xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 58f9d806)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 	unsigned int		num_inline_segments;
51 };
52 
53 struct nvme_rdma_qe {
54 	struct ib_cqe		cqe;
55 	void			*data;
56 	u64			dma;
57 };
58 
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61 	struct nvme_request	req;
62 	struct ib_mr		*mr;
63 	struct nvme_rdma_qe	sqe;
64 	union nvme_result	result;
65 	__le16			status;
66 	refcount_t		ref;
67 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 	u32			num_sge;
69 	int			nents;
70 	struct ib_reg_wr	reg_wr;
71 	struct ib_cqe		reg_cqe;
72 	struct nvme_rdma_queue  *queue;
73 	struct sg_table		sg_table;
74 	struct scatterlist	first_sgl[];
75 };
76 
77 enum nvme_rdma_queue_flags {
78 	NVME_RDMA_Q_ALLOCATED		= 0,
79 	NVME_RDMA_Q_LIVE		= 1,
80 	NVME_RDMA_Q_TR_READY		= 2,
81 };
82 
83 struct nvme_rdma_queue {
84 	struct nvme_rdma_qe	*rsp_ring;
85 	int			queue_size;
86 	size_t			cmnd_capsule_len;
87 	struct nvme_rdma_ctrl	*ctrl;
88 	struct nvme_rdma_device	*device;
89 	struct ib_cq		*ib_cq;
90 	struct ib_qp		*qp;
91 
92 	unsigned long		flags;
93 	struct rdma_cm_id	*cm_id;
94 	int			cm_error;
95 	struct completion	cm_done;
96 };
97 
98 struct nvme_rdma_ctrl {
99 	/* read only in the hot path */
100 	struct nvme_rdma_queue	*queues;
101 
102 	/* other member variables */
103 	struct blk_mq_tag_set	tag_set;
104 	struct work_struct	err_work;
105 
106 	struct nvme_rdma_qe	async_event_sqe;
107 
108 	struct delayed_work	reconnect_work;
109 
110 	struct list_head	list;
111 
112 	struct blk_mq_tag_set	admin_tag_set;
113 	struct nvme_rdma_device	*device;
114 
115 	u32			max_fr_pages;
116 
117 	struct sockaddr_storage addr;
118 	struct sockaddr_storage src_addr;
119 
120 	struct nvme_ctrl	ctrl;
121 	bool			use_inline_data;
122 };
123 
124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125 {
126 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127 }
128 
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131 
132 static LIST_HEAD(nvme_rdma_ctrl_list);
133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134 
135 /*
136  * Disabling this option makes small I/O goes faster, but is fundamentally
137  * unsafe.  With it turned off we will have to register a global rkey that
138  * allows read and write access to all physical memory.
139  */
140 static bool register_always = true;
141 module_param(register_always, bool, 0444);
142 MODULE_PARM_DESC(register_always,
143 	 "Use memory registration even for contiguous memory regions");
144 
145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146 		struct rdma_cm_event *event);
147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148 
149 static const struct blk_mq_ops nvme_rdma_mq_ops;
150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151 
152 /* XXX: really should move to a generic header sooner or later.. */
153 static inline void put_unaligned_le24(u32 val, u8 *p)
154 {
155 	*p++ = val;
156 	*p++ = val >> 8;
157 	*p++ = val >> 16;
158 }
159 
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 	return queue - queue->ctrl->queues;
163 }
164 
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169 
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 		size_t capsule_size, enum dma_data_direction dir)
172 {
173 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 	kfree(qe->data);
175 }
176 
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 	if (!qe->data)
182 		return -ENOMEM;
183 
184 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 		kfree(qe->data);
187 		qe->data = NULL;
188 		return -ENOMEM;
189 	}
190 
191 	return 0;
192 }
193 
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 		size_t capsule_size, enum dma_data_direction dir)
197 {
198 	int i;
199 
200 	for (i = 0; i < ib_queue_size; i++)
201 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 	kfree(ring);
203 }
204 
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 		size_t ib_queue_size, size_t capsule_size,
207 		enum dma_data_direction dir)
208 {
209 	struct nvme_rdma_qe *ring;
210 	int i;
211 
212 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 	if (!ring)
214 		return NULL;
215 
216 	for (i = 0; i < ib_queue_size; i++) {
217 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218 			goto out_free_ring;
219 	}
220 
221 	return ring;
222 
223 out_free_ring:
224 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225 	return NULL;
226 }
227 
228 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229 {
230 	pr_debug("QP event %s (%d)\n",
231 		 ib_event_msg(event->event), event->event);
232 
233 }
234 
235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236 {
237 	int ret;
238 
239 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
240 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241 	if (ret < 0)
242 		return ret;
243 	if (ret == 0)
244 		return -ETIMEDOUT;
245 	WARN_ON_ONCE(queue->cm_error > 0);
246 	return queue->cm_error;
247 }
248 
249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
250 {
251 	struct nvme_rdma_device *dev = queue->device;
252 	struct ib_qp_init_attr init_attr;
253 	int ret;
254 
255 	memset(&init_attr, 0, sizeof(init_attr));
256 	init_attr.event_handler = nvme_rdma_qp_event;
257 	/* +1 for drain */
258 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
259 	/* +1 for drain */
260 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
261 	init_attr.cap.max_recv_sge = 1;
262 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
263 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
264 	init_attr.qp_type = IB_QPT_RC;
265 	init_attr.send_cq = queue->ib_cq;
266 	init_attr.recv_cq = queue->ib_cq;
267 
268 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
269 
270 	queue->qp = queue->cm_id->qp;
271 	return ret;
272 }
273 
274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
275 		struct request *rq, unsigned int hctx_idx)
276 {
277 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
278 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
279 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
280 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
281 	struct nvme_rdma_device *dev = queue->device;
282 
283 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
284 			DMA_TO_DEVICE);
285 }
286 
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 		struct request *rq, unsigned int hctx_idx,
289 		unsigned int numa_node)
290 {
291 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295 	struct nvme_rdma_device *dev = queue->device;
296 	struct ib_device *ibdev = dev->dev;
297 	int ret;
298 
299 	nvme_req(rq)->ctrl = &ctrl->ctrl;
300 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
301 			DMA_TO_DEVICE);
302 	if (ret)
303 		return ret;
304 
305 	req->queue = queue;
306 
307 	return 0;
308 }
309 
310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311 		unsigned int hctx_idx)
312 {
313 	struct nvme_rdma_ctrl *ctrl = data;
314 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
315 
316 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
317 
318 	hctx->driver_data = queue;
319 	return 0;
320 }
321 
322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 		unsigned int hctx_idx)
324 {
325 	struct nvme_rdma_ctrl *ctrl = data;
326 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
327 
328 	BUG_ON(hctx_idx != 0);
329 
330 	hctx->driver_data = queue;
331 	return 0;
332 }
333 
334 static void nvme_rdma_free_dev(struct kref *ref)
335 {
336 	struct nvme_rdma_device *ndev =
337 		container_of(ref, struct nvme_rdma_device, ref);
338 
339 	mutex_lock(&device_list_mutex);
340 	list_del(&ndev->entry);
341 	mutex_unlock(&device_list_mutex);
342 
343 	ib_dealloc_pd(ndev->pd);
344 	kfree(ndev);
345 }
346 
347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
348 {
349 	kref_put(&dev->ref, nvme_rdma_free_dev);
350 }
351 
352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
353 {
354 	return kref_get_unless_zero(&dev->ref);
355 }
356 
357 static struct nvme_rdma_device *
358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
359 {
360 	struct nvme_rdma_device *ndev;
361 
362 	mutex_lock(&device_list_mutex);
363 	list_for_each_entry(ndev, &device_list, entry) {
364 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
365 		    nvme_rdma_dev_get(ndev))
366 			goto out_unlock;
367 	}
368 
369 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
370 	if (!ndev)
371 		goto out_err;
372 
373 	ndev->dev = cm_id->device;
374 	kref_init(&ndev->ref);
375 
376 	ndev->pd = ib_alloc_pd(ndev->dev,
377 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
378 	if (IS_ERR(ndev->pd))
379 		goto out_free_dev;
380 
381 	if (!(ndev->dev->attrs.device_cap_flags &
382 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
383 		dev_err(&ndev->dev->dev,
384 			"Memory registrations not supported.\n");
385 		goto out_free_pd;
386 	}
387 
388 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
389 					ndev->dev->attrs.max_send_sge - 1);
390 	list_add(&ndev->entry, &device_list);
391 out_unlock:
392 	mutex_unlock(&device_list_mutex);
393 	return ndev;
394 
395 out_free_pd:
396 	ib_dealloc_pd(ndev->pd);
397 out_free_dev:
398 	kfree(ndev);
399 out_err:
400 	mutex_unlock(&device_list_mutex);
401 	return NULL;
402 }
403 
404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
405 {
406 	struct nvme_rdma_device *dev;
407 	struct ib_device *ibdev;
408 
409 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
410 		return;
411 
412 	dev = queue->device;
413 	ibdev = dev->dev;
414 
415 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
416 
417 	/*
418 	 * The cm_id object might have been destroyed during RDMA connection
419 	 * establishment error flow to avoid getting other cma events, thus
420 	 * the destruction of the QP shouldn't use rdma_cm API.
421 	 */
422 	ib_destroy_qp(queue->qp);
423 	ib_free_cq(queue->ib_cq);
424 
425 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
426 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
427 
428 	nvme_rdma_dev_put(dev);
429 }
430 
431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
432 {
433 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
434 		     ibdev->attrs.max_fast_reg_page_list_len);
435 }
436 
437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
438 {
439 	struct ib_device *ibdev;
440 	const int send_wr_factor = 3;			/* MR, SEND, INV */
441 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
442 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
443 	int ret;
444 
445 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
446 	if (!queue->device) {
447 		dev_err(queue->cm_id->device->dev.parent,
448 			"no client data found!\n");
449 		return -ECONNREFUSED;
450 	}
451 	ibdev = queue->device->dev;
452 
453 	/*
454 	 * Spread I/O queues completion vectors according their queue index.
455 	 * Admin queues can always go on completion vector 0.
456 	 */
457 	comp_vector = idx == 0 ? idx : idx - 1;
458 
459 	/* +1 for ib_stop_cq */
460 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
461 				cq_factor * queue->queue_size + 1,
462 				comp_vector, IB_POLL_SOFTIRQ);
463 	if (IS_ERR(queue->ib_cq)) {
464 		ret = PTR_ERR(queue->ib_cq);
465 		goto out_put_dev;
466 	}
467 
468 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
469 	if (ret)
470 		goto out_destroy_ib_cq;
471 
472 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
473 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
474 	if (!queue->rsp_ring) {
475 		ret = -ENOMEM;
476 		goto out_destroy_qp;
477 	}
478 
479 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
480 			      queue->queue_size,
481 			      IB_MR_TYPE_MEM_REG,
482 			      nvme_rdma_get_max_fr_pages(ibdev));
483 	if (ret) {
484 		dev_err(queue->ctrl->ctrl.device,
485 			"failed to initialize MR pool sized %d for QID %d\n",
486 			queue->queue_size, idx);
487 		goto out_destroy_ring;
488 	}
489 
490 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
491 
492 	return 0;
493 
494 out_destroy_ring:
495 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
496 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
497 out_destroy_qp:
498 	rdma_destroy_qp(queue->cm_id);
499 out_destroy_ib_cq:
500 	ib_free_cq(queue->ib_cq);
501 out_put_dev:
502 	nvme_rdma_dev_put(queue->device);
503 	return ret;
504 }
505 
506 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
507 		int idx, size_t queue_size)
508 {
509 	struct nvme_rdma_queue *queue;
510 	struct sockaddr *src_addr = NULL;
511 	int ret;
512 
513 	queue = &ctrl->queues[idx];
514 	queue->ctrl = ctrl;
515 	init_completion(&queue->cm_done);
516 
517 	if (idx > 0)
518 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519 	else
520 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
521 
522 	queue->queue_size = queue_size;
523 
524 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
525 			RDMA_PS_TCP, IB_QPT_RC);
526 	if (IS_ERR(queue->cm_id)) {
527 		dev_info(ctrl->ctrl.device,
528 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
529 		return PTR_ERR(queue->cm_id);
530 	}
531 
532 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
533 		src_addr = (struct sockaddr *)&ctrl->src_addr;
534 
535 	queue->cm_error = -ETIMEDOUT;
536 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
537 			(struct sockaddr *)&ctrl->addr,
538 			NVME_RDMA_CONNECT_TIMEOUT_MS);
539 	if (ret) {
540 		dev_info(ctrl->ctrl.device,
541 			"rdma_resolve_addr failed (%d).\n", ret);
542 		goto out_destroy_cm_id;
543 	}
544 
545 	ret = nvme_rdma_wait_for_cm(queue);
546 	if (ret) {
547 		dev_info(ctrl->ctrl.device,
548 			"rdma connection establishment failed (%d)\n", ret);
549 		goto out_destroy_cm_id;
550 	}
551 
552 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
553 
554 	return 0;
555 
556 out_destroy_cm_id:
557 	rdma_destroy_id(queue->cm_id);
558 	nvme_rdma_destroy_queue_ib(queue);
559 	return ret;
560 }
561 
562 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
563 {
564 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
565 		return;
566 
567 	rdma_disconnect(queue->cm_id);
568 	ib_drain_qp(queue->qp);
569 }
570 
571 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
572 {
573 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
574 		return;
575 
576 	nvme_rdma_destroy_queue_ib(queue);
577 	rdma_destroy_id(queue->cm_id);
578 }
579 
580 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
581 {
582 	int i;
583 
584 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
585 		nvme_rdma_free_queue(&ctrl->queues[i]);
586 }
587 
588 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
589 {
590 	int i;
591 
592 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
593 		nvme_rdma_stop_queue(&ctrl->queues[i]);
594 }
595 
596 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
597 {
598 	int ret;
599 
600 	if (idx)
601 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
602 	else
603 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
604 
605 	if (!ret)
606 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
607 	else
608 		dev_info(ctrl->ctrl.device,
609 			"failed to connect queue: %d ret=%d\n", idx, ret);
610 	return ret;
611 }
612 
613 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
614 {
615 	int i, ret = 0;
616 
617 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
618 		ret = nvme_rdma_start_queue(ctrl, i);
619 		if (ret)
620 			goto out_stop_queues;
621 	}
622 
623 	return 0;
624 
625 out_stop_queues:
626 	for (i--; i >= 1; i--)
627 		nvme_rdma_stop_queue(&ctrl->queues[i]);
628 	return ret;
629 }
630 
631 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
632 {
633 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
634 	struct ib_device *ibdev = ctrl->device->dev;
635 	unsigned int nr_io_queues;
636 	int i, ret;
637 
638 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
639 
640 	/*
641 	 * we map queues according to the device irq vectors for
642 	 * optimal locality so we don't need more queues than
643 	 * completion vectors.
644 	 */
645 	nr_io_queues = min_t(unsigned int, nr_io_queues,
646 				ibdev->num_comp_vectors);
647 
648 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
649 	if (ret)
650 		return ret;
651 
652 	ctrl->ctrl.queue_count = nr_io_queues + 1;
653 	if (ctrl->ctrl.queue_count < 2)
654 		return 0;
655 
656 	dev_info(ctrl->ctrl.device,
657 		"creating %d I/O queues.\n", nr_io_queues);
658 
659 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
660 		ret = nvme_rdma_alloc_queue(ctrl, i,
661 				ctrl->ctrl.sqsize + 1);
662 		if (ret)
663 			goto out_free_queues;
664 	}
665 
666 	return 0;
667 
668 out_free_queues:
669 	for (i--; i >= 1; i--)
670 		nvme_rdma_free_queue(&ctrl->queues[i]);
671 
672 	return ret;
673 }
674 
675 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
676 		struct blk_mq_tag_set *set)
677 {
678 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
679 
680 	blk_mq_free_tag_set(set);
681 	nvme_rdma_dev_put(ctrl->device);
682 }
683 
684 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
685 		bool admin)
686 {
687 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
688 	struct blk_mq_tag_set *set;
689 	int ret;
690 
691 	if (admin) {
692 		set = &ctrl->admin_tag_set;
693 		memset(set, 0, sizeof(*set));
694 		set->ops = &nvme_rdma_admin_mq_ops;
695 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
696 		set->reserved_tags = 2; /* connect + keep-alive */
697 		set->numa_node = NUMA_NO_NODE;
698 		set->cmd_size = sizeof(struct nvme_rdma_request) +
699 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
700 		set->driver_data = ctrl;
701 		set->nr_hw_queues = 1;
702 		set->timeout = ADMIN_TIMEOUT;
703 		set->flags = BLK_MQ_F_NO_SCHED;
704 	} else {
705 		set = &ctrl->tag_set;
706 		memset(set, 0, sizeof(*set));
707 		set->ops = &nvme_rdma_mq_ops;
708 		set->queue_depth = nctrl->sqsize + 1;
709 		set->reserved_tags = 1; /* fabric connect */
710 		set->numa_node = NUMA_NO_NODE;
711 		set->flags = BLK_MQ_F_SHOULD_MERGE;
712 		set->cmd_size = sizeof(struct nvme_rdma_request) +
713 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
714 		set->driver_data = ctrl;
715 		set->nr_hw_queues = nctrl->queue_count - 1;
716 		set->timeout = NVME_IO_TIMEOUT;
717 	}
718 
719 	ret = blk_mq_alloc_tag_set(set);
720 	if (ret)
721 		goto out;
722 
723 	/*
724 	 * We need a reference on the device as long as the tag_set is alive,
725 	 * as the MRs in the request structures need a valid ib_device.
726 	 */
727 	ret = nvme_rdma_dev_get(ctrl->device);
728 	if (!ret) {
729 		ret = -EINVAL;
730 		goto out_free_tagset;
731 	}
732 
733 	return set;
734 
735 out_free_tagset:
736 	blk_mq_free_tag_set(set);
737 out:
738 	return ERR_PTR(ret);
739 }
740 
741 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
742 		bool remove)
743 {
744 	if (remove) {
745 		blk_cleanup_queue(ctrl->ctrl.admin_q);
746 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
747 	}
748 	if (ctrl->async_event_sqe.data) {
749 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
750 				sizeof(struct nvme_command), DMA_TO_DEVICE);
751 		ctrl->async_event_sqe.data = NULL;
752 	}
753 	nvme_rdma_free_queue(&ctrl->queues[0]);
754 }
755 
756 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
757 		bool new)
758 {
759 	int error;
760 
761 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
762 	if (error)
763 		return error;
764 
765 	ctrl->device = ctrl->queues[0].device;
766 
767 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
768 
769 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
770 			sizeof(struct nvme_command), DMA_TO_DEVICE);
771 	if (error)
772 		goto out_free_queue;
773 
774 	if (new) {
775 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
776 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
777 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
778 			goto out_free_async_qe;
779 		}
780 
781 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
782 		if (IS_ERR(ctrl->ctrl.admin_q)) {
783 			error = PTR_ERR(ctrl->ctrl.admin_q);
784 			goto out_free_tagset;
785 		}
786 	}
787 
788 	error = nvme_rdma_start_queue(ctrl, 0);
789 	if (error)
790 		goto out_cleanup_queue;
791 
792 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
793 			&ctrl->ctrl.cap);
794 	if (error) {
795 		dev_err(ctrl->ctrl.device,
796 			"prop_get NVME_REG_CAP failed\n");
797 		goto out_stop_queue;
798 	}
799 
800 	ctrl->ctrl.sqsize =
801 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
802 
803 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
804 	if (error)
805 		goto out_stop_queue;
806 
807 	ctrl->ctrl.max_hw_sectors =
808 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
809 
810 	error = nvme_init_identify(&ctrl->ctrl);
811 	if (error)
812 		goto out_stop_queue;
813 
814 	return 0;
815 
816 out_stop_queue:
817 	nvme_rdma_stop_queue(&ctrl->queues[0]);
818 out_cleanup_queue:
819 	if (new)
820 		blk_cleanup_queue(ctrl->ctrl.admin_q);
821 out_free_tagset:
822 	if (new)
823 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
824 out_free_async_qe:
825 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
826 		sizeof(struct nvme_command), DMA_TO_DEVICE);
827 	ctrl->async_event_sqe.data = NULL;
828 out_free_queue:
829 	nvme_rdma_free_queue(&ctrl->queues[0]);
830 	return error;
831 }
832 
833 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
834 		bool remove)
835 {
836 	if (remove) {
837 		blk_cleanup_queue(ctrl->ctrl.connect_q);
838 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
839 	}
840 	nvme_rdma_free_io_queues(ctrl);
841 }
842 
843 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
844 {
845 	int ret;
846 
847 	ret = nvme_rdma_alloc_io_queues(ctrl);
848 	if (ret)
849 		return ret;
850 
851 	if (new) {
852 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
853 		if (IS_ERR(ctrl->ctrl.tagset)) {
854 			ret = PTR_ERR(ctrl->ctrl.tagset);
855 			goto out_free_io_queues;
856 		}
857 
858 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
859 		if (IS_ERR(ctrl->ctrl.connect_q)) {
860 			ret = PTR_ERR(ctrl->ctrl.connect_q);
861 			goto out_free_tag_set;
862 		}
863 	} else {
864 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
865 			ctrl->ctrl.queue_count - 1);
866 	}
867 
868 	ret = nvme_rdma_start_io_queues(ctrl);
869 	if (ret)
870 		goto out_cleanup_connect_q;
871 
872 	return 0;
873 
874 out_cleanup_connect_q:
875 	if (new)
876 		blk_cleanup_queue(ctrl->ctrl.connect_q);
877 out_free_tag_set:
878 	if (new)
879 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
880 out_free_io_queues:
881 	nvme_rdma_free_io_queues(ctrl);
882 	return ret;
883 }
884 
885 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
886 		bool remove)
887 {
888 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
889 	nvme_rdma_stop_queue(&ctrl->queues[0]);
890 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
891 			&ctrl->ctrl);
892 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
893 	nvme_rdma_destroy_admin_queue(ctrl, remove);
894 }
895 
896 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
897 		bool remove)
898 {
899 	if (ctrl->ctrl.queue_count > 1) {
900 		nvme_stop_queues(&ctrl->ctrl);
901 		nvme_rdma_stop_io_queues(ctrl);
902 		blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
903 				&ctrl->ctrl);
904 		if (remove)
905 			nvme_start_queues(&ctrl->ctrl);
906 		nvme_rdma_destroy_io_queues(ctrl, remove);
907 	}
908 }
909 
910 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
911 {
912 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
913 
914 	cancel_work_sync(&ctrl->err_work);
915 	cancel_delayed_work_sync(&ctrl->reconnect_work);
916 }
917 
918 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
919 {
920 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
921 
922 	if (list_empty(&ctrl->list))
923 		goto free_ctrl;
924 
925 	mutex_lock(&nvme_rdma_ctrl_mutex);
926 	list_del(&ctrl->list);
927 	mutex_unlock(&nvme_rdma_ctrl_mutex);
928 
929 	nvmf_free_options(nctrl->opts);
930 free_ctrl:
931 	kfree(ctrl->queues);
932 	kfree(ctrl);
933 }
934 
935 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
936 {
937 	/* If we are resetting/deleting then do nothing */
938 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
939 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
940 			ctrl->ctrl.state == NVME_CTRL_LIVE);
941 		return;
942 	}
943 
944 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
945 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
946 			ctrl->ctrl.opts->reconnect_delay);
947 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
948 				ctrl->ctrl.opts->reconnect_delay * HZ);
949 	} else {
950 		nvme_delete_ctrl(&ctrl->ctrl);
951 	}
952 }
953 
954 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
955 {
956 	int ret = -EINVAL;
957 	bool changed;
958 
959 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
960 	if (ret)
961 		return ret;
962 
963 	if (ctrl->ctrl.icdoff) {
964 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
965 		goto destroy_admin;
966 	}
967 
968 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
969 		dev_err(ctrl->ctrl.device,
970 			"Mandatory keyed sgls are not supported!\n");
971 		goto destroy_admin;
972 	}
973 
974 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
975 		dev_warn(ctrl->ctrl.device,
976 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
977 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
978 	}
979 
980 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
981 		dev_warn(ctrl->ctrl.device,
982 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
983 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
984 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
985 	}
986 
987 	if (ctrl->ctrl.sgls & (1 << 20))
988 		ctrl->use_inline_data = true;
989 
990 	if (ctrl->ctrl.queue_count > 1) {
991 		ret = nvme_rdma_configure_io_queues(ctrl, new);
992 		if (ret)
993 			goto destroy_admin;
994 	}
995 
996 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
997 	if (!changed) {
998 		/* state change failure is ok if we're in DELETING state */
999 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1000 		ret = -EINVAL;
1001 		goto destroy_io;
1002 	}
1003 
1004 	nvme_start_ctrl(&ctrl->ctrl);
1005 	return 0;
1006 
1007 destroy_io:
1008 	if (ctrl->ctrl.queue_count > 1)
1009 		nvme_rdma_destroy_io_queues(ctrl, new);
1010 destroy_admin:
1011 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1012 	nvme_rdma_destroy_admin_queue(ctrl, new);
1013 	return ret;
1014 }
1015 
1016 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1017 {
1018 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1019 			struct nvme_rdma_ctrl, reconnect_work);
1020 
1021 	++ctrl->ctrl.nr_reconnects;
1022 
1023 	if (nvme_rdma_setup_ctrl(ctrl, false))
1024 		goto requeue;
1025 
1026 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1027 			ctrl->ctrl.nr_reconnects);
1028 
1029 	ctrl->ctrl.nr_reconnects = 0;
1030 
1031 	return;
1032 
1033 requeue:
1034 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1035 			ctrl->ctrl.nr_reconnects);
1036 	nvme_rdma_reconnect_or_remove(ctrl);
1037 }
1038 
1039 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1040 {
1041 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1042 			struct nvme_rdma_ctrl, err_work);
1043 
1044 	nvme_stop_keep_alive(&ctrl->ctrl);
1045 	nvme_rdma_teardown_io_queues(ctrl, false);
1046 	nvme_start_queues(&ctrl->ctrl);
1047 	nvme_rdma_teardown_admin_queue(ctrl, false);
1048 
1049 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1050 		/* state change failure is ok if we're in DELETING state */
1051 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1052 		return;
1053 	}
1054 
1055 	nvme_rdma_reconnect_or_remove(ctrl);
1056 }
1057 
1058 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1059 {
1060 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1061 		return;
1062 
1063 	queue_work(nvme_wq, &ctrl->err_work);
1064 }
1065 
1066 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1067 		const char *op)
1068 {
1069 	struct nvme_rdma_queue *queue = cq->cq_context;
1070 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1071 
1072 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1073 		dev_info(ctrl->ctrl.device,
1074 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1075 			     op, wc->wr_cqe,
1076 			     ib_wc_status_msg(wc->status), wc->status);
1077 	nvme_rdma_error_recovery(ctrl);
1078 }
1079 
1080 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1081 {
1082 	if (unlikely(wc->status != IB_WC_SUCCESS))
1083 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1084 }
1085 
1086 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1087 {
1088 	struct nvme_rdma_request *req =
1089 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1090 	struct request *rq = blk_mq_rq_from_pdu(req);
1091 
1092 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1093 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1094 		return;
1095 	}
1096 
1097 	if (refcount_dec_and_test(&req->ref))
1098 		nvme_end_request(rq, req->status, req->result);
1099 
1100 }
1101 
1102 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1103 		struct nvme_rdma_request *req)
1104 {
1105 	struct ib_send_wr wr = {
1106 		.opcode		    = IB_WR_LOCAL_INV,
1107 		.next		    = NULL,
1108 		.num_sge	    = 0,
1109 		.send_flags	    = IB_SEND_SIGNALED,
1110 		.ex.invalidate_rkey = req->mr->rkey,
1111 	};
1112 
1113 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1114 	wr.wr_cqe = &req->reg_cqe;
1115 
1116 	return ib_post_send(queue->qp, &wr, NULL);
1117 }
1118 
1119 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1120 		struct request *rq)
1121 {
1122 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1123 	struct nvme_rdma_device *dev = queue->device;
1124 	struct ib_device *ibdev = dev->dev;
1125 
1126 	if (!blk_rq_payload_bytes(rq))
1127 		return;
1128 
1129 	if (req->mr) {
1130 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1131 		req->mr = NULL;
1132 	}
1133 
1134 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1135 			req->nents, rq_data_dir(rq) ==
1136 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1137 
1138 	nvme_cleanup_cmd(rq);
1139 	sg_free_table_chained(&req->sg_table, true);
1140 }
1141 
1142 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1143 {
1144 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1145 
1146 	sg->addr = 0;
1147 	put_unaligned_le24(0, sg->length);
1148 	put_unaligned_le32(0, sg->key);
1149 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1150 	return 0;
1151 }
1152 
1153 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1154 		struct nvme_rdma_request *req, struct nvme_command *c,
1155 		int count)
1156 {
1157 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1158 	struct scatterlist *sgl = req->sg_table.sgl;
1159 	struct ib_sge *sge = &req->sge[1];
1160 	u32 len = 0;
1161 	int i;
1162 
1163 	for (i = 0; i < count; i++, sgl++, sge++) {
1164 		sge->addr = sg_dma_address(sgl);
1165 		sge->length = sg_dma_len(sgl);
1166 		sge->lkey = queue->device->pd->local_dma_lkey;
1167 		len += sge->length;
1168 	}
1169 
1170 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1171 	sg->length = cpu_to_le32(len);
1172 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1173 
1174 	req->num_sge += count;
1175 	return 0;
1176 }
1177 
1178 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1179 		struct nvme_rdma_request *req, struct nvme_command *c)
1180 {
1181 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1182 
1183 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1184 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1185 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1186 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1187 	return 0;
1188 }
1189 
1190 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1191 		struct nvme_rdma_request *req, struct nvme_command *c,
1192 		int count)
1193 {
1194 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1195 	int nr;
1196 
1197 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1198 	if (WARN_ON_ONCE(!req->mr))
1199 		return -EAGAIN;
1200 
1201 	/*
1202 	 * Align the MR to a 4K page size to match the ctrl page size and
1203 	 * the block virtual boundary.
1204 	 */
1205 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1206 	if (unlikely(nr < count)) {
1207 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1208 		req->mr = NULL;
1209 		if (nr < 0)
1210 			return nr;
1211 		return -EINVAL;
1212 	}
1213 
1214 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1215 
1216 	req->reg_cqe.done = nvme_rdma_memreg_done;
1217 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1218 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1219 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1220 	req->reg_wr.wr.num_sge = 0;
1221 	req->reg_wr.mr = req->mr;
1222 	req->reg_wr.key = req->mr->rkey;
1223 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1224 			     IB_ACCESS_REMOTE_READ |
1225 			     IB_ACCESS_REMOTE_WRITE;
1226 
1227 	sg->addr = cpu_to_le64(req->mr->iova);
1228 	put_unaligned_le24(req->mr->length, sg->length);
1229 	put_unaligned_le32(req->mr->rkey, sg->key);
1230 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1231 			NVME_SGL_FMT_INVALIDATE;
1232 
1233 	return 0;
1234 }
1235 
1236 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1237 		struct request *rq, struct nvme_command *c)
1238 {
1239 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1240 	struct nvme_rdma_device *dev = queue->device;
1241 	struct ib_device *ibdev = dev->dev;
1242 	int count, ret;
1243 
1244 	req->num_sge = 1;
1245 	refcount_set(&req->ref, 2); /* send and recv completions */
1246 
1247 	c->common.flags |= NVME_CMD_SGL_METABUF;
1248 
1249 	if (!blk_rq_payload_bytes(rq))
1250 		return nvme_rdma_set_sg_null(c);
1251 
1252 	req->sg_table.sgl = req->first_sgl;
1253 	ret = sg_alloc_table_chained(&req->sg_table,
1254 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1255 	if (ret)
1256 		return -ENOMEM;
1257 
1258 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1259 
1260 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1261 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1262 	if (unlikely(count <= 0)) {
1263 		ret = -EIO;
1264 		goto out_free_table;
1265 	}
1266 
1267 	if (count <= dev->num_inline_segments) {
1268 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1269 		    queue->ctrl->use_inline_data &&
1270 		    blk_rq_payload_bytes(rq) <=
1271 				nvme_rdma_inline_data_size(queue)) {
1272 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1273 			goto out;
1274 		}
1275 
1276 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1277 			ret = nvme_rdma_map_sg_single(queue, req, c);
1278 			goto out;
1279 		}
1280 	}
1281 
1282 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1283 out:
1284 	if (unlikely(ret))
1285 		goto out_unmap_sg;
1286 
1287 	return 0;
1288 
1289 out_unmap_sg:
1290 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1291 			req->nents, rq_data_dir(rq) ==
1292 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1293 out_free_table:
1294 	sg_free_table_chained(&req->sg_table, true);
1295 	return ret;
1296 }
1297 
1298 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1299 {
1300 	struct nvme_rdma_qe *qe =
1301 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1302 	struct nvme_rdma_request *req =
1303 		container_of(qe, struct nvme_rdma_request, sqe);
1304 	struct request *rq = blk_mq_rq_from_pdu(req);
1305 
1306 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1307 		nvme_rdma_wr_error(cq, wc, "SEND");
1308 		return;
1309 	}
1310 
1311 	if (refcount_dec_and_test(&req->ref))
1312 		nvme_end_request(rq, req->status, req->result);
1313 }
1314 
1315 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1316 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1317 		struct ib_send_wr *first)
1318 {
1319 	struct ib_send_wr wr;
1320 	int ret;
1321 
1322 	sge->addr   = qe->dma;
1323 	sge->length = sizeof(struct nvme_command),
1324 	sge->lkey   = queue->device->pd->local_dma_lkey;
1325 
1326 	wr.next       = NULL;
1327 	wr.wr_cqe     = &qe->cqe;
1328 	wr.sg_list    = sge;
1329 	wr.num_sge    = num_sge;
1330 	wr.opcode     = IB_WR_SEND;
1331 	wr.send_flags = IB_SEND_SIGNALED;
1332 
1333 	if (first)
1334 		first->next = &wr;
1335 	else
1336 		first = &wr;
1337 
1338 	ret = ib_post_send(queue->qp, first, NULL);
1339 	if (unlikely(ret)) {
1340 		dev_err(queue->ctrl->ctrl.device,
1341 			     "%s failed with error code %d\n", __func__, ret);
1342 	}
1343 	return ret;
1344 }
1345 
1346 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1347 		struct nvme_rdma_qe *qe)
1348 {
1349 	struct ib_recv_wr wr;
1350 	struct ib_sge list;
1351 	int ret;
1352 
1353 	list.addr   = qe->dma;
1354 	list.length = sizeof(struct nvme_completion);
1355 	list.lkey   = queue->device->pd->local_dma_lkey;
1356 
1357 	qe->cqe.done = nvme_rdma_recv_done;
1358 
1359 	wr.next     = NULL;
1360 	wr.wr_cqe   = &qe->cqe;
1361 	wr.sg_list  = &list;
1362 	wr.num_sge  = 1;
1363 
1364 	ret = ib_post_recv(queue->qp, &wr, NULL);
1365 	if (unlikely(ret)) {
1366 		dev_err(queue->ctrl->ctrl.device,
1367 			"%s failed with error code %d\n", __func__, ret);
1368 	}
1369 	return ret;
1370 }
1371 
1372 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1373 {
1374 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1375 
1376 	if (queue_idx == 0)
1377 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1378 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1379 }
1380 
1381 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1382 {
1383 	if (unlikely(wc->status != IB_WC_SUCCESS))
1384 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1385 }
1386 
1387 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1388 {
1389 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1390 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1391 	struct ib_device *dev = queue->device->dev;
1392 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1393 	struct nvme_command *cmd = sqe->data;
1394 	struct ib_sge sge;
1395 	int ret;
1396 
1397 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1398 
1399 	memset(cmd, 0, sizeof(*cmd));
1400 	cmd->common.opcode = nvme_admin_async_event;
1401 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1402 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1403 	nvme_rdma_set_sg_null(cmd);
1404 
1405 	sqe->cqe.done = nvme_rdma_async_done;
1406 
1407 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1408 			DMA_TO_DEVICE);
1409 
1410 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1411 	WARN_ON_ONCE(ret);
1412 }
1413 
1414 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1415 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1416 {
1417 	struct request *rq;
1418 	struct nvme_rdma_request *req;
1419 	int ret = 0;
1420 
1421 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1422 	if (!rq) {
1423 		dev_err(queue->ctrl->ctrl.device,
1424 			"tag 0x%x on QP %#x not found\n",
1425 			cqe->command_id, queue->qp->qp_num);
1426 		nvme_rdma_error_recovery(queue->ctrl);
1427 		return ret;
1428 	}
1429 	req = blk_mq_rq_to_pdu(rq);
1430 
1431 	req->status = cqe->status;
1432 	req->result = cqe->result;
1433 
1434 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1435 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1436 			dev_err(queue->ctrl->ctrl.device,
1437 				"Bogus remote invalidation for rkey %#x\n",
1438 				req->mr->rkey);
1439 			nvme_rdma_error_recovery(queue->ctrl);
1440 		}
1441 	} else if (req->mr) {
1442 		ret = nvme_rdma_inv_rkey(queue, req);
1443 		if (unlikely(ret < 0)) {
1444 			dev_err(queue->ctrl->ctrl.device,
1445 				"Queueing INV WR for rkey %#x failed (%d)\n",
1446 				req->mr->rkey, ret);
1447 			nvme_rdma_error_recovery(queue->ctrl);
1448 		}
1449 		/* the local invalidation completion will end the request */
1450 		return 0;
1451 	}
1452 
1453 	if (refcount_dec_and_test(&req->ref)) {
1454 		if (rq->tag == tag)
1455 			ret = 1;
1456 		nvme_end_request(rq, req->status, req->result);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1463 {
1464 	struct nvme_rdma_qe *qe =
1465 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1466 	struct nvme_rdma_queue *queue = cq->cq_context;
1467 	struct ib_device *ibdev = queue->device->dev;
1468 	struct nvme_completion *cqe = qe->data;
1469 	const size_t len = sizeof(struct nvme_completion);
1470 	int ret = 0;
1471 
1472 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1473 		nvme_rdma_wr_error(cq, wc, "RECV");
1474 		return 0;
1475 	}
1476 
1477 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1478 	/*
1479 	 * AEN requests are special as they don't time out and can
1480 	 * survive any kind of queue freeze and often don't respond to
1481 	 * aborts.  We don't even bother to allocate a struct request
1482 	 * for them but rather special case them here.
1483 	 */
1484 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1485 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1486 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1487 				&cqe->result);
1488 	else
1489 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1490 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1491 
1492 	nvme_rdma_post_recv(queue, qe);
1493 	return ret;
1494 }
1495 
1496 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1497 {
1498 	__nvme_rdma_recv_done(cq, wc, -1);
1499 }
1500 
1501 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1502 {
1503 	int ret, i;
1504 
1505 	for (i = 0; i < queue->queue_size; i++) {
1506 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1507 		if (ret)
1508 			goto out_destroy_queue_ib;
1509 	}
1510 
1511 	return 0;
1512 
1513 out_destroy_queue_ib:
1514 	nvme_rdma_destroy_queue_ib(queue);
1515 	return ret;
1516 }
1517 
1518 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1519 		struct rdma_cm_event *ev)
1520 {
1521 	struct rdma_cm_id *cm_id = queue->cm_id;
1522 	int status = ev->status;
1523 	const char *rej_msg;
1524 	const struct nvme_rdma_cm_rej *rej_data;
1525 	u8 rej_data_len;
1526 
1527 	rej_msg = rdma_reject_msg(cm_id, status);
1528 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1529 
1530 	if (rej_data && rej_data_len >= sizeof(u16)) {
1531 		u16 sts = le16_to_cpu(rej_data->sts);
1532 
1533 		dev_err(queue->ctrl->ctrl.device,
1534 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1535 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1536 	} else {
1537 		dev_err(queue->ctrl->ctrl.device,
1538 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1539 	}
1540 
1541 	return -ECONNRESET;
1542 }
1543 
1544 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1545 {
1546 	int ret;
1547 
1548 	ret = nvme_rdma_create_queue_ib(queue);
1549 	if (ret)
1550 		return ret;
1551 
1552 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1553 	if (ret) {
1554 		dev_err(queue->ctrl->ctrl.device,
1555 			"rdma_resolve_route failed (%d).\n",
1556 			queue->cm_error);
1557 		goto out_destroy_queue;
1558 	}
1559 
1560 	return 0;
1561 
1562 out_destroy_queue:
1563 	nvme_rdma_destroy_queue_ib(queue);
1564 	return ret;
1565 }
1566 
1567 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1568 {
1569 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1570 	struct rdma_conn_param param = { };
1571 	struct nvme_rdma_cm_req priv = { };
1572 	int ret;
1573 
1574 	param.qp_num = queue->qp->qp_num;
1575 	param.flow_control = 1;
1576 
1577 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1578 	/* maximum retry count */
1579 	param.retry_count = 7;
1580 	param.rnr_retry_count = 7;
1581 	param.private_data = &priv;
1582 	param.private_data_len = sizeof(priv);
1583 
1584 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1585 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1586 	/*
1587 	 * set the admin queue depth to the minimum size
1588 	 * specified by the Fabrics standard.
1589 	 */
1590 	if (priv.qid == 0) {
1591 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1592 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1593 	} else {
1594 		/*
1595 		 * current interpretation of the fabrics spec
1596 		 * is at minimum you make hrqsize sqsize+1, or a
1597 		 * 1's based representation of sqsize.
1598 		 */
1599 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1600 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1601 	}
1602 
1603 	ret = rdma_connect(queue->cm_id, &param);
1604 	if (ret) {
1605 		dev_err(ctrl->ctrl.device,
1606 			"rdma_connect failed (%d).\n", ret);
1607 		goto out_destroy_queue_ib;
1608 	}
1609 
1610 	return 0;
1611 
1612 out_destroy_queue_ib:
1613 	nvme_rdma_destroy_queue_ib(queue);
1614 	return ret;
1615 }
1616 
1617 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1618 		struct rdma_cm_event *ev)
1619 {
1620 	struct nvme_rdma_queue *queue = cm_id->context;
1621 	int cm_error = 0;
1622 
1623 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1624 		rdma_event_msg(ev->event), ev->event,
1625 		ev->status, cm_id);
1626 
1627 	switch (ev->event) {
1628 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1629 		cm_error = nvme_rdma_addr_resolved(queue);
1630 		break;
1631 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1632 		cm_error = nvme_rdma_route_resolved(queue);
1633 		break;
1634 	case RDMA_CM_EVENT_ESTABLISHED:
1635 		queue->cm_error = nvme_rdma_conn_established(queue);
1636 		/* complete cm_done regardless of success/failure */
1637 		complete(&queue->cm_done);
1638 		return 0;
1639 	case RDMA_CM_EVENT_REJECTED:
1640 		nvme_rdma_destroy_queue_ib(queue);
1641 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1642 		break;
1643 	case RDMA_CM_EVENT_ROUTE_ERROR:
1644 	case RDMA_CM_EVENT_CONNECT_ERROR:
1645 	case RDMA_CM_EVENT_UNREACHABLE:
1646 		nvme_rdma_destroy_queue_ib(queue);
1647 		/* fall through */
1648 	case RDMA_CM_EVENT_ADDR_ERROR:
1649 		dev_dbg(queue->ctrl->ctrl.device,
1650 			"CM error event %d\n", ev->event);
1651 		cm_error = -ECONNRESET;
1652 		break;
1653 	case RDMA_CM_EVENT_DISCONNECTED:
1654 	case RDMA_CM_EVENT_ADDR_CHANGE:
1655 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1656 		dev_dbg(queue->ctrl->ctrl.device,
1657 			"disconnect received - connection closed\n");
1658 		nvme_rdma_error_recovery(queue->ctrl);
1659 		break;
1660 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1661 		/* device removal is handled via the ib_client API */
1662 		break;
1663 	default:
1664 		dev_err(queue->ctrl->ctrl.device,
1665 			"Unexpected RDMA CM event (%d)\n", ev->event);
1666 		nvme_rdma_error_recovery(queue->ctrl);
1667 		break;
1668 	}
1669 
1670 	if (cm_error) {
1671 		queue->cm_error = cm_error;
1672 		complete(&queue->cm_done);
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 static enum blk_eh_timer_return
1679 nvme_rdma_timeout(struct request *rq, bool reserved)
1680 {
1681 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1682 
1683 	dev_warn(req->queue->ctrl->ctrl.device,
1684 		 "I/O %d QID %d timeout, reset controller\n",
1685 		 rq->tag, nvme_rdma_queue_idx(req->queue));
1686 
1687 	/* queue error recovery */
1688 	nvme_rdma_error_recovery(req->queue->ctrl);
1689 
1690 	/* fail with DNR on cmd timeout */
1691 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1692 
1693 	return BLK_EH_DONE;
1694 }
1695 
1696 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1697 		const struct blk_mq_queue_data *bd)
1698 {
1699 	struct nvme_ns *ns = hctx->queue->queuedata;
1700 	struct nvme_rdma_queue *queue = hctx->driver_data;
1701 	struct request *rq = bd->rq;
1702 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1703 	struct nvme_rdma_qe *sqe = &req->sqe;
1704 	struct nvme_command *c = sqe->data;
1705 	struct ib_device *dev;
1706 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1707 	blk_status_t ret;
1708 	int err;
1709 
1710 	WARN_ON_ONCE(rq->tag < 0);
1711 
1712 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1713 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1714 
1715 	dev = queue->device->dev;
1716 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1717 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1718 
1719 	ret = nvme_setup_cmd(ns, rq, c);
1720 	if (ret)
1721 		return ret;
1722 
1723 	blk_mq_start_request(rq);
1724 
1725 	err = nvme_rdma_map_data(queue, rq, c);
1726 	if (unlikely(err < 0)) {
1727 		dev_err(queue->ctrl->ctrl.device,
1728 			     "Failed to map data (%d)\n", err);
1729 		nvme_cleanup_cmd(rq);
1730 		goto err;
1731 	}
1732 
1733 	sqe->cqe.done = nvme_rdma_send_done;
1734 
1735 	ib_dma_sync_single_for_device(dev, sqe->dma,
1736 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1737 
1738 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1739 			req->mr ? &req->reg_wr.wr : NULL);
1740 	if (unlikely(err)) {
1741 		nvme_rdma_unmap_data(queue, rq);
1742 		goto err;
1743 	}
1744 
1745 	return BLK_STS_OK;
1746 err:
1747 	if (err == -ENOMEM || err == -EAGAIN)
1748 		return BLK_STS_RESOURCE;
1749 	return BLK_STS_IOERR;
1750 }
1751 
1752 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1753 {
1754 	struct nvme_rdma_queue *queue = hctx->driver_data;
1755 	struct ib_cq *cq = queue->ib_cq;
1756 	struct ib_wc wc;
1757 	int found = 0;
1758 
1759 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1760 		struct ib_cqe *cqe = wc.wr_cqe;
1761 
1762 		if (cqe) {
1763 			if (cqe->done == nvme_rdma_recv_done)
1764 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1765 			else
1766 				cqe->done(cq, &wc);
1767 		}
1768 	}
1769 
1770 	return found;
1771 }
1772 
1773 static void nvme_rdma_complete_rq(struct request *rq)
1774 {
1775 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1776 
1777 	nvme_rdma_unmap_data(req->queue, rq);
1778 	nvme_complete_rq(rq);
1779 }
1780 
1781 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1782 {
1783 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1784 
1785 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1786 }
1787 
1788 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1789 	.queue_rq	= nvme_rdma_queue_rq,
1790 	.complete	= nvme_rdma_complete_rq,
1791 	.init_request	= nvme_rdma_init_request,
1792 	.exit_request	= nvme_rdma_exit_request,
1793 	.init_hctx	= nvme_rdma_init_hctx,
1794 	.poll		= nvme_rdma_poll,
1795 	.timeout	= nvme_rdma_timeout,
1796 	.map_queues	= nvme_rdma_map_queues,
1797 };
1798 
1799 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1800 	.queue_rq	= nvme_rdma_queue_rq,
1801 	.complete	= nvme_rdma_complete_rq,
1802 	.init_request	= nvme_rdma_init_request,
1803 	.exit_request	= nvme_rdma_exit_request,
1804 	.init_hctx	= nvme_rdma_init_admin_hctx,
1805 	.timeout	= nvme_rdma_timeout,
1806 };
1807 
1808 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1809 {
1810 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1811 	if (shutdown)
1812 		nvme_shutdown_ctrl(&ctrl->ctrl);
1813 	else
1814 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1815 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1816 }
1817 
1818 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1819 {
1820 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1821 }
1822 
1823 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1824 {
1825 	struct nvme_rdma_ctrl *ctrl =
1826 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1827 
1828 	nvme_stop_ctrl(&ctrl->ctrl);
1829 	nvme_rdma_shutdown_ctrl(ctrl, false);
1830 
1831 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1832 		/* state change failure should never happen */
1833 		WARN_ON_ONCE(1);
1834 		return;
1835 	}
1836 
1837 	if (nvme_rdma_setup_ctrl(ctrl, false))
1838 		goto out_fail;
1839 
1840 	return;
1841 
1842 out_fail:
1843 	++ctrl->ctrl.nr_reconnects;
1844 	nvme_rdma_reconnect_or_remove(ctrl);
1845 }
1846 
1847 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1848 	.name			= "rdma",
1849 	.module			= THIS_MODULE,
1850 	.flags			= NVME_F_FABRICS,
1851 	.reg_read32		= nvmf_reg_read32,
1852 	.reg_read64		= nvmf_reg_read64,
1853 	.reg_write32		= nvmf_reg_write32,
1854 	.free_ctrl		= nvme_rdma_free_ctrl,
1855 	.submit_async_event	= nvme_rdma_submit_async_event,
1856 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1857 	.get_address		= nvmf_get_address,
1858 	.stop_ctrl		= nvme_rdma_stop_ctrl,
1859 };
1860 
1861 /*
1862  * Fails a connection request if it matches an existing controller
1863  * (association) with the same tuple:
1864  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1865  *
1866  * if local address is not specified in the request, it will match an
1867  * existing controller with all the other parameters the same and no
1868  * local port address specified as well.
1869  *
1870  * The ports don't need to be compared as they are intrinsically
1871  * already matched by the port pointers supplied.
1872  */
1873 static bool
1874 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1875 {
1876 	struct nvme_rdma_ctrl *ctrl;
1877 	bool found = false;
1878 
1879 	mutex_lock(&nvme_rdma_ctrl_mutex);
1880 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1881 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1882 		if (found)
1883 			break;
1884 	}
1885 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1886 
1887 	return found;
1888 }
1889 
1890 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1891 		struct nvmf_ctrl_options *opts)
1892 {
1893 	struct nvme_rdma_ctrl *ctrl;
1894 	int ret;
1895 	bool changed;
1896 
1897 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1898 	if (!ctrl)
1899 		return ERR_PTR(-ENOMEM);
1900 	ctrl->ctrl.opts = opts;
1901 	INIT_LIST_HEAD(&ctrl->list);
1902 
1903 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1904 		opts->trsvcid =
1905 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1906 		if (!opts->trsvcid) {
1907 			ret = -ENOMEM;
1908 			goto out_free_ctrl;
1909 		}
1910 		opts->mask |= NVMF_OPT_TRSVCID;
1911 	}
1912 
1913 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1914 			opts->traddr, opts->trsvcid, &ctrl->addr);
1915 	if (ret) {
1916 		pr_err("malformed address passed: %s:%s\n",
1917 			opts->traddr, opts->trsvcid);
1918 		goto out_free_ctrl;
1919 	}
1920 
1921 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1922 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1923 			opts->host_traddr, NULL, &ctrl->src_addr);
1924 		if (ret) {
1925 			pr_err("malformed src address passed: %s\n",
1926 			       opts->host_traddr);
1927 			goto out_free_ctrl;
1928 		}
1929 	}
1930 
1931 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1932 		ret = -EALREADY;
1933 		goto out_free_ctrl;
1934 	}
1935 
1936 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1937 			nvme_rdma_reconnect_ctrl_work);
1938 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1939 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1940 
1941 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1942 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1943 	ctrl->ctrl.kato = opts->kato;
1944 
1945 	ret = -ENOMEM;
1946 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1947 				GFP_KERNEL);
1948 	if (!ctrl->queues)
1949 		goto out_free_ctrl;
1950 
1951 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1952 				0 /* no quirks, we're perfect! */);
1953 	if (ret)
1954 		goto out_kfree_queues;
1955 
1956 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1957 	WARN_ON_ONCE(!changed);
1958 
1959 	ret = nvme_rdma_setup_ctrl(ctrl, true);
1960 	if (ret)
1961 		goto out_uninit_ctrl;
1962 
1963 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1964 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1965 
1966 	nvme_get_ctrl(&ctrl->ctrl);
1967 
1968 	mutex_lock(&nvme_rdma_ctrl_mutex);
1969 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1970 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1971 
1972 	return &ctrl->ctrl;
1973 
1974 out_uninit_ctrl:
1975 	nvme_uninit_ctrl(&ctrl->ctrl);
1976 	nvme_put_ctrl(&ctrl->ctrl);
1977 	if (ret > 0)
1978 		ret = -EIO;
1979 	return ERR_PTR(ret);
1980 out_kfree_queues:
1981 	kfree(ctrl->queues);
1982 out_free_ctrl:
1983 	kfree(ctrl);
1984 	return ERR_PTR(ret);
1985 }
1986 
1987 static struct nvmf_transport_ops nvme_rdma_transport = {
1988 	.name		= "rdma",
1989 	.module		= THIS_MODULE,
1990 	.required_opts	= NVMF_OPT_TRADDR,
1991 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1992 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1993 	.create_ctrl	= nvme_rdma_create_ctrl,
1994 };
1995 
1996 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1997 {
1998 	struct nvme_rdma_ctrl *ctrl;
1999 	struct nvme_rdma_device *ndev;
2000 	bool found = false;
2001 
2002 	mutex_lock(&device_list_mutex);
2003 	list_for_each_entry(ndev, &device_list, entry) {
2004 		if (ndev->dev == ib_device) {
2005 			found = true;
2006 			break;
2007 		}
2008 	}
2009 	mutex_unlock(&device_list_mutex);
2010 
2011 	if (!found)
2012 		return;
2013 
2014 	/* Delete all controllers using this device */
2015 	mutex_lock(&nvme_rdma_ctrl_mutex);
2016 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2017 		if (ctrl->device->dev != ib_device)
2018 			continue;
2019 		nvme_delete_ctrl(&ctrl->ctrl);
2020 	}
2021 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2022 
2023 	flush_workqueue(nvme_delete_wq);
2024 }
2025 
2026 static struct ib_client nvme_rdma_ib_client = {
2027 	.name   = "nvme_rdma",
2028 	.remove = nvme_rdma_remove_one
2029 };
2030 
2031 static int __init nvme_rdma_init_module(void)
2032 {
2033 	int ret;
2034 
2035 	ret = ib_register_client(&nvme_rdma_ib_client);
2036 	if (ret)
2037 		return ret;
2038 
2039 	ret = nvmf_register_transport(&nvme_rdma_transport);
2040 	if (ret)
2041 		goto err_unreg_client;
2042 
2043 	return 0;
2044 
2045 err_unreg_client:
2046 	ib_unregister_client(&nvme_rdma_ib_client);
2047 	return ret;
2048 }
2049 
2050 static void __exit nvme_rdma_cleanup_module(void)
2051 {
2052 	nvmf_unregister_transport(&nvme_rdma_transport);
2053 	ib_unregister_client(&nvme_rdma_ib_client);
2054 }
2055 
2056 module_init(nvme_rdma_init_module);
2057 module_exit(nvme_rdma_cleanup_module);
2058 
2059 MODULE_LICENSE("GPL v2");
2060