1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <linux/nvme-rdma.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 38 39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 /* 46 * We handle AEN commands ourselves and don't even let the 47 * block layer know about them. 48 */ 49 #define NVME_RDMA_NR_AEN_COMMANDS 1 50 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 51 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 52 53 struct nvme_rdma_device { 54 struct ib_device *dev; 55 struct ib_pd *pd; 56 struct kref ref; 57 struct list_head entry; 58 }; 59 60 struct nvme_rdma_qe { 61 struct ib_cqe cqe; 62 void *data; 63 u64 dma; 64 }; 65 66 struct nvme_rdma_queue; 67 struct nvme_rdma_request { 68 struct nvme_request req; 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_CONNECTED = (1 << 0), 84 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 85 NVME_RDMA_Q_DELETING = (1 << 2), 86 NVME_RDMA_Q_LIVE = (1 << 3), 87 }; 88 89 struct nvme_rdma_queue { 90 struct nvme_rdma_qe *rsp_ring; 91 u8 sig_count; 92 int queue_size; 93 size_t cmnd_capsule_len; 94 struct nvme_rdma_ctrl *ctrl; 95 struct nvme_rdma_device *device; 96 struct ib_cq *ib_cq; 97 struct ib_qp *qp; 98 99 unsigned long flags; 100 struct rdma_cm_id *cm_id; 101 int cm_error; 102 struct completion cm_done; 103 }; 104 105 struct nvme_rdma_ctrl { 106 /* read and written in the hot path */ 107 spinlock_t lock; 108 109 /* read only in the hot path */ 110 struct nvme_rdma_queue *queues; 111 u32 queue_count; 112 113 /* other member variables */ 114 struct blk_mq_tag_set tag_set; 115 struct work_struct delete_work; 116 struct work_struct reset_work; 117 struct work_struct err_work; 118 119 struct nvme_rdma_qe async_event_sqe; 120 121 int reconnect_delay; 122 struct delayed_work reconnect_work; 123 124 struct list_head list; 125 126 struct blk_mq_tag_set admin_tag_set; 127 struct nvme_rdma_device *device; 128 129 u64 cap; 130 u32 max_fr_pages; 131 132 union { 133 struct sockaddr addr; 134 struct sockaddr_in addr_in; 135 }; 136 union { 137 struct sockaddr src_addr; 138 struct sockaddr_in src_addr_in; 139 }; 140 141 struct nvme_ctrl ctrl; 142 }; 143 144 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 145 { 146 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 147 } 148 149 static LIST_HEAD(device_list); 150 static DEFINE_MUTEX(device_list_mutex); 151 152 static LIST_HEAD(nvme_rdma_ctrl_list); 153 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 154 155 static struct workqueue_struct *nvme_rdma_wq; 156 157 /* 158 * Disabling this option makes small I/O goes faster, but is fundamentally 159 * unsafe. With it turned off we will have to register a global rkey that 160 * allows read and write access to all physical memory. 161 */ 162 static bool register_always = true; 163 module_param(register_always, bool, 0444); 164 MODULE_PARM_DESC(register_always, 165 "Use memory registration even for contiguous memory regions"); 166 167 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 168 struct rdma_cm_event *event); 169 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 170 171 /* XXX: really should move to a generic header sooner or later.. */ 172 static inline void put_unaligned_le24(u32 val, u8 *p) 173 { 174 *p++ = val; 175 *p++ = val >> 8; 176 *p++ = val >> 16; 177 } 178 179 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 180 { 181 return queue - queue->ctrl->queues; 182 } 183 184 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 185 { 186 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 187 } 188 189 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 190 size_t capsule_size, enum dma_data_direction dir) 191 { 192 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 193 kfree(qe->data); 194 } 195 196 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 197 size_t capsule_size, enum dma_data_direction dir) 198 { 199 qe->data = kzalloc(capsule_size, GFP_KERNEL); 200 if (!qe->data) 201 return -ENOMEM; 202 203 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 204 if (ib_dma_mapping_error(ibdev, qe->dma)) { 205 kfree(qe->data); 206 return -ENOMEM; 207 } 208 209 return 0; 210 } 211 212 static void nvme_rdma_free_ring(struct ib_device *ibdev, 213 struct nvme_rdma_qe *ring, size_t ib_queue_size, 214 size_t capsule_size, enum dma_data_direction dir) 215 { 216 int i; 217 218 for (i = 0; i < ib_queue_size; i++) 219 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 220 kfree(ring); 221 } 222 223 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 224 size_t ib_queue_size, size_t capsule_size, 225 enum dma_data_direction dir) 226 { 227 struct nvme_rdma_qe *ring; 228 int i; 229 230 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 231 if (!ring) 232 return NULL; 233 234 for (i = 0; i < ib_queue_size; i++) { 235 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 236 goto out_free_ring; 237 } 238 239 return ring; 240 241 out_free_ring: 242 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 243 return NULL; 244 } 245 246 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 247 { 248 pr_debug("QP event %s (%d)\n", 249 ib_event_msg(event->event), event->event); 250 251 } 252 253 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 254 { 255 wait_for_completion_interruptible_timeout(&queue->cm_done, 256 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 257 return queue->cm_error; 258 } 259 260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 261 { 262 struct nvme_rdma_device *dev = queue->device; 263 struct ib_qp_init_attr init_attr; 264 int ret; 265 266 memset(&init_attr, 0, sizeof(init_attr)); 267 init_attr.event_handler = nvme_rdma_qp_event; 268 /* +1 for drain */ 269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 270 /* +1 for drain */ 271 init_attr.cap.max_recv_wr = queue->queue_size + 1; 272 init_attr.cap.max_recv_sge = 1; 273 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 275 init_attr.qp_type = IB_QPT_RC; 276 init_attr.send_cq = queue->ib_cq; 277 init_attr.recv_cq = queue->ib_cq; 278 279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 280 281 queue->qp = queue->cm_id->qp; 282 return ret; 283 } 284 285 static int nvme_rdma_reinit_request(void *data, struct request *rq) 286 { 287 struct nvme_rdma_ctrl *ctrl = data; 288 struct nvme_rdma_device *dev = ctrl->device; 289 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 290 int ret = 0; 291 292 if (!req->mr->need_inval) 293 goto out; 294 295 ib_dereg_mr(req->mr); 296 297 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 298 ctrl->max_fr_pages); 299 if (IS_ERR(req->mr)) { 300 ret = PTR_ERR(req->mr); 301 req->mr = NULL; 302 goto out; 303 } 304 305 req->mr->need_inval = false; 306 307 out: 308 return ret; 309 } 310 311 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 312 struct request *rq, unsigned int queue_idx) 313 { 314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 315 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 316 struct nvme_rdma_device *dev = queue->device; 317 318 if (req->mr) 319 ib_dereg_mr(req->mr); 320 321 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 322 DMA_TO_DEVICE); 323 } 324 325 static void nvme_rdma_exit_request(void *data, struct request *rq, 326 unsigned int hctx_idx, unsigned int rq_idx) 327 { 328 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 329 } 330 331 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 332 unsigned int hctx_idx, unsigned int rq_idx) 333 { 334 return __nvme_rdma_exit_request(data, rq, 0); 335 } 336 337 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 338 struct request *rq, unsigned int queue_idx) 339 { 340 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 341 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 342 struct nvme_rdma_device *dev = queue->device; 343 struct ib_device *ibdev = dev->dev; 344 int ret; 345 346 BUG_ON(queue_idx >= ctrl->queue_count); 347 348 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 349 DMA_TO_DEVICE); 350 if (ret) 351 return ret; 352 353 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 354 ctrl->max_fr_pages); 355 if (IS_ERR(req->mr)) { 356 ret = PTR_ERR(req->mr); 357 goto out_free_qe; 358 } 359 360 req->queue = queue; 361 362 return 0; 363 364 out_free_qe: 365 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 366 DMA_TO_DEVICE); 367 return -ENOMEM; 368 } 369 370 static int nvme_rdma_init_request(void *data, struct request *rq, 371 unsigned int hctx_idx, unsigned int rq_idx, 372 unsigned int numa_node) 373 { 374 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 375 } 376 377 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 378 unsigned int hctx_idx, unsigned int rq_idx, 379 unsigned int numa_node) 380 { 381 return __nvme_rdma_init_request(data, rq, 0); 382 } 383 384 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 385 unsigned int hctx_idx) 386 { 387 struct nvme_rdma_ctrl *ctrl = data; 388 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 389 390 BUG_ON(hctx_idx >= ctrl->queue_count); 391 392 hctx->driver_data = queue; 393 return 0; 394 } 395 396 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 397 unsigned int hctx_idx) 398 { 399 struct nvme_rdma_ctrl *ctrl = data; 400 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 401 402 BUG_ON(hctx_idx != 0); 403 404 hctx->driver_data = queue; 405 return 0; 406 } 407 408 static void nvme_rdma_free_dev(struct kref *ref) 409 { 410 struct nvme_rdma_device *ndev = 411 container_of(ref, struct nvme_rdma_device, ref); 412 413 mutex_lock(&device_list_mutex); 414 list_del(&ndev->entry); 415 mutex_unlock(&device_list_mutex); 416 417 ib_dealloc_pd(ndev->pd); 418 kfree(ndev); 419 } 420 421 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 422 { 423 kref_put(&dev->ref, nvme_rdma_free_dev); 424 } 425 426 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 427 { 428 return kref_get_unless_zero(&dev->ref); 429 } 430 431 static struct nvme_rdma_device * 432 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 433 { 434 struct nvme_rdma_device *ndev; 435 436 mutex_lock(&device_list_mutex); 437 list_for_each_entry(ndev, &device_list, entry) { 438 if (ndev->dev->node_guid == cm_id->device->node_guid && 439 nvme_rdma_dev_get(ndev)) 440 goto out_unlock; 441 } 442 443 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 444 if (!ndev) 445 goto out_err; 446 447 ndev->dev = cm_id->device; 448 kref_init(&ndev->ref); 449 450 ndev->pd = ib_alloc_pd(ndev->dev, 451 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 452 if (IS_ERR(ndev->pd)) 453 goto out_free_dev; 454 455 if (!(ndev->dev->attrs.device_cap_flags & 456 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 457 dev_err(&ndev->dev->dev, 458 "Memory registrations not supported.\n"); 459 goto out_free_pd; 460 } 461 462 list_add(&ndev->entry, &device_list); 463 out_unlock: 464 mutex_unlock(&device_list_mutex); 465 return ndev; 466 467 out_free_pd: 468 ib_dealloc_pd(ndev->pd); 469 out_free_dev: 470 kfree(ndev); 471 out_err: 472 mutex_unlock(&device_list_mutex); 473 return NULL; 474 } 475 476 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 477 { 478 struct nvme_rdma_device *dev; 479 struct ib_device *ibdev; 480 481 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 482 return; 483 484 dev = queue->device; 485 ibdev = dev->dev; 486 rdma_destroy_qp(queue->cm_id); 487 ib_free_cq(queue->ib_cq); 488 489 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 490 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 491 492 nvme_rdma_dev_put(dev); 493 } 494 495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 496 struct nvme_rdma_device *dev) 497 { 498 struct ib_device *ibdev = dev->dev; 499 const int send_wr_factor = 3; /* MR, SEND, INV */ 500 const int cq_factor = send_wr_factor + 1; /* + RECV */ 501 int comp_vector, idx = nvme_rdma_queue_idx(queue); 502 503 int ret; 504 505 queue->device = dev; 506 507 /* 508 * The admin queue is barely used once the controller is live, so don't 509 * bother to spread it out. 510 */ 511 if (idx == 0) 512 comp_vector = 0; 513 else 514 comp_vector = idx % ibdev->num_comp_vectors; 515 516 517 /* +1 for ib_stop_cq */ 518 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 519 cq_factor * queue->queue_size + 1, comp_vector, 520 IB_POLL_SOFTIRQ); 521 if (IS_ERR(queue->ib_cq)) { 522 ret = PTR_ERR(queue->ib_cq); 523 goto out; 524 } 525 526 ret = nvme_rdma_create_qp(queue, send_wr_factor); 527 if (ret) 528 goto out_destroy_ib_cq; 529 530 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 531 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 532 if (!queue->rsp_ring) { 533 ret = -ENOMEM; 534 goto out_destroy_qp; 535 } 536 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 537 538 return 0; 539 540 out_destroy_qp: 541 ib_destroy_qp(queue->qp); 542 out_destroy_ib_cq: 543 ib_free_cq(queue->ib_cq); 544 out: 545 return ret; 546 } 547 548 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 549 int idx, size_t queue_size) 550 { 551 struct nvme_rdma_queue *queue; 552 struct sockaddr *src_addr = NULL; 553 int ret; 554 555 queue = &ctrl->queues[idx]; 556 queue->ctrl = ctrl; 557 init_completion(&queue->cm_done); 558 559 if (idx > 0) 560 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 561 else 562 queue->cmnd_capsule_len = sizeof(struct nvme_command); 563 564 queue->queue_size = queue_size; 565 566 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 567 RDMA_PS_TCP, IB_QPT_RC); 568 if (IS_ERR(queue->cm_id)) { 569 dev_info(ctrl->ctrl.device, 570 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 571 return PTR_ERR(queue->cm_id); 572 } 573 574 queue->cm_error = -ETIMEDOUT; 575 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 576 src_addr = &ctrl->src_addr; 577 578 ret = rdma_resolve_addr(queue->cm_id, src_addr, &ctrl->addr, 579 NVME_RDMA_CONNECT_TIMEOUT_MS); 580 if (ret) { 581 dev_info(ctrl->ctrl.device, 582 "rdma_resolve_addr failed (%d).\n", ret); 583 goto out_destroy_cm_id; 584 } 585 586 ret = nvme_rdma_wait_for_cm(queue); 587 if (ret) { 588 dev_info(ctrl->ctrl.device, 589 "rdma_resolve_addr wait failed (%d).\n", ret); 590 goto out_destroy_cm_id; 591 } 592 593 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 594 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 595 596 return 0; 597 598 out_destroy_cm_id: 599 nvme_rdma_destroy_queue_ib(queue); 600 rdma_destroy_id(queue->cm_id); 601 return ret; 602 } 603 604 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 605 { 606 rdma_disconnect(queue->cm_id); 607 ib_drain_qp(queue->qp); 608 } 609 610 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 611 { 612 nvme_rdma_destroy_queue_ib(queue); 613 rdma_destroy_id(queue->cm_id); 614 } 615 616 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 617 { 618 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 619 return; 620 nvme_rdma_stop_queue(queue); 621 nvme_rdma_free_queue(queue); 622 } 623 624 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 int i; 627 628 for (i = 1; i < ctrl->queue_count; i++) 629 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 630 } 631 632 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 633 { 634 int i, ret = 0; 635 636 for (i = 1; i < ctrl->queue_count; i++) { 637 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 638 if (ret) { 639 dev_info(ctrl->ctrl.device, 640 "failed to connect i/o queue: %d\n", ret); 641 goto out_free_queues; 642 } 643 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 644 } 645 646 return 0; 647 648 out_free_queues: 649 nvme_rdma_free_io_queues(ctrl); 650 return ret; 651 } 652 653 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 654 { 655 int i, ret; 656 657 for (i = 1; i < ctrl->queue_count; i++) { 658 ret = nvme_rdma_init_queue(ctrl, i, 659 ctrl->ctrl.opts->queue_size); 660 if (ret) { 661 dev_info(ctrl->ctrl.device, 662 "failed to initialize i/o queue: %d\n", ret); 663 goto out_free_queues; 664 } 665 } 666 667 return 0; 668 669 out_free_queues: 670 for (i--; i >= 1; i--) 671 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 672 673 return ret; 674 } 675 676 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 677 { 678 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 679 sizeof(struct nvme_command), DMA_TO_DEVICE); 680 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 681 blk_cleanup_queue(ctrl->ctrl.admin_q); 682 blk_mq_free_tag_set(&ctrl->admin_tag_set); 683 nvme_rdma_dev_put(ctrl->device); 684 } 685 686 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 687 { 688 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 689 690 if (list_empty(&ctrl->list)) 691 goto free_ctrl; 692 693 mutex_lock(&nvme_rdma_ctrl_mutex); 694 list_del(&ctrl->list); 695 mutex_unlock(&nvme_rdma_ctrl_mutex); 696 697 kfree(ctrl->queues); 698 nvmf_free_options(nctrl->opts); 699 free_ctrl: 700 kfree(ctrl); 701 } 702 703 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 704 { 705 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 706 struct nvme_rdma_ctrl, reconnect_work); 707 bool changed; 708 int ret; 709 710 if (ctrl->queue_count > 1) { 711 nvme_rdma_free_io_queues(ctrl); 712 713 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 714 if (ret) 715 goto requeue; 716 } 717 718 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 719 720 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 721 if (ret) 722 goto requeue; 723 724 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 725 if (ret) 726 goto requeue; 727 728 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 729 730 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 731 if (ret) 732 goto stop_admin_q; 733 734 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 735 736 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 737 if (ret) 738 goto stop_admin_q; 739 740 nvme_start_keep_alive(&ctrl->ctrl); 741 742 if (ctrl->queue_count > 1) { 743 ret = nvme_rdma_init_io_queues(ctrl); 744 if (ret) 745 goto stop_admin_q; 746 747 ret = nvme_rdma_connect_io_queues(ctrl); 748 if (ret) 749 goto stop_admin_q; 750 } 751 752 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 753 WARN_ON_ONCE(!changed); 754 755 if (ctrl->queue_count > 1) { 756 nvme_start_queues(&ctrl->ctrl); 757 nvme_queue_scan(&ctrl->ctrl); 758 nvme_queue_async_events(&ctrl->ctrl); 759 } 760 761 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 762 763 return; 764 765 stop_admin_q: 766 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 767 requeue: 768 /* Make sure we are not resetting/deleting */ 769 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 770 dev_info(ctrl->ctrl.device, 771 "Failed reconnect attempt, requeueing...\n"); 772 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 773 ctrl->reconnect_delay * HZ); 774 } 775 } 776 777 static void nvme_rdma_error_recovery_work(struct work_struct *work) 778 { 779 struct nvme_rdma_ctrl *ctrl = container_of(work, 780 struct nvme_rdma_ctrl, err_work); 781 int i; 782 783 nvme_stop_keep_alive(&ctrl->ctrl); 784 785 for (i = 0; i < ctrl->queue_count; i++) { 786 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 787 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 788 } 789 790 if (ctrl->queue_count > 1) 791 nvme_stop_queues(&ctrl->ctrl); 792 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 793 794 /* We must take care of fastfail/requeue all our inflight requests */ 795 if (ctrl->queue_count > 1) 796 blk_mq_tagset_busy_iter(&ctrl->tag_set, 797 nvme_cancel_request, &ctrl->ctrl); 798 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 799 nvme_cancel_request, &ctrl->ctrl); 800 801 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 802 ctrl->reconnect_delay); 803 804 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 805 ctrl->reconnect_delay * HZ); 806 } 807 808 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 809 { 810 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 811 return; 812 813 queue_work(nvme_rdma_wq, &ctrl->err_work); 814 } 815 816 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 817 const char *op) 818 { 819 struct nvme_rdma_queue *queue = cq->cq_context; 820 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 821 822 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 823 dev_info(ctrl->ctrl.device, 824 "%s for CQE 0x%p failed with status %s (%d)\n", 825 op, wc->wr_cqe, 826 ib_wc_status_msg(wc->status), wc->status); 827 nvme_rdma_error_recovery(ctrl); 828 } 829 830 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 831 { 832 if (unlikely(wc->status != IB_WC_SUCCESS)) 833 nvme_rdma_wr_error(cq, wc, "MEMREG"); 834 } 835 836 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 837 { 838 if (unlikely(wc->status != IB_WC_SUCCESS)) 839 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 840 } 841 842 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 843 struct nvme_rdma_request *req) 844 { 845 struct ib_send_wr *bad_wr; 846 struct ib_send_wr wr = { 847 .opcode = IB_WR_LOCAL_INV, 848 .next = NULL, 849 .num_sge = 0, 850 .send_flags = 0, 851 .ex.invalidate_rkey = req->mr->rkey, 852 }; 853 854 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 855 wr.wr_cqe = &req->reg_cqe; 856 857 return ib_post_send(queue->qp, &wr, &bad_wr); 858 } 859 860 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 861 struct request *rq) 862 { 863 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 864 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 865 struct nvme_rdma_device *dev = queue->device; 866 struct ib_device *ibdev = dev->dev; 867 int res; 868 869 if (!blk_rq_bytes(rq)) 870 return; 871 872 if (req->mr->need_inval) { 873 res = nvme_rdma_inv_rkey(queue, req); 874 if (res < 0) { 875 dev_err(ctrl->ctrl.device, 876 "Queueing INV WR for rkey %#x failed (%d)\n", 877 req->mr->rkey, res); 878 nvme_rdma_error_recovery(queue->ctrl); 879 } 880 } 881 882 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 883 req->nents, rq_data_dir(rq) == 884 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 885 886 nvme_cleanup_cmd(rq); 887 sg_free_table_chained(&req->sg_table, true); 888 } 889 890 static int nvme_rdma_set_sg_null(struct nvme_command *c) 891 { 892 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 893 894 sg->addr = 0; 895 put_unaligned_le24(0, sg->length); 896 put_unaligned_le32(0, sg->key); 897 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 898 return 0; 899 } 900 901 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 902 struct nvme_rdma_request *req, struct nvme_command *c) 903 { 904 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 905 906 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 907 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 908 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 909 910 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 911 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 912 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 913 914 req->inline_data = true; 915 req->num_sge++; 916 return 0; 917 } 918 919 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 920 struct nvme_rdma_request *req, struct nvme_command *c) 921 { 922 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 923 924 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 925 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 926 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 927 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 928 return 0; 929 } 930 931 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 932 struct nvme_rdma_request *req, struct nvme_command *c, 933 int count) 934 { 935 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 936 int nr; 937 938 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 939 if (nr < count) { 940 if (nr < 0) 941 return nr; 942 return -EINVAL; 943 } 944 945 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 946 947 req->reg_cqe.done = nvme_rdma_memreg_done; 948 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 949 req->reg_wr.wr.opcode = IB_WR_REG_MR; 950 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 951 req->reg_wr.wr.num_sge = 0; 952 req->reg_wr.mr = req->mr; 953 req->reg_wr.key = req->mr->rkey; 954 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 955 IB_ACCESS_REMOTE_READ | 956 IB_ACCESS_REMOTE_WRITE; 957 958 req->mr->need_inval = true; 959 960 sg->addr = cpu_to_le64(req->mr->iova); 961 put_unaligned_le24(req->mr->length, sg->length); 962 put_unaligned_le32(req->mr->rkey, sg->key); 963 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 964 NVME_SGL_FMT_INVALIDATE; 965 966 return 0; 967 } 968 969 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 970 struct request *rq, struct nvme_command *c) 971 { 972 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 973 struct nvme_rdma_device *dev = queue->device; 974 struct ib_device *ibdev = dev->dev; 975 int count, ret; 976 977 req->num_sge = 1; 978 req->inline_data = false; 979 req->mr->need_inval = false; 980 981 c->common.flags |= NVME_CMD_SGL_METABUF; 982 983 if (!blk_rq_bytes(rq)) 984 return nvme_rdma_set_sg_null(c); 985 986 req->sg_table.sgl = req->first_sgl; 987 ret = sg_alloc_table_chained(&req->sg_table, 988 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 989 if (ret) 990 return -ENOMEM; 991 992 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 993 994 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 995 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 996 if (unlikely(count <= 0)) { 997 sg_free_table_chained(&req->sg_table, true); 998 return -EIO; 999 } 1000 1001 if (count == 1) { 1002 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1003 blk_rq_payload_bytes(rq) <= 1004 nvme_rdma_inline_data_size(queue)) 1005 return nvme_rdma_map_sg_inline(queue, req, c); 1006 1007 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1008 return nvme_rdma_map_sg_single(queue, req, c); 1009 } 1010 1011 return nvme_rdma_map_sg_fr(queue, req, c, count); 1012 } 1013 1014 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1015 { 1016 if (unlikely(wc->status != IB_WC_SUCCESS)) 1017 nvme_rdma_wr_error(cq, wc, "SEND"); 1018 } 1019 1020 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1021 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1022 struct ib_send_wr *first, bool flush) 1023 { 1024 struct ib_send_wr wr, *bad_wr; 1025 int ret; 1026 1027 sge->addr = qe->dma; 1028 sge->length = sizeof(struct nvme_command), 1029 sge->lkey = queue->device->pd->local_dma_lkey; 1030 1031 qe->cqe.done = nvme_rdma_send_done; 1032 1033 wr.next = NULL; 1034 wr.wr_cqe = &qe->cqe; 1035 wr.sg_list = sge; 1036 wr.num_sge = num_sge; 1037 wr.opcode = IB_WR_SEND; 1038 wr.send_flags = 0; 1039 1040 /* 1041 * Unsignalled send completions are another giant desaster in the 1042 * IB Verbs spec: If we don't regularly post signalled sends 1043 * the send queue will fill up and only a QP reset will rescue us. 1044 * Would have been way to obvious to handle this in hardware or 1045 * at least the RDMA stack.. 1046 * 1047 * This messy and racy code sniplet is copy and pasted from the iSER 1048 * initiator, and the magic '32' comes from there as well. 1049 * 1050 * Always signal the flushes. The magic request used for the flush 1051 * sequencer is not allocated in our driver's tagset and it's 1052 * triggered to be freed by blk_cleanup_queue(). So we need to 1053 * always mark it as signaled to ensure that the "wr_cqe", which is 1054 * embedded in request's payload, is not freed when __ib_process_cq() 1055 * calls wr_cqe->done(). 1056 */ 1057 if ((++queue->sig_count % 32) == 0 || flush) 1058 wr.send_flags |= IB_SEND_SIGNALED; 1059 1060 if (first) 1061 first->next = ≀ 1062 else 1063 first = ≀ 1064 1065 ret = ib_post_send(queue->qp, first, &bad_wr); 1066 if (ret) { 1067 dev_err(queue->ctrl->ctrl.device, 1068 "%s failed with error code %d\n", __func__, ret); 1069 } 1070 return ret; 1071 } 1072 1073 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1074 struct nvme_rdma_qe *qe) 1075 { 1076 struct ib_recv_wr wr, *bad_wr; 1077 struct ib_sge list; 1078 int ret; 1079 1080 list.addr = qe->dma; 1081 list.length = sizeof(struct nvme_completion); 1082 list.lkey = queue->device->pd->local_dma_lkey; 1083 1084 qe->cqe.done = nvme_rdma_recv_done; 1085 1086 wr.next = NULL; 1087 wr.wr_cqe = &qe->cqe; 1088 wr.sg_list = &list; 1089 wr.num_sge = 1; 1090 1091 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1092 if (ret) { 1093 dev_err(queue->ctrl->ctrl.device, 1094 "%s failed with error code %d\n", __func__, ret); 1095 } 1096 return ret; 1097 } 1098 1099 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1100 { 1101 u32 queue_idx = nvme_rdma_queue_idx(queue); 1102 1103 if (queue_idx == 0) 1104 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1105 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1106 } 1107 1108 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1109 { 1110 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1111 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1112 struct ib_device *dev = queue->device->dev; 1113 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1114 struct nvme_command *cmd = sqe->data; 1115 struct ib_sge sge; 1116 int ret; 1117 1118 if (WARN_ON_ONCE(aer_idx != 0)) 1119 return; 1120 1121 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1122 1123 memset(cmd, 0, sizeof(*cmd)); 1124 cmd->common.opcode = nvme_admin_async_event; 1125 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1126 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1127 nvme_rdma_set_sg_null(cmd); 1128 1129 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1130 DMA_TO_DEVICE); 1131 1132 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1133 WARN_ON_ONCE(ret); 1134 } 1135 1136 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1137 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1138 { 1139 struct request *rq; 1140 struct nvme_rdma_request *req; 1141 int ret = 0; 1142 1143 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1144 if (!rq) { 1145 dev_err(queue->ctrl->ctrl.device, 1146 "tag 0x%x on QP %#x not found\n", 1147 cqe->command_id, queue->qp->qp_num); 1148 nvme_rdma_error_recovery(queue->ctrl); 1149 return ret; 1150 } 1151 req = blk_mq_rq_to_pdu(rq); 1152 1153 if (rq->tag == tag) 1154 ret = 1; 1155 1156 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1157 wc->ex.invalidate_rkey == req->mr->rkey) 1158 req->mr->need_inval = false; 1159 1160 req->req.result = cqe->result; 1161 blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1); 1162 return ret; 1163 } 1164 1165 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1166 { 1167 struct nvme_rdma_qe *qe = 1168 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1169 struct nvme_rdma_queue *queue = cq->cq_context; 1170 struct ib_device *ibdev = queue->device->dev; 1171 struct nvme_completion *cqe = qe->data; 1172 const size_t len = sizeof(struct nvme_completion); 1173 int ret = 0; 1174 1175 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1176 nvme_rdma_wr_error(cq, wc, "RECV"); 1177 return 0; 1178 } 1179 1180 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1181 /* 1182 * AEN requests are special as they don't time out and can 1183 * survive any kind of queue freeze and often don't respond to 1184 * aborts. We don't even bother to allocate a struct request 1185 * for them but rather special case them here. 1186 */ 1187 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1188 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1189 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1190 &cqe->result); 1191 else 1192 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1193 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1194 1195 nvme_rdma_post_recv(queue, qe); 1196 return ret; 1197 } 1198 1199 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1200 { 1201 __nvme_rdma_recv_done(cq, wc, -1); 1202 } 1203 1204 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1205 { 1206 int ret, i; 1207 1208 for (i = 0; i < queue->queue_size; i++) { 1209 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1210 if (ret) 1211 goto out_destroy_queue_ib; 1212 } 1213 1214 return 0; 1215 1216 out_destroy_queue_ib: 1217 nvme_rdma_destroy_queue_ib(queue); 1218 return ret; 1219 } 1220 1221 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1222 struct rdma_cm_event *ev) 1223 { 1224 struct rdma_cm_id *cm_id = queue->cm_id; 1225 int status = ev->status; 1226 const char *rej_msg; 1227 const struct nvme_rdma_cm_rej *rej_data; 1228 u8 rej_data_len; 1229 1230 rej_msg = rdma_reject_msg(cm_id, status); 1231 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1232 1233 if (rej_data && rej_data_len >= sizeof(u16)) { 1234 u16 sts = le16_to_cpu(rej_data->sts); 1235 1236 dev_err(queue->ctrl->ctrl.device, 1237 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1238 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1239 } else { 1240 dev_err(queue->ctrl->ctrl.device, 1241 "Connect rejected: status %d (%s).\n", status, rej_msg); 1242 } 1243 1244 return -ECONNRESET; 1245 } 1246 1247 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1248 { 1249 struct nvme_rdma_device *dev; 1250 int ret; 1251 1252 dev = nvme_rdma_find_get_device(queue->cm_id); 1253 if (!dev) { 1254 dev_err(queue->cm_id->device->dev.parent, 1255 "no client data found!\n"); 1256 return -ECONNREFUSED; 1257 } 1258 1259 ret = nvme_rdma_create_queue_ib(queue, dev); 1260 if (ret) { 1261 nvme_rdma_dev_put(dev); 1262 goto out; 1263 } 1264 1265 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1266 if (ret) { 1267 dev_err(queue->ctrl->ctrl.device, 1268 "rdma_resolve_route failed (%d).\n", 1269 queue->cm_error); 1270 goto out_destroy_queue; 1271 } 1272 1273 return 0; 1274 1275 out_destroy_queue: 1276 nvme_rdma_destroy_queue_ib(queue); 1277 out: 1278 return ret; 1279 } 1280 1281 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1282 { 1283 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1284 struct rdma_conn_param param = { }; 1285 struct nvme_rdma_cm_req priv = { }; 1286 int ret; 1287 1288 param.qp_num = queue->qp->qp_num; 1289 param.flow_control = 1; 1290 1291 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1292 /* maximum retry count */ 1293 param.retry_count = 7; 1294 param.rnr_retry_count = 7; 1295 param.private_data = &priv; 1296 param.private_data_len = sizeof(priv); 1297 1298 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1299 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1300 /* 1301 * set the admin queue depth to the minimum size 1302 * specified by the Fabrics standard. 1303 */ 1304 if (priv.qid == 0) { 1305 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1306 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1307 } else { 1308 /* 1309 * current interpretation of the fabrics spec 1310 * is at minimum you make hrqsize sqsize+1, or a 1311 * 1's based representation of sqsize. 1312 */ 1313 priv.hrqsize = cpu_to_le16(queue->queue_size); 1314 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1315 } 1316 1317 ret = rdma_connect(queue->cm_id, ¶m); 1318 if (ret) { 1319 dev_err(ctrl->ctrl.device, 1320 "rdma_connect failed (%d).\n", ret); 1321 goto out_destroy_queue_ib; 1322 } 1323 1324 return 0; 1325 1326 out_destroy_queue_ib: 1327 nvme_rdma_destroy_queue_ib(queue); 1328 return ret; 1329 } 1330 1331 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1332 struct rdma_cm_event *ev) 1333 { 1334 struct nvme_rdma_queue *queue = cm_id->context; 1335 int cm_error = 0; 1336 1337 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1338 rdma_event_msg(ev->event), ev->event, 1339 ev->status, cm_id); 1340 1341 switch (ev->event) { 1342 case RDMA_CM_EVENT_ADDR_RESOLVED: 1343 cm_error = nvme_rdma_addr_resolved(queue); 1344 break; 1345 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1346 cm_error = nvme_rdma_route_resolved(queue); 1347 break; 1348 case RDMA_CM_EVENT_ESTABLISHED: 1349 queue->cm_error = nvme_rdma_conn_established(queue); 1350 /* complete cm_done regardless of success/failure */ 1351 complete(&queue->cm_done); 1352 return 0; 1353 case RDMA_CM_EVENT_REJECTED: 1354 cm_error = nvme_rdma_conn_rejected(queue, ev); 1355 break; 1356 case RDMA_CM_EVENT_ADDR_ERROR: 1357 case RDMA_CM_EVENT_ROUTE_ERROR: 1358 case RDMA_CM_EVENT_CONNECT_ERROR: 1359 case RDMA_CM_EVENT_UNREACHABLE: 1360 dev_dbg(queue->ctrl->ctrl.device, 1361 "CM error event %d\n", ev->event); 1362 cm_error = -ECONNRESET; 1363 break; 1364 case RDMA_CM_EVENT_DISCONNECTED: 1365 case RDMA_CM_EVENT_ADDR_CHANGE: 1366 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1367 dev_dbg(queue->ctrl->ctrl.device, 1368 "disconnect received - connection closed\n"); 1369 nvme_rdma_error_recovery(queue->ctrl); 1370 break; 1371 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1372 /* device removal is handled via the ib_client API */ 1373 break; 1374 default: 1375 dev_err(queue->ctrl->ctrl.device, 1376 "Unexpected RDMA CM event (%d)\n", ev->event); 1377 nvme_rdma_error_recovery(queue->ctrl); 1378 break; 1379 } 1380 1381 if (cm_error) { 1382 queue->cm_error = cm_error; 1383 complete(&queue->cm_done); 1384 } 1385 1386 return 0; 1387 } 1388 1389 static enum blk_eh_timer_return 1390 nvme_rdma_timeout(struct request *rq, bool reserved) 1391 { 1392 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1393 1394 /* queue error recovery */ 1395 nvme_rdma_error_recovery(req->queue->ctrl); 1396 1397 /* fail with DNR on cmd timeout */ 1398 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1399 1400 return BLK_EH_HANDLED; 1401 } 1402 1403 /* 1404 * We cannot accept any other command until the Connect command has completed. 1405 */ 1406 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, 1407 struct request *rq) 1408 { 1409 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1410 struct nvme_command *cmd = nvme_req(rq)->cmd; 1411 1412 if (!blk_rq_is_passthrough(rq) || 1413 cmd->common.opcode != nvme_fabrics_command || 1414 cmd->fabrics.fctype != nvme_fabrics_type_connect) 1415 return false; 1416 } 1417 1418 return true; 1419 } 1420 1421 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1422 const struct blk_mq_queue_data *bd) 1423 { 1424 struct nvme_ns *ns = hctx->queue->queuedata; 1425 struct nvme_rdma_queue *queue = hctx->driver_data; 1426 struct request *rq = bd->rq; 1427 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1428 struct nvme_rdma_qe *sqe = &req->sqe; 1429 struct nvme_command *c = sqe->data; 1430 bool flush = false; 1431 struct ib_device *dev; 1432 int ret; 1433 1434 WARN_ON_ONCE(rq->tag < 0); 1435 1436 if (!nvme_rdma_queue_is_ready(queue, rq)) 1437 return BLK_MQ_RQ_QUEUE_BUSY; 1438 1439 dev = queue->device->dev; 1440 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1441 sizeof(struct nvme_command), DMA_TO_DEVICE); 1442 1443 ret = nvme_setup_cmd(ns, rq, c); 1444 if (ret != BLK_MQ_RQ_QUEUE_OK) 1445 return ret; 1446 1447 blk_mq_start_request(rq); 1448 1449 ret = nvme_rdma_map_data(queue, rq, c); 1450 if (ret < 0) { 1451 dev_err(queue->ctrl->ctrl.device, 1452 "Failed to map data (%d)\n", ret); 1453 nvme_cleanup_cmd(rq); 1454 goto err; 1455 } 1456 1457 ib_dma_sync_single_for_device(dev, sqe->dma, 1458 sizeof(struct nvme_command), DMA_TO_DEVICE); 1459 1460 if (req_op(rq) == REQ_OP_FLUSH) 1461 flush = true; 1462 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1463 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1464 if (ret) { 1465 nvme_rdma_unmap_data(queue, rq); 1466 goto err; 1467 } 1468 1469 return BLK_MQ_RQ_QUEUE_OK; 1470 err: 1471 return (ret == -ENOMEM || ret == -EAGAIN) ? 1472 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1473 } 1474 1475 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1476 { 1477 struct nvme_rdma_queue *queue = hctx->driver_data; 1478 struct ib_cq *cq = queue->ib_cq; 1479 struct ib_wc wc; 1480 int found = 0; 1481 1482 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1483 while (ib_poll_cq(cq, 1, &wc) > 0) { 1484 struct ib_cqe *cqe = wc.wr_cqe; 1485 1486 if (cqe) { 1487 if (cqe->done == nvme_rdma_recv_done) 1488 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1489 else 1490 cqe->done(cq, &wc); 1491 } 1492 } 1493 1494 return found; 1495 } 1496 1497 static void nvme_rdma_complete_rq(struct request *rq) 1498 { 1499 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1500 struct nvme_rdma_queue *queue = req->queue; 1501 int error = 0; 1502 1503 nvme_rdma_unmap_data(queue, rq); 1504 1505 if (unlikely(rq->errors)) { 1506 if (nvme_req_needs_retry(rq, rq->errors)) { 1507 nvme_requeue_req(rq); 1508 return; 1509 } 1510 1511 if (blk_rq_is_passthrough(rq)) 1512 error = rq->errors; 1513 else 1514 error = nvme_error_status(rq->errors); 1515 } 1516 1517 blk_mq_end_request(rq, error); 1518 } 1519 1520 static struct blk_mq_ops nvme_rdma_mq_ops = { 1521 .queue_rq = nvme_rdma_queue_rq, 1522 .complete = nvme_rdma_complete_rq, 1523 .init_request = nvme_rdma_init_request, 1524 .exit_request = nvme_rdma_exit_request, 1525 .reinit_request = nvme_rdma_reinit_request, 1526 .init_hctx = nvme_rdma_init_hctx, 1527 .poll = nvme_rdma_poll, 1528 .timeout = nvme_rdma_timeout, 1529 }; 1530 1531 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1532 .queue_rq = nvme_rdma_queue_rq, 1533 .complete = nvme_rdma_complete_rq, 1534 .init_request = nvme_rdma_init_admin_request, 1535 .exit_request = nvme_rdma_exit_admin_request, 1536 .reinit_request = nvme_rdma_reinit_request, 1537 .init_hctx = nvme_rdma_init_admin_hctx, 1538 .timeout = nvme_rdma_timeout, 1539 }; 1540 1541 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1542 { 1543 int error; 1544 1545 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1546 if (error) 1547 return error; 1548 1549 ctrl->device = ctrl->queues[0].device; 1550 1551 /* 1552 * We need a reference on the device as long as the tag_set is alive, 1553 * as the MRs in the request structures need a valid ib_device. 1554 */ 1555 error = -EINVAL; 1556 if (!nvme_rdma_dev_get(ctrl->device)) 1557 goto out_free_queue; 1558 1559 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1560 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1561 1562 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1563 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1564 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1565 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1566 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1567 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1568 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1569 ctrl->admin_tag_set.driver_data = ctrl; 1570 ctrl->admin_tag_set.nr_hw_queues = 1; 1571 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1572 1573 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1574 if (error) 1575 goto out_put_dev; 1576 1577 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1578 if (IS_ERR(ctrl->ctrl.admin_q)) { 1579 error = PTR_ERR(ctrl->ctrl.admin_q); 1580 goto out_free_tagset; 1581 } 1582 1583 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1584 if (error) 1585 goto out_cleanup_queue; 1586 1587 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1588 1589 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1590 if (error) { 1591 dev_err(ctrl->ctrl.device, 1592 "prop_get NVME_REG_CAP failed\n"); 1593 goto out_cleanup_queue; 1594 } 1595 1596 ctrl->ctrl.sqsize = 1597 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1598 1599 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1600 if (error) 1601 goto out_cleanup_queue; 1602 1603 ctrl->ctrl.max_hw_sectors = 1604 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1605 1606 error = nvme_init_identify(&ctrl->ctrl); 1607 if (error) 1608 goto out_cleanup_queue; 1609 1610 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1611 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1612 DMA_TO_DEVICE); 1613 if (error) 1614 goto out_cleanup_queue; 1615 1616 nvme_start_keep_alive(&ctrl->ctrl); 1617 1618 return 0; 1619 1620 out_cleanup_queue: 1621 blk_cleanup_queue(ctrl->ctrl.admin_q); 1622 out_free_tagset: 1623 /* disconnect and drain the queue before freeing the tagset */ 1624 nvme_rdma_stop_queue(&ctrl->queues[0]); 1625 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1626 out_put_dev: 1627 nvme_rdma_dev_put(ctrl->device); 1628 out_free_queue: 1629 nvme_rdma_free_queue(&ctrl->queues[0]); 1630 return error; 1631 } 1632 1633 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1634 { 1635 nvme_stop_keep_alive(&ctrl->ctrl); 1636 cancel_work_sync(&ctrl->err_work); 1637 cancel_delayed_work_sync(&ctrl->reconnect_work); 1638 1639 if (ctrl->queue_count > 1) { 1640 nvme_stop_queues(&ctrl->ctrl); 1641 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1642 nvme_cancel_request, &ctrl->ctrl); 1643 nvme_rdma_free_io_queues(ctrl); 1644 } 1645 1646 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1647 nvme_shutdown_ctrl(&ctrl->ctrl); 1648 1649 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1650 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1651 nvme_cancel_request, &ctrl->ctrl); 1652 nvme_rdma_destroy_admin_queue(ctrl); 1653 } 1654 1655 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1656 { 1657 nvme_uninit_ctrl(&ctrl->ctrl); 1658 if (shutdown) 1659 nvme_rdma_shutdown_ctrl(ctrl); 1660 1661 if (ctrl->ctrl.tagset) { 1662 blk_cleanup_queue(ctrl->ctrl.connect_q); 1663 blk_mq_free_tag_set(&ctrl->tag_set); 1664 nvme_rdma_dev_put(ctrl->device); 1665 } 1666 1667 nvme_put_ctrl(&ctrl->ctrl); 1668 } 1669 1670 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1671 { 1672 struct nvme_rdma_ctrl *ctrl = container_of(work, 1673 struct nvme_rdma_ctrl, delete_work); 1674 1675 __nvme_rdma_remove_ctrl(ctrl, true); 1676 } 1677 1678 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1679 { 1680 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1681 return -EBUSY; 1682 1683 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1684 return -EBUSY; 1685 1686 return 0; 1687 } 1688 1689 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1690 { 1691 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1692 int ret = 0; 1693 1694 /* 1695 * Keep a reference until all work is flushed since 1696 * __nvme_rdma_del_ctrl can free the ctrl mem 1697 */ 1698 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1699 return -EBUSY; 1700 ret = __nvme_rdma_del_ctrl(ctrl); 1701 if (!ret) 1702 flush_work(&ctrl->delete_work); 1703 nvme_put_ctrl(&ctrl->ctrl); 1704 return ret; 1705 } 1706 1707 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1708 { 1709 struct nvme_rdma_ctrl *ctrl = container_of(work, 1710 struct nvme_rdma_ctrl, delete_work); 1711 1712 __nvme_rdma_remove_ctrl(ctrl, false); 1713 } 1714 1715 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1716 { 1717 struct nvme_rdma_ctrl *ctrl = container_of(work, 1718 struct nvme_rdma_ctrl, reset_work); 1719 int ret; 1720 bool changed; 1721 1722 nvme_rdma_shutdown_ctrl(ctrl); 1723 1724 ret = nvme_rdma_configure_admin_queue(ctrl); 1725 if (ret) { 1726 /* ctrl is already shutdown, just remove the ctrl */ 1727 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1728 goto del_dead_ctrl; 1729 } 1730 1731 if (ctrl->queue_count > 1) { 1732 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1733 if (ret) 1734 goto del_dead_ctrl; 1735 1736 ret = nvme_rdma_init_io_queues(ctrl); 1737 if (ret) 1738 goto del_dead_ctrl; 1739 1740 ret = nvme_rdma_connect_io_queues(ctrl); 1741 if (ret) 1742 goto del_dead_ctrl; 1743 } 1744 1745 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1746 WARN_ON_ONCE(!changed); 1747 1748 if (ctrl->queue_count > 1) { 1749 nvme_start_queues(&ctrl->ctrl); 1750 nvme_queue_scan(&ctrl->ctrl); 1751 nvme_queue_async_events(&ctrl->ctrl); 1752 } 1753 1754 return; 1755 1756 del_dead_ctrl: 1757 /* Deleting this dead controller... */ 1758 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1759 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1760 } 1761 1762 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1763 { 1764 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1765 1766 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1767 return -EBUSY; 1768 1769 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1770 return -EBUSY; 1771 1772 flush_work(&ctrl->reset_work); 1773 1774 return 0; 1775 } 1776 1777 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1778 .name = "rdma", 1779 .module = THIS_MODULE, 1780 .is_fabrics = true, 1781 .reg_read32 = nvmf_reg_read32, 1782 .reg_read64 = nvmf_reg_read64, 1783 .reg_write32 = nvmf_reg_write32, 1784 .reset_ctrl = nvme_rdma_reset_ctrl, 1785 .free_ctrl = nvme_rdma_free_ctrl, 1786 .submit_async_event = nvme_rdma_submit_async_event, 1787 .delete_ctrl = nvme_rdma_del_ctrl, 1788 .get_subsysnqn = nvmf_get_subsysnqn, 1789 .get_address = nvmf_get_address, 1790 }; 1791 1792 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1793 { 1794 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1795 int ret; 1796 1797 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1798 if (ret) 1799 return ret; 1800 1801 ctrl->queue_count = opts->nr_io_queues + 1; 1802 if (ctrl->queue_count < 2) 1803 return 0; 1804 1805 dev_info(ctrl->ctrl.device, 1806 "creating %d I/O queues.\n", opts->nr_io_queues); 1807 1808 ret = nvme_rdma_init_io_queues(ctrl); 1809 if (ret) 1810 return ret; 1811 1812 /* 1813 * We need a reference on the device as long as the tag_set is alive, 1814 * as the MRs in the request structures need a valid ib_device. 1815 */ 1816 ret = -EINVAL; 1817 if (!nvme_rdma_dev_get(ctrl->device)) 1818 goto out_free_io_queues; 1819 1820 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1821 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1822 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1823 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1824 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1825 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1826 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1827 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1828 ctrl->tag_set.driver_data = ctrl; 1829 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1830 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1831 1832 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1833 if (ret) 1834 goto out_put_dev; 1835 ctrl->ctrl.tagset = &ctrl->tag_set; 1836 1837 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1838 if (IS_ERR(ctrl->ctrl.connect_q)) { 1839 ret = PTR_ERR(ctrl->ctrl.connect_q); 1840 goto out_free_tag_set; 1841 } 1842 1843 ret = nvme_rdma_connect_io_queues(ctrl); 1844 if (ret) 1845 goto out_cleanup_connect_q; 1846 1847 return 0; 1848 1849 out_cleanup_connect_q: 1850 blk_cleanup_queue(ctrl->ctrl.connect_q); 1851 out_free_tag_set: 1852 blk_mq_free_tag_set(&ctrl->tag_set); 1853 out_put_dev: 1854 nvme_rdma_dev_put(ctrl->device); 1855 out_free_io_queues: 1856 nvme_rdma_free_io_queues(ctrl); 1857 return ret; 1858 } 1859 1860 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1861 { 1862 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1863 size_t buflen = strlen(p); 1864 1865 /* XXX: handle IPv6 addresses */ 1866 1867 if (buflen > INET_ADDRSTRLEN) 1868 return -EINVAL; 1869 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1870 return -EINVAL; 1871 in_addr->sin_family = AF_INET; 1872 return 0; 1873 } 1874 1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1876 struct nvmf_ctrl_options *opts) 1877 { 1878 struct nvme_rdma_ctrl *ctrl; 1879 int ret; 1880 bool changed; 1881 1882 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1883 if (!ctrl) 1884 return ERR_PTR(-ENOMEM); 1885 ctrl->ctrl.opts = opts; 1886 INIT_LIST_HEAD(&ctrl->list); 1887 1888 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1889 if (ret) { 1890 pr_err("malformed IP address passed: %s\n", opts->traddr); 1891 goto out_free_ctrl; 1892 } 1893 1894 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1895 ret = nvme_rdma_parse_ipaddr(&ctrl->src_addr_in, 1896 opts->host_traddr); 1897 if (ret) { 1898 pr_err("malformed src IP address passed: %s\n", 1899 opts->host_traddr); 1900 goto out_free_ctrl; 1901 } 1902 } 1903 1904 if (opts->mask & NVMF_OPT_TRSVCID) { 1905 u16 port; 1906 1907 ret = kstrtou16(opts->trsvcid, 0, &port); 1908 if (ret) 1909 goto out_free_ctrl; 1910 1911 ctrl->addr_in.sin_port = cpu_to_be16(port); 1912 } else { 1913 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1914 } 1915 1916 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1917 0 /* no quirks, we're perfect! */); 1918 if (ret) 1919 goto out_free_ctrl; 1920 1921 ctrl->reconnect_delay = opts->reconnect_delay; 1922 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1923 nvme_rdma_reconnect_ctrl_work); 1924 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1925 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1926 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1927 spin_lock_init(&ctrl->lock); 1928 1929 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1930 ctrl->ctrl.sqsize = opts->queue_size - 1; 1931 ctrl->ctrl.kato = opts->kato; 1932 1933 ret = -ENOMEM; 1934 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1935 GFP_KERNEL); 1936 if (!ctrl->queues) 1937 goto out_uninit_ctrl; 1938 1939 ret = nvme_rdma_configure_admin_queue(ctrl); 1940 if (ret) 1941 goto out_kfree_queues; 1942 1943 /* sanity check icdoff */ 1944 if (ctrl->ctrl.icdoff) { 1945 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1946 goto out_remove_admin_queue; 1947 } 1948 1949 /* sanity check keyed sgls */ 1950 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1951 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1952 goto out_remove_admin_queue; 1953 } 1954 1955 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1956 /* warn if maxcmd is lower than queue_size */ 1957 dev_warn(ctrl->ctrl.device, 1958 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1959 opts->queue_size, ctrl->ctrl.maxcmd); 1960 opts->queue_size = ctrl->ctrl.maxcmd; 1961 } 1962 1963 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1964 /* warn if sqsize is lower than queue_size */ 1965 dev_warn(ctrl->ctrl.device, 1966 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1967 opts->queue_size, ctrl->ctrl.sqsize + 1); 1968 opts->queue_size = ctrl->ctrl.sqsize + 1; 1969 } 1970 1971 if (opts->nr_io_queues) { 1972 ret = nvme_rdma_create_io_queues(ctrl); 1973 if (ret) 1974 goto out_remove_admin_queue; 1975 } 1976 1977 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1978 WARN_ON_ONCE(!changed); 1979 1980 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1981 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1982 1983 kref_get(&ctrl->ctrl.kref); 1984 1985 mutex_lock(&nvme_rdma_ctrl_mutex); 1986 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1987 mutex_unlock(&nvme_rdma_ctrl_mutex); 1988 1989 if (opts->nr_io_queues) { 1990 nvme_queue_scan(&ctrl->ctrl); 1991 nvme_queue_async_events(&ctrl->ctrl); 1992 } 1993 1994 return &ctrl->ctrl; 1995 1996 out_remove_admin_queue: 1997 nvme_stop_keep_alive(&ctrl->ctrl); 1998 nvme_rdma_destroy_admin_queue(ctrl); 1999 out_kfree_queues: 2000 kfree(ctrl->queues); 2001 out_uninit_ctrl: 2002 nvme_uninit_ctrl(&ctrl->ctrl); 2003 nvme_put_ctrl(&ctrl->ctrl); 2004 if (ret > 0) 2005 ret = -EIO; 2006 return ERR_PTR(ret); 2007 out_free_ctrl: 2008 kfree(ctrl); 2009 return ERR_PTR(ret); 2010 } 2011 2012 static struct nvmf_transport_ops nvme_rdma_transport = { 2013 .name = "rdma", 2014 .required_opts = NVMF_OPT_TRADDR, 2015 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2016 NVMF_OPT_HOST_TRADDR, 2017 .create_ctrl = nvme_rdma_create_ctrl, 2018 }; 2019 2020 static void nvme_rdma_add_one(struct ib_device *ib_device) 2021 { 2022 } 2023 2024 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2025 { 2026 struct nvme_rdma_ctrl *ctrl; 2027 2028 /* Delete all controllers using this device */ 2029 mutex_lock(&nvme_rdma_ctrl_mutex); 2030 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2031 if (ctrl->device->dev != ib_device) 2032 continue; 2033 dev_info(ctrl->ctrl.device, 2034 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2035 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2036 __nvme_rdma_del_ctrl(ctrl); 2037 } 2038 mutex_unlock(&nvme_rdma_ctrl_mutex); 2039 2040 flush_workqueue(nvme_rdma_wq); 2041 } 2042 2043 static struct ib_client nvme_rdma_ib_client = { 2044 .name = "nvme_rdma", 2045 .add = nvme_rdma_add_one, 2046 .remove = nvme_rdma_remove_one 2047 }; 2048 2049 static int __init nvme_rdma_init_module(void) 2050 { 2051 int ret; 2052 2053 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2054 if (!nvme_rdma_wq) 2055 return -ENOMEM; 2056 2057 ret = ib_register_client(&nvme_rdma_ib_client); 2058 if (ret) { 2059 destroy_workqueue(nvme_rdma_wq); 2060 return ret; 2061 } 2062 2063 return nvmf_register_transport(&nvme_rdma_transport); 2064 } 2065 2066 static void __exit nvme_rdma_cleanup_module(void) 2067 { 2068 nvmf_unregister_transport(&nvme_rdma_transport); 2069 ib_unregister_client(&nvme_rdma_ib_client); 2070 destroy_workqueue(nvme_rdma_wq); 2071 } 2072 2073 module_init(nvme_rdma_init_module); 2074 module_exit(nvme_rdma_cleanup_module); 2075 2076 MODULE_LICENSE("GPL v2"); 2077