xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 4f6cce39)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32 
33 #include "nvme.h"
34 #include "fabrics.h"
35 
36 
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS	1000		/* 1 second */
38 
39 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51 	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52 
53 struct nvme_rdma_device {
54 	struct ib_device       *dev;
55 	struct ib_pd	       *pd;
56 	struct kref		ref;
57 	struct list_head	entry;
58 };
59 
60 struct nvme_rdma_qe {
61 	struct ib_cqe		cqe;
62 	void			*data;
63 	u64			dma;
64 };
65 
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68 	struct nvme_request	req;
69 	struct ib_mr		*mr;
70 	struct nvme_rdma_qe	sqe;
71 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72 	u32			num_sge;
73 	int			nents;
74 	bool			inline_data;
75 	struct ib_reg_wr	reg_wr;
76 	struct ib_cqe		reg_cqe;
77 	struct nvme_rdma_queue  *queue;
78 	struct sg_table		sg_table;
79 	struct scatterlist	first_sgl[];
80 };
81 
82 enum nvme_rdma_queue_flags {
83 	NVME_RDMA_Q_CONNECTED = (1 << 0),
84 	NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85 	NVME_RDMA_Q_DELETING = (1 << 2),
86 	NVME_RDMA_Q_LIVE = (1 << 3),
87 };
88 
89 struct nvme_rdma_queue {
90 	struct nvme_rdma_qe	*rsp_ring;
91 	u8			sig_count;
92 	int			queue_size;
93 	size_t			cmnd_capsule_len;
94 	struct nvme_rdma_ctrl	*ctrl;
95 	struct nvme_rdma_device	*device;
96 	struct ib_cq		*ib_cq;
97 	struct ib_qp		*qp;
98 
99 	unsigned long		flags;
100 	struct rdma_cm_id	*cm_id;
101 	int			cm_error;
102 	struct completion	cm_done;
103 };
104 
105 struct nvme_rdma_ctrl {
106 	/* read and written in the hot path */
107 	spinlock_t		lock;
108 
109 	/* read only in the hot path */
110 	struct nvme_rdma_queue	*queues;
111 	u32			queue_count;
112 
113 	/* other member variables */
114 	struct blk_mq_tag_set	tag_set;
115 	struct work_struct	delete_work;
116 	struct work_struct	reset_work;
117 	struct work_struct	err_work;
118 
119 	struct nvme_rdma_qe	async_event_sqe;
120 
121 	int			reconnect_delay;
122 	struct delayed_work	reconnect_work;
123 
124 	struct list_head	list;
125 
126 	struct blk_mq_tag_set	admin_tag_set;
127 	struct nvme_rdma_device	*device;
128 
129 	u64			cap;
130 	u32			max_fr_pages;
131 
132 	union {
133 		struct sockaddr addr;
134 		struct sockaddr_in addr_in;
135 	};
136 	union {
137 		struct sockaddr src_addr;
138 		struct sockaddr_in src_addr_in;
139 	};
140 
141 	struct nvme_ctrl	ctrl;
142 };
143 
144 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
145 {
146 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
147 }
148 
149 static LIST_HEAD(device_list);
150 static DEFINE_MUTEX(device_list_mutex);
151 
152 static LIST_HEAD(nvme_rdma_ctrl_list);
153 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
154 
155 static struct workqueue_struct *nvme_rdma_wq;
156 
157 /*
158  * Disabling this option makes small I/O goes faster, but is fundamentally
159  * unsafe.  With it turned off we will have to register a global rkey that
160  * allows read and write access to all physical memory.
161  */
162 static bool register_always = true;
163 module_param(register_always, bool, 0444);
164 MODULE_PARM_DESC(register_always,
165 	 "Use memory registration even for contiguous memory regions");
166 
167 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
168 		struct rdma_cm_event *event);
169 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
170 
171 /* XXX: really should move to a generic header sooner or later.. */
172 static inline void put_unaligned_le24(u32 val, u8 *p)
173 {
174 	*p++ = val;
175 	*p++ = val >> 8;
176 	*p++ = val >> 16;
177 }
178 
179 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
180 {
181 	return queue - queue->ctrl->queues;
182 }
183 
184 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
185 {
186 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
187 }
188 
189 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
190 		size_t capsule_size, enum dma_data_direction dir)
191 {
192 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
193 	kfree(qe->data);
194 }
195 
196 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
197 		size_t capsule_size, enum dma_data_direction dir)
198 {
199 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
200 	if (!qe->data)
201 		return -ENOMEM;
202 
203 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
204 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
205 		kfree(qe->data);
206 		return -ENOMEM;
207 	}
208 
209 	return 0;
210 }
211 
212 static void nvme_rdma_free_ring(struct ib_device *ibdev,
213 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
214 		size_t capsule_size, enum dma_data_direction dir)
215 {
216 	int i;
217 
218 	for (i = 0; i < ib_queue_size; i++)
219 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
220 	kfree(ring);
221 }
222 
223 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
224 		size_t ib_queue_size, size_t capsule_size,
225 		enum dma_data_direction dir)
226 {
227 	struct nvme_rdma_qe *ring;
228 	int i;
229 
230 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
231 	if (!ring)
232 		return NULL;
233 
234 	for (i = 0; i < ib_queue_size; i++) {
235 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
236 			goto out_free_ring;
237 	}
238 
239 	return ring;
240 
241 out_free_ring:
242 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
243 	return NULL;
244 }
245 
246 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
247 {
248 	pr_debug("QP event %s (%d)\n",
249 		 ib_event_msg(event->event), event->event);
250 
251 }
252 
253 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
254 {
255 	wait_for_completion_interruptible_timeout(&queue->cm_done,
256 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
257 	return queue->cm_error;
258 }
259 
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 
279 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280 
281 	queue->qp = queue->cm_id->qp;
282 	return ret;
283 }
284 
285 static int nvme_rdma_reinit_request(void *data, struct request *rq)
286 {
287 	struct nvme_rdma_ctrl *ctrl = data;
288 	struct nvme_rdma_device *dev = ctrl->device;
289 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 	int ret = 0;
291 
292 	if (!req->mr->need_inval)
293 		goto out;
294 
295 	ib_dereg_mr(req->mr);
296 
297 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
298 			ctrl->max_fr_pages);
299 	if (IS_ERR(req->mr)) {
300 		ret = PTR_ERR(req->mr);
301 		req->mr = NULL;
302 		goto out;
303 	}
304 
305 	req->mr->need_inval = false;
306 
307 out:
308 	return ret;
309 }
310 
311 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
312 		struct request *rq, unsigned int queue_idx)
313 {
314 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
315 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
316 	struct nvme_rdma_device *dev = queue->device;
317 
318 	if (req->mr)
319 		ib_dereg_mr(req->mr);
320 
321 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
322 			DMA_TO_DEVICE);
323 }
324 
325 static void nvme_rdma_exit_request(void *data, struct request *rq,
326 				unsigned int hctx_idx, unsigned int rq_idx)
327 {
328 	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
329 }
330 
331 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
332 				unsigned int hctx_idx, unsigned int rq_idx)
333 {
334 	return __nvme_rdma_exit_request(data, rq, 0);
335 }
336 
337 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
338 		struct request *rq, unsigned int queue_idx)
339 {
340 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
341 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
342 	struct nvme_rdma_device *dev = queue->device;
343 	struct ib_device *ibdev = dev->dev;
344 	int ret;
345 
346 	BUG_ON(queue_idx >= ctrl->queue_count);
347 
348 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
349 			DMA_TO_DEVICE);
350 	if (ret)
351 		return ret;
352 
353 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
354 			ctrl->max_fr_pages);
355 	if (IS_ERR(req->mr)) {
356 		ret = PTR_ERR(req->mr);
357 		goto out_free_qe;
358 	}
359 
360 	req->queue = queue;
361 
362 	return 0;
363 
364 out_free_qe:
365 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
366 			DMA_TO_DEVICE);
367 	return -ENOMEM;
368 }
369 
370 static int nvme_rdma_init_request(void *data, struct request *rq,
371 				unsigned int hctx_idx, unsigned int rq_idx,
372 				unsigned int numa_node)
373 {
374 	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
375 }
376 
377 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
378 				unsigned int hctx_idx, unsigned int rq_idx,
379 				unsigned int numa_node)
380 {
381 	return __nvme_rdma_init_request(data, rq, 0);
382 }
383 
384 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
385 		unsigned int hctx_idx)
386 {
387 	struct nvme_rdma_ctrl *ctrl = data;
388 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
389 
390 	BUG_ON(hctx_idx >= ctrl->queue_count);
391 
392 	hctx->driver_data = queue;
393 	return 0;
394 }
395 
396 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 		unsigned int hctx_idx)
398 {
399 	struct nvme_rdma_ctrl *ctrl = data;
400 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
401 
402 	BUG_ON(hctx_idx != 0);
403 
404 	hctx->driver_data = queue;
405 	return 0;
406 }
407 
408 static void nvme_rdma_free_dev(struct kref *ref)
409 {
410 	struct nvme_rdma_device *ndev =
411 		container_of(ref, struct nvme_rdma_device, ref);
412 
413 	mutex_lock(&device_list_mutex);
414 	list_del(&ndev->entry);
415 	mutex_unlock(&device_list_mutex);
416 
417 	ib_dealloc_pd(ndev->pd);
418 	kfree(ndev);
419 }
420 
421 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
422 {
423 	kref_put(&dev->ref, nvme_rdma_free_dev);
424 }
425 
426 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
427 {
428 	return kref_get_unless_zero(&dev->ref);
429 }
430 
431 static struct nvme_rdma_device *
432 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
433 {
434 	struct nvme_rdma_device *ndev;
435 
436 	mutex_lock(&device_list_mutex);
437 	list_for_each_entry(ndev, &device_list, entry) {
438 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
439 		    nvme_rdma_dev_get(ndev))
440 			goto out_unlock;
441 	}
442 
443 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
444 	if (!ndev)
445 		goto out_err;
446 
447 	ndev->dev = cm_id->device;
448 	kref_init(&ndev->ref);
449 
450 	ndev->pd = ib_alloc_pd(ndev->dev,
451 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
452 	if (IS_ERR(ndev->pd))
453 		goto out_free_dev;
454 
455 	if (!(ndev->dev->attrs.device_cap_flags &
456 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
457 		dev_err(&ndev->dev->dev,
458 			"Memory registrations not supported.\n");
459 		goto out_free_pd;
460 	}
461 
462 	list_add(&ndev->entry, &device_list);
463 out_unlock:
464 	mutex_unlock(&device_list_mutex);
465 	return ndev;
466 
467 out_free_pd:
468 	ib_dealloc_pd(ndev->pd);
469 out_free_dev:
470 	kfree(ndev);
471 out_err:
472 	mutex_unlock(&device_list_mutex);
473 	return NULL;
474 }
475 
476 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
477 {
478 	struct nvme_rdma_device *dev;
479 	struct ib_device *ibdev;
480 
481 	if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
482 		return;
483 
484 	dev = queue->device;
485 	ibdev = dev->dev;
486 	rdma_destroy_qp(queue->cm_id);
487 	ib_free_cq(queue->ib_cq);
488 
489 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
490 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491 
492 	nvme_rdma_dev_put(dev);
493 }
494 
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
496 		struct nvme_rdma_device *dev)
497 {
498 	struct ib_device *ibdev = dev->dev;
499 	const int send_wr_factor = 3;			/* MR, SEND, INV */
500 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
501 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
502 
503 	int ret;
504 
505 	queue->device = dev;
506 
507 	/*
508 	 * The admin queue is barely used once the controller is live, so don't
509 	 * bother to spread it out.
510 	 */
511 	if (idx == 0)
512 		comp_vector = 0;
513 	else
514 		comp_vector = idx % ibdev->num_comp_vectors;
515 
516 
517 	/* +1 for ib_stop_cq */
518 	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
519 				cq_factor * queue->queue_size + 1, comp_vector,
520 				IB_POLL_SOFTIRQ);
521 	if (IS_ERR(queue->ib_cq)) {
522 		ret = PTR_ERR(queue->ib_cq);
523 		goto out;
524 	}
525 
526 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
527 	if (ret)
528 		goto out_destroy_ib_cq;
529 
530 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
531 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
532 	if (!queue->rsp_ring) {
533 		ret = -ENOMEM;
534 		goto out_destroy_qp;
535 	}
536 	set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
537 
538 	return 0;
539 
540 out_destroy_qp:
541 	ib_destroy_qp(queue->qp);
542 out_destroy_ib_cq:
543 	ib_free_cq(queue->ib_cq);
544 out:
545 	return ret;
546 }
547 
548 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
549 		int idx, size_t queue_size)
550 {
551 	struct nvme_rdma_queue *queue;
552 	struct sockaddr *src_addr = NULL;
553 	int ret;
554 
555 	queue = &ctrl->queues[idx];
556 	queue->ctrl = ctrl;
557 	init_completion(&queue->cm_done);
558 
559 	if (idx > 0)
560 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
561 	else
562 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
563 
564 	queue->queue_size = queue_size;
565 
566 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
567 			RDMA_PS_TCP, IB_QPT_RC);
568 	if (IS_ERR(queue->cm_id)) {
569 		dev_info(ctrl->ctrl.device,
570 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
571 		return PTR_ERR(queue->cm_id);
572 	}
573 
574 	queue->cm_error = -ETIMEDOUT;
575 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
576 		src_addr = &ctrl->src_addr;
577 
578 	ret = rdma_resolve_addr(queue->cm_id, src_addr, &ctrl->addr,
579 			NVME_RDMA_CONNECT_TIMEOUT_MS);
580 	if (ret) {
581 		dev_info(ctrl->ctrl.device,
582 			"rdma_resolve_addr failed (%d).\n", ret);
583 		goto out_destroy_cm_id;
584 	}
585 
586 	ret = nvme_rdma_wait_for_cm(queue);
587 	if (ret) {
588 		dev_info(ctrl->ctrl.device,
589 			"rdma_resolve_addr wait failed (%d).\n", ret);
590 		goto out_destroy_cm_id;
591 	}
592 
593 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
594 	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
595 
596 	return 0;
597 
598 out_destroy_cm_id:
599 	nvme_rdma_destroy_queue_ib(queue);
600 	rdma_destroy_id(queue->cm_id);
601 	return ret;
602 }
603 
604 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
605 {
606 	rdma_disconnect(queue->cm_id);
607 	ib_drain_qp(queue->qp);
608 }
609 
610 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
611 {
612 	nvme_rdma_destroy_queue_ib(queue);
613 	rdma_destroy_id(queue->cm_id);
614 }
615 
616 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
617 {
618 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
619 		return;
620 	nvme_rdma_stop_queue(queue);
621 	nvme_rdma_free_queue(queue);
622 }
623 
624 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
625 {
626 	int i;
627 
628 	for (i = 1; i < ctrl->queue_count; i++)
629 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
630 }
631 
632 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
633 {
634 	int i, ret = 0;
635 
636 	for (i = 1; i < ctrl->queue_count; i++) {
637 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
638 		if (ret) {
639 			dev_info(ctrl->ctrl.device,
640 				"failed to connect i/o queue: %d\n", ret);
641 			goto out_free_queues;
642 		}
643 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
644 	}
645 
646 	return 0;
647 
648 out_free_queues:
649 	nvme_rdma_free_io_queues(ctrl);
650 	return ret;
651 }
652 
653 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
654 {
655 	int i, ret;
656 
657 	for (i = 1; i < ctrl->queue_count; i++) {
658 		ret = nvme_rdma_init_queue(ctrl, i,
659 					   ctrl->ctrl.opts->queue_size);
660 		if (ret) {
661 			dev_info(ctrl->ctrl.device,
662 				"failed to initialize i/o queue: %d\n", ret);
663 			goto out_free_queues;
664 		}
665 	}
666 
667 	return 0;
668 
669 out_free_queues:
670 	for (i--; i >= 1; i--)
671 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
672 
673 	return ret;
674 }
675 
676 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
677 {
678 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
679 			sizeof(struct nvme_command), DMA_TO_DEVICE);
680 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
681 	blk_cleanup_queue(ctrl->ctrl.admin_q);
682 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
683 	nvme_rdma_dev_put(ctrl->device);
684 }
685 
686 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
687 {
688 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
689 
690 	if (list_empty(&ctrl->list))
691 		goto free_ctrl;
692 
693 	mutex_lock(&nvme_rdma_ctrl_mutex);
694 	list_del(&ctrl->list);
695 	mutex_unlock(&nvme_rdma_ctrl_mutex);
696 
697 	kfree(ctrl->queues);
698 	nvmf_free_options(nctrl->opts);
699 free_ctrl:
700 	kfree(ctrl);
701 }
702 
703 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
704 {
705 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
706 			struct nvme_rdma_ctrl, reconnect_work);
707 	bool changed;
708 	int ret;
709 
710 	if (ctrl->queue_count > 1) {
711 		nvme_rdma_free_io_queues(ctrl);
712 
713 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
714 		if (ret)
715 			goto requeue;
716 	}
717 
718 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
719 
720 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
721 	if (ret)
722 		goto requeue;
723 
724 	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
725 	if (ret)
726 		goto requeue;
727 
728 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
729 
730 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
731 	if (ret)
732 		goto stop_admin_q;
733 
734 	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
735 
736 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
737 	if (ret)
738 		goto stop_admin_q;
739 
740 	nvme_start_keep_alive(&ctrl->ctrl);
741 
742 	if (ctrl->queue_count > 1) {
743 		ret = nvme_rdma_init_io_queues(ctrl);
744 		if (ret)
745 			goto stop_admin_q;
746 
747 		ret = nvme_rdma_connect_io_queues(ctrl);
748 		if (ret)
749 			goto stop_admin_q;
750 	}
751 
752 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
753 	WARN_ON_ONCE(!changed);
754 
755 	if (ctrl->queue_count > 1) {
756 		nvme_start_queues(&ctrl->ctrl);
757 		nvme_queue_scan(&ctrl->ctrl);
758 		nvme_queue_async_events(&ctrl->ctrl);
759 	}
760 
761 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
762 
763 	return;
764 
765 stop_admin_q:
766 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
767 requeue:
768 	/* Make sure we are not resetting/deleting */
769 	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
770 		dev_info(ctrl->ctrl.device,
771 			"Failed reconnect attempt, requeueing...\n");
772 		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
773 					ctrl->reconnect_delay * HZ);
774 	}
775 }
776 
777 static void nvme_rdma_error_recovery_work(struct work_struct *work)
778 {
779 	struct nvme_rdma_ctrl *ctrl = container_of(work,
780 			struct nvme_rdma_ctrl, err_work);
781 	int i;
782 
783 	nvme_stop_keep_alive(&ctrl->ctrl);
784 
785 	for (i = 0; i < ctrl->queue_count; i++) {
786 		clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
787 		clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
788 	}
789 
790 	if (ctrl->queue_count > 1)
791 		nvme_stop_queues(&ctrl->ctrl);
792 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
793 
794 	/* We must take care of fastfail/requeue all our inflight requests */
795 	if (ctrl->queue_count > 1)
796 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
797 					nvme_cancel_request, &ctrl->ctrl);
798 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
799 				nvme_cancel_request, &ctrl->ctrl);
800 
801 	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
802 		ctrl->reconnect_delay);
803 
804 	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
805 				ctrl->reconnect_delay * HZ);
806 }
807 
808 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
809 {
810 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
811 		return;
812 
813 	queue_work(nvme_rdma_wq, &ctrl->err_work);
814 }
815 
816 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
817 		const char *op)
818 {
819 	struct nvme_rdma_queue *queue = cq->cq_context;
820 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
821 
822 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
823 		dev_info(ctrl->ctrl.device,
824 			     "%s for CQE 0x%p failed with status %s (%d)\n",
825 			     op, wc->wr_cqe,
826 			     ib_wc_status_msg(wc->status), wc->status);
827 	nvme_rdma_error_recovery(ctrl);
828 }
829 
830 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
831 {
832 	if (unlikely(wc->status != IB_WC_SUCCESS))
833 		nvme_rdma_wr_error(cq, wc, "MEMREG");
834 }
835 
836 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
837 {
838 	if (unlikely(wc->status != IB_WC_SUCCESS))
839 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
840 }
841 
842 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
843 		struct nvme_rdma_request *req)
844 {
845 	struct ib_send_wr *bad_wr;
846 	struct ib_send_wr wr = {
847 		.opcode		    = IB_WR_LOCAL_INV,
848 		.next		    = NULL,
849 		.num_sge	    = 0,
850 		.send_flags	    = 0,
851 		.ex.invalidate_rkey = req->mr->rkey,
852 	};
853 
854 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
855 	wr.wr_cqe = &req->reg_cqe;
856 
857 	return ib_post_send(queue->qp, &wr, &bad_wr);
858 }
859 
860 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
861 		struct request *rq)
862 {
863 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
864 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
865 	struct nvme_rdma_device *dev = queue->device;
866 	struct ib_device *ibdev = dev->dev;
867 	int res;
868 
869 	if (!blk_rq_bytes(rq))
870 		return;
871 
872 	if (req->mr->need_inval) {
873 		res = nvme_rdma_inv_rkey(queue, req);
874 		if (res < 0) {
875 			dev_err(ctrl->ctrl.device,
876 				"Queueing INV WR for rkey %#x failed (%d)\n",
877 				req->mr->rkey, res);
878 			nvme_rdma_error_recovery(queue->ctrl);
879 		}
880 	}
881 
882 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
883 			req->nents, rq_data_dir(rq) ==
884 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
885 
886 	nvme_cleanup_cmd(rq);
887 	sg_free_table_chained(&req->sg_table, true);
888 }
889 
890 static int nvme_rdma_set_sg_null(struct nvme_command *c)
891 {
892 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
893 
894 	sg->addr = 0;
895 	put_unaligned_le24(0, sg->length);
896 	put_unaligned_le32(0, sg->key);
897 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
898 	return 0;
899 }
900 
901 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
902 		struct nvme_rdma_request *req, struct nvme_command *c)
903 {
904 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
905 
906 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
907 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
908 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
909 
910 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
911 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
912 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
913 
914 	req->inline_data = true;
915 	req->num_sge++;
916 	return 0;
917 }
918 
919 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
920 		struct nvme_rdma_request *req, struct nvme_command *c)
921 {
922 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
923 
924 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
925 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
926 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
927 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
928 	return 0;
929 }
930 
931 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
932 		struct nvme_rdma_request *req, struct nvme_command *c,
933 		int count)
934 {
935 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
936 	int nr;
937 
938 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
939 	if (nr < count) {
940 		if (nr < 0)
941 			return nr;
942 		return -EINVAL;
943 	}
944 
945 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
946 
947 	req->reg_cqe.done = nvme_rdma_memreg_done;
948 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
949 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
950 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
951 	req->reg_wr.wr.num_sge = 0;
952 	req->reg_wr.mr = req->mr;
953 	req->reg_wr.key = req->mr->rkey;
954 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
955 			     IB_ACCESS_REMOTE_READ |
956 			     IB_ACCESS_REMOTE_WRITE;
957 
958 	req->mr->need_inval = true;
959 
960 	sg->addr = cpu_to_le64(req->mr->iova);
961 	put_unaligned_le24(req->mr->length, sg->length);
962 	put_unaligned_le32(req->mr->rkey, sg->key);
963 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
964 			NVME_SGL_FMT_INVALIDATE;
965 
966 	return 0;
967 }
968 
969 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
970 		struct request *rq, struct nvme_command *c)
971 {
972 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
973 	struct nvme_rdma_device *dev = queue->device;
974 	struct ib_device *ibdev = dev->dev;
975 	int count, ret;
976 
977 	req->num_sge = 1;
978 	req->inline_data = false;
979 	req->mr->need_inval = false;
980 
981 	c->common.flags |= NVME_CMD_SGL_METABUF;
982 
983 	if (!blk_rq_bytes(rq))
984 		return nvme_rdma_set_sg_null(c);
985 
986 	req->sg_table.sgl = req->first_sgl;
987 	ret = sg_alloc_table_chained(&req->sg_table,
988 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
989 	if (ret)
990 		return -ENOMEM;
991 
992 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
993 
994 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
995 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
996 	if (unlikely(count <= 0)) {
997 		sg_free_table_chained(&req->sg_table, true);
998 		return -EIO;
999 	}
1000 
1001 	if (count == 1) {
1002 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1003 		    blk_rq_payload_bytes(rq) <=
1004 				nvme_rdma_inline_data_size(queue))
1005 			return nvme_rdma_map_sg_inline(queue, req, c);
1006 
1007 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1008 			return nvme_rdma_map_sg_single(queue, req, c);
1009 	}
1010 
1011 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1012 }
1013 
1014 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1015 {
1016 	if (unlikely(wc->status != IB_WC_SUCCESS))
1017 		nvme_rdma_wr_error(cq, wc, "SEND");
1018 }
1019 
1020 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1021 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1022 		struct ib_send_wr *first, bool flush)
1023 {
1024 	struct ib_send_wr wr, *bad_wr;
1025 	int ret;
1026 
1027 	sge->addr   = qe->dma;
1028 	sge->length = sizeof(struct nvme_command),
1029 	sge->lkey   = queue->device->pd->local_dma_lkey;
1030 
1031 	qe->cqe.done = nvme_rdma_send_done;
1032 
1033 	wr.next       = NULL;
1034 	wr.wr_cqe     = &qe->cqe;
1035 	wr.sg_list    = sge;
1036 	wr.num_sge    = num_sge;
1037 	wr.opcode     = IB_WR_SEND;
1038 	wr.send_flags = 0;
1039 
1040 	/*
1041 	 * Unsignalled send completions are another giant desaster in the
1042 	 * IB Verbs spec:  If we don't regularly post signalled sends
1043 	 * the send queue will fill up and only a QP reset will rescue us.
1044 	 * Would have been way to obvious to handle this in hardware or
1045 	 * at least the RDMA stack..
1046 	 *
1047 	 * This messy and racy code sniplet is copy and pasted from the iSER
1048 	 * initiator, and the magic '32' comes from there as well.
1049 	 *
1050 	 * Always signal the flushes. The magic request used for the flush
1051 	 * sequencer is not allocated in our driver's tagset and it's
1052 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1053 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1054 	 * embedded in request's payload, is not freed when __ib_process_cq()
1055 	 * calls wr_cqe->done().
1056 	 */
1057 	if ((++queue->sig_count % 32) == 0 || flush)
1058 		wr.send_flags |= IB_SEND_SIGNALED;
1059 
1060 	if (first)
1061 		first->next = &wr;
1062 	else
1063 		first = &wr;
1064 
1065 	ret = ib_post_send(queue->qp, first, &bad_wr);
1066 	if (ret) {
1067 		dev_err(queue->ctrl->ctrl.device,
1068 			     "%s failed with error code %d\n", __func__, ret);
1069 	}
1070 	return ret;
1071 }
1072 
1073 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1074 		struct nvme_rdma_qe *qe)
1075 {
1076 	struct ib_recv_wr wr, *bad_wr;
1077 	struct ib_sge list;
1078 	int ret;
1079 
1080 	list.addr   = qe->dma;
1081 	list.length = sizeof(struct nvme_completion);
1082 	list.lkey   = queue->device->pd->local_dma_lkey;
1083 
1084 	qe->cqe.done = nvme_rdma_recv_done;
1085 
1086 	wr.next     = NULL;
1087 	wr.wr_cqe   = &qe->cqe;
1088 	wr.sg_list  = &list;
1089 	wr.num_sge  = 1;
1090 
1091 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1092 	if (ret) {
1093 		dev_err(queue->ctrl->ctrl.device,
1094 			"%s failed with error code %d\n", __func__, ret);
1095 	}
1096 	return ret;
1097 }
1098 
1099 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1100 {
1101 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1102 
1103 	if (queue_idx == 0)
1104 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1105 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1106 }
1107 
1108 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1109 {
1110 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1111 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1112 	struct ib_device *dev = queue->device->dev;
1113 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1114 	struct nvme_command *cmd = sqe->data;
1115 	struct ib_sge sge;
1116 	int ret;
1117 
1118 	if (WARN_ON_ONCE(aer_idx != 0))
1119 		return;
1120 
1121 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1122 
1123 	memset(cmd, 0, sizeof(*cmd));
1124 	cmd->common.opcode = nvme_admin_async_event;
1125 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1126 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1127 	nvme_rdma_set_sg_null(cmd);
1128 
1129 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1130 			DMA_TO_DEVICE);
1131 
1132 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1133 	WARN_ON_ONCE(ret);
1134 }
1135 
1136 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1137 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1138 {
1139 	struct request *rq;
1140 	struct nvme_rdma_request *req;
1141 	int ret = 0;
1142 
1143 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1144 	if (!rq) {
1145 		dev_err(queue->ctrl->ctrl.device,
1146 			"tag 0x%x on QP %#x not found\n",
1147 			cqe->command_id, queue->qp->qp_num);
1148 		nvme_rdma_error_recovery(queue->ctrl);
1149 		return ret;
1150 	}
1151 	req = blk_mq_rq_to_pdu(rq);
1152 
1153 	if (rq->tag == tag)
1154 		ret = 1;
1155 
1156 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1157 	    wc->ex.invalidate_rkey == req->mr->rkey)
1158 		req->mr->need_inval = false;
1159 
1160 	req->req.result = cqe->result;
1161 	blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1);
1162 	return ret;
1163 }
1164 
1165 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1166 {
1167 	struct nvme_rdma_qe *qe =
1168 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1169 	struct nvme_rdma_queue *queue = cq->cq_context;
1170 	struct ib_device *ibdev = queue->device->dev;
1171 	struct nvme_completion *cqe = qe->data;
1172 	const size_t len = sizeof(struct nvme_completion);
1173 	int ret = 0;
1174 
1175 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1176 		nvme_rdma_wr_error(cq, wc, "RECV");
1177 		return 0;
1178 	}
1179 
1180 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1181 	/*
1182 	 * AEN requests are special as they don't time out and can
1183 	 * survive any kind of queue freeze and often don't respond to
1184 	 * aborts.  We don't even bother to allocate a struct request
1185 	 * for them but rather special case them here.
1186 	 */
1187 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1188 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1189 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1190 				&cqe->result);
1191 	else
1192 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1193 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1194 
1195 	nvme_rdma_post_recv(queue, qe);
1196 	return ret;
1197 }
1198 
1199 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1200 {
1201 	__nvme_rdma_recv_done(cq, wc, -1);
1202 }
1203 
1204 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1205 {
1206 	int ret, i;
1207 
1208 	for (i = 0; i < queue->queue_size; i++) {
1209 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1210 		if (ret)
1211 			goto out_destroy_queue_ib;
1212 	}
1213 
1214 	return 0;
1215 
1216 out_destroy_queue_ib:
1217 	nvme_rdma_destroy_queue_ib(queue);
1218 	return ret;
1219 }
1220 
1221 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1222 		struct rdma_cm_event *ev)
1223 {
1224 	struct rdma_cm_id *cm_id = queue->cm_id;
1225 	int status = ev->status;
1226 	const char *rej_msg;
1227 	const struct nvme_rdma_cm_rej *rej_data;
1228 	u8 rej_data_len;
1229 
1230 	rej_msg = rdma_reject_msg(cm_id, status);
1231 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1232 
1233 	if (rej_data && rej_data_len >= sizeof(u16)) {
1234 		u16 sts = le16_to_cpu(rej_data->sts);
1235 
1236 		dev_err(queue->ctrl->ctrl.device,
1237 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1238 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1239 	} else {
1240 		dev_err(queue->ctrl->ctrl.device,
1241 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1242 	}
1243 
1244 	return -ECONNRESET;
1245 }
1246 
1247 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1248 {
1249 	struct nvme_rdma_device *dev;
1250 	int ret;
1251 
1252 	dev = nvme_rdma_find_get_device(queue->cm_id);
1253 	if (!dev) {
1254 		dev_err(queue->cm_id->device->dev.parent,
1255 			"no client data found!\n");
1256 		return -ECONNREFUSED;
1257 	}
1258 
1259 	ret = nvme_rdma_create_queue_ib(queue, dev);
1260 	if (ret) {
1261 		nvme_rdma_dev_put(dev);
1262 		goto out;
1263 	}
1264 
1265 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1266 	if (ret) {
1267 		dev_err(queue->ctrl->ctrl.device,
1268 			"rdma_resolve_route failed (%d).\n",
1269 			queue->cm_error);
1270 		goto out_destroy_queue;
1271 	}
1272 
1273 	return 0;
1274 
1275 out_destroy_queue:
1276 	nvme_rdma_destroy_queue_ib(queue);
1277 out:
1278 	return ret;
1279 }
1280 
1281 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1282 {
1283 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1284 	struct rdma_conn_param param = { };
1285 	struct nvme_rdma_cm_req priv = { };
1286 	int ret;
1287 
1288 	param.qp_num = queue->qp->qp_num;
1289 	param.flow_control = 1;
1290 
1291 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1292 	/* maximum retry count */
1293 	param.retry_count = 7;
1294 	param.rnr_retry_count = 7;
1295 	param.private_data = &priv;
1296 	param.private_data_len = sizeof(priv);
1297 
1298 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1299 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1300 	/*
1301 	 * set the admin queue depth to the minimum size
1302 	 * specified by the Fabrics standard.
1303 	 */
1304 	if (priv.qid == 0) {
1305 		priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1306 		priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1307 	} else {
1308 		/*
1309 		 * current interpretation of the fabrics spec
1310 		 * is at minimum you make hrqsize sqsize+1, or a
1311 		 * 1's based representation of sqsize.
1312 		 */
1313 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1314 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1315 	}
1316 
1317 	ret = rdma_connect(queue->cm_id, &param);
1318 	if (ret) {
1319 		dev_err(ctrl->ctrl.device,
1320 			"rdma_connect failed (%d).\n", ret);
1321 		goto out_destroy_queue_ib;
1322 	}
1323 
1324 	return 0;
1325 
1326 out_destroy_queue_ib:
1327 	nvme_rdma_destroy_queue_ib(queue);
1328 	return ret;
1329 }
1330 
1331 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1332 		struct rdma_cm_event *ev)
1333 {
1334 	struct nvme_rdma_queue *queue = cm_id->context;
1335 	int cm_error = 0;
1336 
1337 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1338 		rdma_event_msg(ev->event), ev->event,
1339 		ev->status, cm_id);
1340 
1341 	switch (ev->event) {
1342 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1343 		cm_error = nvme_rdma_addr_resolved(queue);
1344 		break;
1345 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1346 		cm_error = nvme_rdma_route_resolved(queue);
1347 		break;
1348 	case RDMA_CM_EVENT_ESTABLISHED:
1349 		queue->cm_error = nvme_rdma_conn_established(queue);
1350 		/* complete cm_done regardless of success/failure */
1351 		complete(&queue->cm_done);
1352 		return 0;
1353 	case RDMA_CM_EVENT_REJECTED:
1354 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1355 		break;
1356 	case RDMA_CM_EVENT_ADDR_ERROR:
1357 	case RDMA_CM_EVENT_ROUTE_ERROR:
1358 	case RDMA_CM_EVENT_CONNECT_ERROR:
1359 	case RDMA_CM_EVENT_UNREACHABLE:
1360 		dev_dbg(queue->ctrl->ctrl.device,
1361 			"CM error event %d\n", ev->event);
1362 		cm_error = -ECONNRESET;
1363 		break;
1364 	case RDMA_CM_EVENT_DISCONNECTED:
1365 	case RDMA_CM_EVENT_ADDR_CHANGE:
1366 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1367 		dev_dbg(queue->ctrl->ctrl.device,
1368 			"disconnect received - connection closed\n");
1369 		nvme_rdma_error_recovery(queue->ctrl);
1370 		break;
1371 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1372 		/* device removal is handled via the ib_client API */
1373 		break;
1374 	default:
1375 		dev_err(queue->ctrl->ctrl.device,
1376 			"Unexpected RDMA CM event (%d)\n", ev->event);
1377 		nvme_rdma_error_recovery(queue->ctrl);
1378 		break;
1379 	}
1380 
1381 	if (cm_error) {
1382 		queue->cm_error = cm_error;
1383 		complete(&queue->cm_done);
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static enum blk_eh_timer_return
1390 nvme_rdma_timeout(struct request *rq, bool reserved)
1391 {
1392 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1393 
1394 	/* queue error recovery */
1395 	nvme_rdma_error_recovery(req->queue->ctrl);
1396 
1397 	/* fail with DNR on cmd timeout */
1398 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1399 
1400 	return BLK_EH_HANDLED;
1401 }
1402 
1403 /*
1404  * We cannot accept any other command until the Connect command has completed.
1405  */
1406 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
1407 		struct request *rq)
1408 {
1409 	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1410 		struct nvme_command *cmd = nvme_req(rq)->cmd;
1411 
1412 		if (!blk_rq_is_passthrough(rq) ||
1413 		    cmd->common.opcode != nvme_fabrics_command ||
1414 		    cmd->fabrics.fctype != nvme_fabrics_type_connect)
1415 			return false;
1416 	}
1417 
1418 	return true;
1419 }
1420 
1421 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1422 		const struct blk_mq_queue_data *bd)
1423 {
1424 	struct nvme_ns *ns = hctx->queue->queuedata;
1425 	struct nvme_rdma_queue *queue = hctx->driver_data;
1426 	struct request *rq = bd->rq;
1427 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1428 	struct nvme_rdma_qe *sqe = &req->sqe;
1429 	struct nvme_command *c = sqe->data;
1430 	bool flush = false;
1431 	struct ib_device *dev;
1432 	int ret;
1433 
1434 	WARN_ON_ONCE(rq->tag < 0);
1435 
1436 	if (!nvme_rdma_queue_is_ready(queue, rq))
1437 		return BLK_MQ_RQ_QUEUE_BUSY;
1438 
1439 	dev = queue->device->dev;
1440 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1441 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1442 
1443 	ret = nvme_setup_cmd(ns, rq, c);
1444 	if (ret != BLK_MQ_RQ_QUEUE_OK)
1445 		return ret;
1446 
1447 	blk_mq_start_request(rq);
1448 
1449 	ret = nvme_rdma_map_data(queue, rq, c);
1450 	if (ret < 0) {
1451 		dev_err(queue->ctrl->ctrl.device,
1452 			     "Failed to map data (%d)\n", ret);
1453 		nvme_cleanup_cmd(rq);
1454 		goto err;
1455 	}
1456 
1457 	ib_dma_sync_single_for_device(dev, sqe->dma,
1458 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1459 
1460 	if (req_op(rq) == REQ_OP_FLUSH)
1461 		flush = true;
1462 	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1463 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1464 	if (ret) {
1465 		nvme_rdma_unmap_data(queue, rq);
1466 		goto err;
1467 	}
1468 
1469 	return BLK_MQ_RQ_QUEUE_OK;
1470 err:
1471 	return (ret == -ENOMEM || ret == -EAGAIN) ?
1472 		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1473 }
1474 
1475 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1476 {
1477 	struct nvme_rdma_queue *queue = hctx->driver_data;
1478 	struct ib_cq *cq = queue->ib_cq;
1479 	struct ib_wc wc;
1480 	int found = 0;
1481 
1482 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1483 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1484 		struct ib_cqe *cqe = wc.wr_cqe;
1485 
1486 		if (cqe) {
1487 			if (cqe->done == nvme_rdma_recv_done)
1488 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1489 			else
1490 				cqe->done(cq, &wc);
1491 		}
1492 	}
1493 
1494 	return found;
1495 }
1496 
1497 static void nvme_rdma_complete_rq(struct request *rq)
1498 {
1499 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1500 	struct nvme_rdma_queue *queue = req->queue;
1501 	int error = 0;
1502 
1503 	nvme_rdma_unmap_data(queue, rq);
1504 
1505 	if (unlikely(rq->errors)) {
1506 		if (nvme_req_needs_retry(rq, rq->errors)) {
1507 			nvme_requeue_req(rq);
1508 			return;
1509 		}
1510 
1511 		if (blk_rq_is_passthrough(rq))
1512 			error = rq->errors;
1513 		else
1514 			error = nvme_error_status(rq->errors);
1515 	}
1516 
1517 	blk_mq_end_request(rq, error);
1518 }
1519 
1520 static struct blk_mq_ops nvme_rdma_mq_ops = {
1521 	.queue_rq	= nvme_rdma_queue_rq,
1522 	.complete	= nvme_rdma_complete_rq,
1523 	.init_request	= nvme_rdma_init_request,
1524 	.exit_request	= nvme_rdma_exit_request,
1525 	.reinit_request	= nvme_rdma_reinit_request,
1526 	.init_hctx	= nvme_rdma_init_hctx,
1527 	.poll		= nvme_rdma_poll,
1528 	.timeout	= nvme_rdma_timeout,
1529 };
1530 
1531 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1532 	.queue_rq	= nvme_rdma_queue_rq,
1533 	.complete	= nvme_rdma_complete_rq,
1534 	.init_request	= nvme_rdma_init_admin_request,
1535 	.exit_request	= nvme_rdma_exit_admin_request,
1536 	.reinit_request	= nvme_rdma_reinit_request,
1537 	.init_hctx	= nvme_rdma_init_admin_hctx,
1538 	.timeout	= nvme_rdma_timeout,
1539 };
1540 
1541 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1542 {
1543 	int error;
1544 
1545 	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1546 	if (error)
1547 		return error;
1548 
1549 	ctrl->device = ctrl->queues[0].device;
1550 
1551 	/*
1552 	 * We need a reference on the device as long as the tag_set is alive,
1553 	 * as the MRs in the request structures need a valid ib_device.
1554 	 */
1555 	error = -EINVAL;
1556 	if (!nvme_rdma_dev_get(ctrl->device))
1557 		goto out_free_queue;
1558 
1559 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1560 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1561 
1562 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1563 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1564 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1565 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1566 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1567 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1568 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1569 	ctrl->admin_tag_set.driver_data = ctrl;
1570 	ctrl->admin_tag_set.nr_hw_queues = 1;
1571 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1572 
1573 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1574 	if (error)
1575 		goto out_put_dev;
1576 
1577 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1578 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1579 		error = PTR_ERR(ctrl->ctrl.admin_q);
1580 		goto out_free_tagset;
1581 	}
1582 
1583 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1584 	if (error)
1585 		goto out_cleanup_queue;
1586 
1587 	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1588 
1589 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1590 	if (error) {
1591 		dev_err(ctrl->ctrl.device,
1592 			"prop_get NVME_REG_CAP failed\n");
1593 		goto out_cleanup_queue;
1594 	}
1595 
1596 	ctrl->ctrl.sqsize =
1597 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1598 
1599 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1600 	if (error)
1601 		goto out_cleanup_queue;
1602 
1603 	ctrl->ctrl.max_hw_sectors =
1604 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1605 
1606 	error = nvme_init_identify(&ctrl->ctrl);
1607 	if (error)
1608 		goto out_cleanup_queue;
1609 
1610 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1611 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1612 			DMA_TO_DEVICE);
1613 	if (error)
1614 		goto out_cleanup_queue;
1615 
1616 	nvme_start_keep_alive(&ctrl->ctrl);
1617 
1618 	return 0;
1619 
1620 out_cleanup_queue:
1621 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1622 out_free_tagset:
1623 	/* disconnect and drain the queue before freeing the tagset */
1624 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1625 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1626 out_put_dev:
1627 	nvme_rdma_dev_put(ctrl->device);
1628 out_free_queue:
1629 	nvme_rdma_free_queue(&ctrl->queues[0]);
1630 	return error;
1631 }
1632 
1633 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1634 {
1635 	nvme_stop_keep_alive(&ctrl->ctrl);
1636 	cancel_work_sync(&ctrl->err_work);
1637 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1638 
1639 	if (ctrl->queue_count > 1) {
1640 		nvme_stop_queues(&ctrl->ctrl);
1641 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1642 					nvme_cancel_request, &ctrl->ctrl);
1643 		nvme_rdma_free_io_queues(ctrl);
1644 	}
1645 
1646 	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1647 		nvme_shutdown_ctrl(&ctrl->ctrl);
1648 
1649 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1650 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1651 				nvme_cancel_request, &ctrl->ctrl);
1652 	nvme_rdma_destroy_admin_queue(ctrl);
1653 }
1654 
1655 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1656 {
1657 	nvme_uninit_ctrl(&ctrl->ctrl);
1658 	if (shutdown)
1659 		nvme_rdma_shutdown_ctrl(ctrl);
1660 
1661 	if (ctrl->ctrl.tagset) {
1662 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1663 		blk_mq_free_tag_set(&ctrl->tag_set);
1664 		nvme_rdma_dev_put(ctrl->device);
1665 	}
1666 
1667 	nvme_put_ctrl(&ctrl->ctrl);
1668 }
1669 
1670 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1671 {
1672 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1673 				struct nvme_rdma_ctrl, delete_work);
1674 
1675 	__nvme_rdma_remove_ctrl(ctrl, true);
1676 }
1677 
1678 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1679 {
1680 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1681 		return -EBUSY;
1682 
1683 	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1684 		return -EBUSY;
1685 
1686 	return 0;
1687 }
1688 
1689 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1690 {
1691 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1692 	int ret = 0;
1693 
1694 	/*
1695 	 * Keep a reference until all work is flushed since
1696 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1697 	 */
1698 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1699 		return -EBUSY;
1700 	ret = __nvme_rdma_del_ctrl(ctrl);
1701 	if (!ret)
1702 		flush_work(&ctrl->delete_work);
1703 	nvme_put_ctrl(&ctrl->ctrl);
1704 	return ret;
1705 }
1706 
1707 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1708 {
1709 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1710 				struct nvme_rdma_ctrl, delete_work);
1711 
1712 	__nvme_rdma_remove_ctrl(ctrl, false);
1713 }
1714 
1715 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1716 {
1717 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1718 					struct nvme_rdma_ctrl, reset_work);
1719 	int ret;
1720 	bool changed;
1721 
1722 	nvme_rdma_shutdown_ctrl(ctrl);
1723 
1724 	ret = nvme_rdma_configure_admin_queue(ctrl);
1725 	if (ret) {
1726 		/* ctrl is already shutdown, just remove the ctrl */
1727 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1728 		goto del_dead_ctrl;
1729 	}
1730 
1731 	if (ctrl->queue_count > 1) {
1732 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1733 		if (ret)
1734 			goto del_dead_ctrl;
1735 
1736 		ret = nvme_rdma_init_io_queues(ctrl);
1737 		if (ret)
1738 			goto del_dead_ctrl;
1739 
1740 		ret = nvme_rdma_connect_io_queues(ctrl);
1741 		if (ret)
1742 			goto del_dead_ctrl;
1743 	}
1744 
1745 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1746 	WARN_ON_ONCE(!changed);
1747 
1748 	if (ctrl->queue_count > 1) {
1749 		nvme_start_queues(&ctrl->ctrl);
1750 		nvme_queue_scan(&ctrl->ctrl);
1751 		nvme_queue_async_events(&ctrl->ctrl);
1752 	}
1753 
1754 	return;
1755 
1756 del_dead_ctrl:
1757 	/* Deleting this dead controller... */
1758 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1759 	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1760 }
1761 
1762 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1763 {
1764 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1765 
1766 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1767 		return -EBUSY;
1768 
1769 	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1770 		return -EBUSY;
1771 
1772 	flush_work(&ctrl->reset_work);
1773 
1774 	return 0;
1775 }
1776 
1777 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1778 	.name			= "rdma",
1779 	.module			= THIS_MODULE,
1780 	.is_fabrics		= true,
1781 	.reg_read32		= nvmf_reg_read32,
1782 	.reg_read64		= nvmf_reg_read64,
1783 	.reg_write32		= nvmf_reg_write32,
1784 	.reset_ctrl		= nvme_rdma_reset_ctrl,
1785 	.free_ctrl		= nvme_rdma_free_ctrl,
1786 	.submit_async_event	= nvme_rdma_submit_async_event,
1787 	.delete_ctrl		= nvme_rdma_del_ctrl,
1788 	.get_subsysnqn		= nvmf_get_subsysnqn,
1789 	.get_address		= nvmf_get_address,
1790 };
1791 
1792 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1793 {
1794 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1795 	int ret;
1796 
1797 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1798 	if (ret)
1799 		return ret;
1800 
1801 	ctrl->queue_count = opts->nr_io_queues + 1;
1802 	if (ctrl->queue_count < 2)
1803 		return 0;
1804 
1805 	dev_info(ctrl->ctrl.device,
1806 		"creating %d I/O queues.\n", opts->nr_io_queues);
1807 
1808 	ret = nvme_rdma_init_io_queues(ctrl);
1809 	if (ret)
1810 		return ret;
1811 
1812 	/*
1813 	 * We need a reference on the device as long as the tag_set is alive,
1814 	 * as the MRs in the request structures need a valid ib_device.
1815 	 */
1816 	ret = -EINVAL;
1817 	if (!nvme_rdma_dev_get(ctrl->device))
1818 		goto out_free_io_queues;
1819 
1820 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1821 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1822 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1823 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1824 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1825 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1826 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1827 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1828 	ctrl->tag_set.driver_data = ctrl;
1829 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1830 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1831 
1832 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1833 	if (ret)
1834 		goto out_put_dev;
1835 	ctrl->ctrl.tagset = &ctrl->tag_set;
1836 
1837 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1838 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1839 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1840 		goto out_free_tag_set;
1841 	}
1842 
1843 	ret = nvme_rdma_connect_io_queues(ctrl);
1844 	if (ret)
1845 		goto out_cleanup_connect_q;
1846 
1847 	return 0;
1848 
1849 out_cleanup_connect_q:
1850 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1851 out_free_tag_set:
1852 	blk_mq_free_tag_set(&ctrl->tag_set);
1853 out_put_dev:
1854 	nvme_rdma_dev_put(ctrl->device);
1855 out_free_io_queues:
1856 	nvme_rdma_free_io_queues(ctrl);
1857 	return ret;
1858 }
1859 
1860 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1861 {
1862 	u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1863 	size_t buflen = strlen(p);
1864 
1865 	/* XXX: handle IPv6 addresses */
1866 
1867 	if (buflen > INET_ADDRSTRLEN)
1868 		return -EINVAL;
1869 	if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1870 		return -EINVAL;
1871 	in_addr->sin_family = AF_INET;
1872 	return 0;
1873 }
1874 
1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1876 		struct nvmf_ctrl_options *opts)
1877 {
1878 	struct nvme_rdma_ctrl *ctrl;
1879 	int ret;
1880 	bool changed;
1881 
1882 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1883 	if (!ctrl)
1884 		return ERR_PTR(-ENOMEM);
1885 	ctrl->ctrl.opts = opts;
1886 	INIT_LIST_HEAD(&ctrl->list);
1887 
1888 	ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1889 	if (ret) {
1890 		pr_err("malformed IP address passed: %s\n", opts->traddr);
1891 		goto out_free_ctrl;
1892 	}
1893 
1894 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1895 		ret = nvme_rdma_parse_ipaddr(&ctrl->src_addr_in,
1896 				opts->host_traddr);
1897 		if (ret) {
1898 			pr_err("malformed src IP address passed: %s\n",
1899 			       opts->host_traddr);
1900 			goto out_free_ctrl;
1901 		}
1902 	}
1903 
1904 	if (opts->mask & NVMF_OPT_TRSVCID) {
1905 		u16 port;
1906 
1907 		ret = kstrtou16(opts->trsvcid, 0, &port);
1908 		if (ret)
1909 			goto out_free_ctrl;
1910 
1911 		ctrl->addr_in.sin_port = cpu_to_be16(port);
1912 	} else {
1913 		ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1914 	}
1915 
1916 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1917 				0 /* no quirks, we're perfect! */);
1918 	if (ret)
1919 		goto out_free_ctrl;
1920 
1921 	ctrl->reconnect_delay = opts->reconnect_delay;
1922 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1923 			nvme_rdma_reconnect_ctrl_work);
1924 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1925 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1926 	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1927 	spin_lock_init(&ctrl->lock);
1928 
1929 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1930 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1931 	ctrl->ctrl.kato = opts->kato;
1932 
1933 	ret = -ENOMEM;
1934 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1935 				GFP_KERNEL);
1936 	if (!ctrl->queues)
1937 		goto out_uninit_ctrl;
1938 
1939 	ret = nvme_rdma_configure_admin_queue(ctrl);
1940 	if (ret)
1941 		goto out_kfree_queues;
1942 
1943 	/* sanity check icdoff */
1944 	if (ctrl->ctrl.icdoff) {
1945 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1946 		goto out_remove_admin_queue;
1947 	}
1948 
1949 	/* sanity check keyed sgls */
1950 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1951 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1952 		goto out_remove_admin_queue;
1953 	}
1954 
1955 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1956 		/* warn if maxcmd is lower than queue_size */
1957 		dev_warn(ctrl->ctrl.device,
1958 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1959 			opts->queue_size, ctrl->ctrl.maxcmd);
1960 		opts->queue_size = ctrl->ctrl.maxcmd;
1961 	}
1962 
1963 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1964 		/* warn if sqsize is lower than queue_size */
1965 		dev_warn(ctrl->ctrl.device,
1966 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1967 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1968 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1969 	}
1970 
1971 	if (opts->nr_io_queues) {
1972 		ret = nvme_rdma_create_io_queues(ctrl);
1973 		if (ret)
1974 			goto out_remove_admin_queue;
1975 	}
1976 
1977 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1978 	WARN_ON_ONCE(!changed);
1979 
1980 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1981 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1982 
1983 	kref_get(&ctrl->ctrl.kref);
1984 
1985 	mutex_lock(&nvme_rdma_ctrl_mutex);
1986 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1987 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1988 
1989 	if (opts->nr_io_queues) {
1990 		nvme_queue_scan(&ctrl->ctrl);
1991 		nvme_queue_async_events(&ctrl->ctrl);
1992 	}
1993 
1994 	return &ctrl->ctrl;
1995 
1996 out_remove_admin_queue:
1997 	nvme_stop_keep_alive(&ctrl->ctrl);
1998 	nvme_rdma_destroy_admin_queue(ctrl);
1999 out_kfree_queues:
2000 	kfree(ctrl->queues);
2001 out_uninit_ctrl:
2002 	nvme_uninit_ctrl(&ctrl->ctrl);
2003 	nvme_put_ctrl(&ctrl->ctrl);
2004 	if (ret > 0)
2005 		ret = -EIO;
2006 	return ERR_PTR(ret);
2007 out_free_ctrl:
2008 	kfree(ctrl);
2009 	return ERR_PTR(ret);
2010 }
2011 
2012 static struct nvmf_transport_ops nvme_rdma_transport = {
2013 	.name		= "rdma",
2014 	.required_opts	= NVMF_OPT_TRADDR,
2015 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2016 			  NVMF_OPT_HOST_TRADDR,
2017 	.create_ctrl	= nvme_rdma_create_ctrl,
2018 };
2019 
2020 static void nvme_rdma_add_one(struct ib_device *ib_device)
2021 {
2022 }
2023 
2024 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2025 {
2026 	struct nvme_rdma_ctrl *ctrl;
2027 
2028 	/* Delete all controllers using this device */
2029 	mutex_lock(&nvme_rdma_ctrl_mutex);
2030 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2031 		if (ctrl->device->dev != ib_device)
2032 			continue;
2033 		dev_info(ctrl->ctrl.device,
2034 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
2035 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2036 		__nvme_rdma_del_ctrl(ctrl);
2037 	}
2038 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2039 
2040 	flush_workqueue(nvme_rdma_wq);
2041 }
2042 
2043 static struct ib_client nvme_rdma_ib_client = {
2044 	.name   = "nvme_rdma",
2045 	.add = nvme_rdma_add_one,
2046 	.remove = nvme_rdma_remove_one
2047 };
2048 
2049 static int __init nvme_rdma_init_module(void)
2050 {
2051 	int ret;
2052 
2053 	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2054 	if (!nvme_rdma_wq)
2055 		return -ENOMEM;
2056 
2057 	ret = ib_register_client(&nvme_rdma_ib_client);
2058 	if (ret) {
2059 		destroy_workqueue(nvme_rdma_wq);
2060 		return ret;
2061 	}
2062 
2063 	return nvmf_register_transport(&nvme_rdma_transport);
2064 }
2065 
2066 static void __exit nvme_rdma_cleanup_module(void)
2067 {
2068 	nvmf_unregister_transport(&nvme_rdma_transport);
2069 	ib_unregister_client(&nvme_rdma_ib_client);
2070 	destroy_workqueue(nvme_rdma_wq);
2071 }
2072 
2073 module_init(nvme_rdma_init_module);
2074 module_exit(nvme_rdma_cleanup_module);
2075 
2076 MODULE_LICENSE("GPL v2");
2077