1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 #define NVME_RDMA_DATA_SGL_SIZE \ 38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 39 #define NVME_RDMA_METADATA_SGL_SIZE \ 40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 41 42 struct nvme_rdma_device { 43 struct ib_device *dev; 44 struct ib_pd *pd; 45 struct kref ref; 46 struct list_head entry; 47 unsigned int num_inline_segments; 48 }; 49 50 struct nvme_rdma_qe { 51 struct ib_cqe cqe; 52 void *data; 53 u64 dma; 54 }; 55 56 struct nvme_rdma_sgl { 57 int nents; 58 struct sg_table sg_table; 59 }; 60 61 struct nvme_rdma_queue; 62 struct nvme_rdma_request { 63 struct nvme_request req; 64 struct ib_mr *mr; 65 struct nvme_rdma_qe sqe; 66 union nvme_result result; 67 __le16 status; 68 refcount_t ref; 69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 70 u32 num_sge; 71 struct ib_reg_wr reg_wr; 72 struct ib_cqe reg_cqe; 73 struct nvme_rdma_queue *queue; 74 struct nvme_rdma_sgl data_sgl; 75 struct nvme_rdma_sgl *metadata_sgl; 76 bool use_sig_mr; 77 }; 78 79 enum nvme_rdma_queue_flags { 80 NVME_RDMA_Q_ALLOCATED = 0, 81 NVME_RDMA_Q_LIVE = 1, 82 NVME_RDMA_Q_TR_READY = 2, 83 }; 84 85 struct nvme_rdma_queue { 86 struct nvme_rdma_qe *rsp_ring; 87 int queue_size; 88 size_t cmnd_capsule_len; 89 struct nvme_rdma_ctrl *ctrl; 90 struct nvme_rdma_device *device; 91 struct ib_cq *ib_cq; 92 struct ib_qp *qp; 93 94 unsigned long flags; 95 struct rdma_cm_id *cm_id; 96 int cm_error; 97 struct completion cm_done; 98 bool pi_support; 99 int cq_size; 100 }; 101 102 struct nvme_rdma_ctrl { 103 /* read only in the hot path */ 104 struct nvme_rdma_queue *queues; 105 106 /* other member variables */ 107 struct blk_mq_tag_set tag_set; 108 struct work_struct err_work; 109 110 struct nvme_rdma_qe async_event_sqe; 111 112 struct delayed_work reconnect_work; 113 114 struct list_head list; 115 116 struct blk_mq_tag_set admin_tag_set; 117 struct nvme_rdma_device *device; 118 119 u32 max_fr_pages; 120 121 struct sockaddr_storage addr; 122 struct sockaddr_storage src_addr; 123 124 struct nvme_ctrl ctrl; 125 bool use_inline_data; 126 u32 io_queues[HCTX_MAX_TYPES]; 127 }; 128 129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 130 { 131 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 132 } 133 134 static LIST_HEAD(device_list); 135 static DEFINE_MUTEX(device_list_mutex); 136 137 static LIST_HEAD(nvme_rdma_ctrl_list); 138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 139 140 /* 141 * Disabling this option makes small I/O goes faster, but is fundamentally 142 * unsafe. With it turned off we will have to register a global rkey that 143 * allows read and write access to all physical memory. 144 */ 145 static bool register_always = true; 146 module_param(register_always, bool, 0444); 147 MODULE_PARM_DESC(register_always, 148 "Use memory registration even for contiguous memory regions"); 149 150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 151 struct rdma_cm_event *event); 152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 153 static void nvme_rdma_complete_rq(struct request *rq); 154 155 static const struct blk_mq_ops nvme_rdma_mq_ops; 156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 157 158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 159 { 160 return queue - queue->ctrl->queues; 161 } 162 163 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 164 { 165 return nvme_rdma_queue_idx(queue) > 166 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 167 queue->ctrl->io_queues[HCTX_TYPE_READ]; 168 } 169 170 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 171 { 172 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 173 } 174 175 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 176 size_t capsule_size, enum dma_data_direction dir) 177 { 178 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 179 kfree(qe->data); 180 } 181 182 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 183 size_t capsule_size, enum dma_data_direction dir) 184 { 185 qe->data = kzalloc(capsule_size, GFP_KERNEL); 186 if (!qe->data) 187 return -ENOMEM; 188 189 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 190 if (ib_dma_mapping_error(ibdev, qe->dma)) { 191 kfree(qe->data); 192 qe->data = NULL; 193 return -ENOMEM; 194 } 195 196 return 0; 197 } 198 199 static void nvme_rdma_free_ring(struct ib_device *ibdev, 200 struct nvme_rdma_qe *ring, size_t ib_queue_size, 201 size_t capsule_size, enum dma_data_direction dir) 202 { 203 int i; 204 205 for (i = 0; i < ib_queue_size; i++) 206 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 207 kfree(ring); 208 } 209 210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 211 size_t ib_queue_size, size_t capsule_size, 212 enum dma_data_direction dir) 213 { 214 struct nvme_rdma_qe *ring; 215 int i; 216 217 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 218 if (!ring) 219 return NULL; 220 221 /* 222 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 223 * lifetime. It's safe, since any chage in the underlying RDMA device 224 * will issue error recovery and queue re-creation. 225 */ 226 for (i = 0; i < ib_queue_size; i++) { 227 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 228 goto out_free_ring; 229 } 230 231 return ring; 232 233 out_free_ring: 234 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 235 return NULL; 236 } 237 238 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 239 { 240 pr_debug("QP event %s (%d)\n", 241 ib_event_msg(event->event), event->event); 242 243 } 244 245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 246 { 247 int ret; 248 249 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 251 if (ret < 0) 252 return ret; 253 if (ret == 0) 254 return -ETIMEDOUT; 255 WARN_ON_ONCE(queue->cm_error > 0); 256 return queue->cm_error; 257 } 258 259 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 260 { 261 struct nvme_rdma_device *dev = queue->device; 262 struct ib_qp_init_attr init_attr; 263 int ret; 264 265 memset(&init_attr, 0, sizeof(init_attr)); 266 init_attr.event_handler = nvme_rdma_qp_event; 267 /* +1 for drain */ 268 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 269 /* +1 for drain */ 270 init_attr.cap.max_recv_wr = queue->queue_size + 1; 271 init_attr.cap.max_recv_sge = 1; 272 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 273 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 274 init_attr.qp_type = IB_QPT_RC; 275 init_attr.send_cq = queue->ib_cq; 276 init_attr.recv_cq = queue->ib_cq; 277 if (queue->pi_support) 278 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 279 init_attr.qp_context = queue; 280 281 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 282 283 queue->qp = queue->cm_id->qp; 284 return ret; 285 } 286 287 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx) 289 { 290 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 291 292 kfree(req->sqe.data); 293 } 294 295 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 296 struct request *rq, unsigned int hctx_idx, 297 unsigned int numa_node) 298 { 299 struct nvme_rdma_ctrl *ctrl = set->driver_data; 300 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 301 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 302 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 303 304 nvme_req(rq)->ctrl = &ctrl->ctrl; 305 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 306 if (!req->sqe.data) 307 return -ENOMEM; 308 309 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 310 if (queue->pi_support) 311 req->metadata_sgl = (void *)nvme_req(rq) + 312 sizeof(struct nvme_rdma_request) + 313 NVME_RDMA_DATA_SGL_SIZE; 314 315 req->queue = queue; 316 317 return 0; 318 } 319 320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 321 unsigned int hctx_idx) 322 { 323 struct nvme_rdma_ctrl *ctrl = data; 324 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 325 326 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 327 328 hctx->driver_data = queue; 329 return 0; 330 } 331 332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 333 unsigned int hctx_idx) 334 { 335 struct nvme_rdma_ctrl *ctrl = data; 336 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 337 338 BUG_ON(hctx_idx != 0); 339 340 hctx->driver_data = queue; 341 return 0; 342 } 343 344 static void nvme_rdma_free_dev(struct kref *ref) 345 { 346 struct nvme_rdma_device *ndev = 347 container_of(ref, struct nvme_rdma_device, ref); 348 349 mutex_lock(&device_list_mutex); 350 list_del(&ndev->entry); 351 mutex_unlock(&device_list_mutex); 352 353 ib_dealloc_pd(ndev->pd); 354 kfree(ndev); 355 } 356 357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 358 { 359 kref_put(&dev->ref, nvme_rdma_free_dev); 360 } 361 362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 363 { 364 return kref_get_unless_zero(&dev->ref); 365 } 366 367 static struct nvme_rdma_device * 368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 369 { 370 struct nvme_rdma_device *ndev; 371 372 mutex_lock(&device_list_mutex); 373 list_for_each_entry(ndev, &device_list, entry) { 374 if (ndev->dev->node_guid == cm_id->device->node_guid && 375 nvme_rdma_dev_get(ndev)) 376 goto out_unlock; 377 } 378 379 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 380 if (!ndev) 381 goto out_err; 382 383 ndev->dev = cm_id->device; 384 kref_init(&ndev->ref); 385 386 ndev->pd = ib_alloc_pd(ndev->dev, 387 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 388 if (IS_ERR(ndev->pd)) 389 goto out_free_dev; 390 391 if (!(ndev->dev->attrs.device_cap_flags & 392 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 393 dev_err(&ndev->dev->dev, 394 "Memory registrations not supported.\n"); 395 goto out_free_pd; 396 } 397 398 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 399 ndev->dev->attrs.max_send_sge - 1); 400 list_add(&ndev->entry, &device_list); 401 out_unlock: 402 mutex_unlock(&device_list_mutex); 403 return ndev; 404 405 out_free_pd: 406 ib_dealloc_pd(ndev->pd); 407 out_free_dev: 408 kfree(ndev); 409 out_err: 410 mutex_unlock(&device_list_mutex); 411 return NULL; 412 } 413 414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 415 { 416 if (nvme_rdma_poll_queue(queue)) 417 ib_free_cq(queue->ib_cq); 418 else 419 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 420 } 421 422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 423 { 424 struct nvme_rdma_device *dev; 425 struct ib_device *ibdev; 426 427 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 428 return; 429 430 dev = queue->device; 431 ibdev = dev->dev; 432 433 if (queue->pi_support) 434 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 435 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 436 437 /* 438 * The cm_id object might have been destroyed during RDMA connection 439 * establishment error flow to avoid getting other cma events, thus 440 * the destruction of the QP shouldn't use rdma_cm API. 441 */ 442 ib_destroy_qp(queue->qp); 443 nvme_rdma_free_cq(queue); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 452 { 453 u32 max_page_list_len; 454 455 if (pi_support) 456 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 457 else 458 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 459 460 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 461 } 462 463 static int nvme_rdma_create_cq(struct ib_device *ibdev, 464 struct nvme_rdma_queue *queue) 465 { 466 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 467 enum ib_poll_context poll_ctx; 468 469 /* 470 * Spread I/O queues completion vectors according their queue index. 471 * Admin queues can always go on completion vector 0. 472 */ 473 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 474 475 /* Polling queues need direct cq polling context */ 476 if (nvme_rdma_poll_queue(queue)) { 477 poll_ctx = IB_POLL_DIRECT; 478 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 479 comp_vector, poll_ctx); 480 } else { 481 poll_ctx = IB_POLL_SOFTIRQ; 482 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 483 comp_vector, poll_ctx); 484 } 485 486 if (IS_ERR(queue->ib_cq)) { 487 ret = PTR_ERR(queue->ib_cq); 488 return ret; 489 } 490 491 return 0; 492 } 493 494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 495 { 496 struct ib_device *ibdev; 497 const int send_wr_factor = 3; /* MR, SEND, INV */ 498 const int cq_factor = send_wr_factor + 1; /* + RECV */ 499 int ret, pages_per_mr; 500 501 queue->device = nvme_rdma_find_get_device(queue->cm_id); 502 if (!queue->device) { 503 dev_err(queue->cm_id->device->dev.parent, 504 "no client data found!\n"); 505 return -ECONNREFUSED; 506 } 507 ibdev = queue->device->dev; 508 509 /* +1 for ib_stop_cq */ 510 queue->cq_size = cq_factor * queue->queue_size + 1; 511 512 ret = nvme_rdma_create_cq(ibdev, queue); 513 if (ret) 514 goto out_put_dev; 515 516 ret = nvme_rdma_create_qp(queue, send_wr_factor); 517 if (ret) 518 goto out_destroy_ib_cq; 519 520 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 521 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 522 if (!queue->rsp_ring) { 523 ret = -ENOMEM; 524 goto out_destroy_qp; 525 } 526 527 /* 528 * Currently we don't use SG_GAPS MR's so if the first entry is 529 * misaligned we'll end up using two entries for a single data page, 530 * so one additional entry is required. 531 */ 532 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 533 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 534 queue->queue_size, 535 IB_MR_TYPE_MEM_REG, 536 pages_per_mr, 0); 537 if (ret) { 538 dev_err(queue->ctrl->ctrl.device, 539 "failed to initialize MR pool sized %d for QID %d\n", 540 queue->queue_size, nvme_rdma_queue_idx(queue)); 541 goto out_destroy_ring; 542 } 543 544 if (queue->pi_support) { 545 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 546 queue->queue_size, IB_MR_TYPE_INTEGRITY, 547 pages_per_mr, pages_per_mr); 548 if (ret) { 549 dev_err(queue->ctrl->ctrl.device, 550 "failed to initialize PI MR pool sized %d for QID %d\n", 551 queue->queue_size, nvme_rdma_queue_idx(queue)); 552 goto out_destroy_mr_pool; 553 } 554 } 555 556 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 557 558 return 0; 559 560 out_destroy_mr_pool: 561 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 562 out_destroy_ring: 563 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 564 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 565 out_destroy_qp: 566 rdma_destroy_qp(queue->cm_id); 567 out_destroy_ib_cq: 568 nvme_rdma_free_cq(queue); 569 out_put_dev: 570 nvme_rdma_dev_put(queue->device); 571 return ret; 572 } 573 574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 575 int idx, size_t queue_size) 576 { 577 struct nvme_rdma_queue *queue; 578 struct sockaddr *src_addr = NULL; 579 int ret; 580 581 queue = &ctrl->queues[idx]; 582 queue->ctrl = ctrl; 583 if (idx && ctrl->ctrl.max_integrity_segments) 584 queue->pi_support = true; 585 else 586 queue->pi_support = false; 587 init_completion(&queue->cm_done); 588 589 if (idx > 0) 590 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 591 else 592 queue->cmnd_capsule_len = sizeof(struct nvme_command); 593 594 queue->queue_size = queue_size; 595 596 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 597 RDMA_PS_TCP, IB_QPT_RC); 598 if (IS_ERR(queue->cm_id)) { 599 dev_info(ctrl->ctrl.device, 600 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 601 return PTR_ERR(queue->cm_id); 602 } 603 604 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 605 src_addr = (struct sockaddr *)&ctrl->src_addr; 606 607 queue->cm_error = -ETIMEDOUT; 608 ret = rdma_resolve_addr(queue->cm_id, src_addr, 609 (struct sockaddr *)&ctrl->addr, 610 NVME_RDMA_CONNECT_TIMEOUT_MS); 611 if (ret) { 612 dev_info(ctrl->ctrl.device, 613 "rdma_resolve_addr failed (%d).\n", ret); 614 goto out_destroy_cm_id; 615 } 616 617 ret = nvme_rdma_wait_for_cm(queue); 618 if (ret) { 619 dev_info(ctrl->ctrl.device, 620 "rdma connection establishment failed (%d)\n", ret); 621 goto out_destroy_cm_id; 622 } 623 624 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 625 626 return 0; 627 628 out_destroy_cm_id: 629 rdma_destroy_id(queue->cm_id); 630 nvme_rdma_destroy_queue_ib(queue); 631 return ret; 632 } 633 634 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 635 { 636 rdma_disconnect(queue->cm_id); 637 ib_drain_qp(queue->qp); 638 } 639 640 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 641 { 642 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 643 return; 644 __nvme_rdma_stop_queue(queue); 645 } 646 647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 648 { 649 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 650 return; 651 652 nvme_rdma_destroy_queue_ib(queue); 653 rdma_destroy_id(queue->cm_id); 654 } 655 656 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 657 { 658 int i; 659 660 for (i = 1; i < ctrl->ctrl.queue_count; i++) 661 nvme_rdma_free_queue(&ctrl->queues[i]); 662 } 663 664 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 665 { 666 int i; 667 668 for (i = 1; i < ctrl->ctrl.queue_count; i++) 669 nvme_rdma_stop_queue(&ctrl->queues[i]); 670 } 671 672 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 673 { 674 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 675 bool poll = nvme_rdma_poll_queue(queue); 676 int ret; 677 678 if (idx) 679 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 680 else 681 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 682 683 if (!ret) { 684 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 685 } else { 686 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 687 __nvme_rdma_stop_queue(queue); 688 dev_info(ctrl->ctrl.device, 689 "failed to connect queue: %d ret=%d\n", idx, ret); 690 } 691 return ret; 692 } 693 694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 695 { 696 int i, ret = 0; 697 698 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 699 ret = nvme_rdma_start_queue(ctrl, i); 700 if (ret) 701 goto out_stop_queues; 702 } 703 704 return 0; 705 706 out_stop_queues: 707 for (i--; i >= 1; i--) 708 nvme_rdma_stop_queue(&ctrl->queues[i]); 709 return ret; 710 } 711 712 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 713 { 714 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 715 struct ib_device *ibdev = ctrl->device->dev; 716 unsigned int nr_io_queues, nr_default_queues; 717 unsigned int nr_read_queues, nr_poll_queues; 718 int i, ret; 719 720 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 721 min(opts->nr_io_queues, num_online_cpus())); 722 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 723 min(opts->nr_write_queues, num_online_cpus())); 724 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 725 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 726 727 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 728 if (ret) 729 return ret; 730 731 ctrl->ctrl.queue_count = nr_io_queues + 1; 732 if (ctrl->ctrl.queue_count < 2) 733 return 0; 734 735 dev_info(ctrl->ctrl.device, 736 "creating %d I/O queues.\n", nr_io_queues); 737 738 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 739 /* 740 * separate read/write queues 741 * hand out dedicated default queues only after we have 742 * sufficient read queues. 743 */ 744 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 745 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 746 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 747 min(nr_default_queues, nr_io_queues); 748 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 749 } else { 750 /* 751 * shared read/write queues 752 * either no write queues were requested, or we don't have 753 * sufficient queue count to have dedicated default queues. 754 */ 755 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 756 min(nr_read_queues, nr_io_queues); 757 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 758 } 759 760 if (opts->nr_poll_queues && nr_io_queues) { 761 /* map dedicated poll queues only if we have queues left */ 762 ctrl->io_queues[HCTX_TYPE_POLL] = 763 min(nr_poll_queues, nr_io_queues); 764 } 765 766 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 767 ret = nvme_rdma_alloc_queue(ctrl, i, 768 ctrl->ctrl.sqsize + 1); 769 if (ret) 770 goto out_free_queues; 771 } 772 773 return 0; 774 775 out_free_queues: 776 for (i--; i >= 1; i--) 777 nvme_rdma_free_queue(&ctrl->queues[i]); 778 779 return ret; 780 } 781 782 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 783 bool admin) 784 { 785 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 786 struct blk_mq_tag_set *set; 787 int ret; 788 789 if (admin) { 790 set = &ctrl->admin_tag_set; 791 memset(set, 0, sizeof(*set)); 792 set->ops = &nvme_rdma_admin_mq_ops; 793 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 794 set->reserved_tags = 2; /* connect + keep-alive */ 795 set->numa_node = nctrl->numa_node; 796 set->cmd_size = sizeof(struct nvme_rdma_request) + 797 NVME_RDMA_DATA_SGL_SIZE; 798 set->driver_data = ctrl; 799 set->nr_hw_queues = 1; 800 set->timeout = ADMIN_TIMEOUT; 801 set->flags = BLK_MQ_F_NO_SCHED; 802 } else { 803 set = &ctrl->tag_set; 804 memset(set, 0, sizeof(*set)); 805 set->ops = &nvme_rdma_mq_ops; 806 set->queue_depth = nctrl->sqsize + 1; 807 set->reserved_tags = 1; /* fabric connect */ 808 set->numa_node = nctrl->numa_node; 809 set->flags = BLK_MQ_F_SHOULD_MERGE; 810 set->cmd_size = sizeof(struct nvme_rdma_request) + 811 NVME_RDMA_DATA_SGL_SIZE; 812 if (nctrl->max_integrity_segments) 813 set->cmd_size += sizeof(struct nvme_rdma_sgl) + 814 NVME_RDMA_METADATA_SGL_SIZE; 815 set->driver_data = ctrl; 816 set->nr_hw_queues = nctrl->queue_count - 1; 817 set->timeout = NVME_IO_TIMEOUT; 818 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 819 } 820 821 ret = blk_mq_alloc_tag_set(set); 822 if (ret) 823 return ERR_PTR(ret); 824 825 return set; 826 } 827 828 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 829 bool remove) 830 { 831 if (remove) { 832 blk_cleanup_queue(ctrl->ctrl.admin_q); 833 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 834 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 835 } 836 if (ctrl->async_event_sqe.data) { 837 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 838 sizeof(struct nvme_command), DMA_TO_DEVICE); 839 ctrl->async_event_sqe.data = NULL; 840 } 841 nvme_rdma_free_queue(&ctrl->queues[0]); 842 } 843 844 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 845 bool new) 846 { 847 bool pi_capable = false; 848 int error; 849 850 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 851 if (error) 852 return error; 853 854 ctrl->device = ctrl->queues[0].device; 855 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 856 857 /* T10-PI support */ 858 if (ctrl->device->dev->attrs.device_cap_flags & 859 IB_DEVICE_INTEGRITY_HANDOVER) 860 pi_capable = true; 861 862 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 863 pi_capable); 864 865 /* 866 * Bind the async event SQE DMA mapping to the admin queue lifetime. 867 * It's safe, since any chage in the underlying RDMA device will issue 868 * error recovery and queue re-creation. 869 */ 870 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 871 sizeof(struct nvme_command), DMA_TO_DEVICE); 872 if (error) 873 goto out_free_queue; 874 875 if (new) { 876 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 877 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 878 error = PTR_ERR(ctrl->ctrl.admin_tagset); 879 goto out_free_async_qe; 880 } 881 882 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 883 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 884 error = PTR_ERR(ctrl->ctrl.fabrics_q); 885 goto out_free_tagset; 886 } 887 888 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 889 if (IS_ERR(ctrl->ctrl.admin_q)) { 890 error = PTR_ERR(ctrl->ctrl.admin_q); 891 goto out_cleanup_fabrics_q; 892 } 893 } 894 895 error = nvme_rdma_start_queue(ctrl, 0); 896 if (error) 897 goto out_cleanup_queue; 898 899 error = nvme_enable_ctrl(&ctrl->ctrl); 900 if (error) 901 goto out_stop_queue; 902 903 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 904 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 905 if (pi_capable) 906 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 907 else 908 ctrl->ctrl.max_integrity_segments = 0; 909 910 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 911 912 error = nvme_init_identify(&ctrl->ctrl); 913 if (error) 914 goto out_stop_queue; 915 916 return 0; 917 918 out_stop_queue: 919 nvme_rdma_stop_queue(&ctrl->queues[0]); 920 out_cleanup_queue: 921 if (new) 922 blk_cleanup_queue(ctrl->ctrl.admin_q); 923 out_cleanup_fabrics_q: 924 if (new) 925 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 926 out_free_tagset: 927 if (new) 928 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 929 out_free_async_qe: 930 if (ctrl->async_event_sqe.data) { 931 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 932 sizeof(struct nvme_command), DMA_TO_DEVICE); 933 ctrl->async_event_sqe.data = NULL; 934 } 935 out_free_queue: 936 nvme_rdma_free_queue(&ctrl->queues[0]); 937 return error; 938 } 939 940 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 941 bool remove) 942 { 943 if (remove) { 944 blk_cleanup_queue(ctrl->ctrl.connect_q); 945 blk_mq_free_tag_set(ctrl->ctrl.tagset); 946 } 947 nvme_rdma_free_io_queues(ctrl); 948 } 949 950 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 951 { 952 int ret; 953 954 ret = nvme_rdma_alloc_io_queues(ctrl); 955 if (ret) 956 return ret; 957 958 if (new) { 959 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 960 if (IS_ERR(ctrl->ctrl.tagset)) { 961 ret = PTR_ERR(ctrl->ctrl.tagset); 962 goto out_free_io_queues; 963 } 964 965 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 966 if (IS_ERR(ctrl->ctrl.connect_q)) { 967 ret = PTR_ERR(ctrl->ctrl.connect_q); 968 goto out_free_tag_set; 969 } 970 } 971 972 ret = nvme_rdma_start_io_queues(ctrl); 973 if (ret) 974 goto out_cleanup_connect_q; 975 976 if (!new) { 977 nvme_start_queues(&ctrl->ctrl); 978 nvme_wait_freeze(&ctrl->ctrl); 979 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 980 ctrl->ctrl.queue_count - 1); 981 nvme_unfreeze(&ctrl->ctrl); 982 } 983 984 return 0; 985 986 out_cleanup_connect_q: 987 if (new) 988 blk_cleanup_queue(ctrl->ctrl.connect_q); 989 out_free_tag_set: 990 if (new) 991 blk_mq_free_tag_set(ctrl->ctrl.tagset); 992 out_free_io_queues: 993 nvme_rdma_free_io_queues(ctrl); 994 return ret; 995 } 996 997 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 998 bool remove) 999 { 1000 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1001 nvme_rdma_stop_queue(&ctrl->queues[0]); 1002 if (ctrl->ctrl.admin_tagset) { 1003 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 1004 nvme_cancel_request, &ctrl->ctrl); 1005 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset); 1006 } 1007 if (remove) 1008 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1009 nvme_rdma_destroy_admin_queue(ctrl, remove); 1010 } 1011 1012 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 1013 bool remove) 1014 { 1015 if (ctrl->ctrl.queue_count > 1) { 1016 nvme_start_freeze(&ctrl->ctrl); 1017 nvme_stop_queues(&ctrl->ctrl); 1018 nvme_rdma_stop_io_queues(ctrl); 1019 if (ctrl->ctrl.tagset) { 1020 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 1021 nvme_cancel_request, &ctrl->ctrl); 1022 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset); 1023 } 1024 if (remove) 1025 nvme_start_queues(&ctrl->ctrl); 1026 nvme_rdma_destroy_io_queues(ctrl, remove); 1027 } 1028 } 1029 1030 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1031 { 1032 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1033 1034 if (list_empty(&ctrl->list)) 1035 goto free_ctrl; 1036 1037 mutex_lock(&nvme_rdma_ctrl_mutex); 1038 list_del(&ctrl->list); 1039 mutex_unlock(&nvme_rdma_ctrl_mutex); 1040 1041 nvmf_free_options(nctrl->opts); 1042 free_ctrl: 1043 kfree(ctrl->queues); 1044 kfree(ctrl); 1045 } 1046 1047 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1048 { 1049 /* If we are resetting/deleting then do nothing */ 1050 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1051 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1052 ctrl->ctrl.state == NVME_CTRL_LIVE); 1053 return; 1054 } 1055 1056 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1057 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1058 ctrl->ctrl.opts->reconnect_delay); 1059 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1060 ctrl->ctrl.opts->reconnect_delay * HZ); 1061 } else { 1062 nvme_delete_ctrl(&ctrl->ctrl); 1063 } 1064 } 1065 1066 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1067 { 1068 int ret = -EINVAL; 1069 bool changed; 1070 1071 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1072 if (ret) 1073 return ret; 1074 1075 if (ctrl->ctrl.icdoff) { 1076 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1077 goto destroy_admin; 1078 } 1079 1080 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1081 dev_err(ctrl->ctrl.device, 1082 "Mandatory keyed sgls are not supported!\n"); 1083 goto destroy_admin; 1084 } 1085 1086 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1087 dev_warn(ctrl->ctrl.device, 1088 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1089 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1090 } 1091 1092 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1093 dev_warn(ctrl->ctrl.device, 1094 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1095 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1096 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1097 } 1098 1099 if (ctrl->ctrl.sgls & (1 << 20)) 1100 ctrl->use_inline_data = true; 1101 1102 if (ctrl->ctrl.queue_count > 1) { 1103 ret = nvme_rdma_configure_io_queues(ctrl, new); 1104 if (ret) 1105 goto destroy_admin; 1106 } 1107 1108 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1109 if (!changed) { 1110 /* 1111 * state change failure is ok if we started ctrl delete, 1112 * unless we're during creation of a new controller to 1113 * avoid races with teardown flow. 1114 */ 1115 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1116 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1117 WARN_ON_ONCE(new); 1118 ret = -EINVAL; 1119 goto destroy_io; 1120 } 1121 1122 nvme_start_ctrl(&ctrl->ctrl); 1123 return 0; 1124 1125 destroy_io: 1126 if (ctrl->ctrl.queue_count > 1) 1127 nvme_rdma_destroy_io_queues(ctrl, new); 1128 destroy_admin: 1129 nvme_rdma_stop_queue(&ctrl->queues[0]); 1130 nvme_rdma_destroy_admin_queue(ctrl, new); 1131 return ret; 1132 } 1133 1134 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1135 { 1136 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1137 struct nvme_rdma_ctrl, reconnect_work); 1138 1139 ++ctrl->ctrl.nr_reconnects; 1140 1141 if (nvme_rdma_setup_ctrl(ctrl, false)) 1142 goto requeue; 1143 1144 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1145 ctrl->ctrl.nr_reconnects); 1146 1147 ctrl->ctrl.nr_reconnects = 0; 1148 1149 return; 1150 1151 requeue: 1152 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1153 ctrl->ctrl.nr_reconnects); 1154 nvme_rdma_reconnect_or_remove(ctrl); 1155 } 1156 1157 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1158 { 1159 struct nvme_rdma_ctrl *ctrl = container_of(work, 1160 struct nvme_rdma_ctrl, err_work); 1161 1162 nvme_stop_keep_alive(&ctrl->ctrl); 1163 nvme_rdma_teardown_io_queues(ctrl, false); 1164 nvme_start_queues(&ctrl->ctrl); 1165 nvme_rdma_teardown_admin_queue(ctrl, false); 1166 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1167 1168 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1169 /* state change failure is ok if we started ctrl delete */ 1170 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1171 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1172 return; 1173 } 1174 1175 nvme_rdma_reconnect_or_remove(ctrl); 1176 } 1177 1178 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1179 { 1180 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1181 return; 1182 1183 queue_work(nvme_reset_wq, &ctrl->err_work); 1184 } 1185 1186 static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1187 { 1188 struct request *rq = blk_mq_rq_from_pdu(req); 1189 1190 if (!refcount_dec_and_test(&req->ref)) 1191 return; 1192 if (!nvme_end_request(rq, req->status, req->result)) 1193 nvme_rdma_complete_rq(rq); 1194 } 1195 1196 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1197 const char *op) 1198 { 1199 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1200 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1201 1202 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1203 dev_info(ctrl->ctrl.device, 1204 "%s for CQE 0x%p failed with status %s (%d)\n", 1205 op, wc->wr_cqe, 1206 ib_wc_status_msg(wc->status), wc->status); 1207 nvme_rdma_error_recovery(ctrl); 1208 } 1209 1210 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1211 { 1212 if (unlikely(wc->status != IB_WC_SUCCESS)) 1213 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1214 } 1215 1216 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1217 { 1218 struct nvme_rdma_request *req = 1219 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1220 1221 if (unlikely(wc->status != IB_WC_SUCCESS)) 1222 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1223 else 1224 nvme_rdma_end_request(req); 1225 } 1226 1227 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1228 struct nvme_rdma_request *req) 1229 { 1230 struct ib_send_wr wr = { 1231 .opcode = IB_WR_LOCAL_INV, 1232 .next = NULL, 1233 .num_sge = 0, 1234 .send_flags = IB_SEND_SIGNALED, 1235 .ex.invalidate_rkey = req->mr->rkey, 1236 }; 1237 1238 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1239 wr.wr_cqe = &req->reg_cqe; 1240 1241 return ib_post_send(queue->qp, &wr, NULL); 1242 } 1243 1244 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1245 struct request *rq) 1246 { 1247 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1248 struct nvme_rdma_device *dev = queue->device; 1249 struct ib_device *ibdev = dev->dev; 1250 struct list_head *pool = &queue->qp->rdma_mrs; 1251 1252 if (!blk_rq_nr_phys_segments(rq)) 1253 return; 1254 1255 if (blk_integrity_rq(rq)) { 1256 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1257 req->metadata_sgl->nents, rq_dma_dir(rq)); 1258 sg_free_table_chained(&req->metadata_sgl->sg_table, 1259 NVME_INLINE_METADATA_SG_CNT); 1260 } 1261 1262 if (req->use_sig_mr) 1263 pool = &queue->qp->sig_mrs; 1264 1265 if (req->mr) { 1266 ib_mr_pool_put(queue->qp, pool, req->mr); 1267 req->mr = NULL; 1268 } 1269 1270 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1271 rq_dma_dir(rq)); 1272 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1273 } 1274 1275 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1276 { 1277 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1278 1279 sg->addr = 0; 1280 put_unaligned_le24(0, sg->length); 1281 put_unaligned_le32(0, sg->key); 1282 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1283 return 0; 1284 } 1285 1286 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1287 struct nvme_rdma_request *req, struct nvme_command *c, 1288 int count) 1289 { 1290 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1291 struct scatterlist *sgl = req->data_sgl.sg_table.sgl; 1292 struct ib_sge *sge = &req->sge[1]; 1293 u32 len = 0; 1294 int i; 1295 1296 for (i = 0; i < count; i++, sgl++, sge++) { 1297 sge->addr = sg_dma_address(sgl); 1298 sge->length = sg_dma_len(sgl); 1299 sge->lkey = queue->device->pd->local_dma_lkey; 1300 len += sge->length; 1301 } 1302 1303 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1304 sg->length = cpu_to_le32(len); 1305 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1306 1307 req->num_sge += count; 1308 return 0; 1309 } 1310 1311 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1312 struct nvme_rdma_request *req, struct nvme_command *c) 1313 { 1314 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1315 1316 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1317 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1318 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1319 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1320 return 0; 1321 } 1322 1323 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1324 struct nvme_rdma_request *req, struct nvme_command *c, 1325 int count) 1326 { 1327 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1328 int nr; 1329 1330 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1331 if (WARN_ON_ONCE(!req->mr)) 1332 return -EAGAIN; 1333 1334 /* 1335 * Align the MR to a 4K page size to match the ctrl page size and 1336 * the block virtual boundary. 1337 */ 1338 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1339 SZ_4K); 1340 if (unlikely(nr < count)) { 1341 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1342 req->mr = NULL; 1343 if (nr < 0) 1344 return nr; 1345 return -EINVAL; 1346 } 1347 1348 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1349 1350 req->reg_cqe.done = nvme_rdma_memreg_done; 1351 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1352 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1353 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1354 req->reg_wr.wr.num_sge = 0; 1355 req->reg_wr.mr = req->mr; 1356 req->reg_wr.key = req->mr->rkey; 1357 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1358 IB_ACCESS_REMOTE_READ | 1359 IB_ACCESS_REMOTE_WRITE; 1360 1361 sg->addr = cpu_to_le64(req->mr->iova); 1362 put_unaligned_le24(req->mr->length, sg->length); 1363 put_unaligned_le32(req->mr->rkey, sg->key); 1364 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1365 NVME_SGL_FMT_INVALIDATE; 1366 1367 return 0; 1368 } 1369 1370 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1371 struct nvme_command *cmd, struct ib_sig_domain *domain, 1372 u16 control, u8 pi_type) 1373 { 1374 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1375 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1376 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1377 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1378 if (control & NVME_RW_PRINFO_PRCHK_REF) 1379 domain->sig.dif.ref_remap = true; 1380 1381 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1382 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1383 domain->sig.dif.app_escape = true; 1384 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1385 domain->sig.dif.ref_escape = true; 1386 } 1387 1388 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1389 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1390 u8 pi_type) 1391 { 1392 u16 control = le16_to_cpu(cmd->rw.control); 1393 1394 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1395 if (control & NVME_RW_PRINFO_PRACT) { 1396 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1397 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1398 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1399 pi_type); 1400 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1401 control &= ~NVME_RW_PRINFO_PRACT; 1402 cmd->rw.control = cpu_to_le16(control); 1403 } else { 1404 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1405 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1406 pi_type); 1407 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1408 pi_type); 1409 } 1410 } 1411 1412 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1413 { 1414 *mask = 0; 1415 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1416 *mask |= IB_SIG_CHECK_REFTAG; 1417 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1418 *mask |= IB_SIG_CHECK_GUARD; 1419 } 1420 1421 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1422 { 1423 if (unlikely(wc->status != IB_WC_SUCCESS)) 1424 nvme_rdma_wr_error(cq, wc, "SIG"); 1425 } 1426 1427 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1428 struct nvme_rdma_request *req, struct nvme_command *c, 1429 int count, int pi_count) 1430 { 1431 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1432 struct ib_reg_wr *wr = &req->reg_wr; 1433 struct request *rq = blk_mq_rq_from_pdu(req); 1434 struct nvme_ns *ns = rq->q->queuedata; 1435 struct bio *bio = rq->bio; 1436 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1437 int nr; 1438 1439 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1440 if (WARN_ON_ONCE(!req->mr)) 1441 return -EAGAIN; 1442 1443 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1444 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1445 SZ_4K); 1446 if (unlikely(nr)) 1447 goto mr_put; 1448 1449 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c, 1450 req->mr->sig_attrs, ns->pi_type); 1451 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1452 1453 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1454 1455 req->reg_cqe.done = nvme_rdma_sig_done; 1456 memset(wr, 0, sizeof(*wr)); 1457 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1458 wr->wr.wr_cqe = &req->reg_cqe; 1459 wr->wr.num_sge = 0; 1460 wr->wr.send_flags = 0; 1461 wr->mr = req->mr; 1462 wr->key = req->mr->rkey; 1463 wr->access = IB_ACCESS_LOCAL_WRITE | 1464 IB_ACCESS_REMOTE_READ | 1465 IB_ACCESS_REMOTE_WRITE; 1466 1467 sg->addr = cpu_to_le64(req->mr->iova); 1468 put_unaligned_le24(req->mr->length, sg->length); 1469 put_unaligned_le32(req->mr->rkey, sg->key); 1470 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1471 1472 return 0; 1473 1474 mr_put: 1475 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1476 req->mr = NULL; 1477 if (nr < 0) 1478 return nr; 1479 return -EINVAL; 1480 } 1481 1482 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1483 struct request *rq, struct nvme_command *c) 1484 { 1485 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1486 struct nvme_rdma_device *dev = queue->device; 1487 struct ib_device *ibdev = dev->dev; 1488 int pi_count = 0; 1489 int count, ret; 1490 1491 req->num_sge = 1; 1492 refcount_set(&req->ref, 2); /* send and recv completions */ 1493 1494 c->common.flags |= NVME_CMD_SGL_METABUF; 1495 1496 if (!blk_rq_nr_phys_segments(rq)) 1497 return nvme_rdma_set_sg_null(c); 1498 1499 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1500 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1501 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1502 NVME_INLINE_SG_CNT); 1503 if (ret) 1504 return -ENOMEM; 1505 1506 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1507 req->data_sgl.sg_table.sgl); 1508 1509 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1510 req->data_sgl.nents, rq_dma_dir(rq)); 1511 if (unlikely(count <= 0)) { 1512 ret = -EIO; 1513 goto out_free_table; 1514 } 1515 1516 if (blk_integrity_rq(rq)) { 1517 req->metadata_sgl->sg_table.sgl = 1518 (struct scatterlist *)(req->metadata_sgl + 1); 1519 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1520 blk_rq_count_integrity_sg(rq->q, rq->bio), 1521 req->metadata_sgl->sg_table.sgl, 1522 NVME_INLINE_METADATA_SG_CNT); 1523 if (unlikely(ret)) { 1524 ret = -ENOMEM; 1525 goto out_unmap_sg; 1526 } 1527 1528 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1529 rq->bio, req->metadata_sgl->sg_table.sgl); 1530 pi_count = ib_dma_map_sg(ibdev, 1531 req->metadata_sgl->sg_table.sgl, 1532 req->metadata_sgl->nents, 1533 rq_dma_dir(rq)); 1534 if (unlikely(pi_count <= 0)) { 1535 ret = -EIO; 1536 goto out_free_pi_table; 1537 } 1538 } 1539 1540 if (req->use_sig_mr) { 1541 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1542 goto out; 1543 } 1544 1545 if (count <= dev->num_inline_segments) { 1546 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1547 queue->ctrl->use_inline_data && 1548 blk_rq_payload_bytes(rq) <= 1549 nvme_rdma_inline_data_size(queue)) { 1550 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1551 goto out; 1552 } 1553 1554 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1555 ret = nvme_rdma_map_sg_single(queue, req, c); 1556 goto out; 1557 } 1558 } 1559 1560 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1561 out: 1562 if (unlikely(ret)) 1563 goto out_unmap_pi_sg; 1564 1565 return 0; 1566 1567 out_unmap_pi_sg: 1568 if (blk_integrity_rq(rq)) 1569 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1570 req->metadata_sgl->nents, rq_dma_dir(rq)); 1571 out_free_pi_table: 1572 if (blk_integrity_rq(rq)) 1573 sg_free_table_chained(&req->metadata_sgl->sg_table, 1574 NVME_INLINE_METADATA_SG_CNT); 1575 out_unmap_sg: 1576 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1577 rq_dma_dir(rq)); 1578 out_free_table: 1579 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1580 return ret; 1581 } 1582 1583 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1584 { 1585 struct nvme_rdma_qe *qe = 1586 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1587 struct nvme_rdma_request *req = 1588 container_of(qe, struct nvme_rdma_request, sqe); 1589 1590 if (unlikely(wc->status != IB_WC_SUCCESS)) 1591 nvme_rdma_wr_error(cq, wc, "SEND"); 1592 else 1593 nvme_rdma_end_request(req); 1594 } 1595 1596 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1597 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1598 struct ib_send_wr *first) 1599 { 1600 struct ib_send_wr wr; 1601 int ret; 1602 1603 sge->addr = qe->dma; 1604 sge->length = sizeof(struct nvme_command); 1605 sge->lkey = queue->device->pd->local_dma_lkey; 1606 1607 wr.next = NULL; 1608 wr.wr_cqe = &qe->cqe; 1609 wr.sg_list = sge; 1610 wr.num_sge = num_sge; 1611 wr.opcode = IB_WR_SEND; 1612 wr.send_flags = IB_SEND_SIGNALED; 1613 1614 if (first) 1615 first->next = ≀ 1616 else 1617 first = ≀ 1618 1619 ret = ib_post_send(queue->qp, first, NULL); 1620 if (unlikely(ret)) { 1621 dev_err(queue->ctrl->ctrl.device, 1622 "%s failed with error code %d\n", __func__, ret); 1623 } 1624 return ret; 1625 } 1626 1627 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1628 struct nvme_rdma_qe *qe) 1629 { 1630 struct ib_recv_wr wr; 1631 struct ib_sge list; 1632 int ret; 1633 1634 list.addr = qe->dma; 1635 list.length = sizeof(struct nvme_completion); 1636 list.lkey = queue->device->pd->local_dma_lkey; 1637 1638 qe->cqe.done = nvme_rdma_recv_done; 1639 1640 wr.next = NULL; 1641 wr.wr_cqe = &qe->cqe; 1642 wr.sg_list = &list; 1643 wr.num_sge = 1; 1644 1645 ret = ib_post_recv(queue->qp, &wr, NULL); 1646 if (unlikely(ret)) { 1647 dev_err(queue->ctrl->ctrl.device, 1648 "%s failed with error code %d\n", __func__, ret); 1649 } 1650 return ret; 1651 } 1652 1653 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1654 { 1655 u32 queue_idx = nvme_rdma_queue_idx(queue); 1656 1657 if (queue_idx == 0) 1658 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1659 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1660 } 1661 1662 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1663 { 1664 if (unlikely(wc->status != IB_WC_SUCCESS)) 1665 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1666 } 1667 1668 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1669 { 1670 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1671 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1672 struct ib_device *dev = queue->device->dev; 1673 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1674 struct nvme_command *cmd = sqe->data; 1675 struct ib_sge sge; 1676 int ret; 1677 1678 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1679 1680 memset(cmd, 0, sizeof(*cmd)); 1681 cmd->common.opcode = nvme_admin_async_event; 1682 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1683 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1684 nvme_rdma_set_sg_null(cmd); 1685 1686 sqe->cqe.done = nvme_rdma_async_done; 1687 1688 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1689 DMA_TO_DEVICE); 1690 1691 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1692 WARN_ON_ONCE(ret); 1693 } 1694 1695 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1696 struct nvme_completion *cqe, struct ib_wc *wc) 1697 { 1698 struct request *rq; 1699 struct nvme_rdma_request *req; 1700 1701 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1702 if (!rq) { 1703 dev_err(queue->ctrl->ctrl.device, 1704 "tag 0x%x on QP %#x not found\n", 1705 cqe->command_id, queue->qp->qp_num); 1706 nvme_rdma_error_recovery(queue->ctrl); 1707 return; 1708 } 1709 req = blk_mq_rq_to_pdu(rq); 1710 1711 req->status = cqe->status; 1712 req->result = cqe->result; 1713 1714 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1715 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1716 dev_err(queue->ctrl->ctrl.device, 1717 "Bogus remote invalidation for rkey %#x\n", 1718 req->mr->rkey); 1719 nvme_rdma_error_recovery(queue->ctrl); 1720 } 1721 } else if (req->mr) { 1722 int ret; 1723 1724 ret = nvme_rdma_inv_rkey(queue, req); 1725 if (unlikely(ret < 0)) { 1726 dev_err(queue->ctrl->ctrl.device, 1727 "Queueing INV WR for rkey %#x failed (%d)\n", 1728 req->mr->rkey, ret); 1729 nvme_rdma_error_recovery(queue->ctrl); 1730 } 1731 /* the local invalidation completion will end the request */ 1732 return; 1733 } 1734 1735 nvme_rdma_end_request(req); 1736 } 1737 1738 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1739 { 1740 struct nvme_rdma_qe *qe = 1741 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1742 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1743 struct ib_device *ibdev = queue->device->dev; 1744 struct nvme_completion *cqe = qe->data; 1745 const size_t len = sizeof(struct nvme_completion); 1746 1747 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1748 nvme_rdma_wr_error(cq, wc, "RECV"); 1749 return; 1750 } 1751 1752 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1753 /* 1754 * AEN requests are special as they don't time out and can 1755 * survive any kind of queue freeze and often don't respond to 1756 * aborts. We don't even bother to allocate a struct request 1757 * for them but rather special case them here. 1758 */ 1759 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1760 cqe->command_id))) 1761 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1762 &cqe->result); 1763 else 1764 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1765 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1766 1767 nvme_rdma_post_recv(queue, qe); 1768 } 1769 1770 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1771 { 1772 int ret, i; 1773 1774 for (i = 0; i < queue->queue_size; i++) { 1775 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1776 if (ret) 1777 goto out_destroy_queue_ib; 1778 } 1779 1780 return 0; 1781 1782 out_destroy_queue_ib: 1783 nvme_rdma_destroy_queue_ib(queue); 1784 return ret; 1785 } 1786 1787 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1788 struct rdma_cm_event *ev) 1789 { 1790 struct rdma_cm_id *cm_id = queue->cm_id; 1791 int status = ev->status; 1792 const char *rej_msg; 1793 const struct nvme_rdma_cm_rej *rej_data; 1794 u8 rej_data_len; 1795 1796 rej_msg = rdma_reject_msg(cm_id, status); 1797 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1798 1799 if (rej_data && rej_data_len >= sizeof(u16)) { 1800 u16 sts = le16_to_cpu(rej_data->sts); 1801 1802 dev_err(queue->ctrl->ctrl.device, 1803 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1804 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1805 } else { 1806 dev_err(queue->ctrl->ctrl.device, 1807 "Connect rejected: status %d (%s).\n", status, rej_msg); 1808 } 1809 1810 return -ECONNRESET; 1811 } 1812 1813 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1814 { 1815 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1816 int ret; 1817 1818 ret = nvme_rdma_create_queue_ib(queue); 1819 if (ret) 1820 return ret; 1821 1822 if (ctrl->opts->tos >= 0) 1823 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1824 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1825 if (ret) { 1826 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1827 queue->cm_error); 1828 goto out_destroy_queue; 1829 } 1830 1831 return 0; 1832 1833 out_destroy_queue: 1834 nvme_rdma_destroy_queue_ib(queue); 1835 return ret; 1836 } 1837 1838 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1839 { 1840 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1841 struct rdma_conn_param param = { }; 1842 struct nvme_rdma_cm_req priv = { }; 1843 int ret; 1844 1845 param.qp_num = queue->qp->qp_num; 1846 param.flow_control = 1; 1847 1848 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1849 /* maximum retry count */ 1850 param.retry_count = 7; 1851 param.rnr_retry_count = 7; 1852 param.private_data = &priv; 1853 param.private_data_len = sizeof(priv); 1854 1855 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1856 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1857 /* 1858 * set the admin queue depth to the minimum size 1859 * specified by the Fabrics standard. 1860 */ 1861 if (priv.qid == 0) { 1862 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1863 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1864 } else { 1865 /* 1866 * current interpretation of the fabrics spec 1867 * is at minimum you make hrqsize sqsize+1, or a 1868 * 1's based representation of sqsize. 1869 */ 1870 priv.hrqsize = cpu_to_le16(queue->queue_size); 1871 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1872 } 1873 1874 ret = rdma_connect(queue->cm_id, ¶m); 1875 if (ret) { 1876 dev_err(ctrl->ctrl.device, 1877 "rdma_connect failed (%d).\n", ret); 1878 goto out_destroy_queue_ib; 1879 } 1880 1881 return 0; 1882 1883 out_destroy_queue_ib: 1884 nvme_rdma_destroy_queue_ib(queue); 1885 return ret; 1886 } 1887 1888 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1889 struct rdma_cm_event *ev) 1890 { 1891 struct nvme_rdma_queue *queue = cm_id->context; 1892 int cm_error = 0; 1893 1894 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1895 rdma_event_msg(ev->event), ev->event, 1896 ev->status, cm_id); 1897 1898 switch (ev->event) { 1899 case RDMA_CM_EVENT_ADDR_RESOLVED: 1900 cm_error = nvme_rdma_addr_resolved(queue); 1901 break; 1902 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1903 cm_error = nvme_rdma_route_resolved(queue); 1904 break; 1905 case RDMA_CM_EVENT_ESTABLISHED: 1906 queue->cm_error = nvme_rdma_conn_established(queue); 1907 /* complete cm_done regardless of success/failure */ 1908 complete(&queue->cm_done); 1909 return 0; 1910 case RDMA_CM_EVENT_REJECTED: 1911 nvme_rdma_destroy_queue_ib(queue); 1912 cm_error = nvme_rdma_conn_rejected(queue, ev); 1913 break; 1914 case RDMA_CM_EVENT_ROUTE_ERROR: 1915 case RDMA_CM_EVENT_CONNECT_ERROR: 1916 case RDMA_CM_EVENT_UNREACHABLE: 1917 nvme_rdma_destroy_queue_ib(queue); 1918 /* fall through */ 1919 case RDMA_CM_EVENT_ADDR_ERROR: 1920 dev_dbg(queue->ctrl->ctrl.device, 1921 "CM error event %d\n", ev->event); 1922 cm_error = -ECONNRESET; 1923 break; 1924 case RDMA_CM_EVENT_DISCONNECTED: 1925 case RDMA_CM_EVENT_ADDR_CHANGE: 1926 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1927 dev_dbg(queue->ctrl->ctrl.device, 1928 "disconnect received - connection closed\n"); 1929 nvme_rdma_error_recovery(queue->ctrl); 1930 break; 1931 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1932 /* device removal is handled via the ib_client API */ 1933 break; 1934 default: 1935 dev_err(queue->ctrl->ctrl.device, 1936 "Unexpected RDMA CM event (%d)\n", ev->event); 1937 nvme_rdma_error_recovery(queue->ctrl); 1938 break; 1939 } 1940 1941 if (cm_error) { 1942 queue->cm_error = cm_error; 1943 complete(&queue->cm_done); 1944 } 1945 1946 return 0; 1947 } 1948 1949 static enum blk_eh_timer_return 1950 nvme_rdma_timeout(struct request *rq, bool reserved) 1951 { 1952 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1953 struct nvme_rdma_queue *queue = req->queue; 1954 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1955 1956 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1957 rq->tag, nvme_rdma_queue_idx(queue)); 1958 1959 /* 1960 * Restart the timer if a controller reset is already scheduled. Any 1961 * timed out commands would be handled before entering the connecting 1962 * state. 1963 */ 1964 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 1965 return BLK_EH_RESET_TIMER; 1966 1967 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1968 /* 1969 * Teardown immediately if controller times out while starting 1970 * or we are already started error recovery. all outstanding 1971 * requests are completed on shutdown, so we return BLK_EH_DONE. 1972 */ 1973 flush_work(&ctrl->err_work); 1974 nvme_rdma_teardown_io_queues(ctrl, false); 1975 nvme_rdma_teardown_admin_queue(ctrl, false); 1976 return BLK_EH_DONE; 1977 } 1978 1979 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1980 nvme_rdma_error_recovery(ctrl); 1981 1982 return BLK_EH_RESET_TIMER; 1983 } 1984 1985 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1986 const struct blk_mq_queue_data *bd) 1987 { 1988 struct nvme_ns *ns = hctx->queue->queuedata; 1989 struct nvme_rdma_queue *queue = hctx->driver_data; 1990 struct request *rq = bd->rq; 1991 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1992 struct nvme_rdma_qe *sqe = &req->sqe; 1993 struct nvme_command *c = sqe->data; 1994 struct ib_device *dev; 1995 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1996 blk_status_t ret; 1997 int err; 1998 1999 WARN_ON_ONCE(rq->tag < 0); 2000 2001 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2002 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2003 2004 dev = queue->device->dev; 2005 2006 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2007 sizeof(struct nvme_command), 2008 DMA_TO_DEVICE); 2009 err = ib_dma_mapping_error(dev, req->sqe.dma); 2010 if (unlikely(err)) 2011 return BLK_STS_RESOURCE; 2012 2013 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2014 sizeof(struct nvme_command), DMA_TO_DEVICE); 2015 2016 ret = nvme_setup_cmd(ns, rq, c); 2017 if (ret) 2018 goto unmap_qe; 2019 2020 blk_mq_start_request(rq); 2021 2022 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2023 queue->pi_support && 2024 (c->common.opcode == nvme_cmd_write || 2025 c->common.opcode == nvme_cmd_read) && 2026 nvme_ns_has_pi(ns)) 2027 req->use_sig_mr = true; 2028 else 2029 req->use_sig_mr = false; 2030 2031 err = nvme_rdma_map_data(queue, rq, c); 2032 if (unlikely(err < 0)) { 2033 dev_err(queue->ctrl->ctrl.device, 2034 "Failed to map data (%d)\n", err); 2035 goto err; 2036 } 2037 2038 sqe->cqe.done = nvme_rdma_send_done; 2039 2040 ib_dma_sync_single_for_device(dev, sqe->dma, 2041 sizeof(struct nvme_command), DMA_TO_DEVICE); 2042 2043 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2044 req->mr ? &req->reg_wr.wr : NULL); 2045 if (unlikely(err)) 2046 goto err_unmap; 2047 2048 return BLK_STS_OK; 2049 2050 err_unmap: 2051 nvme_rdma_unmap_data(queue, rq); 2052 err: 2053 if (err == -ENOMEM || err == -EAGAIN) 2054 ret = BLK_STS_RESOURCE; 2055 else 2056 ret = BLK_STS_IOERR; 2057 nvme_cleanup_cmd(rq); 2058 unmap_qe: 2059 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2060 DMA_TO_DEVICE); 2061 return ret; 2062 } 2063 2064 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 2065 { 2066 struct nvme_rdma_queue *queue = hctx->driver_data; 2067 2068 return ib_process_cq_direct(queue->ib_cq, -1); 2069 } 2070 2071 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2072 { 2073 struct request *rq = blk_mq_rq_from_pdu(req); 2074 struct ib_mr_status mr_status; 2075 int ret; 2076 2077 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2078 if (ret) { 2079 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2080 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2081 return; 2082 } 2083 2084 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2085 switch (mr_status.sig_err.err_type) { 2086 case IB_SIG_BAD_GUARD: 2087 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2088 break; 2089 case IB_SIG_BAD_REFTAG: 2090 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2091 break; 2092 case IB_SIG_BAD_APPTAG: 2093 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2094 break; 2095 } 2096 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2097 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2098 mr_status.sig_err.actual); 2099 } 2100 } 2101 2102 static void nvme_rdma_complete_rq(struct request *rq) 2103 { 2104 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2105 struct nvme_rdma_queue *queue = req->queue; 2106 struct ib_device *ibdev = queue->device->dev; 2107 2108 if (req->use_sig_mr) 2109 nvme_rdma_check_pi_status(req); 2110 2111 nvme_rdma_unmap_data(queue, rq); 2112 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2113 DMA_TO_DEVICE); 2114 nvme_complete_rq(rq); 2115 } 2116 2117 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2118 { 2119 struct nvme_rdma_ctrl *ctrl = set->driver_data; 2120 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2121 2122 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2123 /* separate read/write queues */ 2124 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2125 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2126 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2127 set->map[HCTX_TYPE_READ].nr_queues = 2128 ctrl->io_queues[HCTX_TYPE_READ]; 2129 set->map[HCTX_TYPE_READ].queue_offset = 2130 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2131 } else { 2132 /* shared read/write queues */ 2133 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2134 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2135 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2136 set->map[HCTX_TYPE_READ].nr_queues = 2137 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2138 set->map[HCTX_TYPE_READ].queue_offset = 0; 2139 } 2140 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 2141 ctrl->device->dev, 0); 2142 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 2143 ctrl->device->dev, 0); 2144 2145 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2146 /* map dedicated poll queues only if we have queues left */ 2147 set->map[HCTX_TYPE_POLL].nr_queues = 2148 ctrl->io_queues[HCTX_TYPE_POLL]; 2149 set->map[HCTX_TYPE_POLL].queue_offset = 2150 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2151 ctrl->io_queues[HCTX_TYPE_READ]; 2152 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2153 } 2154 2155 dev_info(ctrl->ctrl.device, 2156 "mapped %d/%d/%d default/read/poll queues.\n", 2157 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2158 ctrl->io_queues[HCTX_TYPE_READ], 2159 ctrl->io_queues[HCTX_TYPE_POLL]); 2160 2161 return 0; 2162 } 2163 2164 static const struct blk_mq_ops nvme_rdma_mq_ops = { 2165 .queue_rq = nvme_rdma_queue_rq, 2166 .complete = nvme_rdma_complete_rq, 2167 .init_request = nvme_rdma_init_request, 2168 .exit_request = nvme_rdma_exit_request, 2169 .init_hctx = nvme_rdma_init_hctx, 2170 .timeout = nvme_rdma_timeout, 2171 .map_queues = nvme_rdma_map_queues, 2172 .poll = nvme_rdma_poll, 2173 }; 2174 2175 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2176 .queue_rq = nvme_rdma_queue_rq, 2177 .complete = nvme_rdma_complete_rq, 2178 .init_request = nvme_rdma_init_request, 2179 .exit_request = nvme_rdma_exit_request, 2180 .init_hctx = nvme_rdma_init_admin_hctx, 2181 .timeout = nvme_rdma_timeout, 2182 }; 2183 2184 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2185 { 2186 cancel_work_sync(&ctrl->err_work); 2187 cancel_delayed_work_sync(&ctrl->reconnect_work); 2188 2189 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2190 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2191 if (shutdown) 2192 nvme_shutdown_ctrl(&ctrl->ctrl); 2193 else 2194 nvme_disable_ctrl(&ctrl->ctrl); 2195 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2196 } 2197 2198 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2199 { 2200 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2201 } 2202 2203 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2204 { 2205 struct nvme_rdma_ctrl *ctrl = 2206 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2207 2208 nvme_stop_ctrl(&ctrl->ctrl); 2209 nvme_rdma_shutdown_ctrl(ctrl, false); 2210 2211 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2212 /* state change failure should never happen */ 2213 WARN_ON_ONCE(1); 2214 return; 2215 } 2216 2217 if (nvme_rdma_setup_ctrl(ctrl, false)) 2218 goto out_fail; 2219 2220 return; 2221 2222 out_fail: 2223 ++ctrl->ctrl.nr_reconnects; 2224 nvme_rdma_reconnect_or_remove(ctrl); 2225 } 2226 2227 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2228 .name = "rdma", 2229 .module = THIS_MODULE, 2230 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2231 .reg_read32 = nvmf_reg_read32, 2232 .reg_read64 = nvmf_reg_read64, 2233 .reg_write32 = nvmf_reg_write32, 2234 .free_ctrl = nvme_rdma_free_ctrl, 2235 .submit_async_event = nvme_rdma_submit_async_event, 2236 .delete_ctrl = nvme_rdma_delete_ctrl, 2237 .get_address = nvmf_get_address, 2238 }; 2239 2240 /* 2241 * Fails a connection request if it matches an existing controller 2242 * (association) with the same tuple: 2243 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2244 * 2245 * if local address is not specified in the request, it will match an 2246 * existing controller with all the other parameters the same and no 2247 * local port address specified as well. 2248 * 2249 * The ports don't need to be compared as they are intrinsically 2250 * already matched by the port pointers supplied. 2251 */ 2252 static bool 2253 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2254 { 2255 struct nvme_rdma_ctrl *ctrl; 2256 bool found = false; 2257 2258 mutex_lock(&nvme_rdma_ctrl_mutex); 2259 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2260 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2261 if (found) 2262 break; 2263 } 2264 mutex_unlock(&nvme_rdma_ctrl_mutex); 2265 2266 return found; 2267 } 2268 2269 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2270 struct nvmf_ctrl_options *opts) 2271 { 2272 struct nvme_rdma_ctrl *ctrl; 2273 int ret; 2274 bool changed; 2275 2276 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2277 if (!ctrl) 2278 return ERR_PTR(-ENOMEM); 2279 ctrl->ctrl.opts = opts; 2280 INIT_LIST_HEAD(&ctrl->list); 2281 2282 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2283 opts->trsvcid = 2284 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2285 if (!opts->trsvcid) { 2286 ret = -ENOMEM; 2287 goto out_free_ctrl; 2288 } 2289 opts->mask |= NVMF_OPT_TRSVCID; 2290 } 2291 2292 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2293 opts->traddr, opts->trsvcid, &ctrl->addr); 2294 if (ret) { 2295 pr_err("malformed address passed: %s:%s\n", 2296 opts->traddr, opts->trsvcid); 2297 goto out_free_ctrl; 2298 } 2299 2300 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2301 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2302 opts->host_traddr, NULL, &ctrl->src_addr); 2303 if (ret) { 2304 pr_err("malformed src address passed: %s\n", 2305 opts->host_traddr); 2306 goto out_free_ctrl; 2307 } 2308 } 2309 2310 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2311 ret = -EALREADY; 2312 goto out_free_ctrl; 2313 } 2314 2315 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2316 nvme_rdma_reconnect_ctrl_work); 2317 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2318 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2319 2320 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2321 opts->nr_poll_queues + 1; 2322 ctrl->ctrl.sqsize = opts->queue_size - 1; 2323 ctrl->ctrl.kato = opts->kato; 2324 2325 ret = -ENOMEM; 2326 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2327 GFP_KERNEL); 2328 if (!ctrl->queues) 2329 goto out_free_ctrl; 2330 2331 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2332 0 /* no quirks, we're perfect! */); 2333 if (ret) 2334 goto out_kfree_queues; 2335 2336 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2337 WARN_ON_ONCE(!changed); 2338 2339 ret = nvme_rdma_setup_ctrl(ctrl, true); 2340 if (ret) 2341 goto out_uninit_ctrl; 2342 2343 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2344 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2345 2346 mutex_lock(&nvme_rdma_ctrl_mutex); 2347 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2348 mutex_unlock(&nvme_rdma_ctrl_mutex); 2349 2350 return &ctrl->ctrl; 2351 2352 out_uninit_ctrl: 2353 nvme_uninit_ctrl(&ctrl->ctrl); 2354 nvme_put_ctrl(&ctrl->ctrl); 2355 if (ret > 0) 2356 ret = -EIO; 2357 return ERR_PTR(ret); 2358 out_kfree_queues: 2359 kfree(ctrl->queues); 2360 out_free_ctrl: 2361 kfree(ctrl); 2362 return ERR_PTR(ret); 2363 } 2364 2365 static struct nvmf_transport_ops nvme_rdma_transport = { 2366 .name = "rdma", 2367 .module = THIS_MODULE, 2368 .required_opts = NVMF_OPT_TRADDR, 2369 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2370 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2371 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2372 NVMF_OPT_TOS, 2373 .create_ctrl = nvme_rdma_create_ctrl, 2374 }; 2375 2376 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2377 { 2378 struct nvme_rdma_ctrl *ctrl; 2379 struct nvme_rdma_device *ndev; 2380 bool found = false; 2381 2382 mutex_lock(&device_list_mutex); 2383 list_for_each_entry(ndev, &device_list, entry) { 2384 if (ndev->dev == ib_device) { 2385 found = true; 2386 break; 2387 } 2388 } 2389 mutex_unlock(&device_list_mutex); 2390 2391 if (!found) 2392 return; 2393 2394 /* Delete all controllers using this device */ 2395 mutex_lock(&nvme_rdma_ctrl_mutex); 2396 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2397 if (ctrl->device->dev != ib_device) 2398 continue; 2399 nvme_delete_ctrl(&ctrl->ctrl); 2400 } 2401 mutex_unlock(&nvme_rdma_ctrl_mutex); 2402 2403 flush_workqueue(nvme_delete_wq); 2404 } 2405 2406 static struct ib_client nvme_rdma_ib_client = { 2407 .name = "nvme_rdma", 2408 .remove = nvme_rdma_remove_one 2409 }; 2410 2411 static int __init nvme_rdma_init_module(void) 2412 { 2413 int ret; 2414 2415 ret = ib_register_client(&nvme_rdma_ib_client); 2416 if (ret) 2417 return ret; 2418 2419 ret = nvmf_register_transport(&nvme_rdma_transport); 2420 if (ret) 2421 goto err_unreg_client; 2422 2423 return 0; 2424 2425 err_unreg_client: 2426 ib_unregister_client(&nvme_rdma_ib_client); 2427 return ret; 2428 } 2429 2430 static void __exit nvme_rdma_cleanup_module(void) 2431 { 2432 struct nvme_rdma_ctrl *ctrl; 2433 2434 nvmf_unregister_transport(&nvme_rdma_transport); 2435 ib_unregister_client(&nvme_rdma_ib_client); 2436 2437 mutex_lock(&nvme_rdma_ctrl_mutex); 2438 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2439 nvme_delete_ctrl(&ctrl->ctrl); 2440 mutex_unlock(&nvme_rdma_ctrl_mutex); 2441 flush_workqueue(nvme_delete_wq); 2442 } 2443 2444 module_init(nvme_rdma_init_module); 2445 module_exit(nvme_rdma_cleanup_module); 2446 2447 MODULE_LICENSE("GPL v2"); 2448