xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 };
100 
101 struct nvme_rdma_ctrl {
102 	/* read only in the hot path */
103 	struct nvme_rdma_queue	*queues;
104 
105 	/* other member variables */
106 	struct blk_mq_tag_set	tag_set;
107 	struct work_struct	err_work;
108 
109 	struct nvme_rdma_qe	async_event_sqe;
110 
111 	struct delayed_work	reconnect_work;
112 
113 	struct list_head	list;
114 
115 	struct blk_mq_tag_set	admin_tag_set;
116 	struct nvme_rdma_device	*device;
117 
118 	u32			max_fr_pages;
119 
120 	struct sockaddr_storage addr;
121 	struct sockaddr_storage src_addr;
122 
123 	struct nvme_ctrl	ctrl;
124 	bool			use_inline_data;
125 	u32			io_queues[HCTX_MAX_TYPES];
126 };
127 
128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
129 {
130 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
131 }
132 
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135 
136 static LIST_HEAD(nvme_rdma_ctrl_list);
137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
138 
139 /*
140  * Disabling this option makes small I/O goes faster, but is fundamentally
141  * unsafe.  With it turned off we will have to register a global rkey that
142  * allows read and write access to all physical memory.
143  */
144 static bool register_always = true;
145 module_param(register_always, bool, 0444);
146 MODULE_PARM_DESC(register_always,
147 	 "Use memory registration even for contiguous memory regions");
148 
149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
150 		struct rdma_cm_event *event);
151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
152 static void nvme_rdma_complete_rq(struct request *rq);
153 
154 static const struct blk_mq_ops nvme_rdma_mq_ops;
155 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
156 
157 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
158 {
159 	return queue - queue->ctrl->queues;
160 }
161 
162 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
163 {
164 	return nvme_rdma_queue_idx(queue) >
165 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
166 		queue->ctrl->io_queues[HCTX_TYPE_READ];
167 }
168 
169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
170 {
171 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173 
174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
175 		size_t capsule_size, enum dma_data_direction dir)
176 {
177 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
178 	kfree(qe->data);
179 }
180 
181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
182 		size_t capsule_size, enum dma_data_direction dir)
183 {
184 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
185 	if (!qe->data)
186 		return -ENOMEM;
187 
188 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
189 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
190 		kfree(qe->data);
191 		qe->data = NULL;
192 		return -ENOMEM;
193 	}
194 
195 	return 0;
196 }
197 
198 static void nvme_rdma_free_ring(struct ib_device *ibdev,
199 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
200 		size_t capsule_size, enum dma_data_direction dir)
201 {
202 	int i;
203 
204 	for (i = 0; i < ib_queue_size; i++)
205 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
206 	kfree(ring);
207 }
208 
209 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
210 		size_t ib_queue_size, size_t capsule_size,
211 		enum dma_data_direction dir)
212 {
213 	struct nvme_rdma_qe *ring;
214 	int i;
215 
216 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
217 	if (!ring)
218 		return NULL;
219 
220 	/*
221 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
222 	 * lifetime. It's safe, since any chage in the underlying RDMA device
223 	 * will issue error recovery and queue re-creation.
224 	 */
225 	for (i = 0; i < ib_queue_size; i++) {
226 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
227 			goto out_free_ring;
228 	}
229 
230 	return ring;
231 
232 out_free_ring:
233 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
234 	return NULL;
235 }
236 
237 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
238 {
239 	pr_debug("QP event %s (%d)\n",
240 		 ib_event_msg(event->event), event->event);
241 
242 }
243 
244 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
245 {
246 	int ret;
247 
248 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
249 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
250 	if (ret < 0)
251 		return ret;
252 	if (ret == 0)
253 		return -ETIMEDOUT;
254 	WARN_ON_ONCE(queue->cm_error > 0);
255 	return queue->cm_error;
256 }
257 
258 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
259 {
260 	struct nvme_rdma_device *dev = queue->device;
261 	struct ib_qp_init_attr init_attr;
262 	int ret;
263 
264 	memset(&init_attr, 0, sizeof(init_attr));
265 	init_attr.event_handler = nvme_rdma_qp_event;
266 	/* +1 for drain */
267 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
268 	/* +1 for drain */
269 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
270 	init_attr.cap.max_recv_sge = 1;
271 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
272 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
273 	init_attr.qp_type = IB_QPT_RC;
274 	init_attr.send_cq = queue->ib_cq;
275 	init_attr.recv_cq = queue->ib_cq;
276 	if (queue->pi_support)
277 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
278 
279 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280 
281 	queue->qp = queue->cm_id->qp;
282 	return ret;
283 }
284 
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 		struct request *rq, unsigned int hctx_idx)
287 {
288 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289 
290 	kfree(req->sqe.data);
291 }
292 
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 		struct request *rq, unsigned int hctx_idx,
295 		unsigned int numa_node)
296 {
297 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
298 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301 
302 	nvme_req(rq)->ctrl = &ctrl->ctrl;
303 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 	if (!req->sqe.data)
305 		return -ENOMEM;
306 
307 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 	if (queue->pi_support)
309 		req->metadata_sgl = (void *)nvme_req(rq) +
310 			sizeof(struct nvme_rdma_request) +
311 			NVME_RDMA_DATA_SGL_SIZE;
312 
313 	req->queue = queue;
314 
315 	return 0;
316 }
317 
318 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319 		unsigned int hctx_idx)
320 {
321 	struct nvme_rdma_ctrl *ctrl = data;
322 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
323 
324 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
325 
326 	hctx->driver_data = queue;
327 	return 0;
328 }
329 
330 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
331 		unsigned int hctx_idx)
332 {
333 	struct nvme_rdma_ctrl *ctrl = data;
334 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
335 
336 	BUG_ON(hctx_idx != 0);
337 
338 	hctx->driver_data = queue;
339 	return 0;
340 }
341 
342 static void nvme_rdma_free_dev(struct kref *ref)
343 {
344 	struct nvme_rdma_device *ndev =
345 		container_of(ref, struct nvme_rdma_device, ref);
346 
347 	mutex_lock(&device_list_mutex);
348 	list_del(&ndev->entry);
349 	mutex_unlock(&device_list_mutex);
350 
351 	ib_dealloc_pd(ndev->pd);
352 	kfree(ndev);
353 }
354 
355 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
356 {
357 	kref_put(&dev->ref, nvme_rdma_free_dev);
358 }
359 
360 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
361 {
362 	return kref_get_unless_zero(&dev->ref);
363 }
364 
365 static struct nvme_rdma_device *
366 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
367 {
368 	struct nvme_rdma_device *ndev;
369 
370 	mutex_lock(&device_list_mutex);
371 	list_for_each_entry(ndev, &device_list, entry) {
372 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
373 		    nvme_rdma_dev_get(ndev))
374 			goto out_unlock;
375 	}
376 
377 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
378 	if (!ndev)
379 		goto out_err;
380 
381 	ndev->dev = cm_id->device;
382 	kref_init(&ndev->ref);
383 
384 	ndev->pd = ib_alloc_pd(ndev->dev,
385 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
386 	if (IS_ERR(ndev->pd))
387 		goto out_free_dev;
388 
389 	if (!(ndev->dev->attrs.device_cap_flags &
390 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
391 		dev_err(&ndev->dev->dev,
392 			"Memory registrations not supported.\n");
393 		goto out_free_pd;
394 	}
395 
396 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
397 					ndev->dev->attrs.max_send_sge - 1);
398 	list_add(&ndev->entry, &device_list);
399 out_unlock:
400 	mutex_unlock(&device_list_mutex);
401 	return ndev;
402 
403 out_free_pd:
404 	ib_dealloc_pd(ndev->pd);
405 out_free_dev:
406 	kfree(ndev);
407 out_err:
408 	mutex_unlock(&device_list_mutex);
409 	return NULL;
410 }
411 
412 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
413 {
414 	struct nvme_rdma_device *dev;
415 	struct ib_device *ibdev;
416 
417 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
418 		return;
419 
420 	dev = queue->device;
421 	ibdev = dev->dev;
422 
423 	if (queue->pi_support)
424 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
425 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
426 
427 	/*
428 	 * The cm_id object might have been destroyed during RDMA connection
429 	 * establishment error flow to avoid getting other cma events, thus
430 	 * the destruction of the QP shouldn't use rdma_cm API.
431 	 */
432 	ib_destroy_qp(queue->qp);
433 	ib_free_cq(queue->ib_cq);
434 
435 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
436 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
437 
438 	nvme_rdma_dev_put(dev);
439 }
440 
441 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
442 {
443 	u32 max_page_list_len;
444 
445 	if (pi_support)
446 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
447 	else
448 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
449 
450 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
451 }
452 
453 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
454 {
455 	struct ib_device *ibdev;
456 	const int send_wr_factor = 3;			/* MR, SEND, INV */
457 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
458 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
459 	enum ib_poll_context poll_ctx;
460 	int ret, pages_per_mr;
461 
462 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
463 	if (!queue->device) {
464 		dev_err(queue->cm_id->device->dev.parent,
465 			"no client data found!\n");
466 		return -ECONNREFUSED;
467 	}
468 	ibdev = queue->device->dev;
469 
470 	/*
471 	 * Spread I/O queues completion vectors according their queue index.
472 	 * Admin queues can always go on completion vector 0.
473 	 */
474 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475 
476 	/* Polling queues need direct cq polling context */
477 	if (nvme_rdma_poll_queue(queue))
478 		poll_ctx = IB_POLL_DIRECT;
479 	else
480 		poll_ctx = IB_POLL_SOFTIRQ;
481 
482 	/* +1 for ib_stop_cq */
483 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
484 				cq_factor * queue->queue_size + 1,
485 				comp_vector, poll_ctx);
486 	if (IS_ERR(queue->ib_cq)) {
487 		ret = PTR_ERR(queue->ib_cq);
488 		goto out_put_dev;
489 	}
490 
491 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
492 	if (ret)
493 		goto out_destroy_ib_cq;
494 
495 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
496 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
497 	if (!queue->rsp_ring) {
498 		ret = -ENOMEM;
499 		goto out_destroy_qp;
500 	}
501 
502 	/*
503 	 * Currently we don't use SG_GAPS MR's so if the first entry is
504 	 * misaligned we'll end up using two entries for a single data page,
505 	 * so one additional entry is required.
506 	 */
507 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
508 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
509 			      queue->queue_size,
510 			      IB_MR_TYPE_MEM_REG,
511 			      pages_per_mr, 0);
512 	if (ret) {
513 		dev_err(queue->ctrl->ctrl.device,
514 			"failed to initialize MR pool sized %d for QID %d\n",
515 			queue->queue_size, idx);
516 		goto out_destroy_ring;
517 	}
518 
519 	if (queue->pi_support) {
520 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
521 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
522 				      pages_per_mr, pages_per_mr);
523 		if (ret) {
524 			dev_err(queue->ctrl->ctrl.device,
525 				"failed to initialize PI MR pool sized %d for QID %d\n",
526 				queue->queue_size, idx);
527 			goto out_destroy_mr_pool;
528 		}
529 	}
530 
531 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
532 
533 	return 0;
534 
535 out_destroy_mr_pool:
536 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
537 out_destroy_ring:
538 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
539 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
540 out_destroy_qp:
541 	rdma_destroy_qp(queue->cm_id);
542 out_destroy_ib_cq:
543 	ib_free_cq(queue->ib_cq);
544 out_put_dev:
545 	nvme_rdma_dev_put(queue->device);
546 	return ret;
547 }
548 
549 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
550 		int idx, size_t queue_size)
551 {
552 	struct nvme_rdma_queue *queue;
553 	struct sockaddr *src_addr = NULL;
554 	int ret;
555 
556 	queue = &ctrl->queues[idx];
557 	queue->ctrl = ctrl;
558 	if (idx && ctrl->ctrl.max_integrity_segments)
559 		queue->pi_support = true;
560 	else
561 		queue->pi_support = false;
562 	init_completion(&queue->cm_done);
563 
564 	if (idx > 0)
565 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
566 	else
567 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
568 
569 	queue->queue_size = queue_size;
570 
571 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
572 			RDMA_PS_TCP, IB_QPT_RC);
573 	if (IS_ERR(queue->cm_id)) {
574 		dev_info(ctrl->ctrl.device,
575 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
576 		return PTR_ERR(queue->cm_id);
577 	}
578 
579 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
580 		src_addr = (struct sockaddr *)&ctrl->src_addr;
581 
582 	queue->cm_error = -ETIMEDOUT;
583 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
584 			(struct sockaddr *)&ctrl->addr,
585 			NVME_RDMA_CONNECT_TIMEOUT_MS);
586 	if (ret) {
587 		dev_info(ctrl->ctrl.device,
588 			"rdma_resolve_addr failed (%d).\n", ret);
589 		goto out_destroy_cm_id;
590 	}
591 
592 	ret = nvme_rdma_wait_for_cm(queue);
593 	if (ret) {
594 		dev_info(ctrl->ctrl.device,
595 			"rdma connection establishment failed (%d)\n", ret);
596 		goto out_destroy_cm_id;
597 	}
598 
599 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
600 
601 	return 0;
602 
603 out_destroy_cm_id:
604 	rdma_destroy_id(queue->cm_id);
605 	nvme_rdma_destroy_queue_ib(queue);
606 	return ret;
607 }
608 
609 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
610 {
611 	rdma_disconnect(queue->cm_id);
612 	ib_drain_qp(queue->qp);
613 }
614 
615 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
616 {
617 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
618 		return;
619 	__nvme_rdma_stop_queue(queue);
620 }
621 
622 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
623 {
624 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
625 		return;
626 
627 	nvme_rdma_destroy_queue_ib(queue);
628 	rdma_destroy_id(queue->cm_id);
629 }
630 
631 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
632 {
633 	int i;
634 
635 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
636 		nvme_rdma_free_queue(&ctrl->queues[i]);
637 }
638 
639 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
640 {
641 	int i;
642 
643 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
644 		nvme_rdma_stop_queue(&ctrl->queues[i]);
645 }
646 
647 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
648 {
649 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
650 	bool poll = nvme_rdma_poll_queue(queue);
651 	int ret;
652 
653 	if (idx)
654 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
655 	else
656 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
657 
658 	if (!ret) {
659 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
660 	} else {
661 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
662 			__nvme_rdma_stop_queue(queue);
663 		dev_info(ctrl->ctrl.device,
664 			"failed to connect queue: %d ret=%d\n", idx, ret);
665 	}
666 	return ret;
667 }
668 
669 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
670 {
671 	int i, ret = 0;
672 
673 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
674 		ret = nvme_rdma_start_queue(ctrl, i);
675 		if (ret)
676 			goto out_stop_queues;
677 	}
678 
679 	return 0;
680 
681 out_stop_queues:
682 	for (i--; i >= 1; i--)
683 		nvme_rdma_stop_queue(&ctrl->queues[i]);
684 	return ret;
685 }
686 
687 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
688 {
689 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
690 	struct ib_device *ibdev = ctrl->device->dev;
691 	unsigned int nr_io_queues, nr_default_queues;
692 	unsigned int nr_read_queues, nr_poll_queues;
693 	int i, ret;
694 
695 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
696 				min(opts->nr_io_queues, num_online_cpus()));
697 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
698 				min(opts->nr_write_queues, num_online_cpus()));
699 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
700 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
701 
702 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
703 	if (ret)
704 		return ret;
705 
706 	ctrl->ctrl.queue_count = nr_io_queues + 1;
707 	if (ctrl->ctrl.queue_count < 2)
708 		return 0;
709 
710 	dev_info(ctrl->ctrl.device,
711 		"creating %d I/O queues.\n", nr_io_queues);
712 
713 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
714 		/*
715 		 * separate read/write queues
716 		 * hand out dedicated default queues only after we have
717 		 * sufficient read queues.
718 		 */
719 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
720 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
721 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
722 			min(nr_default_queues, nr_io_queues);
723 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
724 	} else {
725 		/*
726 		 * shared read/write queues
727 		 * either no write queues were requested, or we don't have
728 		 * sufficient queue count to have dedicated default queues.
729 		 */
730 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
731 			min(nr_read_queues, nr_io_queues);
732 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
733 	}
734 
735 	if (opts->nr_poll_queues && nr_io_queues) {
736 		/* map dedicated poll queues only if we have queues left */
737 		ctrl->io_queues[HCTX_TYPE_POLL] =
738 			min(nr_poll_queues, nr_io_queues);
739 	}
740 
741 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
742 		ret = nvme_rdma_alloc_queue(ctrl, i,
743 				ctrl->ctrl.sqsize + 1);
744 		if (ret)
745 			goto out_free_queues;
746 	}
747 
748 	return 0;
749 
750 out_free_queues:
751 	for (i--; i >= 1; i--)
752 		nvme_rdma_free_queue(&ctrl->queues[i]);
753 
754 	return ret;
755 }
756 
757 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
758 		bool admin)
759 {
760 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
761 	struct blk_mq_tag_set *set;
762 	int ret;
763 
764 	if (admin) {
765 		set = &ctrl->admin_tag_set;
766 		memset(set, 0, sizeof(*set));
767 		set->ops = &nvme_rdma_admin_mq_ops;
768 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
769 		set->reserved_tags = 2; /* connect + keep-alive */
770 		set->numa_node = nctrl->numa_node;
771 		set->cmd_size = sizeof(struct nvme_rdma_request) +
772 				NVME_RDMA_DATA_SGL_SIZE;
773 		set->driver_data = ctrl;
774 		set->nr_hw_queues = 1;
775 		set->timeout = ADMIN_TIMEOUT;
776 		set->flags = BLK_MQ_F_NO_SCHED;
777 	} else {
778 		set = &ctrl->tag_set;
779 		memset(set, 0, sizeof(*set));
780 		set->ops = &nvme_rdma_mq_ops;
781 		set->queue_depth = nctrl->sqsize + 1;
782 		set->reserved_tags = 1; /* fabric connect */
783 		set->numa_node = nctrl->numa_node;
784 		set->flags = BLK_MQ_F_SHOULD_MERGE;
785 		set->cmd_size = sizeof(struct nvme_rdma_request) +
786 				NVME_RDMA_DATA_SGL_SIZE;
787 		if (nctrl->max_integrity_segments)
788 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
789 					 NVME_RDMA_METADATA_SGL_SIZE;
790 		set->driver_data = ctrl;
791 		set->nr_hw_queues = nctrl->queue_count - 1;
792 		set->timeout = NVME_IO_TIMEOUT;
793 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
794 	}
795 
796 	ret = blk_mq_alloc_tag_set(set);
797 	if (ret)
798 		return ERR_PTR(ret);
799 
800 	return set;
801 }
802 
803 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
804 		bool remove)
805 {
806 	if (remove) {
807 		blk_cleanup_queue(ctrl->ctrl.admin_q);
808 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
809 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
810 	}
811 	if (ctrl->async_event_sqe.data) {
812 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
813 				sizeof(struct nvme_command), DMA_TO_DEVICE);
814 		ctrl->async_event_sqe.data = NULL;
815 	}
816 	nvme_rdma_free_queue(&ctrl->queues[0]);
817 }
818 
819 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
820 		bool new)
821 {
822 	bool pi_capable = false;
823 	int error;
824 
825 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
826 	if (error)
827 		return error;
828 
829 	ctrl->device = ctrl->queues[0].device;
830 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
831 
832 	/* T10-PI support */
833 	if (ctrl->device->dev->attrs.device_cap_flags &
834 	    IB_DEVICE_INTEGRITY_HANDOVER)
835 		pi_capable = true;
836 
837 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
838 							pi_capable);
839 
840 	/*
841 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
842 	 * It's safe, since any chage in the underlying RDMA device will issue
843 	 * error recovery and queue re-creation.
844 	 */
845 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
846 			sizeof(struct nvme_command), DMA_TO_DEVICE);
847 	if (error)
848 		goto out_free_queue;
849 
850 	if (new) {
851 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
852 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
853 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
854 			goto out_free_async_qe;
855 		}
856 
857 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
858 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
859 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
860 			goto out_free_tagset;
861 		}
862 
863 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
864 		if (IS_ERR(ctrl->ctrl.admin_q)) {
865 			error = PTR_ERR(ctrl->ctrl.admin_q);
866 			goto out_cleanup_fabrics_q;
867 		}
868 	}
869 
870 	error = nvme_rdma_start_queue(ctrl, 0);
871 	if (error)
872 		goto out_cleanup_queue;
873 
874 	error = nvme_enable_ctrl(&ctrl->ctrl);
875 	if (error)
876 		goto out_stop_queue;
877 
878 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
879 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
880 	if (pi_capable)
881 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
882 	else
883 		ctrl->ctrl.max_integrity_segments = 0;
884 
885 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
886 
887 	error = nvme_init_identify(&ctrl->ctrl);
888 	if (error)
889 		goto out_stop_queue;
890 
891 	return 0;
892 
893 out_stop_queue:
894 	nvme_rdma_stop_queue(&ctrl->queues[0]);
895 out_cleanup_queue:
896 	if (new)
897 		blk_cleanup_queue(ctrl->ctrl.admin_q);
898 out_cleanup_fabrics_q:
899 	if (new)
900 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
901 out_free_tagset:
902 	if (new)
903 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
904 out_free_async_qe:
905 	if (ctrl->async_event_sqe.data) {
906 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
907 			sizeof(struct nvme_command), DMA_TO_DEVICE);
908 		ctrl->async_event_sqe.data = NULL;
909 	}
910 out_free_queue:
911 	nvme_rdma_free_queue(&ctrl->queues[0]);
912 	return error;
913 }
914 
915 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
916 		bool remove)
917 {
918 	if (remove) {
919 		blk_cleanup_queue(ctrl->ctrl.connect_q);
920 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
921 	}
922 	nvme_rdma_free_io_queues(ctrl);
923 }
924 
925 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
926 {
927 	int ret;
928 
929 	ret = nvme_rdma_alloc_io_queues(ctrl);
930 	if (ret)
931 		return ret;
932 
933 	if (new) {
934 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
935 		if (IS_ERR(ctrl->ctrl.tagset)) {
936 			ret = PTR_ERR(ctrl->ctrl.tagset);
937 			goto out_free_io_queues;
938 		}
939 
940 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
941 		if (IS_ERR(ctrl->ctrl.connect_q)) {
942 			ret = PTR_ERR(ctrl->ctrl.connect_q);
943 			goto out_free_tag_set;
944 		}
945 	} else {
946 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
947 			ctrl->ctrl.queue_count - 1);
948 	}
949 
950 	ret = nvme_rdma_start_io_queues(ctrl);
951 	if (ret)
952 		goto out_cleanup_connect_q;
953 
954 	return 0;
955 
956 out_cleanup_connect_q:
957 	if (new)
958 		blk_cleanup_queue(ctrl->ctrl.connect_q);
959 out_free_tag_set:
960 	if (new)
961 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
962 out_free_io_queues:
963 	nvme_rdma_free_io_queues(ctrl);
964 	return ret;
965 }
966 
967 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
968 		bool remove)
969 {
970 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
971 	nvme_rdma_stop_queue(&ctrl->queues[0]);
972 	if (ctrl->ctrl.admin_tagset) {
973 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
974 			nvme_cancel_request, &ctrl->ctrl);
975 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
976 	}
977 	if (remove)
978 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
979 	nvme_rdma_destroy_admin_queue(ctrl, remove);
980 }
981 
982 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
983 		bool remove)
984 {
985 	if (ctrl->ctrl.queue_count > 1) {
986 		nvme_stop_queues(&ctrl->ctrl);
987 		nvme_rdma_stop_io_queues(ctrl);
988 		if (ctrl->ctrl.tagset) {
989 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
990 				nvme_cancel_request, &ctrl->ctrl);
991 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
992 		}
993 		if (remove)
994 			nvme_start_queues(&ctrl->ctrl);
995 		nvme_rdma_destroy_io_queues(ctrl, remove);
996 	}
997 }
998 
999 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1000 {
1001 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1002 
1003 	if (list_empty(&ctrl->list))
1004 		goto free_ctrl;
1005 
1006 	mutex_lock(&nvme_rdma_ctrl_mutex);
1007 	list_del(&ctrl->list);
1008 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1009 
1010 	nvmf_free_options(nctrl->opts);
1011 free_ctrl:
1012 	kfree(ctrl->queues);
1013 	kfree(ctrl);
1014 }
1015 
1016 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1017 {
1018 	/* If we are resetting/deleting then do nothing */
1019 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1020 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1021 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1022 		return;
1023 	}
1024 
1025 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1026 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1027 			ctrl->ctrl.opts->reconnect_delay);
1028 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1029 				ctrl->ctrl.opts->reconnect_delay * HZ);
1030 	} else {
1031 		nvme_delete_ctrl(&ctrl->ctrl);
1032 	}
1033 }
1034 
1035 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1036 {
1037 	int ret = -EINVAL;
1038 	bool changed;
1039 
1040 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1041 	if (ret)
1042 		return ret;
1043 
1044 	if (ctrl->ctrl.icdoff) {
1045 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1046 		goto destroy_admin;
1047 	}
1048 
1049 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1050 		dev_err(ctrl->ctrl.device,
1051 			"Mandatory keyed sgls are not supported!\n");
1052 		goto destroy_admin;
1053 	}
1054 
1055 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1056 		dev_warn(ctrl->ctrl.device,
1057 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1058 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1059 	}
1060 
1061 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1062 		dev_warn(ctrl->ctrl.device,
1063 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1064 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1065 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1066 	}
1067 
1068 	if (ctrl->ctrl.sgls & (1 << 20))
1069 		ctrl->use_inline_data = true;
1070 
1071 	if (ctrl->ctrl.queue_count > 1) {
1072 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1073 		if (ret)
1074 			goto destroy_admin;
1075 	}
1076 
1077 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1078 	if (!changed) {
1079 		/*
1080 		 * state change failure is ok if we're in DELETING state,
1081 		 * unless we're during creation of a new controller to
1082 		 * avoid races with teardown flow.
1083 		 */
1084 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1085 		WARN_ON_ONCE(new);
1086 		ret = -EINVAL;
1087 		goto destroy_io;
1088 	}
1089 
1090 	nvme_start_ctrl(&ctrl->ctrl);
1091 	return 0;
1092 
1093 destroy_io:
1094 	if (ctrl->ctrl.queue_count > 1)
1095 		nvme_rdma_destroy_io_queues(ctrl, new);
1096 destroy_admin:
1097 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1098 	nvme_rdma_destroy_admin_queue(ctrl, new);
1099 	return ret;
1100 }
1101 
1102 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1103 {
1104 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1105 			struct nvme_rdma_ctrl, reconnect_work);
1106 
1107 	++ctrl->ctrl.nr_reconnects;
1108 
1109 	if (nvme_rdma_setup_ctrl(ctrl, false))
1110 		goto requeue;
1111 
1112 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1113 			ctrl->ctrl.nr_reconnects);
1114 
1115 	ctrl->ctrl.nr_reconnects = 0;
1116 
1117 	return;
1118 
1119 requeue:
1120 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1121 			ctrl->ctrl.nr_reconnects);
1122 	nvme_rdma_reconnect_or_remove(ctrl);
1123 }
1124 
1125 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1126 {
1127 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1128 			struct nvme_rdma_ctrl, err_work);
1129 
1130 	nvme_stop_keep_alive(&ctrl->ctrl);
1131 	nvme_rdma_teardown_io_queues(ctrl, false);
1132 	nvme_start_queues(&ctrl->ctrl);
1133 	nvme_rdma_teardown_admin_queue(ctrl, false);
1134 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1135 
1136 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1137 		/* state change failure is ok if we're in DELETING state */
1138 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1139 		return;
1140 	}
1141 
1142 	nvme_rdma_reconnect_or_remove(ctrl);
1143 }
1144 
1145 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1146 {
1147 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1148 		return;
1149 
1150 	queue_work(nvme_reset_wq, &ctrl->err_work);
1151 }
1152 
1153 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1154 {
1155 	struct request *rq = blk_mq_rq_from_pdu(req);
1156 
1157 	if (!refcount_dec_and_test(&req->ref))
1158 		return;
1159 	if (!nvme_end_request(rq, req->status, req->result))
1160 		nvme_rdma_complete_rq(rq);
1161 }
1162 
1163 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1164 		const char *op)
1165 {
1166 	struct nvme_rdma_queue *queue = cq->cq_context;
1167 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1168 
1169 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1170 		dev_info(ctrl->ctrl.device,
1171 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1172 			     op, wc->wr_cqe,
1173 			     ib_wc_status_msg(wc->status), wc->status);
1174 	nvme_rdma_error_recovery(ctrl);
1175 }
1176 
1177 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1178 {
1179 	if (unlikely(wc->status != IB_WC_SUCCESS))
1180 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1181 }
1182 
1183 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1184 {
1185 	struct nvme_rdma_request *req =
1186 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1187 
1188 	if (unlikely(wc->status != IB_WC_SUCCESS))
1189 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1190 	else
1191 		nvme_rdma_end_request(req);
1192 }
1193 
1194 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1195 		struct nvme_rdma_request *req)
1196 {
1197 	struct ib_send_wr wr = {
1198 		.opcode		    = IB_WR_LOCAL_INV,
1199 		.next		    = NULL,
1200 		.num_sge	    = 0,
1201 		.send_flags	    = IB_SEND_SIGNALED,
1202 		.ex.invalidate_rkey = req->mr->rkey,
1203 	};
1204 
1205 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1206 	wr.wr_cqe = &req->reg_cqe;
1207 
1208 	return ib_post_send(queue->qp, &wr, NULL);
1209 }
1210 
1211 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1212 		struct request *rq)
1213 {
1214 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1215 	struct nvme_rdma_device *dev = queue->device;
1216 	struct ib_device *ibdev = dev->dev;
1217 	struct list_head *pool = &queue->qp->rdma_mrs;
1218 
1219 	if (!blk_rq_nr_phys_segments(rq))
1220 		return;
1221 
1222 	if (blk_integrity_rq(rq)) {
1223 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1224 				req->metadata_sgl->nents, rq_dma_dir(rq));
1225 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1226 				      NVME_INLINE_METADATA_SG_CNT);
1227 	}
1228 
1229 	if (req->use_sig_mr)
1230 		pool = &queue->qp->sig_mrs;
1231 
1232 	if (req->mr) {
1233 		ib_mr_pool_put(queue->qp, pool, req->mr);
1234 		req->mr = NULL;
1235 	}
1236 
1237 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1238 			rq_dma_dir(rq));
1239 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1240 }
1241 
1242 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1243 {
1244 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1245 
1246 	sg->addr = 0;
1247 	put_unaligned_le24(0, sg->length);
1248 	put_unaligned_le32(0, sg->key);
1249 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1250 	return 0;
1251 }
1252 
1253 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1254 		struct nvme_rdma_request *req, struct nvme_command *c,
1255 		int count)
1256 {
1257 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1258 	struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1259 	struct ib_sge *sge = &req->sge[1];
1260 	u32 len = 0;
1261 	int i;
1262 
1263 	for (i = 0; i < count; i++, sgl++, sge++) {
1264 		sge->addr = sg_dma_address(sgl);
1265 		sge->length = sg_dma_len(sgl);
1266 		sge->lkey = queue->device->pd->local_dma_lkey;
1267 		len += sge->length;
1268 	}
1269 
1270 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1271 	sg->length = cpu_to_le32(len);
1272 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1273 
1274 	req->num_sge += count;
1275 	return 0;
1276 }
1277 
1278 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1279 		struct nvme_rdma_request *req, struct nvme_command *c)
1280 {
1281 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1282 
1283 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1284 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1285 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1286 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1287 	return 0;
1288 }
1289 
1290 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1291 		struct nvme_rdma_request *req, struct nvme_command *c,
1292 		int count)
1293 {
1294 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1295 	int nr;
1296 
1297 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1298 	if (WARN_ON_ONCE(!req->mr))
1299 		return -EAGAIN;
1300 
1301 	/*
1302 	 * Align the MR to a 4K page size to match the ctrl page size and
1303 	 * the block virtual boundary.
1304 	 */
1305 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1306 			  SZ_4K);
1307 	if (unlikely(nr < count)) {
1308 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1309 		req->mr = NULL;
1310 		if (nr < 0)
1311 			return nr;
1312 		return -EINVAL;
1313 	}
1314 
1315 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1316 
1317 	req->reg_cqe.done = nvme_rdma_memreg_done;
1318 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1319 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1320 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1321 	req->reg_wr.wr.num_sge = 0;
1322 	req->reg_wr.mr = req->mr;
1323 	req->reg_wr.key = req->mr->rkey;
1324 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1325 			     IB_ACCESS_REMOTE_READ |
1326 			     IB_ACCESS_REMOTE_WRITE;
1327 
1328 	sg->addr = cpu_to_le64(req->mr->iova);
1329 	put_unaligned_le24(req->mr->length, sg->length);
1330 	put_unaligned_le32(req->mr->rkey, sg->key);
1331 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1332 			NVME_SGL_FMT_INVALIDATE;
1333 
1334 	return 0;
1335 }
1336 
1337 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1338 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1339 		u16 control, u8 pi_type)
1340 {
1341 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1342 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1343 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1344 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1345 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1346 		domain->sig.dif.ref_remap = true;
1347 
1348 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1349 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1350 	domain->sig.dif.app_escape = true;
1351 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1352 		domain->sig.dif.ref_escape = true;
1353 }
1354 
1355 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1356 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1357 		u8 pi_type)
1358 {
1359 	u16 control = le16_to_cpu(cmd->rw.control);
1360 
1361 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1362 	if (control & NVME_RW_PRINFO_PRACT) {
1363 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1364 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1365 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1366 					 pi_type);
1367 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1368 		control &= ~NVME_RW_PRINFO_PRACT;
1369 		cmd->rw.control = cpu_to_le16(control);
1370 	} else {
1371 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1372 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1373 					 pi_type);
1374 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1375 					 pi_type);
1376 	}
1377 }
1378 
1379 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1380 {
1381 	*mask = 0;
1382 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1383 		*mask |= IB_SIG_CHECK_REFTAG;
1384 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1385 		*mask |= IB_SIG_CHECK_GUARD;
1386 }
1387 
1388 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1389 {
1390 	if (unlikely(wc->status != IB_WC_SUCCESS))
1391 		nvme_rdma_wr_error(cq, wc, "SIG");
1392 }
1393 
1394 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1395 		struct nvme_rdma_request *req, struct nvme_command *c,
1396 		int count, int pi_count)
1397 {
1398 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1399 	struct ib_reg_wr *wr = &req->reg_wr;
1400 	struct request *rq = blk_mq_rq_from_pdu(req);
1401 	struct nvme_ns *ns = rq->q->queuedata;
1402 	struct bio *bio = rq->bio;
1403 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1404 	int nr;
1405 
1406 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1407 	if (WARN_ON_ONCE(!req->mr))
1408 		return -EAGAIN;
1409 
1410 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1411 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1412 			     SZ_4K);
1413 	if (unlikely(nr))
1414 		goto mr_put;
1415 
1416 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1417 				req->mr->sig_attrs, ns->pi_type);
1418 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1419 
1420 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1421 
1422 	req->reg_cqe.done = nvme_rdma_sig_done;
1423 	memset(wr, 0, sizeof(*wr));
1424 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1425 	wr->wr.wr_cqe = &req->reg_cqe;
1426 	wr->wr.num_sge = 0;
1427 	wr->wr.send_flags = 0;
1428 	wr->mr = req->mr;
1429 	wr->key = req->mr->rkey;
1430 	wr->access = IB_ACCESS_LOCAL_WRITE |
1431 		     IB_ACCESS_REMOTE_READ |
1432 		     IB_ACCESS_REMOTE_WRITE;
1433 
1434 	sg->addr = cpu_to_le64(req->mr->iova);
1435 	put_unaligned_le24(req->mr->length, sg->length);
1436 	put_unaligned_le32(req->mr->rkey, sg->key);
1437 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1438 
1439 	return 0;
1440 
1441 mr_put:
1442 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1443 	req->mr = NULL;
1444 	if (nr < 0)
1445 		return nr;
1446 	return -EINVAL;
1447 }
1448 
1449 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1450 		struct request *rq, struct nvme_command *c)
1451 {
1452 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1453 	struct nvme_rdma_device *dev = queue->device;
1454 	struct ib_device *ibdev = dev->dev;
1455 	int pi_count = 0;
1456 	int count, ret;
1457 
1458 	req->num_sge = 1;
1459 	refcount_set(&req->ref, 2); /* send and recv completions */
1460 
1461 	c->common.flags |= NVME_CMD_SGL_METABUF;
1462 
1463 	if (!blk_rq_nr_phys_segments(rq))
1464 		return nvme_rdma_set_sg_null(c);
1465 
1466 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1467 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1468 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1469 			NVME_INLINE_SG_CNT);
1470 	if (ret)
1471 		return -ENOMEM;
1472 
1473 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1474 					    req->data_sgl.sg_table.sgl);
1475 
1476 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1477 			      req->data_sgl.nents, rq_dma_dir(rq));
1478 	if (unlikely(count <= 0)) {
1479 		ret = -EIO;
1480 		goto out_free_table;
1481 	}
1482 
1483 	if (blk_integrity_rq(rq)) {
1484 		req->metadata_sgl->sg_table.sgl =
1485 			(struct scatterlist *)(req->metadata_sgl + 1);
1486 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1487 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1488 				req->metadata_sgl->sg_table.sgl,
1489 				NVME_INLINE_METADATA_SG_CNT);
1490 		if (unlikely(ret)) {
1491 			ret = -ENOMEM;
1492 			goto out_unmap_sg;
1493 		}
1494 
1495 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1496 				rq->bio, req->metadata_sgl->sg_table.sgl);
1497 		pi_count = ib_dma_map_sg(ibdev,
1498 					 req->metadata_sgl->sg_table.sgl,
1499 					 req->metadata_sgl->nents,
1500 					 rq_dma_dir(rq));
1501 		if (unlikely(pi_count <= 0)) {
1502 			ret = -EIO;
1503 			goto out_free_pi_table;
1504 		}
1505 	}
1506 
1507 	if (req->use_sig_mr) {
1508 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1509 		goto out;
1510 	}
1511 
1512 	if (count <= dev->num_inline_segments) {
1513 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1514 		    queue->ctrl->use_inline_data &&
1515 		    blk_rq_payload_bytes(rq) <=
1516 				nvme_rdma_inline_data_size(queue)) {
1517 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1518 			goto out;
1519 		}
1520 
1521 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1522 			ret = nvme_rdma_map_sg_single(queue, req, c);
1523 			goto out;
1524 		}
1525 	}
1526 
1527 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1528 out:
1529 	if (unlikely(ret))
1530 		goto out_unmap_pi_sg;
1531 
1532 	return 0;
1533 
1534 out_unmap_pi_sg:
1535 	if (blk_integrity_rq(rq))
1536 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1537 				req->metadata_sgl->nents, rq_dma_dir(rq));
1538 out_free_pi_table:
1539 	if (blk_integrity_rq(rq))
1540 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1541 				      NVME_INLINE_METADATA_SG_CNT);
1542 out_unmap_sg:
1543 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1544 			rq_dma_dir(rq));
1545 out_free_table:
1546 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1547 	return ret;
1548 }
1549 
1550 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1551 {
1552 	struct nvme_rdma_qe *qe =
1553 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1554 	struct nvme_rdma_request *req =
1555 		container_of(qe, struct nvme_rdma_request, sqe);
1556 
1557 	if (unlikely(wc->status != IB_WC_SUCCESS))
1558 		nvme_rdma_wr_error(cq, wc, "SEND");
1559 	else
1560 		nvme_rdma_end_request(req);
1561 }
1562 
1563 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1564 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1565 		struct ib_send_wr *first)
1566 {
1567 	struct ib_send_wr wr;
1568 	int ret;
1569 
1570 	sge->addr   = qe->dma;
1571 	sge->length = sizeof(struct nvme_command);
1572 	sge->lkey   = queue->device->pd->local_dma_lkey;
1573 
1574 	wr.next       = NULL;
1575 	wr.wr_cqe     = &qe->cqe;
1576 	wr.sg_list    = sge;
1577 	wr.num_sge    = num_sge;
1578 	wr.opcode     = IB_WR_SEND;
1579 	wr.send_flags = IB_SEND_SIGNALED;
1580 
1581 	if (first)
1582 		first->next = &wr;
1583 	else
1584 		first = &wr;
1585 
1586 	ret = ib_post_send(queue->qp, first, NULL);
1587 	if (unlikely(ret)) {
1588 		dev_err(queue->ctrl->ctrl.device,
1589 			     "%s failed with error code %d\n", __func__, ret);
1590 	}
1591 	return ret;
1592 }
1593 
1594 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1595 		struct nvme_rdma_qe *qe)
1596 {
1597 	struct ib_recv_wr wr;
1598 	struct ib_sge list;
1599 	int ret;
1600 
1601 	list.addr   = qe->dma;
1602 	list.length = sizeof(struct nvme_completion);
1603 	list.lkey   = queue->device->pd->local_dma_lkey;
1604 
1605 	qe->cqe.done = nvme_rdma_recv_done;
1606 
1607 	wr.next     = NULL;
1608 	wr.wr_cqe   = &qe->cqe;
1609 	wr.sg_list  = &list;
1610 	wr.num_sge  = 1;
1611 
1612 	ret = ib_post_recv(queue->qp, &wr, NULL);
1613 	if (unlikely(ret)) {
1614 		dev_err(queue->ctrl->ctrl.device,
1615 			"%s failed with error code %d\n", __func__, ret);
1616 	}
1617 	return ret;
1618 }
1619 
1620 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1621 {
1622 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1623 
1624 	if (queue_idx == 0)
1625 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1626 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1627 }
1628 
1629 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1630 {
1631 	if (unlikely(wc->status != IB_WC_SUCCESS))
1632 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1633 }
1634 
1635 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1636 {
1637 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1638 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1639 	struct ib_device *dev = queue->device->dev;
1640 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1641 	struct nvme_command *cmd = sqe->data;
1642 	struct ib_sge sge;
1643 	int ret;
1644 
1645 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1646 
1647 	memset(cmd, 0, sizeof(*cmd));
1648 	cmd->common.opcode = nvme_admin_async_event;
1649 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1650 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1651 	nvme_rdma_set_sg_null(cmd);
1652 
1653 	sqe->cqe.done = nvme_rdma_async_done;
1654 
1655 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1656 			DMA_TO_DEVICE);
1657 
1658 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1659 	WARN_ON_ONCE(ret);
1660 }
1661 
1662 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1663 		struct nvme_completion *cqe, struct ib_wc *wc)
1664 {
1665 	struct request *rq;
1666 	struct nvme_rdma_request *req;
1667 
1668 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1669 	if (!rq) {
1670 		dev_err(queue->ctrl->ctrl.device,
1671 			"tag 0x%x on QP %#x not found\n",
1672 			cqe->command_id, queue->qp->qp_num);
1673 		nvme_rdma_error_recovery(queue->ctrl);
1674 		return;
1675 	}
1676 	req = blk_mq_rq_to_pdu(rq);
1677 
1678 	req->status = cqe->status;
1679 	req->result = cqe->result;
1680 
1681 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1682 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1683 			dev_err(queue->ctrl->ctrl.device,
1684 				"Bogus remote invalidation for rkey %#x\n",
1685 				req->mr->rkey);
1686 			nvme_rdma_error_recovery(queue->ctrl);
1687 		}
1688 	} else if (req->mr) {
1689 		int ret;
1690 
1691 		ret = nvme_rdma_inv_rkey(queue, req);
1692 		if (unlikely(ret < 0)) {
1693 			dev_err(queue->ctrl->ctrl.device,
1694 				"Queueing INV WR for rkey %#x failed (%d)\n",
1695 				req->mr->rkey, ret);
1696 			nvme_rdma_error_recovery(queue->ctrl);
1697 		}
1698 		/* the local invalidation completion will end the request */
1699 		return;
1700 	}
1701 
1702 	nvme_rdma_end_request(req);
1703 }
1704 
1705 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1706 {
1707 	struct nvme_rdma_qe *qe =
1708 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1709 	struct nvme_rdma_queue *queue = cq->cq_context;
1710 	struct ib_device *ibdev = queue->device->dev;
1711 	struct nvme_completion *cqe = qe->data;
1712 	const size_t len = sizeof(struct nvme_completion);
1713 
1714 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1715 		nvme_rdma_wr_error(cq, wc, "RECV");
1716 		return;
1717 	}
1718 
1719 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1720 	/*
1721 	 * AEN requests are special as they don't time out and can
1722 	 * survive any kind of queue freeze and often don't respond to
1723 	 * aborts.  We don't even bother to allocate a struct request
1724 	 * for them but rather special case them here.
1725 	 */
1726 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1727 				     cqe->command_id)))
1728 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1729 				&cqe->result);
1730 	else
1731 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1732 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1733 
1734 	nvme_rdma_post_recv(queue, qe);
1735 }
1736 
1737 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1738 {
1739 	int ret, i;
1740 
1741 	for (i = 0; i < queue->queue_size; i++) {
1742 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1743 		if (ret)
1744 			goto out_destroy_queue_ib;
1745 	}
1746 
1747 	return 0;
1748 
1749 out_destroy_queue_ib:
1750 	nvme_rdma_destroy_queue_ib(queue);
1751 	return ret;
1752 }
1753 
1754 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1755 		struct rdma_cm_event *ev)
1756 {
1757 	struct rdma_cm_id *cm_id = queue->cm_id;
1758 	int status = ev->status;
1759 	const char *rej_msg;
1760 	const struct nvme_rdma_cm_rej *rej_data;
1761 	u8 rej_data_len;
1762 
1763 	rej_msg = rdma_reject_msg(cm_id, status);
1764 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1765 
1766 	if (rej_data && rej_data_len >= sizeof(u16)) {
1767 		u16 sts = le16_to_cpu(rej_data->sts);
1768 
1769 		dev_err(queue->ctrl->ctrl.device,
1770 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1771 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1772 	} else {
1773 		dev_err(queue->ctrl->ctrl.device,
1774 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1775 	}
1776 
1777 	return -ECONNRESET;
1778 }
1779 
1780 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1781 {
1782 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1783 	int ret;
1784 
1785 	ret = nvme_rdma_create_queue_ib(queue);
1786 	if (ret)
1787 		return ret;
1788 
1789 	if (ctrl->opts->tos >= 0)
1790 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1791 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1792 	if (ret) {
1793 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1794 			queue->cm_error);
1795 		goto out_destroy_queue;
1796 	}
1797 
1798 	return 0;
1799 
1800 out_destroy_queue:
1801 	nvme_rdma_destroy_queue_ib(queue);
1802 	return ret;
1803 }
1804 
1805 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1806 {
1807 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1808 	struct rdma_conn_param param = { };
1809 	struct nvme_rdma_cm_req priv = { };
1810 	int ret;
1811 
1812 	param.qp_num = queue->qp->qp_num;
1813 	param.flow_control = 1;
1814 
1815 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1816 	/* maximum retry count */
1817 	param.retry_count = 7;
1818 	param.rnr_retry_count = 7;
1819 	param.private_data = &priv;
1820 	param.private_data_len = sizeof(priv);
1821 
1822 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1823 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1824 	/*
1825 	 * set the admin queue depth to the minimum size
1826 	 * specified by the Fabrics standard.
1827 	 */
1828 	if (priv.qid == 0) {
1829 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1830 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1831 	} else {
1832 		/*
1833 		 * current interpretation of the fabrics spec
1834 		 * is at minimum you make hrqsize sqsize+1, or a
1835 		 * 1's based representation of sqsize.
1836 		 */
1837 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1838 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1839 	}
1840 
1841 	ret = rdma_connect(queue->cm_id, &param);
1842 	if (ret) {
1843 		dev_err(ctrl->ctrl.device,
1844 			"rdma_connect failed (%d).\n", ret);
1845 		goto out_destroy_queue_ib;
1846 	}
1847 
1848 	return 0;
1849 
1850 out_destroy_queue_ib:
1851 	nvme_rdma_destroy_queue_ib(queue);
1852 	return ret;
1853 }
1854 
1855 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1856 		struct rdma_cm_event *ev)
1857 {
1858 	struct nvme_rdma_queue *queue = cm_id->context;
1859 	int cm_error = 0;
1860 
1861 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1862 		rdma_event_msg(ev->event), ev->event,
1863 		ev->status, cm_id);
1864 
1865 	switch (ev->event) {
1866 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1867 		cm_error = nvme_rdma_addr_resolved(queue);
1868 		break;
1869 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1870 		cm_error = nvme_rdma_route_resolved(queue);
1871 		break;
1872 	case RDMA_CM_EVENT_ESTABLISHED:
1873 		queue->cm_error = nvme_rdma_conn_established(queue);
1874 		/* complete cm_done regardless of success/failure */
1875 		complete(&queue->cm_done);
1876 		return 0;
1877 	case RDMA_CM_EVENT_REJECTED:
1878 		nvme_rdma_destroy_queue_ib(queue);
1879 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1880 		break;
1881 	case RDMA_CM_EVENT_ROUTE_ERROR:
1882 	case RDMA_CM_EVENT_CONNECT_ERROR:
1883 	case RDMA_CM_EVENT_UNREACHABLE:
1884 		nvme_rdma_destroy_queue_ib(queue);
1885 		/* fall through */
1886 	case RDMA_CM_EVENT_ADDR_ERROR:
1887 		dev_dbg(queue->ctrl->ctrl.device,
1888 			"CM error event %d\n", ev->event);
1889 		cm_error = -ECONNRESET;
1890 		break;
1891 	case RDMA_CM_EVENT_DISCONNECTED:
1892 	case RDMA_CM_EVENT_ADDR_CHANGE:
1893 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1894 		dev_dbg(queue->ctrl->ctrl.device,
1895 			"disconnect received - connection closed\n");
1896 		nvme_rdma_error_recovery(queue->ctrl);
1897 		break;
1898 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1899 		/* device removal is handled via the ib_client API */
1900 		break;
1901 	default:
1902 		dev_err(queue->ctrl->ctrl.device,
1903 			"Unexpected RDMA CM event (%d)\n", ev->event);
1904 		nvme_rdma_error_recovery(queue->ctrl);
1905 		break;
1906 	}
1907 
1908 	if (cm_error) {
1909 		queue->cm_error = cm_error;
1910 		complete(&queue->cm_done);
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 static enum blk_eh_timer_return
1917 nvme_rdma_timeout(struct request *rq, bool reserved)
1918 {
1919 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1920 	struct nvme_rdma_queue *queue = req->queue;
1921 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1922 
1923 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1924 		 rq->tag, nvme_rdma_queue_idx(queue));
1925 
1926 	/*
1927 	 * Restart the timer if a controller reset is already scheduled. Any
1928 	 * timed out commands would be handled before entering the connecting
1929 	 * state.
1930 	 */
1931 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1932 		return BLK_EH_RESET_TIMER;
1933 
1934 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1935 		/*
1936 		 * Teardown immediately if controller times out while starting
1937 		 * or we are already started error recovery. all outstanding
1938 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1939 		 */
1940 		flush_work(&ctrl->err_work);
1941 		nvme_rdma_teardown_io_queues(ctrl, false);
1942 		nvme_rdma_teardown_admin_queue(ctrl, false);
1943 		return BLK_EH_DONE;
1944 	}
1945 
1946 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1947 	nvme_rdma_error_recovery(ctrl);
1948 
1949 	return BLK_EH_RESET_TIMER;
1950 }
1951 
1952 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1953 		const struct blk_mq_queue_data *bd)
1954 {
1955 	struct nvme_ns *ns = hctx->queue->queuedata;
1956 	struct nvme_rdma_queue *queue = hctx->driver_data;
1957 	struct request *rq = bd->rq;
1958 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1959 	struct nvme_rdma_qe *sqe = &req->sqe;
1960 	struct nvme_command *c = sqe->data;
1961 	struct ib_device *dev;
1962 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1963 	blk_status_t ret;
1964 	int err;
1965 
1966 	WARN_ON_ONCE(rq->tag < 0);
1967 
1968 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1969 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1970 
1971 	dev = queue->device->dev;
1972 
1973 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1974 					 sizeof(struct nvme_command),
1975 					 DMA_TO_DEVICE);
1976 	err = ib_dma_mapping_error(dev, req->sqe.dma);
1977 	if (unlikely(err))
1978 		return BLK_STS_RESOURCE;
1979 
1980 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1981 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1982 
1983 	ret = nvme_setup_cmd(ns, rq, c);
1984 	if (ret)
1985 		goto unmap_qe;
1986 
1987 	blk_mq_start_request(rq);
1988 
1989 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1990 	    queue->pi_support &&
1991 	    (c->common.opcode == nvme_cmd_write ||
1992 	     c->common.opcode == nvme_cmd_read) &&
1993 	    nvme_ns_has_pi(ns))
1994 		req->use_sig_mr = true;
1995 	else
1996 		req->use_sig_mr = false;
1997 
1998 	err = nvme_rdma_map_data(queue, rq, c);
1999 	if (unlikely(err < 0)) {
2000 		dev_err(queue->ctrl->ctrl.device,
2001 			     "Failed to map data (%d)\n", err);
2002 		goto err;
2003 	}
2004 
2005 	sqe->cqe.done = nvme_rdma_send_done;
2006 
2007 	ib_dma_sync_single_for_device(dev, sqe->dma,
2008 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2009 
2010 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2011 			req->mr ? &req->reg_wr.wr : NULL);
2012 	if (unlikely(err))
2013 		goto err_unmap;
2014 
2015 	return BLK_STS_OK;
2016 
2017 err_unmap:
2018 	nvme_rdma_unmap_data(queue, rq);
2019 err:
2020 	if (err == -ENOMEM || err == -EAGAIN)
2021 		ret = BLK_STS_RESOURCE;
2022 	else
2023 		ret = BLK_STS_IOERR;
2024 	nvme_cleanup_cmd(rq);
2025 unmap_qe:
2026 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2027 			    DMA_TO_DEVICE);
2028 	return ret;
2029 }
2030 
2031 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2032 {
2033 	struct nvme_rdma_queue *queue = hctx->driver_data;
2034 
2035 	return ib_process_cq_direct(queue->ib_cq, -1);
2036 }
2037 
2038 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2039 {
2040 	struct request *rq = blk_mq_rq_from_pdu(req);
2041 	struct ib_mr_status mr_status;
2042 	int ret;
2043 
2044 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2045 	if (ret) {
2046 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2047 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2048 		return;
2049 	}
2050 
2051 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2052 		switch (mr_status.sig_err.err_type) {
2053 		case IB_SIG_BAD_GUARD:
2054 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2055 			break;
2056 		case IB_SIG_BAD_REFTAG:
2057 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2058 			break;
2059 		case IB_SIG_BAD_APPTAG:
2060 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2061 			break;
2062 		}
2063 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2064 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2065 		       mr_status.sig_err.actual);
2066 	}
2067 }
2068 
2069 static void nvme_rdma_complete_rq(struct request *rq)
2070 {
2071 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2072 	struct nvme_rdma_queue *queue = req->queue;
2073 	struct ib_device *ibdev = queue->device->dev;
2074 
2075 	if (req->use_sig_mr)
2076 		nvme_rdma_check_pi_status(req);
2077 
2078 	nvme_rdma_unmap_data(queue, rq);
2079 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2080 			    DMA_TO_DEVICE);
2081 	nvme_complete_rq(rq);
2082 }
2083 
2084 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2085 {
2086 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2087 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2088 
2089 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2090 		/* separate read/write queues */
2091 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2092 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2093 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2094 		set->map[HCTX_TYPE_READ].nr_queues =
2095 			ctrl->io_queues[HCTX_TYPE_READ];
2096 		set->map[HCTX_TYPE_READ].queue_offset =
2097 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2098 	} else {
2099 		/* shared read/write queues */
2100 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2101 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2102 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2103 		set->map[HCTX_TYPE_READ].nr_queues =
2104 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2105 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2106 	}
2107 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2108 			ctrl->device->dev, 0);
2109 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2110 			ctrl->device->dev, 0);
2111 
2112 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2113 		/* map dedicated poll queues only if we have queues left */
2114 		set->map[HCTX_TYPE_POLL].nr_queues =
2115 				ctrl->io_queues[HCTX_TYPE_POLL];
2116 		set->map[HCTX_TYPE_POLL].queue_offset =
2117 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2118 			ctrl->io_queues[HCTX_TYPE_READ];
2119 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2120 	}
2121 
2122 	dev_info(ctrl->ctrl.device,
2123 		"mapped %d/%d/%d default/read/poll queues.\n",
2124 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2125 		ctrl->io_queues[HCTX_TYPE_READ],
2126 		ctrl->io_queues[HCTX_TYPE_POLL]);
2127 
2128 	return 0;
2129 }
2130 
2131 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2132 	.queue_rq	= nvme_rdma_queue_rq,
2133 	.complete	= nvme_rdma_complete_rq,
2134 	.init_request	= nvme_rdma_init_request,
2135 	.exit_request	= nvme_rdma_exit_request,
2136 	.init_hctx	= nvme_rdma_init_hctx,
2137 	.timeout	= nvme_rdma_timeout,
2138 	.map_queues	= nvme_rdma_map_queues,
2139 	.poll		= nvme_rdma_poll,
2140 };
2141 
2142 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2143 	.queue_rq	= nvme_rdma_queue_rq,
2144 	.complete	= nvme_rdma_complete_rq,
2145 	.init_request	= nvme_rdma_init_request,
2146 	.exit_request	= nvme_rdma_exit_request,
2147 	.init_hctx	= nvme_rdma_init_admin_hctx,
2148 	.timeout	= nvme_rdma_timeout,
2149 };
2150 
2151 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2152 {
2153 	cancel_work_sync(&ctrl->err_work);
2154 	cancel_delayed_work_sync(&ctrl->reconnect_work);
2155 
2156 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2157 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2158 	if (shutdown)
2159 		nvme_shutdown_ctrl(&ctrl->ctrl);
2160 	else
2161 		nvme_disable_ctrl(&ctrl->ctrl);
2162 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2163 }
2164 
2165 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2166 {
2167 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2168 }
2169 
2170 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2171 {
2172 	struct nvme_rdma_ctrl *ctrl =
2173 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2174 
2175 	nvme_stop_ctrl(&ctrl->ctrl);
2176 	nvme_rdma_shutdown_ctrl(ctrl, false);
2177 
2178 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2179 		/* state change failure should never happen */
2180 		WARN_ON_ONCE(1);
2181 		return;
2182 	}
2183 
2184 	if (nvme_rdma_setup_ctrl(ctrl, false))
2185 		goto out_fail;
2186 
2187 	return;
2188 
2189 out_fail:
2190 	++ctrl->ctrl.nr_reconnects;
2191 	nvme_rdma_reconnect_or_remove(ctrl);
2192 }
2193 
2194 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2195 	.name			= "rdma",
2196 	.module			= THIS_MODULE,
2197 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2198 	.reg_read32		= nvmf_reg_read32,
2199 	.reg_read64		= nvmf_reg_read64,
2200 	.reg_write32		= nvmf_reg_write32,
2201 	.free_ctrl		= nvme_rdma_free_ctrl,
2202 	.submit_async_event	= nvme_rdma_submit_async_event,
2203 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2204 	.get_address		= nvmf_get_address,
2205 };
2206 
2207 /*
2208  * Fails a connection request if it matches an existing controller
2209  * (association) with the same tuple:
2210  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2211  *
2212  * if local address is not specified in the request, it will match an
2213  * existing controller with all the other parameters the same and no
2214  * local port address specified as well.
2215  *
2216  * The ports don't need to be compared as they are intrinsically
2217  * already matched by the port pointers supplied.
2218  */
2219 static bool
2220 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2221 {
2222 	struct nvme_rdma_ctrl *ctrl;
2223 	bool found = false;
2224 
2225 	mutex_lock(&nvme_rdma_ctrl_mutex);
2226 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2227 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2228 		if (found)
2229 			break;
2230 	}
2231 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2232 
2233 	return found;
2234 }
2235 
2236 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2237 		struct nvmf_ctrl_options *opts)
2238 {
2239 	struct nvme_rdma_ctrl *ctrl;
2240 	int ret;
2241 	bool changed;
2242 
2243 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2244 	if (!ctrl)
2245 		return ERR_PTR(-ENOMEM);
2246 	ctrl->ctrl.opts = opts;
2247 	INIT_LIST_HEAD(&ctrl->list);
2248 
2249 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2250 		opts->trsvcid =
2251 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2252 		if (!opts->trsvcid) {
2253 			ret = -ENOMEM;
2254 			goto out_free_ctrl;
2255 		}
2256 		opts->mask |= NVMF_OPT_TRSVCID;
2257 	}
2258 
2259 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2260 			opts->traddr, opts->trsvcid, &ctrl->addr);
2261 	if (ret) {
2262 		pr_err("malformed address passed: %s:%s\n",
2263 			opts->traddr, opts->trsvcid);
2264 		goto out_free_ctrl;
2265 	}
2266 
2267 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2268 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2269 			opts->host_traddr, NULL, &ctrl->src_addr);
2270 		if (ret) {
2271 			pr_err("malformed src address passed: %s\n",
2272 			       opts->host_traddr);
2273 			goto out_free_ctrl;
2274 		}
2275 	}
2276 
2277 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2278 		ret = -EALREADY;
2279 		goto out_free_ctrl;
2280 	}
2281 
2282 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2283 			nvme_rdma_reconnect_ctrl_work);
2284 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2285 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2286 
2287 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2288 				opts->nr_poll_queues + 1;
2289 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2290 	ctrl->ctrl.kato = opts->kato;
2291 
2292 	ret = -ENOMEM;
2293 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2294 				GFP_KERNEL);
2295 	if (!ctrl->queues)
2296 		goto out_free_ctrl;
2297 
2298 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2299 				0 /* no quirks, we're perfect! */);
2300 	if (ret)
2301 		goto out_kfree_queues;
2302 
2303 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2304 	WARN_ON_ONCE(!changed);
2305 
2306 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2307 	if (ret)
2308 		goto out_uninit_ctrl;
2309 
2310 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2311 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2312 
2313 	mutex_lock(&nvme_rdma_ctrl_mutex);
2314 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2315 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2316 
2317 	return &ctrl->ctrl;
2318 
2319 out_uninit_ctrl:
2320 	nvme_uninit_ctrl(&ctrl->ctrl);
2321 	nvme_put_ctrl(&ctrl->ctrl);
2322 	if (ret > 0)
2323 		ret = -EIO;
2324 	return ERR_PTR(ret);
2325 out_kfree_queues:
2326 	kfree(ctrl->queues);
2327 out_free_ctrl:
2328 	kfree(ctrl);
2329 	return ERR_PTR(ret);
2330 }
2331 
2332 static struct nvmf_transport_ops nvme_rdma_transport = {
2333 	.name		= "rdma",
2334 	.module		= THIS_MODULE,
2335 	.required_opts	= NVMF_OPT_TRADDR,
2336 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2337 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2338 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2339 			  NVMF_OPT_TOS,
2340 	.create_ctrl	= nvme_rdma_create_ctrl,
2341 };
2342 
2343 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2344 {
2345 	struct nvme_rdma_ctrl *ctrl;
2346 	struct nvme_rdma_device *ndev;
2347 	bool found = false;
2348 
2349 	mutex_lock(&device_list_mutex);
2350 	list_for_each_entry(ndev, &device_list, entry) {
2351 		if (ndev->dev == ib_device) {
2352 			found = true;
2353 			break;
2354 		}
2355 	}
2356 	mutex_unlock(&device_list_mutex);
2357 
2358 	if (!found)
2359 		return;
2360 
2361 	/* Delete all controllers using this device */
2362 	mutex_lock(&nvme_rdma_ctrl_mutex);
2363 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2364 		if (ctrl->device->dev != ib_device)
2365 			continue;
2366 		nvme_delete_ctrl(&ctrl->ctrl);
2367 	}
2368 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2369 
2370 	flush_workqueue(nvme_delete_wq);
2371 }
2372 
2373 static struct ib_client nvme_rdma_ib_client = {
2374 	.name   = "nvme_rdma",
2375 	.remove = nvme_rdma_remove_one
2376 };
2377 
2378 static int __init nvme_rdma_init_module(void)
2379 {
2380 	int ret;
2381 
2382 	ret = ib_register_client(&nvme_rdma_ib_client);
2383 	if (ret)
2384 		return ret;
2385 
2386 	ret = nvmf_register_transport(&nvme_rdma_transport);
2387 	if (ret)
2388 		goto err_unreg_client;
2389 
2390 	return 0;
2391 
2392 err_unreg_client:
2393 	ib_unregister_client(&nvme_rdma_ib_client);
2394 	return ret;
2395 }
2396 
2397 static void __exit nvme_rdma_cleanup_module(void)
2398 {
2399 	struct nvme_rdma_ctrl *ctrl;
2400 
2401 	nvmf_unregister_transport(&nvme_rdma_transport);
2402 	ib_unregister_client(&nvme_rdma_ib_client);
2403 
2404 	mutex_lock(&nvme_rdma_ctrl_mutex);
2405 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2406 		nvme_delete_ctrl(&ctrl->ctrl);
2407 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2408 	flush_workqueue(nvme_delete_wq);
2409 }
2410 
2411 module_init(nvme_rdma_init_module);
2412 module_exit(nvme_rdma_cleanup_module);
2413 
2414 MODULE_LICENSE("GPL v2");
2415