xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 };
51 
52 struct nvme_rdma_qe {
53 	struct ib_cqe		cqe;
54 	void			*data;
55 	u64			dma;
56 };
57 
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60 	struct nvme_request	req;
61 	struct ib_mr		*mr;
62 	struct nvme_rdma_qe	sqe;
63 	union nvme_result	result;
64 	__le16			status;
65 	refcount_t		ref;
66 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67 	u32			num_sge;
68 	int			nents;
69 	struct ib_reg_wr	reg_wr;
70 	struct ib_cqe		reg_cqe;
71 	struct nvme_rdma_queue  *queue;
72 	struct sg_table		sg_table;
73 	struct scatterlist	first_sgl[];
74 };
75 
76 enum nvme_rdma_queue_flags {
77 	NVME_RDMA_Q_ALLOCATED		= 0,
78 	NVME_RDMA_Q_LIVE		= 1,
79 	NVME_RDMA_Q_TR_READY		= 2,
80 };
81 
82 struct nvme_rdma_queue {
83 	struct nvme_rdma_qe	*rsp_ring;
84 	int			queue_size;
85 	size_t			cmnd_capsule_len;
86 	struct nvme_rdma_ctrl	*ctrl;
87 	struct nvme_rdma_device	*device;
88 	struct ib_cq		*ib_cq;
89 	struct ib_qp		*qp;
90 
91 	unsigned long		flags;
92 	struct rdma_cm_id	*cm_id;
93 	int			cm_error;
94 	struct completion	cm_done;
95 };
96 
97 struct nvme_rdma_ctrl {
98 	/* read only in the hot path */
99 	struct nvme_rdma_queue	*queues;
100 
101 	/* other member variables */
102 	struct blk_mq_tag_set	tag_set;
103 	struct work_struct	err_work;
104 
105 	struct nvme_rdma_qe	async_event_sqe;
106 
107 	struct delayed_work	reconnect_work;
108 
109 	struct list_head	list;
110 
111 	struct blk_mq_tag_set	admin_tag_set;
112 	struct nvme_rdma_device	*device;
113 
114 	u32			max_fr_pages;
115 
116 	struct sockaddr_storage addr;
117 	struct sockaddr_storage src_addr;
118 
119 	struct nvme_ctrl	ctrl;
120 };
121 
122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
123 {
124 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
125 }
126 
127 static LIST_HEAD(device_list);
128 static DEFINE_MUTEX(device_list_mutex);
129 
130 static LIST_HEAD(nvme_rdma_ctrl_list);
131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
132 
133 /*
134  * Disabling this option makes small I/O goes faster, but is fundamentally
135  * unsafe.  With it turned off we will have to register a global rkey that
136  * allows read and write access to all physical memory.
137  */
138 static bool register_always = true;
139 module_param(register_always, bool, 0444);
140 MODULE_PARM_DESC(register_always,
141 	 "Use memory registration even for contiguous memory regions");
142 
143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
144 		struct rdma_cm_event *event);
145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
146 
147 static const struct blk_mq_ops nvme_rdma_mq_ops;
148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
149 
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline void put_unaligned_le24(u32 val, u8 *p)
152 {
153 	*p++ = val;
154 	*p++ = val >> 8;
155 	*p++ = val >> 16;
156 }
157 
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160 	return queue - queue->ctrl->queues;
161 }
162 
163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
164 {
165 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
166 }
167 
168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
169 		size_t capsule_size, enum dma_data_direction dir)
170 {
171 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
172 	kfree(qe->data);
173 }
174 
175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176 		size_t capsule_size, enum dma_data_direction dir)
177 {
178 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
179 	if (!qe->data)
180 		return -ENOMEM;
181 
182 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
183 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
184 		kfree(qe->data);
185 		return -ENOMEM;
186 	}
187 
188 	return 0;
189 }
190 
191 static void nvme_rdma_free_ring(struct ib_device *ibdev,
192 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
193 		size_t capsule_size, enum dma_data_direction dir)
194 {
195 	int i;
196 
197 	for (i = 0; i < ib_queue_size; i++)
198 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
199 	kfree(ring);
200 }
201 
202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
203 		size_t ib_queue_size, size_t capsule_size,
204 		enum dma_data_direction dir)
205 {
206 	struct nvme_rdma_qe *ring;
207 	int i;
208 
209 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
210 	if (!ring)
211 		return NULL;
212 
213 	for (i = 0; i < ib_queue_size; i++) {
214 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215 			goto out_free_ring;
216 	}
217 
218 	return ring;
219 
220 out_free_ring:
221 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222 	return NULL;
223 }
224 
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227 	pr_debug("QP event %s (%d)\n",
228 		 ib_event_msg(event->event), event->event);
229 
230 }
231 
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234 	wait_for_completion_interruptible_timeout(&queue->cm_done,
235 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
236 	return queue->cm_error;
237 }
238 
239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
240 {
241 	struct nvme_rdma_device *dev = queue->device;
242 	struct ib_qp_init_attr init_attr;
243 	int ret;
244 
245 	memset(&init_attr, 0, sizeof(init_attr));
246 	init_attr.event_handler = nvme_rdma_qp_event;
247 	/* +1 for drain */
248 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
249 	/* +1 for drain */
250 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
251 	init_attr.cap.max_recv_sge = 1;
252 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
253 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
254 	init_attr.qp_type = IB_QPT_RC;
255 	init_attr.send_cq = queue->ib_cq;
256 	init_attr.recv_cq = queue->ib_cq;
257 
258 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
259 
260 	queue->qp = queue->cm_id->qp;
261 	return ret;
262 }
263 
264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
265 		struct request *rq, unsigned int hctx_idx)
266 {
267 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
268 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
271 	struct nvme_rdma_device *dev = queue->device;
272 
273 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
274 			DMA_TO_DEVICE);
275 }
276 
277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
278 		struct request *rq, unsigned int hctx_idx,
279 		unsigned int numa_node)
280 {
281 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
282 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
285 	struct nvme_rdma_device *dev = queue->device;
286 	struct ib_device *ibdev = dev->dev;
287 	int ret;
288 
289 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
290 			DMA_TO_DEVICE);
291 	if (ret)
292 		return ret;
293 
294 	req->queue = queue;
295 
296 	return 0;
297 }
298 
299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
300 		unsigned int hctx_idx)
301 {
302 	struct nvme_rdma_ctrl *ctrl = data;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
304 
305 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306 
307 	hctx->driver_data = queue;
308 	return 0;
309 }
310 
311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
312 		unsigned int hctx_idx)
313 {
314 	struct nvme_rdma_ctrl *ctrl = data;
315 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
316 
317 	BUG_ON(hctx_idx != 0);
318 
319 	hctx->driver_data = queue;
320 	return 0;
321 }
322 
323 static void nvme_rdma_free_dev(struct kref *ref)
324 {
325 	struct nvme_rdma_device *ndev =
326 		container_of(ref, struct nvme_rdma_device, ref);
327 
328 	mutex_lock(&device_list_mutex);
329 	list_del(&ndev->entry);
330 	mutex_unlock(&device_list_mutex);
331 
332 	ib_dealloc_pd(ndev->pd);
333 	kfree(ndev);
334 }
335 
336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
337 {
338 	kref_put(&dev->ref, nvme_rdma_free_dev);
339 }
340 
341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
342 {
343 	return kref_get_unless_zero(&dev->ref);
344 }
345 
346 static struct nvme_rdma_device *
347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
348 {
349 	struct nvme_rdma_device *ndev;
350 
351 	mutex_lock(&device_list_mutex);
352 	list_for_each_entry(ndev, &device_list, entry) {
353 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
354 		    nvme_rdma_dev_get(ndev))
355 			goto out_unlock;
356 	}
357 
358 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
359 	if (!ndev)
360 		goto out_err;
361 
362 	ndev->dev = cm_id->device;
363 	kref_init(&ndev->ref);
364 
365 	ndev->pd = ib_alloc_pd(ndev->dev,
366 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367 	if (IS_ERR(ndev->pd))
368 		goto out_free_dev;
369 
370 	if (!(ndev->dev->attrs.device_cap_flags &
371 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
372 		dev_err(&ndev->dev->dev,
373 			"Memory registrations not supported.\n");
374 		goto out_free_pd;
375 	}
376 
377 	list_add(&ndev->entry, &device_list);
378 out_unlock:
379 	mutex_unlock(&device_list_mutex);
380 	return ndev;
381 
382 out_free_pd:
383 	ib_dealloc_pd(ndev->pd);
384 out_free_dev:
385 	kfree(ndev);
386 out_err:
387 	mutex_unlock(&device_list_mutex);
388 	return NULL;
389 }
390 
391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
392 {
393 	struct nvme_rdma_device *dev;
394 	struct ib_device *ibdev;
395 
396 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
397 		return;
398 
399 	dev = queue->device;
400 	ibdev = dev->dev;
401 
402 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
403 
404 	/*
405 	 * The cm_id object might have been destroyed during RDMA connection
406 	 * establishment error flow to avoid getting other cma events, thus
407 	 * the destruction of the QP shouldn't use rdma_cm API.
408 	 */
409 	ib_destroy_qp(queue->qp);
410 	ib_free_cq(queue->ib_cq);
411 
412 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
413 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
414 
415 	nvme_rdma_dev_put(dev);
416 }
417 
418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
419 {
420 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
421 		     ibdev->attrs.max_fast_reg_page_list_len);
422 }
423 
424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 	struct ib_device *ibdev;
427 	const int send_wr_factor = 3;			/* MR, SEND, INV */
428 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
429 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
430 	int ret;
431 
432 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
433 	if (!queue->device) {
434 		dev_err(queue->cm_id->device->dev.parent,
435 			"no client data found!\n");
436 		return -ECONNREFUSED;
437 	}
438 	ibdev = queue->device->dev;
439 
440 	/*
441 	 * Spread I/O queues completion vectors according their queue index.
442 	 * Admin queues can always go on completion vector 0.
443 	 */
444 	comp_vector = idx == 0 ? idx : idx - 1;
445 
446 	/* +1 for ib_stop_cq */
447 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
448 				cq_factor * queue->queue_size + 1,
449 				comp_vector, IB_POLL_SOFTIRQ);
450 	if (IS_ERR(queue->ib_cq)) {
451 		ret = PTR_ERR(queue->ib_cq);
452 		goto out_put_dev;
453 	}
454 
455 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
456 	if (ret)
457 		goto out_destroy_ib_cq;
458 
459 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
460 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
461 	if (!queue->rsp_ring) {
462 		ret = -ENOMEM;
463 		goto out_destroy_qp;
464 	}
465 
466 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
467 			      queue->queue_size,
468 			      IB_MR_TYPE_MEM_REG,
469 			      nvme_rdma_get_max_fr_pages(ibdev));
470 	if (ret) {
471 		dev_err(queue->ctrl->ctrl.device,
472 			"failed to initialize MR pool sized %d for QID %d\n",
473 			queue->queue_size, idx);
474 		goto out_destroy_ring;
475 	}
476 
477 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
478 
479 	return 0;
480 
481 out_destroy_ring:
482 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 out_destroy_qp:
485 	rdma_destroy_qp(queue->cm_id);
486 out_destroy_ib_cq:
487 	ib_free_cq(queue->ib_cq);
488 out_put_dev:
489 	nvme_rdma_dev_put(queue->device);
490 	return ret;
491 }
492 
493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494 		int idx, size_t queue_size)
495 {
496 	struct nvme_rdma_queue *queue;
497 	struct sockaddr *src_addr = NULL;
498 	int ret;
499 
500 	queue = &ctrl->queues[idx];
501 	queue->ctrl = ctrl;
502 	init_completion(&queue->cm_done);
503 
504 	if (idx > 0)
505 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
506 	else
507 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
508 
509 	queue->queue_size = queue_size;
510 
511 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
512 			RDMA_PS_TCP, IB_QPT_RC);
513 	if (IS_ERR(queue->cm_id)) {
514 		dev_info(ctrl->ctrl.device,
515 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
516 		return PTR_ERR(queue->cm_id);
517 	}
518 
519 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520 		src_addr = (struct sockaddr *)&ctrl->src_addr;
521 
522 	queue->cm_error = -ETIMEDOUT;
523 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
524 			(struct sockaddr *)&ctrl->addr,
525 			NVME_RDMA_CONNECT_TIMEOUT_MS);
526 	if (ret) {
527 		dev_info(ctrl->ctrl.device,
528 			"rdma_resolve_addr failed (%d).\n", ret);
529 		goto out_destroy_cm_id;
530 	}
531 
532 	ret = nvme_rdma_wait_for_cm(queue);
533 	if (ret) {
534 		dev_info(ctrl->ctrl.device,
535 			"rdma connection establishment failed (%d)\n", ret);
536 		goto out_destroy_cm_id;
537 	}
538 
539 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540 
541 	return 0;
542 
543 out_destroy_cm_id:
544 	rdma_destroy_id(queue->cm_id);
545 	nvme_rdma_destroy_queue_ib(queue);
546 	return ret;
547 }
548 
549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
550 {
551 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
552 		return;
553 
554 	rdma_disconnect(queue->cm_id);
555 	ib_drain_qp(queue->qp);
556 }
557 
558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
559 {
560 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561 		return;
562 
563 	if (nvme_rdma_queue_idx(queue) == 0) {
564 		nvme_rdma_free_qe(queue->device->dev,
565 			&queue->ctrl->async_event_sqe,
566 			sizeof(struct nvme_command), DMA_TO_DEVICE);
567 	}
568 
569 	nvme_rdma_destroy_queue_ib(queue);
570 	rdma_destroy_id(queue->cm_id);
571 }
572 
573 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
574 {
575 	int i;
576 
577 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
578 		nvme_rdma_free_queue(&ctrl->queues[i]);
579 }
580 
581 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
582 {
583 	int i;
584 
585 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
586 		nvme_rdma_stop_queue(&ctrl->queues[i]);
587 }
588 
589 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
590 {
591 	int ret;
592 
593 	if (idx)
594 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
595 	else
596 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
597 
598 	if (!ret)
599 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
600 	else
601 		dev_info(ctrl->ctrl.device,
602 			"failed to connect queue: %d ret=%d\n", idx, ret);
603 	return ret;
604 }
605 
606 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
607 {
608 	int i, ret = 0;
609 
610 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
611 		ret = nvme_rdma_start_queue(ctrl, i);
612 		if (ret)
613 			goto out_stop_queues;
614 	}
615 
616 	return 0;
617 
618 out_stop_queues:
619 	for (i--; i >= 1; i--)
620 		nvme_rdma_stop_queue(&ctrl->queues[i]);
621 	return ret;
622 }
623 
624 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
625 {
626 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
627 	struct ib_device *ibdev = ctrl->device->dev;
628 	unsigned int nr_io_queues;
629 	int i, ret;
630 
631 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
632 
633 	/*
634 	 * we map queues according to the device irq vectors for
635 	 * optimal locality so we don't need more queues than
636 	 * completion vectors.
637 	 */
638 	nr_io_queues = min_t(unsigned int, nr_io_queues,
639 				ibdev->num_comp_vectors);
640 
641 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
642 	if (ret)
643 		return ret;
644 
645 	ctrl->ctrl.queue_count = nr_io_queues + 1;
646 	if (ctrl->ctrl.queue_count < 2)
647 		return 0;
648 
649 	dev_info(ctrl->ctrl.device,
650 		"creating %d I/O queues.\n", nr_io_queues);
651 
652 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
653 		ret = nvme_rdma_alloc_queue(ctrl, i,
654 				ctrl->ctrl.sqsize + 1);
655 		if (ret)
656 			goto out_free_queues;
657 	}
658 
659 	return 0;
660 
661 out_free_queues:
662 	for (i--; i >= 1; i--)
663 		nvme_rdma_free_queue(&ctrl->queues[i]);
664 
665 	return ret;
666 }
667 
668 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
669 		struct blk_mq_tag_set *set)
670 {
671 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
672 
673 	blk_mq_free_tag_set(set);
674 	nvme_rdma_dev_put(ctrl->device);
675 }
676 
677 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
678 		bool admin)
679 {
680 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
681 	struct blk_mq_tag_set *set;
682 	int ret;
683 
684 	if (admin) {
685 		set = &ctrl->admin_tag_set;
686 		memset(set, 0, sizeof(*set));
687 		set->ops = &nvme_rdma_admin_mq_ops;
688 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
689 		set->reserved_tags = 2; /* connect + keep-alive */
690 		set->numa_node = NUMA_NO_NODE;
691 		set->cmd_size = sizeof(struct nvme_rdma_request) +
692 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
693 		set->driver_data = ctrl;
694 		set->nr_hw_queues = 1;
695 		set->timeout = ADMIN_TIMEOUT;
696 		set->flags = BLK_MQ_F_NO_SCHED;
697 	} else {
698 		set = &ctrl->tag_set;
699 		memset(set, 0, sizeof(*set));
700 		set->ops = &nvme_rdma_mq_ops;
701 		set->queue_depth = nctrl->opts->queue_size;
702 		set->reserved_tags = 1; /* fabric connect */
703 		set->numa_node = NUMA_NO_NODE;
704 		set->flags = BLK_MQ_F_SHOULD_MERGE;
705 		set->cmd_size = sizeof(struct nvme_rdma_request) +
706 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
707 		set->driver_data = ctrl;
708 		set->nr_hw_queues = nctrl->queue_count - 1;
709 		set->timeout = NVME_IO_TIMEOUT;
710 	}
711 
712 	ret = blk_mq_alloc_tag_set(set);
713 	if (ret)
714 		goto out;
715 
716 	/*
717 	 * We need a reference on the device as long as the tag_set is alive,
718 	 * as the MRs in the request structures need a valid ib_device.
719 	 */
720 	ret = nvme_rdma_dev_get(ctrl->device);
721 	if (!ret) {
722 		ret = -EINVAL;
723 		goto out_free_tagset;
724 	}
725 
726 	return set;
727 
728 out_free_tagset:
729 	blk_mq_free_tag_set(set);
730 out:
731 	return ERR_PTR(ret);
732 }
733 
734 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
735 		bool remove)
736 {
737 	nvme_rdma_stop_queue(&ctrl->queues[0]);
738 	if (remove) {
739 		blk_cleanup_queue(ctrl->ctrl.admin_q);
740 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
741 	}
742 	nvme_rdma_free_queue(&ctrl->queues[0]);
743 }
744 
745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
746 		bool new)
747 {
748 	int error;
749 
750 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
751 	if (error)
752 		return error;
753 
754 	ctrl->device = ctrl->queues[0].device;
755 
756 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
757 
758 	if (new) {
759 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
760 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
761 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
762 			goto out_free_queue;
763 		}
764 
765 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
766 		if (IS_ERR(ctrl->ctrl.admin_q)) {
767 			error = PTR_ERR(ctrl->ctrl.admin_q);
768 			goto out_free_tagset;
769 		}
770 	}
771 
772 	error = nvme_rdma_start_queue(ctrl, 0);
773 	if (error)
774 		goto out_cleanup_queue;
775 
776 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
777 			&ctrl->ctrl.cap);
778 	if (error) {
779 		dev_err(ctrl->ctrl.device,
780 			"prop_get NVME_REG_CAP failed\n");
781 		goto out_stop_queue;
782 	}
783 
784 	ctrl->ctrl.sqsize =
785 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
786 
787 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
788 	if (error)
789 		goto out_stop_queue;
790 
791 	ctrl->ctrl.max_hw_sectors =
792 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
793 
794 	error = nvme_init_identify(&ctrl->ctrl);
795 	if (error)
796 		goto out_stop_queue;
797 
798 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
799 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
800 			DMA_TO_DEVICE);
801 	if (error)
802 		goto out_stop_queue;
803 
804 	return 0;
805 
806 out_stop_queue:
807 	nvme_rdma_stop_queue(&ctrl->queues[0]);
808 out_cleanup_queue:
809 	if (new)
810 		blk_cleanup_queue(ctrl->ctrl.admin_q);
811 out_free_tagset:
812 	if (new)
813 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
814 out_free_queue:
815 	nvme_rdma_free_queue(&ctrl->queues[0]);
816 	return error;
817 }
818 
819 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
820 		bool remove)
821 {
822 	nvme_rdma_stop_io_queues(ctrl);
823 	if (remove) {
824 		blk_cleanup_queue(ctrl->ctrl.connect_q);
825 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
826 	}
827 	nvme_rdma_free_io_queues(ctrl);
828 }
829 
830 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
831 {
832 	int ret;
833 
834 	ret = nvme_rdma_alloc_io_queues(ctrl);
835 	if (ret)
836 		return ret;
837 
838 	if (new) {
839 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
840 		if (IS_ERR(ctrl->ctrl.tagset)) {
841 			ret = PTR_ERR(ctrl->ctrl.tagset);
842 			goto out_free_io_queues;
843 		}
844 
845 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
846 		if (IS_ERR(ctrl->ctrl.connect_q)) {
847 			ret = PTR_ERR(ctrl->ctrl.connect_q);
848 			goto out_free_tag_set;
849 		}
850 	} else {
851 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
852 			ctrl->ctrl.queue_count - 1);
853 	}
854 
855 	ret = nvme_rdma_start_io_queues(ctrl);
856 	if (ret)
857 		goto out_cleanup_connect_q;
858 
859 	return 0;
860 
861 out_cleanup_connect_q:
862 	if (new)
863 		blk_cleanup_queue(ctrl->ctrl.connect_q);
864 out_free_tag_set:
865 	if (new)
866 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
867 out_free_io_queues:
868 	nvme_rdma_free_io_queues(ctrl);
869 	return ret;
870 }
871 
872 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
873 {
874 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
875 
876 	cancel_work_sync(&ctrl->err_work);
877 	cancel_delayed_work_sync(&ctrl->reconnect_work);
878 }
879 
880 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
881 {
882 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
883 
884 	if (list_empty(&ctrl->list))
885 		goto free_ctrl;
886 
887 	mutex_lock(&nvme_rdma_ctrl_mutex);
888 	list_del(&ctrl->list);
889 	mutex_unlock(&nvme_rdma_ctrl_mutex);
890 
891 	kfree(ctrl->queues);
892 	nvmf_free_options(nctrl->opts);
893 free_ctrl:
894 	kfree(ctrl);
895 }
896 
897 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
898 {
899 	/* If we are resetting/deleting then do nothing */
900 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
901 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
902 			ctrl->ctrl.state == NVME_CTRL_LIVE);
903 		return;
904 	}
905 
906 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
907 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
908 			ctrl->ctrl.opts->reconnect_delay);
909 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
910 				ctrl->ctrl.opts->reconnect_delay * HZ);
911 	} else {
912 		nvme_delete_ctrl(&ctrl->ctrl);
913 	}
914 }
915 
916 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
917 {
918 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
919 			struct nvme_rdma_ctrl, reconnect_work);
920 	bool changed;
921 	int ret;
922 
923 	++ctrl->ctrl.nr_reconnects;
924 
925 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
926 	if (ret)
927 		goto requeue;
928 
929 	if (ctrl->ctrl.queue_count > 1) {
930 		ret = nvme_rdma_configure_io_queues(ctrl, false);
931 		if (ret)
932 			goto destroy_admin;
933 	}
934 
935 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
936 	if (!changed) {
937 		/* state change failure is ok if we're in DELETING state */
938 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
939 		return;
940 	}
941 
942 	nvme_start_ctrl(&ctrl->ctrl);
943 
944 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
945 			ctrl->ctrl.nr_reconnects);
946 
947 	ctrl->ctrl.nr_reconnects = 0;
948 
949 	return;
950 
951 destroy_admin:
952 	nvme_rdma_destroy_admin_queue(ctrl, false);
953 requeue:
954 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
955 			ctrl->ctrl.nr_reconnects);
956 	nvme_rdma_reconnect_or_remove(ctrl);
957 }
958 
959 static void nvme_rdma_error_recovery_work(struct work_struct *work)
960 {
961 	struct nvme_rdma_ctrl *ctrl = container_of(work,
962 			struct nvme_rdma_ctrl, err_work);
963 
964 	nvme_stop_keep_alive(&ctrl->ctrl);
965 
966 	if (ctrl->ctrl.queue_count > 1) {
967 		nvme_stop_queues(&ctrl->ctrl);
968 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
969 					nvme_cancel_request, &ctrl->ctrl);
970 		nvme_rdma_destroy_io_queues(ctrl, false);
971 	}
972 
973 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
974 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
975 				nvme_cancel_request, &ctrl->ctrl);
976 	nvme_rdma_destroy_admin_queue(ctrl, false);
977 
978 	/*
979 	 * queues are not a live anymore, so restart the queues to fail fast
980 	 * new IO
981 	 */
982 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
983 	nvme_start_queues(&ctrl->ctrl);
984 
985 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
986 		/* state change failure is ok if we're in DELETING state */
987 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
988 		return;
989 	}
990 
991 	nvme_rdma_reconnect_or_remove(ctrl);
992 }
993 
994 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
995 {
996 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
997 		return;
998 
999 	queue_work(nvme_wq, &ctrl->err_work);
1000 }
1001 
1002 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1003 		const char *op)
1004 {
1005 	struct nvme_rdma_queue *queue = cq->cq_context;
1006 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1007 
1008 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1009 		dev_info(ctrl->ctrl.device,
1010 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1011 			     op, wc->wr_cqe,
1012 			     ib_wc_status_msg(wc->status), wc->status);
1013 	nvme_rdma_error_recovery(ctrl);
1014 }
1015 
1016 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1017 {
1018 	if (unlikely(wc->status != IB_WC_SUCCESS))
1019 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1020 }
1021 
1022 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1023 {
1024 	struct nvme_rdma_request *req =
1025 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1026 	struct request *rq = blk_mq_rq_from_pdu(req);
1027 
1028 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1029 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1030 		return;
1031 	}
1032 
1033 	if (refcount_dec_and_test(&req->ref))
1034 		nvme_end_request(rq, req->status, req->result);
1035 
1036 }
1037 
1038 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1039 		struct nvme_rdma_request *req)
1040 {
1041 	struct ib_send_wr *bad_wr;
1042 	struct ib_send_wr wr = {
1043 		.opcode		    = IB_WR_LOCAL_INV,
1044 		.next		    = NULL,
1045 		.num_sge	    = 0,
1046 		.send_flags	    = IB_SEND_SIGNALED,
1047 		.ex.invalidate_rkey = req->mr->rkey,
1048 	};
1049 
1050 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1051 	wr.wr_cqe = &req->reg_cqe;
1052 
1053 	return ib_post_send(queue->qp, &wr, &bad_wr);
1054 }
1055 
1056 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1057 		struct request *rq)
1058 {
1059 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1060 	struct nvme_rdma_device *dev = queue->device;
1061 	struct ib_device *ibdev = dev->dev;
1062 
1063 	if (!blk_rq_payload_bytes(rq))
1064 		return;
1065 
1066 	if (req->mr) {
1067 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1068 		req->mr = NULL;
1069 	}
1070 
1071 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1072 			req->nents, rq_data_dir(rq) ==
1073 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1074 
1075 	nvme_cleanup_cmd(rq);
1076 	sg_free_table_chained(&req->sg_table, true);
1077 }
1078 
1079 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1080 {
1081 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1082 
1083 	sg->addr = 0;
1084 	put_unaligned_le24(0, sg->length);
1085 	put_unaligned_le32(0, sg->key);
1086 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1087 	return 0;
1088 }
1089 
1090 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1091 		struct nvme_rdma_request *req, struct nvme_command *c)
1092 {
1093 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1094 
1095 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1096 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1097 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1098 
1099 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1100 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1101 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1102 
1103 	req->num_sge++;
1104 	return 0;
1105 }
1106 
1107 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1108 		struct nvme_rdma_request *req, struct nvme_command *c)
1109 {
1110 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1111 
1112 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1113 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1114 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1115 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1116 	return 0;
1117 }
1118 
1119 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1120 		struct nvme_rdma_request *req, struct nvme_command *c,
1121 		int count)
1122 {
1123 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1124 	int nr;
1125 
1126 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1127 	if (WARN_ON_ONCE(!req->mr))
1128 		return -EAGAIN;
1129 
1130 	/*
1131 	 * Align the MR to a 4K page size to match the ctrl page size and
1132 	 * the block virtual boundary.
1133 	 */
1134 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1135 	if (unlikely(nr < count)) {
1136 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1137 		req->mr = NULL;
1138 		if (nr < 0)
1139 			return nr;
1140 		return -EINVAL;
1141 	}
1142 
1143 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1144 
1145 	req->reg_cqe.done = nvme_rdma_memreg_done;
1146 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1147 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1148 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1149 	req->reg_wr.wr.num_sge = 0;
1150 	req->reg_wr.mr = req->mr;
1151 	req->reg_wr.key = req->mr->rkey;
1152 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1153 			     IB_ACCESS_REMOTE_READ |
1154 			     IB_ACCESS_REMOTE_WRITE;
1155 
1156 	sg->addr = cpu_to_le64(req->mr->iova);
1157 	put_unaligned_le24(req->mr->length, sg->length);
1158 	put_unaligned_le32(req->mr->rkey, sg->key);
1159 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1160 			NVME_SGL_FMT_INVALIDATE;
1161 
1162 	return 0;
1163 }
1164 
1165 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1166 		struct request *rq, struct nvme_command *c)
1167 {
1168 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1169 	struct nvme_rdma_device *dev = queue->device;
1170 	struct ib_device *ibdev = dev->dev;
1171 	int count, ret;
1172 
1173 	req->num_sge = 1;
1174 	refcount_set(&req->ref, 2); /* send and recv completions */
1175 
1176 	c->common.flags |= NVME_CMD_SGL_METABUF;
1177 
1178 	if (!blk_rq_payload_bytes(rq))
1179 		return nvme_rdma_set_sg_null(c);
1180 
1181 	req->sg_table.sgl = req->first_sgl;
1182 	ret = sg_alloc_table_chained(&req->sg_table,
1183 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1184 	if (ret)
1185 		return -ENOMEM;
1186 
1187 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1188 
1189 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1190 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1191 	if (unlikely(count <= 0)) {
1192 		sg_free_table_chained(&req->sg_table, true);
1193 		return -EIO;
1194 	}
1195 
1196 	if (count == 1) {
1197 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1198 		    blk_rq_payload_bytes(rq) <=
1199 				nvme_rdma_inline_data_size(queue))
1200 			return nvme_rdma_map_sg_inline(queue, req, c);
1201 
1202 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1203 			return nvme_rdma_map_sg_single(queue, req, c);
1204 	}
1205 
1206 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1207 }
1208 
1209 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1210 {
1211 	struct nvme_rdma_qe *qe =
1212 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1213 	struct nvme_rdma_request *req =
1214 		container_of(qe, struct nvme_rdma_request, sqe);
1215 	struct request *rq = blk_mq_rq_from_pdu(req);
1216 
1217 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1218 		nvme_rdma_wr_error(cq, wc, "SEND");
1219 		return;
1220 	}
1221 
1222 	if (refcount_dec_and_test(&req->ref))
1223 		nvme_end_request(rq, req->status, req->result);
1224 }
1225 
1226 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1227 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1228 		struct ib_send_wr *first)
1229 {
1230 	struct ib_send_wr wr, *bad_wr;
1231 	int ret;
1232 
1233 	sge->addr   = qe->dma;
1234 	sge->length = sizeof(struct nvme_command),
1235 	sge->lkey   = queue->device->pd->local_dma_lkey;
1236 
1237 	wr.next       = NULL;
1238 	wr.wr_cqe     = &qe->cqe;
1239 	wr.sg_list    = sge;
1240 	wr.num_sge    = num_sge;
1241 	wr.opcode     = IB_WR_SEND;
1242 	wr.send_flags = IB_SEND_SIGNALED;
1243 
1244 	if (first)
1245 		first->next = &wr;
1246 	else
1247 		first = &wr;
1248 
1249 	ret = ib_post_send(queue->qp, first, &bad_wr);
1250 	if (unlikely(ret)) {
1251 		dev_err(queue->ctrl->ctrl.device,
1252 			     "%s failed with error code %d\n", __func__, ret);
1253 	}
1254 	return ret;
1255 }
1256 
1257 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1258 		struct nvme_rdma_qe *qe)
1259 {
1260 	struct ib_recv_wr wr, *bad_wr;
1261 	struct ib_sge list;
1262 	int ret;
1263 
1264 	list.addr   = qe->dma;
1265 	list.length = sizeof(struct nvme_completion);
1266 	list.lkey   = queue->device->pd->local_dma_lkey;
1267 
1268 	qe->cqe.done = nvme_rdma_recv_done;
1269 
1270 	wr.next     = NULL;
1271 	wr.wr_cqe   = &qe->cqe;
1272 	wr.sg_list  = &list;
1273 	wr.num_sge  = 1;
1274 
1275 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1276 	if (unlikely(ret)) {
1277 		dev_err(queue->ctrl->ctrl.device,
1278 			"%s failed with error code %d\n", __func__, ret);
1279 	}
1280 	return ret;
1281 }
1282 
1283 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1284 {
1285 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1286 
1287 	if (queue_idx == 0)
1288 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1289 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1290 }
1291 
1292 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1293 {
1294 	if (unlikely(wc->status != IB_WC_SUCCESS))
1295 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1296 }
1297 
1298 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1299 {
1300 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1301 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1302 	struct ib_device *dev = queue->device->dev;
1303 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1304 	struct nvme_command *cmd = sqe->data;
1305 	struct ib_sge sge;
1306 	int ret;
1307 
1308 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1309 
1310 	memset(cmd, 0, sizeof(*cmd));
1311 	cmd->common.opcode = nvme_admin_async_event;
1312 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1313 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1314 	nvme_rdma_set_sg_null(cmd);
1315 
1316 	sqe->cqe.done = nvme_rdma_async_done;
1317 
1318 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1319 			DMA_TO_DEVICE);
1320 
1321 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1322 	WARN_ON_ONCE(ret);
1323 }
1324 
1325 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1326 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1327 {
1328 	struct request *rq;
1329 	struct nvme_rdma_request *req;
1330 	int ret = 0;
1331 
1332 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1333 	if (!rq) {
1334 		dev_err(queue->ctrl->ctrl.device,
1335 			"tag 0x%x on QP %#x not found\n",
1336 			cqe->command_id, queue->qp->qp_num);
1337 		nvme_rdma_error_recovery(queue->ctrl);
1338 		return ret;
1339 	}
1340 	req = blk_mq_rq_to_pdu(rq);
1341 
1342 	req->status = cqe->status;
1343 	req->result = cqe->result;
1344 
1345 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1346 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1347 			dev_err(queue->ctrl->ctrl.device,
1348 				"Bogus remote invalidation for rkey %#x\n",
1349 				req->mr->rkey);
1350 			nvme_rdma_error_recovery(queue->ctrl);
1351 		}
1352 	} else if (req->mr) {
1353 		ret = nvme_rdma_inv_rkey(queue, req);
1354 		if (unlikely(ret < 0)) {
1355 			dev_err(queue->ctrl->ctrl.device,
1356 				"Queueing INV WR for rkey %#x failed (%d)\n",
1357 				req->mr->rkey, ret);
1358 			nvme_rdma_error_recovery(queue->ctrl);
1359 		}
1360 		/* the local invalidation completion will end the request */
1361 		return 0;
1362 	}
1363 
1364 	if (refcount_dec_and_test(&req->ref)) {
1365 		if (rq->tag == tag)
1366 			ret = 1;
1367 		nvme_end_request(rq, req->status, req->result);
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1374 {
1375 	struct nvme_rdma_qe *qe =
1376 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1377 	struct nvme_rdma_queue *queue = cq->cq_context;
1378 	struct ib_device *ibdev = queue->device->dev;
1379 	struct nvme_completion *cqe = qe->data;
1380 	const size_t len = sizeof(struct nvme_completion);
1381 	int ret = 0;
1382 
1383 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1384 		nvme_rdma_wr_error(cq, wc, "RECV");
1385 		return 0;
1386 	}
1387 
1388 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1389 	/*
1390 	 * AEN requests are special as they don't time out and can
1391 	 * survive any kind of queue freeze and often don't respond to
1392 	 * aborts.  We don't even bother to allocate a struct request
1393 	 * for them but rather special case them here.
1394 	 */
1395 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1396 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1397 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1398 				&cqe->result);
1399 	else
1400 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1401 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1402 
1403 	nvme_rdma_post_recv(queue, qe);
1404 	return ret;
1405 }
1406 
1407 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1408 {
1409 	__nvme_rdma_recv_done(cq, wc, -1);
1410 }
1411 
1412 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1413 {
1414 	int ret, i;
1415 
1416 	for (i = 0; i < queue->queue_size; i++) {
1417 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1418 		if (ret)
1419 			goto out_destroy_queue_ib;
1420 	}
1421 
1422 	return 0;
1423 
1424 out_destroy_queue_ib:
1425 	nvme_rdma_destroy_queue_ib(queue);
1426 	return ret;
1427 }
1428 
1429 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1430 		struct rdma_cm_event *ev)
1431 {
1432 	struct rdma_cm_id *cm_id = queue->cm_id;
1433 	int status = ev->status;
1434 	const char *rej_msg;
1435 	const struct nvme_rdma_cm_rej *rej_data;
1436 	u8 rej_data_len;
1437 
1438 	rej_msg = rdma_reject_msg(cm_id, status);
1439 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1440 
1441 	if (rej_data && rej_data_len >= sizeof(u16)) {
1442 		u16 sts = le16_to_cpu(rej_data->sts);
1443 
1444 		dev_err(queue->ctrl->ctrl.device,
1445 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1446 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1447 	} else {
1448 		dev_err(queue->ctrl->ctrl.device,
1449 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1450 	}
1451 
1452 	return -ECONNRESET;
1453 }
1454 
1455 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1456 {
1457 	int ret;
1458 
1459 	ret = nvme_rdma_create_queue_ib(queue);
1460 	if (ret)
1461 		return ret;
1462 
1463 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1464 	if (ret) {
1465 		dev_err(queue->ctrl->ctrl.device,
1466 			"rdma_resolve_route failed (%d).\n",
1467 			queue->cm_error);
1468 		goto out_destroy_queue;
1469 	}
1470 
1471 	return 0;
1472 
1473 out_destroy_queue:
1474 	nvme_rdma_destroy_queue_ib(queue);
1475 	return ret;
1476 }
1477 
1478 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1479 {
1480 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1481 	struct rdma_conn_param param = { };
1482 	struct nvme_rdma_cm_req priv = { };
1483 	int ret;
1484 
1485 	param.qp_num = queue->qp->qp_num;
1486 	param.flow_control = 1;
1487 
1488 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1489 	/* maximum retry count */
1490 	param.retry_count = 7;
1491 	param.rnr_retry_count = 7;
1492 	param.private_data = &priv;
1493 	param.private_data_len = sizeof(priv);
1494 
1495 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1496 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1497 	/*
1498 	 * set the admin queue depth to the minimum size
1499 	 * specified by the Fabrics standard.
1500 	 */
1501 	if (priv.qid == 0) {
1502 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1503 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1504 	} else {
1505 		/*
1506 		 * current interpretation of the fabrics spec
1507 		 * is at minimum you make hrqsize sqsize+1, or a
1508 		 * 1's based representation of sqsize.
1509 		 */
1510 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1511 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1512 	}
1513 
1514 	ret = rdma_connect(queue->cm_id, &param);
1515 	if (ret) {
1516 		dev_err(ctrl->ctrl.device,
1517 			"rdma_connect failed (%d).\n", ret);
1518 		goto out_destroy_queue_ib;
1519 	}
1520 
1521 	return 0;
1522 
1523 out_destroy_queue_ib:
1524 	nvme_rdma_destroy_queue_ib(queue);
1525 	return ret;
1526 }
1527 
1528 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1529 		struct rdma_cm_event *ev)
1530 {
1531 	struct nvme_rdma_queue *queue = cm_id->context;
1532 	int cm_error = 0;
1533 
1534 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1535 		rdma_event_msg(ev->event), ev->event,
1536 		ev->status, cm_id);
1537 
1538 	switch (ev->event) {
1539 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1540 		cm_error = nvme_rdma_addr_resolved(queue);
1541 		break;
1542 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1543 		cm_error = nvme_rdma_route_resolved(queue);
1544 		break;
1545 	case RDMA_CM_EVENT_ESTABLISHED:
1546 		queue->cm_error = nvme_rdma_conn_established(queue);
1547 		/* complete cm_done regardless of success/failure */
1548 		complete(&queue->cm_done);
1549 		return 0;
1550 	case RDMA_CM_EVENT_REJECTED:
1551 		nvme_rdma_destroy_queue_ib(queue);
1552 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1553 		break;
1554 	case RDMA_CM_EVENT_ROUTE_ERROR:
1555 	case RDMA_CM_EVENT_CONNECT_ERROR:
1556 	case RDMA_CM_EVENT_UNREACHABLE:
1557 		nvme_rdma_destroy_queue_ib(queue);
1558 	case RDMA_CM_EVENT_ADDR_ERROR:
1559 		dev_dbg(queue->ctrl->ctrl.device,
1560 			"CM error event %d\n", ev->event);
1561 		cm_error = -ECONNRESET;
1562 		break;
1563 	case RDMA_CM_EVENT_DISCONNECTED:
1564 	case RDMA_CM_EVENT_ADDR_CHANGE:
1565 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1566 		dev_dbg(queue->ctrl->ctrl.device,
1567 			"disconnect received - connection closed\n");
1568 		nvme_rdma_error_recovery(queue->ctrl);
1569 		break;
1570 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1571 		/* device removal is handled via the ib_client API */
1572 		break;
1573 	default:
1574 		dev_err(queue->ctrl->ctrl.device,
1575 			"Unexpected RDMA CM event (%d)\n", ev->event);
1576 		nvme_rdma_error_recovery(queue->ctrl);
1577 		break;
1578 	}
1579 
1580 	if (cm_error) {
1581 		queue->cm_error = cm_error;
1582 		complete(&queue->cm_done);
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 static enum blk_eh_timer_return
1589 nvme_rdma_timeout(struct request *rq, bool reserved)
1590 {
1591 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1592 
1593 	dev_warn(req->queue->ctrl->ctrl.device,
1594 		 "I/O %d QID %d timeout, reset controller\n",
1595 		 rq->tag, nvme_rdma_queue_idx(req->queue));
1596 
1597 	/* queue error recovery */
1598 	nvme_rdma_error_recovery(req->queue->ctrl);
1599 
1600 	/* fail with DNR on cmd timeout */
1601 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1602 
1603 	return BLK_EH_DONE;
1604 }
1605 
1606 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1607 		const struct blk_mq_queue_data *bd)
1608 {
1609 	struct nvme_ns *ns = hctx->queue->queuedata;
1610 	struct nvme_rdma_queue *queue = hctx->driver_data;
1611 	struct request *rq = bd->rq;
1612 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1613 	struct nvme_rdma_qe *sqe = &req->sqe;
1614 	struct nvme_command *c = sqe->data;
1615 	struct ib_device *dev;
1616 	blk_status_t ret;
1617 	int err;
1618 
1619 	WARN_ON_ONCE(rq->tag < 0);
1620 
1621 	ret = nvmf_check_if_ready(&queue->ctrl->ctrl, rq,
1622 		test_bit(NVME_RDMA_Q_LIVE, &queue->flags), true);
1623 	if (unlikely(ret))
1624 		return ret;
1625 
1626 	dev = queue->device->dev;
1627 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1628 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1629 
1630 	ret = nvme_setup_cmd(ns, rq, c);
1631 	if (ret)
1632 		return ret;
1633 
1634 	blk_mq_start_request(rq);
1635 
1636 	err = nvme_rdma_map_data(queue, rq, c);
1637 	if (unlikely(err < 0)) {
1638 		dev_err(queue->ctrl->ctrl.device,
1639 			     "Failed to map data (%d)\n", err);
1640 		nvme_cleanup_cmd(rq);
1641 		goto err;
1642 	}
1643 
1644 	sqe->cqe.done = nvme_rdma_send_done;
1645 
1646 	ib_dma_sync_single_for_device(dev, sqe->dma,
1647 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1648 
1649 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1650 			req->mr ? &req->reg_wr.wr : NULL);
1651 	if (unlikely(err)) {
1652 		nvme_rdma_unmap_data(queue, rq);
1653 		goto err;
1654 	}
1655 
1656 	return BLK_STS_OK;
1657 err:
1658 	if (err == -ENOMEM || err == -EAGAIN)
1659 		return BLK_STS_RESOURCE;
1660 	return BLK_STS_IOERR;
1661 }
1662 
1663 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1664 {
1665 	struct nvme_rdma_queue *queue = hctx->driver_data;
1666 	struct ib_cq *cq = queue->ib_cq;
1667 	struct ib_wc wc;
1668 	int found = 0;
1669 
1670 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1671 		struct ib_cqe *cqe = wc.wr_cqe;
1672 
1673 		if (cqe) {
1674 			if (cqe->done == nvme_rdma_recv_done)
1675 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1676 			else
1677 				cqe->done(cq, &wc);
1678 		}
1679 	}
1680 
1681 	return found;
1682 }
1683 
1684 static void nvme_rdma_complete_rq(struct request *rq)
1685 {
1686 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1687 
1688 	nvme_rdma_unmap_data(req->queue, rq);
1689 	nvme_complete_rq(rq);
1690 }
1691 
1692 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1693 {
1694 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1695 
1696 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1697 }
1698 
1699 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1700 	.queue_rq	= nvme_rdma_queue_rq,
1701 	.complete	= nvme_rdma_complete_rq,
1702 	.init_request	= nvme_rdma_init_request,
1703 	.exit_request	= nvme_rdma_exit_request,
1704 	.init_hctx	= nvme_rdma_init_hctx,
1705 	.poll		= nvme_rdma_poll,
1706 	.timeout	= nvme_rdma_timeout,
1707 	.map_queues	= nvme_rdma_map_queues,
1708 };
1709 
1710 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1711 	.queue_rq	= nvme_rdma_queue_rq,
1712 	.complete	= nvme_rdma_complete_rq,
1713 	.init_request	= nvme_rdma_init_request,
1714 	.exit_request	= nvme_rdma_exit_request,
1715 	.init_hctx	= nvme_rdma_init_admin_hctx,
1716 	.timeout	= nvme_rdma_timeout,
1717 };
1718 
1719 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1720 {
1721 	if (ctrl->ctrl.queue_count > 1) {
1722 		nvme_stop_queues(&ctrl->ctrl);
1723 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1724 					nvme_cancel_request, &ctrl->ctrl);
1725 		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1726 	}
1727 
1728 	if (shutdown)
1729 		nvme_shutdown_ctrl(&ctrl->ctrl);
1730 	else
1731 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1732 
1733 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1734 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1735 				nvme_cancel_request, &ctrl->ctrl);
1736 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1737 	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1738 }
1739 
1740 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1741 {
1742 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1743 }
1744 
1745 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1746 {
1747 	struct nvme_rdma_ctrl *ctrl =
1748 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1749 	int ret;
1750 	bool changed;
1751 
1752 	nvme_stop_ctrl(&ctrl->ctrl);
1753 	nvme_rdma_shutdown_ctrl(ctrl, false);
1754 
1755 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1756 		/* state change failure should never happen */
1757 		WARN_ON_ONCE(1);
1758 		return;
1759 	}
1760 
1761 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1762 	if (ret)
1763 		goto out_fail;
1764 
1765 	if (ctrl->ctrl.queue_count > 1) {
1766 		ret = nvme_rdma_configure_io_queues(ctrl, false);
1767 		if (ret)
1768 			goto out_fail;
1769 	}
1770 
1771 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1772 	if (!changed) {
1773 		/* state change failure is ok if we're in DELETING state */
1774 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1775 		return;
1776 	}
1777 
1778 	nvme_start_ctrl(&ctrl->ctrl);
1779 
1780 	return;
1781 
1782 out_fail:
1783 	++ctrl->ctrl.nr_reconnects;
1784 	nvme_rdma_reconnect_or_remove(ctrl);
1785 }
1786 
1787 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1788 	.name			= "rdma",
1789 	.module			= THIS_MODULE,
1790 	.flags			= NVME_F_FABRICS,
1791 	.reg_read32		= nvmf_reg_read32,
1792 	.reg_read64		= nvmf_reg_read64,
1793 	.reg_write32		= nvmf_reg_write32,
1794 	.free_ctrl		= nvme_rdma_free_ctrl,
1795 	.submit_async_event	= nvme_rdma_submit_async_event,
1796 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1797 	.get_address		= nvmf_get_address,
1798 	.stop_ctrl		= nvme_rdma_stop_ctrl,
1799 };
1800 
1801 static inline bool
1802 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1803 	struct nvmf_ctrl_options *opts)
1804 {
1805 	char *stdport = __stringify(NVME_RDMA_IP_PORT);
1806 
1807 
1808 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1809 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1810 		return false;
1811 
1812 	if (opts->mask & NVMF_OPT_TRSVCID &&
1813 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1814 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1815 			return false;
1816 	} else if (opts->mask & NVMF_OPT_TRSVCID) {
1817 		if (strcmp(opts->trsvcid, stdport))
1818 			return false;
1819 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1820 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1821 			return false;
1822 	}
1823 	/* else, it's a match as both have stdport. Fall to next checks */
1824 
1825 	/*
1826 	 * checking the local address is rough. In most cases, one
1827 	 * is not specified and the host port is selected by the stack.
1828 	 *
1829 	 * Assume no match if:
1830 	 *  local address is specified and address is not the same
1831 	 *  local address is not specified but remote is, or vice versa
1832 	 *    (admin using specific host_traddr when it matters).
1833 	 */
1834 	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1835 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1836 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1837 			return false;
1838 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1839 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1840 		return false;
1841 	/*
1842 	 * if neither controller had an host port specified, assume it's
1843 	 * a match as everything else matched.
1844 	 */
1845 
1846 	return true;
1847 }
1848 
1849 /*
1850  * Fails a connection request if it matches an existing controller
1851  * (association) with the same tuple:
1852  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1853  *
1854  * if local address is not specified in the request, it will match an
1855  * existing controller with all the other parameters the same and no
1856  * local port address specified as well.
1857  *
1858  * The ports don't need to be compared as they are intrinsically
1859  * already matched by the port pointers supplied.
1860  */
1861 static bool
1862 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1863 {
1864 	struct nvme_rdma_ctrl *ctrl;
1865 	bool found = false;
1866 
1867 	mutex_lock(&nvme_rdma_ctrl_mutex);
1868 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1869 		found = __nvme_rdma_options_match(ctrl, opts);
1870 		if (found)
1871 			break;
1872 	}
1873 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1874 
1875 	return found;
1876 }
1877 
1878 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1879 		struct nvmf_ctrl_options *opts)
1880 {
1881 	struct nvme_rdma_ctrl *ctrl;
1882 	int ret;
1883 	bool changed;
1884 	char *port;
1885 
1886 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1887 	if (!ctrl)
1888 		return ERR_PTR(-ENOMEM);
1889 	ctrl->ctrl.opts = opts;
1890 	INIT_LIST_HEAD(&ctrl->list);
1891 
1892 	if (opts->mask & NVMF_OPT_TRSVCID)
1893 		port = opts->trsvcid;
1894 	else
1895 		port = __stringify(NVME_RDMA_IP_PORT);
1896 
1897 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1898 			opts->traddr, port, &ctrl->addr);
1899 	if (ret) {
1900 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1901 		goto out_free_ctrl;
1902 	}
1903 
1904 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1905 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1906 			opts->host_traddr, NULL, &ctrl->src_addr);
1907 		if (ret) {
1908 			pr_err("malformed src address passed: %s\n",
1909 			       opts->host_traddr);
1910 			goto out_free_ctrl;
1911 		}
1912 	}
1913 
1914 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1915 		ret = -EALREADY;
1916 		goto out_free_ctrl;
1917 	}
1918 
1919 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1920 				0 /* no quirks, we're perfect! */);
1921 	if (ret)
1922 		goto out_free_ctrl;
1923 
1924 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1925 			nvme_rdma_reconnect_ctrl_work);
1926 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1927 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1928 
1929 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1930 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1931 	ctrl->ctrl.kato = opts->kato;
1932 
1933 	ret = -ENOMEM;
1934 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1935 				GFP_KERNEL);
1936 	if (!ctrl->queues)
1937 		goto out_uninit_ctrl;
1938 
1939 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1940 	WARN_ON_ONCE(!changed);
1941 
1942 	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1943 	if (ret)
1944 		goto out_kfree_queues;
1945 
1946 	/* sanity check icdoff */
1947 	if (ctrl->ctrl.icdoff) {
1948 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1949 		ret = -EINVAL;
1950 		goto out_remove_admin_queue;
1951 	}
1952 
1953 	/* sanity check keyed sgls */
1954 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1955 		dev_err(ctrl->ctrl.device,
1956 			"Mandatory keyed sgls are not supported!\n");
1957 		ret = -EINVAL;
1958 		goto out_remove_admin_queue;
1959 	}
1960 
1961 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1962 		/* warn if maxcmd is lower than queue_size */
1963 		dev_warn(ctrl->ctrl.device,
1964 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1965 			opts->queue_size, ctrl->ctrl.maxcmd);
1966 		opts->queue_size = ctrl->ctrl.maxcmd;
1967 	}
1968 
1969 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1970 		/* warn if sqsize is lower than queue_size */
1971 		dev_warn(ctrl->ctrl.device,
1972 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1973 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1974 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1975 	}
1976 
1977 	if (opts->nr_io_queues) {
1978 		ret = nvme_rdma_configure_io_queues(ctrl, true);
1979 		if (ret)
1980 			goto out_remove_admin_queue;
1981 	}
1982 
1983 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1984 	WARN_ON_ONCE(!changed);
1985 
1986 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1987 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1988 
1989 	nvme_get_ctrl(&ctrl->ctrl);
1990 
1991 	mutex_lock(&nvme_rdma_ctrl_mutex);
1992 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1993 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1994 
1995 	nvme_start_ctrl(&ctrl->ctrl);
1996 
1997 	return &ctrl->ctrl;
1998 
1999 out_remove_admin_queue:
2000 	nvme_rdma_destroy_admin_queue(ctrl, true);
2001 out_kfree_queues:
2002 	kfree(ctrl->queues);
2003 out_uninit_ctrl:
2004 	nvme_uninit_ctrl(&ctrl->ctrl);
2005 	nvme_put_ctrl(&ctrl->ctrl);
2006 	if (ret > 0)
2007 		ret = -EIO;
2008 	return ERR_PTR(ret);
2009 out_free_ctrl:
2010 	kfree(ctrl);
2011 	return ERR_PTR(ret);
2012 }
2013 
2014 static struct nvmf_transport_ops nvme_rdma_transport = {
2015 	.name		= "rdma",
2016 	.module		= THIS_MODULE,
2017 	.required_opts	= NVMF_OPT_TRADDR,
2018 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2019 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2020 	.create_ctrl	= nvme_rdma_create_ctrl,
2021 };
2022 
2023 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2024 {
2025 	struct nvme_rdma_ctrl *ctrl;
2026 	struct nvme_rdma_device *ndev;
2027 	bool found = false;
2028 
2029 	mutex_lock(&device_list_mutex);
2030 	list_for_each_entry(ndev, &device_list, entry) {
2031 		if (ndev->dev == ib_device) {
2032 			found = true;
2033 			break;
2034 		}
2035 	}
2036 	mutex_unlock(&device_list_mutex);
2037 
2038 	if (!found)
2039 		return;
2040 
2041 	/* Delete all controllers using this device */
2042 	mutex_lock(&nvme_rdma_ctrl_mutex);
2043 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2044 		if (ctrl->device->dev != ib_device)
2045 			continue;
2046 		nvme_delete_ctrl(&ctrl->ctrl);
2047 	}
2048 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2049 
2050 	flush_workqueue(nvme_delete_wq);
2051 }
2052 
2053 static struct ib_client nvme_rdma_ib_client = {
2054 	.name   = "nvme_rdma",
2055 	.remove = nvme_rdma_remove_one
2056 };
2057 
2058 static int __init nvme_rdma_init_module(void)
2059 {
2060 	int ret;
2061 
2062 	ret = ib_register_client(&nvme_rdma_ib_client);
2063 	if (ret)
2064 		return ret;
2065 
2066 	ret = nvmf_register_transport(&nvme_rdma_transport);
2067 	if (ret)
2068 		goto err_unreg_client;
2069 
2070 	return 0;
2071 
2072 err_unreg_client:
2073 	ib_unregister_client(&nvme_rdma_ib_client);
2074 	return ret;
2075 }
2076 
2077 static void __exit nvme_rdma_cleanup_module(void)
2078 {
2079 	nvmf_unregister_transport(&nvme_rdma_transport);
2080 	ib_unregister_client(&nvme_rdma_ib_client);
2081 }
2082 
2083 module_init(nvme_rdma_init_module);
2084 module_exit(nvme_rdma_cleanup_module);
2085 
2086 MODULE_LICENSE("GPL v2");
2087