe.  With it turned off we will have to register a global rkey that
155  * allows read and write access to all physical memory.
156  */
157 static bool register_always = true;
158 module_param(register_always, bool, 0444);
159 MODULE_PARM_DESC(register_always,
160 	 "Use memory registration even for contiguous memory regions");
161 
162 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
163 		struct rdma_cm_event *event);
164 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
165 
166 /* XXX: really should move to a generic header sooner or later.. */
167 static inline void put_unaligned_le24(u32 val, u8 *p)
168 {
169 	*p++ = val;
170 	*p++ = val >> 8;
171 	*p++ = val >> 16;
172 }
173 
174 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
175 {
176 	return queue - queue->ctrl->queues;
177 }
178 
179 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
180 {
181 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
182 }
183 
184 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
185 		size_t capsule_size, enum dma_data_direction dir)
186 {
187 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
188 	kfree(qe->data);
189 }
190 
191 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
192 		size_t capsule_size, enum dma_data_direction dir)
193 {
194 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
195 	if (!qe->data)
196 		return -ENOMEM;
197 
198 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
199 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
200 		kfree(qe->data);
201 		return -ENOMEM;
202 	}
203 
204 	return 0;
205 }
206 
207 static void nvme_rdma_free_ring(struct ib_device *ibdev,
208 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
209 		size_t capsule_size, enum dma_data_direction dir)
210 {
211 	int i;
212 
213 	for (i = 0; i < ib_queue_size; i++)
214 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
215 	kfree(ring);
216 }
217 
218 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
219 		size_t ib_queue_size, size_t capsule_size,
220 		enum dma_data_direction dir)
221 {
222 	struct nvme_rdma_qe *ring;
223 	int i;
224 
225 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
226 	if (!ring)
227 		return NULL;
228 
229 	for (i = 0; i < ib_queue_size; i++) {
230 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
231 			goto out_free_ring;
232 	}
233 
234 	return ring;
235 
236 out_free_ring:
237 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
238 	return NULL;
239 }
240 
241 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
242 {
243 	pr_debug("QP event %d\n", event->event);
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	wait_for_completion_interruptible_timeout(&queue->cm_done,
249 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
250 	return queue->cm_error;
251 }
252 
253 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
254 {
255 	struct nvme_rdma_device *dev = queue->device;
256 	struct ib_qp_init_attr init_attr;
257 	int ret;
258 
259 	memset(&init_attr, 0, sizeof(init_attr));
260 	init_attr.event_handler = nvme_rdma_qp_event;
261 	/* +1 for drain */
262 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
263 	/* +1 for drain */
264 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
265 	init_attr.cap.max_recv_sge = 1;
266 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
267 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
268 	init_attr.qp_type = IB_QPT_RC;
269 	init_attr.send_cq = queue->ib_cq;
270 	init_attr.recv_cq = queue->ib_cq;
271 
272 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
273 
274 	queue->qp = queue->cm_id->qp;
275 	return ret;
276 }
277 
278 static int nvme_rdma_reinit_request(void *data, struct request *rq)
279 {
280 	struct nvme_rdma_ctrl *ctrl = data;
281 	struct nvme_rdma_device *dev = ctrl->device;
282 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 	int ret = 0;
284 
285 	if (!req->mr->need_inval)
286 		goto out;
287 
288 	ib_dereg_mr(req->mr);
289 
290 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
291 			ctrl->max_fr_pages);
292 	if (IS_ERR(req->mr)) {
293 		ret = PTR_ERR(req->mr);
294 		req->mr = NULL;
295 		goto out;
296 	}
297 
298 	req->mr->need_inval = false;
299 
300 out:
301 	return ret;
302 }
303 
304 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
305 		struct request *rq, unsigned int queue_idx)
306 {
307 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
308 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
309 	struct nvme_rdma_device *dev = queue->device;
310 
311 	if (req->mr)
312 		ib_dereg_mr(req->mr);
313 
314 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
315 			DMA_TO_DEVICE);
316 }
317 
318 static void nvme_rdma_exit_request(void *data, struct request *rq,
319 				unsigned int hctx_idx, unsigned int rq_idx)
320 {
321 	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
322 }
323 
324 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
325 				unsigned int hctx_idx, unsigned int rq_idx)
326 {
327 	return __nvme_rdma_exit_request(data, rq, 0);
328 }
329 
330 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
331 		struct request *rq, unsigned int queue_idx)
332 {
333 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
334 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
335 	struct nvme_rdma_device *dev = queue->device;
336 	struct ib_device *ibdev = dev->dev;
337 	int ret;
338 
339 	BUG_ON(queue_idx >= ctrl->queue_count);
340 
341 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
342 			DMA_TO_DEVICE);
343 	if (ret)
344 		return ret;
345 
346 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
347 			ctrl->max_fr_pages);
348 	if (IS_ERR(req->mr)) {
349 		ret = PTR_ERR(req->mr);
350 		goto out_free_qe;
351 	}
352 
353 	req->queue = queue;
354 
355 	return 0;
356 
357 out_free_qe:
358 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
359 			DMA_TO_DEVICE);
360 	return -ENOMEM;
361 }
362 
363 static int nvme_rdma_init_request(void *data, struct request *rq,
364 				unsigned int hctx_idx, unsigned int rq_idx,
365 				unsigned int numa_node)
366 {
367 	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
368 }
369 
370 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
371 				unsigned int hctx_idx, unsigned int rq_idx,
372 				unsigned int numa_node)
373 {
374 	return __nvme_rdma_init_request(data, rq, 0);
375 }
376 
377 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
378 		unsigned int hctx_idx)
379 {
380 	struct nvme_rdma_ctrl *ctrl = data;
381 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
382 
383 	BUG_ON(hctx_idx >= ctrl->queue_count);
384 
385 	hctx->driver_data = queue;
386 	return 0;
387 }
388 
389 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
390 		unsigned int hctx_idx)
391 {
392 	struct nvme_rdma_ctrl *ctrl = data;
393 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
394 
395 	BUG_ON(hctx_idx != 0);
396 
397 	hctx->driver_data = queue;
398 	return 0;
399 }
400 
401 static void nvme_rdma_free_dev(struct kref *ref)
402 {
403 	struct nvme_rdma_device *ndev =
404 		container_of(ref, struct nvme_rdma_device, ref);
405 
406 	mutex_lock(&device_list_mutex);
407 	list_del(&ndev->entry);
408 	mutex_unlock(&device_list_mutex);
409 
410 	ib_dealloc_pd(ndev->pd);
411 	kfree(ndev);
412 }
413 
414 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
415 {
416 	kref_put(&dev->ref, nvme_rdma_free_dev);
417 }
418 
419 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
420 {
421 	return kref_get_unless_zero(&dev->ref);
422 }
423 
424 static struct nvme_rdma_device *
425 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
426 {
427 	struct nvme_rdma_device *ndev;
428 
429 	mutex_lock(&device_list_mutex);
430 	list_for_each_entry(ndev, &device_list, entry) {
431 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
432 		    nvme_rdma_dev_get(ndev))
433 			goto out_unlock;
434 	}
435 
436 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
437 	if (!ndev)
438 		goto out_err;
439 
440 	ndev->dev = cm_id->device;
441 	kref_init(&ndev->ref);
442 
443 	ndev->pd = ib_alloc_pd(ndev->dev,
444 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
445 	if (IS_ERR(ndev->pd))
446 		goto out_free_dev;
447 
448 	if (!(ndev->dev->attrs.device_cap_flags &
449 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
450 		dev_err(&ndev->dev->dev,
451 			"Memory registrations not supported.\n");
452 		goto out_free_pd;
453 	}
454 
455 	list_add(&ndev->entry, &device_list);
456 out_unlock:
457 	mutex_unlock(&device_list_mutex);
458 	return ndev;
459 
460 out_free_pd:
461 	ib_dealloc_pd(ndev->pd);
462 out_free_dev:
463 	kfree(ndev);
464 out_err:
465 	mutex_unlock(&device_list_mutex);
466 	return NULL;
467 }
468 
469 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
470 {
471 	struct nvme_rdma_device *dev;
472 	struct ib_device *ibdev;
473 
474 	if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
475 		return;
476 
477 	dev = queue->device;
478 	ibdev = dev->dev;
479 	rdma_destroy_qp(queue->cm_id);
480 	ib_free_cq(queue->ib_cq);
481 
482 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 
485 	nvme_rdma_dev_put(dev);
486 }
487 
488 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
489 		struct nvme_rdma_device *dev)
490 {
491 	struct ib_device *ibdev = dev->dev;
492 	const int send_wr_factor = 3;			/* MR, SEND, INV */
493 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
495 
496 	int ret;
497 
498 	queue->device = dev;
499 
500 	/*
501 	 * The admin queue is barely used once the controller is live, so don't
502 	 * bother to spread it out.
503 	 */
504 	if (idx == 0)
505 		comp_vector = 0;
506 	else
507 		comp_vector = idx % ibdev->num_comp_vectors;
508 
509 
510 	/* +1 for ib_stop_cq */
511 	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
512 				cq_factor * queue->queue_size + 1, comp_vector,
513 				IB_POLL_SOFTIRQ);
514 	if (IS_ERR(queue->ib_cq)) {
515 		ret = PTR_ERR(queue->ib_cq);
516 		goto out;
517 	}
518 
519 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
520 	if (ret)
521 		goto out_destroy_ib_cq;
522 
523 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
524 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
525 	if (!queue->rsp_ring) {
526 		ret = -ENOMEM;
527 		goto out_destroy_qp;
528 	}
529 	set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
530 
531 	return 0;
532 
533 out_destroy_qp:
534 	ib_destroy_qp(queue->qp);
535 out_destroy_ib_cq:
536 	ib_free_cq(queue->ib_cq);
537 out:
538 	return ret;
539 }
540 
541 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
542 		int idx, size_t queue_size)
543 {
544 	struct nvme_rdma_queue *queue;
545 	int ret;
546 
547 	queue = &ctrl->queues[idx];
548 	queue->ctrl = ctrl;
549 	init_completion(&queue->cm_done);
550 
551 	if (idx > 0)
552 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
553 	else
554 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
555 
556 	queue->queue_size = queue_size;
557 
558 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
559 			RDMA_PS_TCP, IB_QPT_RC);
560 	if (IS_ERR(queue->cm_id)) {
561 		dev_info(ctrl->ctrl.device,
562 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
563 		return PTR_ERR(queue->cm_id);
564 	}
565 
566 	queue->cm_error = -ETIMEDOUT;
567 	ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
568 			NVME_RDMA_CONNECT_TIMEOUT_MS);
569 	if (ret) {
570 		dev_info(ctrl->ctrl.device,
571 			"rdma_resolve_addr failed (%d).\n", ret);
572 		goto out_destroy_cm_id;
573 	}
574 
575 	ret = nvme_rdma_wait_for_cm(queue);
576 	if (ret) {
577 		dev_info(ctrl->ctrl.device,
578 			"rdma_resolve_addr wait failed (%d).\n", ret);
579 		goto out_destroy_cm_id;
580 	}
581 
582 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
583 	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
584 
585 	return 0;
586 
587 out_destroy_cm_id:
588 	nvme_rdma_destroy_queue_ib(queue);
589 	rdma_destroy_id(queue->cm_id);
590 	return ret;
591 }
592 
593 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
594 {
595 	rdma_disconnect(queue->cm_id);
596 	ib_drain_qp(queue->qp);
597 }
598 
599 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
600 {
601 	nvme_rdma_destroy_queue_ib(queue);
602 	rdma_destroy_id(queue->cm_id);
603 }
604 
605 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
606 {
607 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
608 		return;
609 	nvme_rdma_stop_queue(queue);
610 	nvme_rdma_free_queue(queue);
611 }
612 
613 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
614 {
615 	int i;
616 
617 	for (i = 1; i < ctrl->queue_count; i++)
618 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
619 }
620 
621 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
622 {
623 	int i, ret = 0;
624 
625 	for (i = 1; i < ctrl->queue_count; i++) {
626 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
627 		if (ret)
628 			break;
629 	}
630 
631 	return ret;
632 }
633 
634 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
635 {
636 	int i, ret;
637 
638 	for (i = 1; i < ctrl->queue_count; i++) {
639 		ret = nvme_rdma_init_queue(ctrl, i,
640 					   ctrl->ctrl.opts->queue_size);
641 		if (ret) {
642 			dev_info(ctrl->ctrl.device,
643 				"failed to initialize i/o queue: %d\n", ret);
644 			goto out_free_queues;
645 		}
646 	}
647 
648 	return 0;
649 
650 out_free_queues:
651 	for (i--; i >= 1; i--)
652 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
653 
654 	return ret;
655 }
656 
657 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
658 {
659 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
660 			sizeof(struct nvme_command), DMA_TO_DEVICE);
661 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
662 	blk_cleanup_queue(ctrl->ctrl.admin_q);
663 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
664 	nvme_rdma_dev_put(ctrl->device);
665 }
666 
667 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
668 {
669 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
670 
671 	if (list_empty(&ctrl->list))
672 		goto free_ctrl;
673 
674 	mutex_lock(&nvme_rdma_ctrl_mutex);
675 	list_del(&ctrl->list);
676 	mutex_unlock(&nvme_rdma_ctrl_mutex);
677 
678 	kfree(ctrl->queues);
679 	nvmf_free_options(nctrl->opts);
680 free_ctrl:
681 	kfree(ctrl);
682 }
683 
684 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
685 {
686 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
687 			struct nvme_rdma_ctrl, reconnect_work);
688 	bool changed;
689 	int ret;
690 
691 	if (ctrl->queue_count > 1) {
692 		nvme_rdma_free_io_queues(ctrl);
693 
694 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
695 		if (ret)
696 			goto requeue;
697 	}
698 
699 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
700 
701 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
702 	if (ret)
703 		goto requeue;
704 
705 	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
706 	if (ret)
707 		goto requeue;
708 
709 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
710 
711 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
712 	if (ret)
713 		goto stop_admin_q;
714 
715 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
716 	if (ret)
717 		goto stop_admin_q;
718 
719 	nvme_start_keep_alive(&ctrl->ctrl);
720 
721 	if (ctrl->queue_count > 1) {
722 		ret = nvme_rdma_init_io_queues(ctrl);
723 		if (ret)
724 			goto stop_admin_q;
725 
726 		ret = nvme_rdma_connect_io_queues(ctrl);
727 		if (ret)
728 			goto stop_admin_q;
729 	}
730 
731 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
732 	WARN_ON_ONCE(!changed);
733 
734 	if (ctrl->queue_count > 1) {
735 		nvme_start_queues(&ctrl->ctrl);
736 		nvme_queue_scan(&ctrl->ctrl);
737 		nvme_queue_async_events(&ctrl->ctrl);
738 	}
739 
740 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
741 
742 	return;
743 
744 stop_admin_q:
745 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
746 requeue:
747 	/* Make sure we are not resetting/deleting */
748 	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
749 		dev_info(ctrl->ctrl.device,
750 			"Failed reconnect attempt, requeueing...\n");
751 		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
752 					ctrl->reconnect_delay * HZ);
753 	}
754 }
755 
756 static void nvme_rdma_error_recovery_work(struct work_struct *work)
757 {
758 	struct nvme_rdma_ctrl *ctrl = container_of(work,
759 			struct nvme_rdma_ctrl, err_work);
760 	int i;
761 
762 	nvme_stop_keep_alive(&ctrl->ctrl);
763 
764 	for (i = 0; i < ctrl->queue_count; i++)
765 		clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
766 
767 	if (ctrl->queue_count > 1)
768 		nvme_stop_queues(&ctrl->ctrl);
769 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
770 
771 	/* We must take care of fastfail/requeue all our inflight requests */
772 	if (ctrl->queue_count > 1)
773 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
774 					nvme_cancel_request, &ctrl->ctrl);
775 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
776 				nvme_cancel_request, &ctrl->ctrl);
777 
778 	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
779 		ctrl->reconnect_delay);
780 
781 	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
782 				ctrl->reconnect_delay * HZ);
783 }
784 
785 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
786 {
787 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
788 		return;
789 
790 	queue_work(nvme_rdma_wq, &ctrl->err_work);
791 }
792 
793 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
794 		const char *op)
795 {
796 	struct nvme_rdma_queue *queue = cq->cq_context;
797 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
798 
799 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
800 		dev_info(ctrl->ctrl.device,
801 			     "%s for CQE 0x%p failed with status %s (%d)\n",
802 			     op, wc->wr_cqe,
803 			     ib_wc_status_msg(wc->status), wc->status);
804 	nvme_rdma_error_recovery(ctrl);
805 }
806 
807 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
808 {
809 	if (unlikely(wc->status != IB_WC_SUCCESS))
810 		nvme_rdma_wr_error(cq, wc, "MEMREG");
811 }
812 
813 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
814 {
815 	if (unlikely(wc->status != IB_WC_SUCCESS))
816 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
817 }
818 
819 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
820 		struct nvme_rdma_request *req)
821 {
822 	struct ib_send_wr *bad_wr;
823 	struct ib_send_wr wr = {
824 		.opcode		    = IB_WR_LOCAL_INV,
825 		.next		    = NULL,
826 		.num_sge	    = 0,
827 		.send_flags	    = 0,
828 		.ex.invalidate_rkey = req->mr->rkey,
829 	};
830 
831 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
832 	wr.wr_cqe = &req->reg_cqe;
833 
834 	return ib_post_send(queue->qp, &wr, &bad_wr);
835 }
836 
837 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
838 		struct request *rq)
839 {
840 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
841 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
842 	struct nvme_rdma_device *dev = queue->device;
843 	struct ib_device *ibdev = dev->dev;
844 	int res;
845 
846 	if (!blk_rq_bytes(rq))
847 		return;
848 
849 	if (req->mr->need_inval) {
850 		res = nvme_rdma_inv_rkey(queue, req);
851 		if (res < 0) {
852 			dev_err(ctrl->ctrl.device,
853 				"Queueing INV WR for rkey %#x failed (%d)\n",
854 				req->mr->rkey, res);
855 			nvme_rdma_error_recovery(queue->ctrl);
856 		}
857 	}
858 
859 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
860 			req->nents, rq_data_dir(rq) ==
861 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
862 
863 	nvme_cleanup_cmd(rq);
864 	sg_free_table_chained(&req->sg_table, true);
865 }
866 
867 static int nvme_rdma_set_sg_null(struct nvme_command *c)
868 {
869 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
870 
871 	sg->addr = 0;
872 	put_unaligned_le24(0, sg->length);
873 	put_unaligned_le32(0, sg->key);
874 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
875 	return 0;
876 }
877 
878 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
879 		struct nvme_rdma_request *req, struct nvme_command *c)
880 {
881 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
882 
883 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
884 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
885 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
886 
887 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
888 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
889 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
890 
891 	req->inline_data = true;
892 	req->num_sge++;
893 	return 0;
894 }
895 
896 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
897 		struct nvme_rdma_request *req, struct nvme_command *c)
898 {
899 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
900 
901 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
902 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
903 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
904 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
905 	return 0;
906 }
907 
908 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
909 		struct nvme_rdma_request *req, struct nvme_command *c,
910 		int count)
911 {
912 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
913 	int nr;
914 
915 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
916 	if (nr < count) {
917 		if (nr < 0)
918 			return nr;
919 		return -EINVAL;
920 	}
921 
922 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
923 
924 	req->reg_cqe.done = nvme_rdma_memreg_done;
925 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
926 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
927 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
928 	req->reg_wr.wr.num_sge = 0;
929 	req->reg_wr.mr = req->mr;
930 	req->reg_wr.key = req->mr->rkey;
931 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
932 			     IB_ACCESS_REMOTE_READ |
933 			     IB_ACCESS_REMOTE_WRITE;
934 
935 	req->mr->need_inval = true;
936 
937 	sg->addr = cpu_to_le64(req->mr->iova);
938 	put_unaligned_le24(req->mr->length, sg->length);
939 	put_unaligned_le32(req->mr->rkey, sg->key);
940 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
941 			NVME_SGL_FMT_INVALIDATE;
942 
943 	return 0;
944 }
945 
946 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
947 		struct request *rq, unsigned int map_len,
948 		struct nvme_command *c)
949 {
950 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
951 	struct nvme_rdma_device *dev = queue->device;
952 	struct ib_device *ibdev = dev->dev;
953 	int nents, count;
954 	int ret;
955 
956 	req->num_sge = 1;
957 	req->inline_data = false;
958 	req->mr->need_inval = false;
959 
960 	c->common.flags |= NVME_CMD_SGL_METABUF;
961 
962 	if (!blk_rq_bytes(rq))
963 		return nvme_rdma_set_sg_null(c);
964 
965 	req->sg_table.sgl = req->first_sgl;
966 	ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
967 				req->sg_table.sgl);
968 	if (ret)
969 		return -ENOMEM;
970 
971 	nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
972 	BUG_ON(nents > rq->nr_phys_segments);
973 	req->nents = nents;
974 
975 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
976 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
977 	if (unlikely(count <= 0)) {
978 		sg_free_table_chained(&req->sg_table, true);
979 		return -EIO;
980 	}
981 
982 	if (count == 1) {
983 		if (rq_data_dir(rq) == WRITE &&
984 		    map_len <= nvme_rdma_inline_data_size(queue) &&
985 		    nvme_rdma_queue_idx(queue))
986 			return nvme_rdma_map_sg_inline(queue, req, c);
987 
988 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
989 			return nvme_rdma_map_sg_single(queue, req, c);
990 	}
991 
992 	return nvme_rdma_map_sg_fr(queue, req, c, count);
993 }
994 
995 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
996 {
997 	if (unlikely(wc->status != IB_WC_SUCCESS))
998 		nvme_rdma_wr_error(cq, wc, "SEND");
999 }
1000 
1001 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1002 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1003 		struct ib_send_wr *first, bool flush)
1004 {
1005 	struct ib_send_wr wr, *bad_wr;
1006 	int ret;
1007 
1008 	sge->addr   = qe->dma;
1009 	sge->length = sizeof(struct nvme_command),
1010 	sge->lkey   = queue->device->pd->local_dma_lkey;
1011 
1012 	qe->cqe.done = nvme_rdma_send_done;
1013 
1014 	wr.next       = NULL;
1015 	wr.wr_cqe     = &qe->cqe;
1016 	wr.sg_list    = sge;
1017 	wr.num_sge    = num_sge;
1018 	wr.opcode     = IB_WR_SEND;
1019 	wr.send_flags = 0;
1020 
1021 	/*
1022 	 * Unsignalled send completions are another giant desaster in the
1023 	 * IB Verbs spec:  If we don't regularly post signalled sends
1024 	 * the send queue will fill up and only a QP reset will rescue us.
1025 	 * Would have been way to obvious to handle this in hardware or
1026 	 * at least the RDMA stack..
1027 	 *
1028 	 * This messy and racy code sniplet is copy and pasted from the iSER
1029 	 * initiator, and the magic '32' comes from there as well.
1030 	 *
1031 	 * Always signal the flushes. The magic request used for the flush
1032 	 * sequencer is not allocated in our driver's tagset and it's
1033 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1034 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1035 	 * embeded in request's payload, is not freed when __ib_process_cq()
1036 	 * calls wr_cqe->done().
1037 	 */
1038 	if ((++queue->sig_count % 32) == 0 || flush)
1039 		wr.send_flags |= IB_SEND_SIGNALED;
1040 
1041 	if (first)
1042 		first->next = &wr;
1043 	else
1044 		first = &wr;
1045 
1046 	ret = ib_post_send(queue->qp, first, &bad_wr);
1047 	if (ret) {
1048 		dev_err(queue->ctrl->ctrl.device,
1049 			     "%s failed with error code %d\n", __func__, ret);
1050 	}
1051 	return ret;
1052 }
1053 
1054 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1055 		struct nvme_rdma_qe *qe)
1056 {
1057 	struct ib_recv_wr wr, *bad_wr;
1058 	struct ib_sge list;
1059 	int ret;
1060 
1061 	list.addr   = qe->dma;
1062 	list.length = sizeof(struct nvme_completion);
1063 	list.lkey   = queue->device->pd->local_dma_lkey;
1064 
1065 	qe->cqe.done = nvme_rdma_recv_done;
1066 
1067 	wr.next     = NULL;
1068 	wr.wr_cqe   = &qe->cqe;
1069 	wr.sg_list  = &list;
1070 	wr.num_sge  = 1;
1071 
1072 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1073 	if (ret) {
1074 		dev_err(queue->ctrl->ctrl.device,
1075 			"%s failed with error code %d\n", __func__, ret);
1076 	}
1077 	return ret;
1078 }
1079 
1080 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1081 {
1082 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1083 
1084 	if (queue_idx == 0)
1085 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1086 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1087 }
1088 
1089 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1090 {
1091 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1092 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1093 	struct ib_device *dev = queue->device->dev;
1094 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1095 	struct nvme_command *cmd = sqe->data;
1096 	struct ib_sge sge;
1097 	int ret;
1098 
1099 	if (WARN_ON_ONCE(aer_idx != 0))
1100 		return;
1101 
1102 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1103 
1104 	memset(cmd, 0, sizeof(*cmd));
1105 	cmd->common.opcode = nvme_admin_async_event;
1106 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1107 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1108 	nvme_rdma_set_sg_null(cmd);
1109 
1110 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1111 			DMA_TO_DEVICE);
1112 
1113 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1114 	WARN_ON_ONCE(ret);
1115 }
1116 
1117 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1118 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1119 {
1120 	u16 status = le16_to_cpu(cqe->status);
1121 	struct request *rq;
1122 	struct nvme_rdma_request *req;
1123 	int ret = 0;
1124 
1125 	status >>= 1;
1126 
1127 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1128 	if (!rq) {
1129 		dev_err(queue->ctrl->ctrl.device,
1130 			"tag 0x%x on QP %#x not found\n",
1131 			cqe->command_id, queue->qp->qp_num);
1132 		nvme_rdma_error_recovery(queue->ctrl);
1133 		return ret;
1134 	}
1135 	req = blk_mq_rq_to_pdu(rq);
1136 
1137 	if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1138 		memcpy(rq->special, cqe, sizeof(*cqe));
1139 
1140 	if (rq->tag == tag)
1141 		ret = 1;
1142 
1143 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1144 	    wc->ex.invalidate_rkey == req->mr->rkey)
1145 		req->mr->need_inval = false;
1146 
1147 	blk_mq_complete_request(rq, status);
1148 
1149 	return ret;
1150 }
1151 
1152 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1153 {
1154 	struct nvme_rdma_qe *qe =
1155 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1156 	struct nvme_rdma_queue *queue = cq->cq_context;
1157 	struct ib_device *ibdev = queue->device->dev;
1158 	struct nvme_completion *cqe = qe->data;
1159 	const size_t len = sizeof(struct nvme_completion);
1160 	int ret = 0;
1161 
1162 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1163 		nvme_rdma_wr_error(cq, wc, "RECV");
1164 		return 0;
1165 	}
1166 
1167 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1168 	/*
1169 	 * AEN requests are special as they don't time out and can
1170 	 * survive any kind of queue freeze and often don't respond to
1171 	 * aborts.  We don't even bother to allocate a struct request
1172 	 * for them but rather special case them here.
1173 	 */
1174 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1175 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1176 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1177 	else
1178 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1179 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1180 
1181 	nvme_rdma_post_recv(queue, qe);
1182 	return ret;
1183 }
1184 
1185 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1186 {
1187 	__nvme_rdma_recv_done(cq, wc, -1);
1188 }
1189 
1190 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1191 {
1192 	int ret, i;
1193 
1194 	for (i = 0; i < queue->queue_size; i++) {
1195 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1196 		if (ret)
1197 			goto out_destroy_queue_ib;
1198 	}
1199 
1200 	return 0;
1201 
1202 out_destroy_queue_ib:
1203 	nvme_rdma_destroy_queue_ib(queue);
1204 	return ret;
1205 }
1206 
1207 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1208 		struct rdma_cm_event *ev)
1209 {
1210 	if (ev->param.conn.private_data_len) {
1211 		struct nvme_rdma_cm_rej *rej =
1212 			(struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1213 
1214 		dev_err(queue->ctrl->ctrl.device,
1215 			"Connect rejected, status %d.", le16_to_cpu(rej->sts));
1216 		/* XXX: Think of something clever to do here... */
1217 	} else {
1218 		dev_err(queue->ctrl->ctrl.device,
1219 			"Connect rejected, no private data.\n");
1220 	}
1221 
1222 	return -ECONNRESET;
1223 }
1224 
1225 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1226 {
1227 	struct nvme_rdma_device *dev;
1228 	int ret;
1229 
1230 	dev = nvme_rdma_find_get_device(queue->cm_id);
1231 	if (!dev) {
1232 		dev_err(queue->cm_id->device->dma_device,
1233 			"no client data found!\n");
1234 		return -ECONNREFUSED;
1235 	}
1236 
1237 	ret = nvme_rdma_create_queue_ib(queue, dev);
1238 	if (ret) {
1239 		nvme_rdma_dev_put(dev);
1240 		goto out;
1241 	}
1242 
1243 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1244 	if (ret) {
1245 		dev_err(queue->ctrl->ctrl.device,
1246 			"rdma_resolve_route failed (%d).\n",
1247 			queue->cm_error);
1248 		goto out_destroy_queue;
1249 	}
1250 
1251 	return 0;
1252 
1253 out_destroy_queue:
1254 	nvme_rdma_destroy_queue_ib(queue);
1255 out:
1256 	return ret;
1257 }
1258 
1259 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1260 {
1261 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1262 	struct rdma_conn_param param = { };
1263 	struct nvme_rdma_cm_req priv = { };
1264 	int ret;
1265 
1266 	param.qp_num = queue->qp->qp_num;
1267 	param.flow_control = 1;
1268 
1269 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1270 	/* maximum retry count */
1271 	param.retry_count = 7;
1272 	param.rnr_retry_count = 7;
1273 	param.private_data = &priv;
1274 	param.private_data_len = sizeof(priv);
1275 
1276 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1277 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1278 	/*
1279 	 * set the admin queue depth to the minimum size
1280 	 * specified by the Fabrics standard.
1281 	 */
1282 	if (priv.qid == 0) {
1283 		priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1284 		priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1285 	} else {
1286 		/*
1287 		 * current interpretation of the fabrics spec
1288 		 * is at minimum you make hrqsize sqsize+1, or a
1289 		 * 1's based representation of sqsize.
1290 		 */
1291 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1292 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1293 	}
1294 
1295 	ret = rdma_connect(queue->cm_id, &param);
1296 	if (ret) {
1297 		dev_err(ctrl->ctrl.device,
1298 			"rdma_connect failed (%d).\n", ret);
1299 		goto out_destroy_queue_ib;
1300 	}
1301 
1302 	return 0;
1303 
1304 out_destroy_queue_ib:
1305 	nvme_rdma_destroy_queue_ib(queue);
1306 	return ret;
1307 }
1308 
1309 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1310 		struct rdma_cm_event *ev)
1311 {
1312 	struct nvme_rdma_queue *queue = cm_id->context;
1313 	int cm_error = 0;
1314 
1315 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1316 		rdma_event_msg(ev->event), ev->event,
1317 		ev->status, cm_id);
1318 
1319 	switch (ev->event) {
1320 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1321 		cm_error = nvme_rdma_addr_resolved(queue);
1322 		break;
1323 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1324 		cm_error = nvme_rdma_route_resolved(queue);
1325 		break;
1326 	case RDMA_CM_EVENT_ESTABLISHED:
1327 		queue->cm_error = nvme_rdma_conn_established(queue);
1328 		/* complete cm_done regardless of success/failure */
1329 		complete(&queue->cm_done);
1330 		return 0;
1331 	case RDMA_CM_EVENT_REJECTED:
1332 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1333 		break;
1334 	case RDMA_CM_EVENT_ADDR_ERROR:
1335 	case RDMA_CM_EVENT_ROUTE_ERROR:
1336 	case RDMA_CM_EVENT_CONNECT_ERROR:
1337 	case RDMA_CM_EVENT_UNREACHABLE:
1338 		dev_dbg(queue->ctrl->ctrl.device,
1339 			"CM error event %d\n", ev->event);
1340 		cm_error = -ECONNRESET;
1341 		break;
1342 	case RDMA_CM_EVENT_DISCONNECTED:
1343 	case RDMA_CM_EVENT_ADDR_CHANGE:
1344 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1345 		dev_dbg(queue->ctrl->ctrl.device,
1346 			"disconnect received - connection closed\n");
1347 		nvme_rdma_error_recovery(queue->ctrl);
1348 		break;
1349 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1350 		/* device removal is handled via the ib_client API */
1351 		break;
1352 	default:
1353 		dev_err(queue->ctrl->ctrl.device,
1354 			"Unexpected RDMA CM event (%d)\n", ev->event);
1355 		nvme_rdma_error_recovery(queue->ctrl);
1356 		break;
1357 	}
1358 
1359 	if (cm_error) {
1360 		queue->cm_error = cm_error;
1361 		complete(&queue->cm_done);
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static enum blk_eh_timer_return
1368 nvme_rdma_timeout(struct request *rq, bool reserved)
1369 {
1370 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1371 
1372 	/* queue error recovery */
1373 	nvme_rdma_error_recovery(req->queue->ctrl);
1374 
1375 	/* fail with DNR on cmd timeout */
1376 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1377 
1378 	return BLK_EH_HANDLED;
1379 }
1380 
1381 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1382 		const struct blk_mq_queue_data *bd)
1383 {
1384 	struct nvme_ns *ns = hctx->queue->queuedata;
1385 	struct nvme_rdma_queue *queue = hctx->driver_data;
1386 	struct request *rq = bd->rq;
1387 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1388 	struct nvme_rdma_qe *sqe = &req->sqe;
1389 	struct nvme_command *c = sqe->data;
1390 	bool flush = false;
1391 	struct ib_device *dev;
1392 	unsigned int map_len;
1393 	int ret;
1394 
1395 	WARN_ON_ONCE(rq->tag < 0);
1396 
1397 	dev = queue->device->dev;
1398 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1399 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1400 
1401 	ret = nvme_setup_cmd(ns, rq, c);
1402 	if (ret)
1403 		return ret;
1404 
1405 	c->common.command_id = rq->tag;
1406 	blk_mq_start_request(rq);
1407 
1408 	map_len = nvme_map_len(rq);
1409 	ret = nvme_rdma_map_data(queue, rq, map_len, c);
1410 	if (ret < 0) {
1411 		dev_err(queue->ctrl->ctrl.device,
1412 			     "Failed to map data (%d)\n", ret);
1413 		nvme_cleanup_cmd(rq);
1414 		goto err;
1415 	}
1416 
1417 	ib_dma_sync_single_for_device(dev, sqe->dma,
1418 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1419 
1420 	if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1421 		flush = true;
1422 	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1423 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1424 	if (ret) {
1425 		nvme_rdma_unmap_data(queue, rq);
1426 		goto err;
1427 	}
1428 
1429 	return BLK_MQ_RQ_QUEUE_OK;
1430 err:
1431 	return (ret == -ENOMEM || ret == -EAGAIN) ?
1432 		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1433 }
1434 
1435 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1436 {
1437 	struct nvme_rdma_queue *queue = hctx->driver_data;
1438 	struct ib_cq *cq = queue->ib_cq;
1439 	struct ib_wc wc;
1440 	int found = 0;
1441 
1442 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1443 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1444 		struct ib_cqe *cqe = wc.wr_cqe;
1445 
1446 		if (cqe) {
1447 			if (cqe->done == nvme_rdma_recv_done)
1448 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1449 			else
1450 				cqe->done(cq, &wc);
1451 		}
1452 	}
1453 
1454 	return found;
1455 }
1456 
1457 static void nvme_rdma_complete_rq(struct request *rq)
1458 {
1459 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1460 	struct nvme_rdma_queue *queue = req->queue;
1461 	int error = 0;
1462 
1463 	nvme_rdma_unmap_data(queue, rq);
1464 
1465 	if (unlikely(rq->errors)) {
1466 		if (nvme_req_needs_retry(rq, rq->errors)) {
1467 			nvme_requeue_req(rq);
1468 			return;
1469 		}
1470 
1471 		if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1472 			error = rq->errors;
1473 		else
1474 			error = nvme_error_status(rq->errors);
1475 	}
1476 
1477 	blk_mq_end_request(rq, error);
1478 }
1479 
1480 static struct blk_mq_ops nvme_rdma_mq_ops = {
1481 	.queue_rq	= nvme_rdma_queue_rq,
1482 	.complete	= nvme_rdma_complete_rq,
1483 	.init_request	= nvme_rdma_init_request,
1484 	.exit_request	= nvme_rdma_exit_request,
1485 	.reinit_request	= nvme_rdma_reinit_request,
1486 	.init_hctx	= nvme_rdma_init_hctx,
1487 	.poll		= nvme_rdma_poll,
1488 	.timeout	= nvme_rdma_timeout,
1489 };
1490 
1491 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1492 	.queue_rq	= nvme_rdma_queue_rq,
1493 	.complete	= nvme_rdma_complete_rq,
1494 	.init_request	= nvme_rdma_init_admin_request,
1495 	.exit_request	= nvme_rdma_exit_admin_request,
1496 	.reinit_request	= nvme_rdma_reinit_request,
1497 	.init_hctx	= nvme_rdma_init_admin_hctx,
1498 	.timeout	= nvme_rdma_timeout,
1499 };
1500 
1501 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1502 {
1503 	int error;
1504 
1505 	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1506 	if (error)
1507 		return error;
1508 
1509 	ctrl->device = ctrl->queues[0].device;
1510 
1511 	/*
1512 	 * We need a reference on the device as long as the tag_set is alive,
1513 	 * as the MRs in the request structures need a valid ib_device.
1514 	 */
1515 	error = -EINVAL;
1516 	if (!nvme_rdma_dev_get(ctrl->device))
1517 		goto out_free_queue;
1518 
1519 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1520 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1521 
1522 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1523 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1524 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1525 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1526 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1527 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1528 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1529 	ctrl->admin_tag_set.driver_data = ctrl;
1530 	ctrl->admin_tag_set.nr_hw_queues = 1;
1531 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1532 
1533 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1534 	if (error)
1535 		goto out_put_dev;
1536 
1537 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1538 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1539 		error = PTR_ERR(ctrl->ctrl.admin_q);
1540 		goto out_free_tagset;
1541 	}
1542 
1543 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1544 	if (error)
1545 		goto out_cleanup_queue;
1546 
1547 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1548 	if (error) {
1549 		dev_err(ctrl->ctrl.device,
1550 			"prop_get NVME_REG_CAP failed\n");
1551 		goto out_cleanup_queue;
1552 	}
1553 
1554 	ctrl->ctrl.sqsize =
1555 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1556 
1557 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1558 	if (error)
1559 		goto out_cleanup_queue;
1560 
1561 	ctrl->ctrl.max_hw_sectors =
1562 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1563 
1564 	error = nvme_init_identify(&ctrl->ctrl);
1565 	if (error)
1566 		goto out_cleanup_queue;
1567 
1568 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1569 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1570 			DMA_TO_DEVICE);
1571 	if (error)
1572 		goto out_cleanup_queue;
1573 
1574 	nvme_start_keep_alive(&ctrl->ctrl);
1575 
1576 	return 0;
1577 
1578 out_cleanup_queue:
1579 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1580 out_free_tagset:
1581 	/* disconnect and drain the queue before freeing the tagset */
1582 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1583 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1584 out_put_dev:
1585 	nvme_rdma_dev_put(ctrl->device);
1586 out_free_queue:
1587 	nvme_rdma_free_queue(&ctrl->queues[0]);
1588 	return error;
1589 }
1590 
1591 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1592 {
1593 	nvme_stop_keep_alive(&ctrl->ctrl);
1594 	cancel_work_sync(&ctrl->err_work);
1595 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1596 
1597 	if (ctrl->queue_count > 1) {
1598 		nvme_stop_queues(&ctrl->ctrl);
1599 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1600 					nvme_cancel_request, &ctrl->ctrl);
1601 		nvme_rdma_free_io_queues(ctrl);
1602 	}
1603 
1604 	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1605 		nvme_shutdown_ctrl(&ctrl->ctrl);
1606 
1607 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1608 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1609 				nvme_cancel_request, &ctrl->ctrl);
1610 	nvme_rdma_destroy_admin_queue(ctrl);
1611 }
1612 
1613 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1614 {
1615 	nvme_uninit_ctrl(&ctrl->ctrl);
1616 	if (shutdown)
1617 		nvme_rdma_shutdown_ctrl(ctrl);
1618 
1619 	if (ctrl->ctrl.tagset) {
1620 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1621 		blk_mq_free_tag_set(&ctrl->tag_set);
1622 		nvme_rdma_dev_put(ctrl->device);
1623 	}
1624 
1625 	nvme_put_ctrl(&ctrl->ctrl);
1626 }
1627 
1628 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1629 {
1630 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1631 				struct nvme_rdma_ctrl, delete_work);
1632 
1633 	__nvme_rdma_remove_ctrl(ctrl, true);
1634 }
1635 
1636 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1637 {
1638 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1639 		return -EBUSY;
1640 
1641 	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1642 		return -EBUSY;
1643 
1644 	return 0;
1645 }
1646 
1647 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1648 {
1649 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1650 	int ret = 0;
1651 
1652 	/*
1653 	 * Keep a reference until all work is flushed since
1654 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1655 	 */
1656 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1657 		return -EBUSY;
1658 	ret = __nvme_rdma_del_ctrl(ctrl);
1659 	if (!ret)
1660 		flush_work(&ctrl->delete_work);
1661 	nvme_put_ctrl(&ctrl->ctrl);
1662 	return ret;
1663 }
1664 
1665 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1666 {
1667 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1668 				struct nvme_rdma_ctrl, delete_work);
1669 
1670 	__nvme_rdma_remove_ctrl(ctrl, false);
1671 }
1672 
1673 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1674 {
1675 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1676 					struct nvme_rdma_ctrl, reset_work);
1677 	int ret;
1678 	bool changed;
1679 
1680 	nvme_rdma_shutdown_ctrl(ctrl);
1681 
1682 	ret = nvme_rdma_configure_admin_queue(ctrl);
1683 	if (ret) {
1684 		/* ctrl is already shutdown, just remove the ctrl */
1685 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1686 		goto del_dead_ctrl;
1687 	}
1688 
1689 	if (ctrl->queue_count > 1) {
1690 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1691 		if (ret)
1692 			goto del_dead_ctrl;
1693 
1694 		ret = nvme_rdma_init_io_queues(ctrl);
1695 		if (ret)
1696 			goto del_dead_ctrl;
1697 
1698 		ret = nvme_rdma_connect_io_queues(ctrl);
1699 		if (ret)
1700 			goto del_dead_ctrl;
1701 	}
1702 
1703 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1704 	WARN_ON_ONCE(!changed);
1705 
1706 	if (ctrl->queue_count > 1) {
1707 		nvme_start_queues(&ctrl->ctrl);
1708 		nvme_queue_scan(&ctrl->ctrl);
1709 		nvme_queue_async_events(&ctrl->ctrl);
1710 	}
1711 
1712 	return;
1713 
1714 del_dead_ctrl:
1715 	/* Deleting this dead controller... */
1716 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1717 	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1718 }
1719 
1720 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1721 {
1722 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1723 
1724 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1725 		return -EBUSY;
1726 
1727 	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1728 		return -EBUSY;
1729 
1730 	flush_work(&ctrl->reset_work);
1731 
1732 	return 0;
1733 }
1734 
1735 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1736 	.name			= "rdma",
1737 	.module			= THIS_MODULE,
1738 	.is_fabrics		= true,
1739 	.reg_read32		= nvmf_reg_read32,
1740 	.reg_read64		= nvmf_reg_read64,
1741 	.reg_write32		= nvmf_reg_write32,
1742 	.reset_ctrl		= nvme_rdma_reset_ctrl,
1743 	.free_ctrl		= nvme_rdma_free_ctrl,
1744 	.submit_async_event	= nvme_rdma_submit_async_event,
1745 	.delete_ctrl		= nvme_rdma_del_ctrl,
1746 	.get_subsysnqn		= nvmf_get_subsysnqn,
1747 	.get_address		= nvmf_get_address,
1748 };
1749 
1750 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1751 {
1752 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1753 	int ret;
1754 
1755 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1756 	if (ret)
1757 		return ret;
1758 
1759 	ctrl->queue_count = opts->nr_io_queues + 1;
1760 	if (ctrl->queue_count < 2)
1761 		return 0;
1762 
1763 	dev_info(ctrl->ctrl.device,
1764 		"creating %d I/O queues.\n", opts->nr_io_queues);
1765 
1766 	ret = nvme_rdma_init_io_queues(ctrl);
1767 	if (ret)
1768 		return ret;
1769 
1770 	/*
1771 	 * We need a reference on the device as long as the tag_set is alive,
1772 	 * as the MRs in the request structures need a valid ib_device.
1773 	 */
1774 	ret = -EINVAL;
1775 	if (!nvme_rdma_dev_get(ctrl->device))
1776 		goto out_free_io_queues;
1777 
1778 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1779 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1780 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1781 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1782 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1783 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1784 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1785 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1786 	ctrl->tag_set.driver_data = ctrl;
1787 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1788 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1789 
1790 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1791 	if (ret)
1792 		goto out_put_dev;
1793 	ctrl->ctrl.tagset = &ctrl->tag_set;
1794 
1795 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1796 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1797 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1798 		goto out_free_tag_set;
1799 	}
1800 
1801 	ret = nvme_rdma_connect_io_queues(ctrl);
1802 	if (ret)
1803 		goto out_cleanup_connect_q;
1804 
1805 	return 0;
1806 
1807 out_cleanup_connect_q:
1808 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1809 out_free_tag_set:
1810 	blk_mq_free_tag_set(&ctrl->tag_set);
1811 out_put_dev:
1812 	nvme_rdma_dev_put(ctrl->device);
1813 out_free_io_queues:
1814 	nvme_rdma_free_io_queues(ctrl);
1815 	return ret;
1816 }
1817 
1818 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1819 {
1820 	u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1821 	size_t buflen = strlen(p);
1822 
1823 	/* XXX: handle IPv6 addresses */
1824 
1825 	if (buflen > INET_ADDRSTRLEN)
1826 		return -EINVAL;
1827 	if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1828 		return -EINVAL;
1829 	in_addr->sin_family = AF_INET;
1830 	return 0;
1831 }
1832 
1833 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1834 		struct nvmf_ctrl_options *opts)
1835 {
1836 	struct nvme_rdma_ctrl *ctrl;
1837 	int ret;
1838 	bool changed;
1839 
1840 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1841 	if (!ctrl)
1842 		return ERR_PTR(-ENOMEM);
1843 	ctrl->ctrl.opts = opts;
1844 	INIT_LIST_HEAD(&ctrl->list);
1845 
1846 	ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1847 	if (ret) {
1848 		pr_err("malformed IP address passed: %s\n", opts->traddr);
1849 		goto out_free_ctrl;
1850 	}
1851 
1852 	if (opts->mask & NVMF_OPT_TRSVCID) {
1853 		u16 port;
1854 
1855 		ret = kstrtou16(opts->trsvcid, 0, &port);
1856 		if (ret)
1857 			goto out_free_ctrl;
1858 
1859 		ctrl->addr_in.sin_port = cpu_to_be16(port);
1860 	} else {
1861 		ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1862 	}
1863 
1864 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1865 				0 /* no quirks, we're perfect! */);
1866 	if (ret)
1867 		goto out_free_ctrl;
1868 
1869 	ctrl->reconnect_delay = opts->reconnect_delay;
1870 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1871 			nvme_rdma_reconnect_ctrl_work);
1872 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1873 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1874 	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1875 	spin_lock_init(&ctrl->lock);
1876 
1877 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1878 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1879 	ctrl->ctrl.kato = opts->kato;
1880 
1881 	ret = -ENOMEM;
1882 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1883 				GFP_KERNEL);
1884 	if (!ctrl->queues)
1885 		goto out_uninit_ctrl;
1886 
1887 	ret = nvme_rdma_configure_admin_queue(ctrl);
1888 	if (ret)
1889 		goto out_kfree_queues;
1890 
1891 	/* sanity check icdoff */
1892 	if (ctrl->ctrl.icdoff) {
1893 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1894 		goto out_remove_admin_queue;
1895 	}
1896 
1897 	/* sanity check keyed sgls */
1898 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1899 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1900 		goto out_remove_admin_queue;
1901 	}
1902 
1903 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1904 		/* warn if maxcmd is lower than queue_size */
1905 		dev_warn(ctrl->ctrl.device,
1906 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1907 			opts->queue_size, ctrl->ctrl.maxcmd);
1908 		opts->queue_size = ctrl->ctrl.maxcmd;
1909 	}
1910 
1911 	if (opts->nr_io_queues) {
1912 		ret = nvme_rdma_create_io_queues(ctrl);
1913 		if (ret)
1914 			goto out_remove_admin_queue;
1915 	}
1916 
1917 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1918 	WARN_ON_ONCE(!changed);
1919 
1920 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1921 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1922 
1923 	kref_get(&ctrl->ctrl.kref);
1924 
1925 	mutex_lock(&nvme_rdma_ctrl_mutex);
1926 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1927 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1928 
1929 	if (opts->nr_io_queues) {
1930 		nvme_queue_scan(&ctrl->ctrl);
1931 		nvme_queue_async_events(&ctrl->ctrl);
1932 	}
1933 
1934 	return &ctrl->ctrl;
1935 
1936 out_remove_admin_queue:
1937 	nvme_stop_keep_alive(&ctrl->ctrl);
1938 	nvme_rdma_destroy_admin_queue(ctrl);
1939 out_kfree_queues:
1940 	kfree(ctrl->queues);
1941 out_uninit_ctrl:
1942 	nvme_uninit_ctrl(&ctrl->ctrl);
1943 	nvme_put_ctrl(&ctrl->ctrl);
1944 	if (ret > 0)
1945 		ret = -EIO;
1946 	return ERR_PTR(ret);
1947 out_free_ctrl:
1948 	kfree(ctrl);
1949 	return ERR_PTR(ret);
1950 }
1951 
1952 static struct nvmf_transport_ops nvme_rdma_transport = {
1953 	.name		= "rdma",
1954 	.required_opts	= NVMF_OPT_TRADDR,
1955 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1956 	.create_ctrl	= nvme_rdma_create_ctrl,
1957 };
1958 
1959 static void nvme_rdma_add_one(struct ib_device *ib_device)
1960 {
1961 }
1962 
1963 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1964 {
1965 	struct nvme_rdma_ctrl *ctrl;
1966 
1967 	/* Delete all controllers using this device */
1968 	mutex_lock(&nvme_rdma_ctrl_mutex);
1969 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1970 		if (ctrl->device->dev != ib_device)
1971 			continue;
1972 		dev_info(ctrl->ctrl.device,
1973 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
1974 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1975 		__nvme_rdma_del_ctrl(ctrl);
1976 	}
1977 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1978 
1979 	flush_workqueue(nvme_rdma_wq);
1980 }
1981 
1982 static struct ib_client nvme_rdma_ib_client = {
1983 	.name   = "nvme_rdma",
1984 	.add = nvme_rdma_add_one,
1985 	.remove = nvme_rdma_remove_one
1986 };
1987 
1988 static int __init nvme_rdma_init_module(void)
1989 {
1990 	int ret;
1991 
1992 	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
1993 	if (!nvme_rdma_wq)
1994 		return -ENOMEM;
1995 
1996 	ret = ib_register_client(&nvme_rdma_ib_client);
1997 	if (ret) {
1998 		destroy_workqueue(nvme_rdma_wq);
1999 		return ret;
2000 	}
2001 
2002 	nvmf_register_transport(&nvme_rdma_transport);
2003 	return 0;
2004 }
2005 
2006 static void __exit nvme_rdma_cleanup_module(void)
2007 {
2008 	nvmf_unregister_transport(&nvme_rdma_transport);
2009 	ib_unregister_client(&nvme_rdma_ib_client);
2010 	destroy_workqueue(nvme_rdma_wq);
2011 }
2012 
2013 module_init(nvme_rdma_init_module);
2014 module_exit(nvme_rdma_cleanup_module);
2015 
2016 MODULE_LICENSE("GPL v2");
2017