xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 2f8be0e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 };
101 
102 struct nvme_rdma_ctrl {
103 	/* read only in the hot path */
104 	struct nvme_rdma_queue	*queues;
105 
106 	/* other member variables */
107 	struct blk_mq_tag_set	tag_set;
108 	struct work_struct	err_work;
109 
110 	struct nvme_rdma_qe	async_event_sqe;
111 
112 	struct delayed_work	reconnect_work;
113 
114 	struct list_head	list;
115 
116 	struct blk_mq_tag_set	admin_tag_set;
117 	struct nvme_rdma_device	*device;
118 
119 	u32			max_fr_pages;
120 
121 	struct sockaddr_storage addr;
122 	struct sockaddr_storage src_addr;
123 
124 	struct nvme_ctrl	ctrl;
125 	struct mutex		teardown_lock;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 
318 	return 0;
319 }
320 
321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 		unsigned int hctx_idx)
323 {
324 	struct nvme_rdma_ctrl *ctrl = data;
325 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326 
327 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328 
329 	hctx->driver_data = queue;
330 	return 0;
331 }
332 
333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 		unsigned int hctx_idx)
335 {
336 	struct nvme_rdma_ctrl *ctrl = data;
337 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
338 
339 	BUG_ON(hctx_idx != 0);
340 
341 	hctx->driver_data = queue;
342 	return 0;
343 }
344 
345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 	struct nvme_rdma_device *ndev =
348 		container_of(ref, struct nvme_rdma_device, ref);
349 
350 	mutex_lock(&device_list_mutex);
351 	list_del(&ndev->entry);
352 	mutex_unlock(&device_list_mutex);
353 
354 	ib_dealloc_pd(ndev->pd);
355 	kfree(ndev);
356 }
357 
358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 	kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362 
363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 	return kref_get_unless_zero(&dev->ref);
366 }
367 
368 static struct nvme_rdma_device *
369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 	struct nvme_rdma_device *ndev;
372 
373 	mutex_lock(&device_list_mutex);
374 	list_for_each_entry(ndev, &device_list, entry) {
375 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 		    nvme_rdma_dev_get(ndev))
377 			goto out_unlock;
378 	}
379 
380 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 	if (!ndev)
382 		goto out_err;
383 
384 	ndev->dev = cm_id->device;
385 	kref_init(&ndev->ref);
386 
387 	ndev->pd = ib_alloc_pd(ndev->dev,
388 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 	if (IS_ERR(ndev->pd))
390 		goto out_free_dev;
391 
392 	if (!(ndev->dev->attrs.device_cap_flags &
393 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 		dev_err(&ndev->dev->dev,
395 			"Memory registrations not supported.\n");
396 		goto out_free_pd;
397 	}
398 
399 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 					ndev->dev->attrs.max_send_sge - 1);
401 	list_add(&ndev->entry, &device_list);
402 out_unlock:
403 	mutex_unlock(&device_list_mutex);
404 	return ndev;
405 
406 out_free_pd:
407 	ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 	kfree(ndev);
410 out_err:
411 	mutex_unlock(&device_list_mutex);
412 	return NULL;
413 }
414 
415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 	if (nvme_rdma_poll_queue(queue))
418 		ib_free_cq(queue->ib_cq);
419 	else
420 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422 
423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 	struct nvme_rdma_device *dev;
426 	struct ib_device *ibdev;
427 
428 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 		return;
430 
431 	dev = queue->device;
432 	ibdev = dev->dev;
433 
434 	if (queue->pi_support)
435 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437 
438 	/*
439 	 * The cm_id object might have been destroyed during RDMA connection
440 	 * establishment error flow to avoid getting other cma events, thus
441 	 * the destruction of the QP shouldn't use rdma_cm API.
442 	 */
443 	ib_destroy_qp(queue->qp);
444 	nvme_rdma_free_cq(queue);
445 
446 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448 
449 	nvme_rdma_dev_put(dev);
450 }
451 
452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 	u32 max_page_list_len;
455 
456 	if (pi_support)
457 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 	else
459 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460 
461 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463 
464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 		struct nvme_rdma_queue *queue)
466 {
467 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 	enum ib_poll_context poll_ctx;
469 
470 	/*
471 	 * Spread I/O queues completion vectors according their queue index.
472 	 * Admin queues can always go on completion vector 0.
473 	 */
474 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475 
476 	/* Polling queues need direct cq polling context */
477 	if (nvme_rdma_poll_queue(queue)) {
478 		poll_ctx = IB_POLL_DIRECT;
479 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 					   comp_vector, poll_ctx);
481 	} else {
482 		poll_ctx = IB_POLL_SOFTIRQ;
483 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 					      comp_vector, poll_ctx);
485 	}
486 
487 	if (IS_ERR(queue->ib_cq)) {
488 		ret = PTR_ERR(queue->ib_cq);
489 		return ret;
490 	}
491 
492 	return 0;
493 }
494 
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 	struct ib_device *ibdev;
498 	const int send_wr_factor = 3;			/* MR, SEND, INV */
499 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
500 	int ret, pages_per_mr;
501 
502 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 	if (!queue->device) {
504 		dev_err(queue->cm_id->device->dev.parent,
505 			"no client data found!\n");
506 		return -ECONNREFUSED;
507 	}
508 	ibdev = queue->device->dev;
509 
510 	/* +1 for ib_stop_cq */
511 	queue->cq_size = cq_factor * queue->queue_size + 1;
512 
513 	ret = nvme_rdma_create_cq(ibdev, queue);
514 	if (ret)
515 		goto out_put_dev;
516 
517 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 	if (ret)
519 		goto out_destroy_ib_cq;
520 
521 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 	if (!queue->rsp_ring) {
524 		ret = -ENOMEM;
525 		goto out_destroy_qp;
526 	}
527 
528 	/*
529 	 * Currently we don't use SG_GAPS MR's so if the first entry is
530 	 * misaligned we'll end up using two entries for a single data page,
531 	 * so one additional entry is required.
532 	 */
533 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 			      queue->queue_size,
536 			      IB_MR_TYPE_MEM_REG,
537 			      pages_per_mr, 0);
538 	if (ret) {
539 		dev_err(queue->ctrl->ctrl.device,
540 			"failed to initialize MR pool sized %d for QID %d\n",
541 			queue->queue_size, nvme_rdma_queue_idx(queue));
542 		goto out_destroy_ring;
543 	}
544 
545 	if (queue->pi_support) {
546 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 				      pages_per_mr, pages_per_mr);
549 		if (ret) {
550 			dev_err(queue->ctrl->ctrl.device,
551 				"failed to initialize PI MR pool sized %d for QID %d\n",
552 				queue->queue_size, nvme_rdma_queue_idx(queue));
553 			goto out_destroy_mr_pool;
554 		}
555 	}
556 
557 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558 
559 	return 0;
560 
561 out_destroy_mr_pool:
562 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 	rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 	nvme_rdma_free_cq(queue);
570 out_put_dev:
571 	nvme_rdma_dev_put(queue->device);
572 	return ret;
573 }
574 
575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 		int idx, size_t queue_size)
577 {
578 	struct nvme_rdma_queue *queue;
579 	struct sockaddr *src_addr = NULL;
580 	int ret;
581 
582 	queue = &ctrl->queues[idx];
583 	queue->ctrl = ctrl;
584 	if (idx && ctrl->ctrl.max_integrity_segments)
585 		queue->pi_support = true;
586 	else
587 		queue->pi_support = false;
588 	init_completion(&queue->cm_done);
589 
590 	if (idx > 0)
591 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
592 	else
593 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
594 
595 	queue->queue_size = queue_size;
596 
597 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
598 			RDMA_PS_TCP, IB_QPT_RC);
599 	if (IS_ERR(queue->cm_id)) {
600 		dev_info(ctrl->ctrl.device,
601 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
602 		return PTR_ERR(queue->cm_id);
603 	}
604 
605 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
606 		src_addr = (struct sockaddr *)&ctrl->src_addr;
607 
608 	queue->cm_error = -ETIMEDOUT;
609 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
610 			(struct sockaddr *)&ctrl->addr,
611 			NVME_RDMA_CONNECT_TIMEOUT_MS);
612 	if (ret) {
613 		dev_info(ctrl->ctrl.device,
614 			"rdma_resolve_addr failed (%d).\n", ret);
615 		goto out_destroy_cm_id;
616 	}
617 
618 	ret = nvme_rdma_wait_for_cm(queue);
619 	if (ret) {
620 		dev_info(ctrl->ctrl.device,
621 			"rdma connection establishment failed (%d)\n", ret);
622 		goto out_destroy_cm_id;
623 	}
624 
625 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
626 
627 	return 0;
628 
629 out_destroy_cm_id:
630 	rdma_destroy_id(queue->cm_id);
631 	nvme_rdma_destroy_queue_ib(queue);
632 	return ret;
633 }
634 
635 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
636 {
637 	rdma_disconnect(queue->cm_id);
638 	ib_drain_qp(queue->qp);
639 }
640 
641 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
642 {
643 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
644 		return;
645 	__nvme_rdma_stop_queue(queue);
646 }
647 
648 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
649 {
650 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
651 		return;
652 
653 	nvme_rdma_destroy_queue_ib(queue);
654 	rdma_destroy_id(queue->cm_id);
655 }
656 
657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658 {
659 	int i;
660 
661 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
662 		nvme_rdma_free_queue(&ctrl->queues[i]);
663 }
664 
665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 {
667 	int i;
668 
669 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
670 		nvme_rdma_stop_queue(&ctrl->queues[i]);
671 }
672 
673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
674 {
675 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 	bool poll = nvme_rdma_poll_queue(queue);
677 	int ret;
678 
679 	if (idx)
680 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
681 	else
682 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
683 
684 	if (!ret) {
685 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
686 	} else {
687 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
688 			__nvme_rdma_stop_queue(queue);
689 		dev_info(ctrl->ctrl.device,
690 			"failed to connect queue: %d ret=%d\n", idx, ret);
691 	}
692 	return ret;
693 }
694 
695 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
696 {
697 	int i, ret = 0;
698 
699 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
700 		ret = nvme_rdma_start_queue(ctrl, i);
701 		if (ret)
702 			goto out_stop_queues;
703 	}
704 
705 	return 0;
706 
707 out_stop_queues:
708 	for (i--; i >= 1; i--)
709 		nvme_rdma_stop_queue(&ctrl->queues[i]);
710 	return ret;
711 }
712 
713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714 {
715 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716 	struct ib_device *ibdev = ctrl->device->dev;
717 	unsigned int nr_io_queues, nr_default_queues;
718 	unsigned int nr_read_queues, nr_poll_queues;
719 	int i, ret;
720 
721 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
722 				min(opts->nr_io_queues, num_online_cpus()));
723 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
724 				min(opts->nr_write_queues, num_online_cpus()));
725 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
726 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
727 
728 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
729 	if (ret)
730 		return ret;
731 
732 	ctrl->ctrl.queue_count = nr_io_queues + 1;
733 	if (ctrl->ctrl.queue_count < 2)
734 		return 0;
735 
736 	dev_info(ctrl->ctrl.device,
737 		"creating %d I/O queues.\n", nr_io_queues);
738 
739 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
740 		/*
741 		 * separate read/write queues
742 		 * hand out dedicated default queues only after we have
743 		 * sufficient read queues.
744 		 */
745 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
746 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
747 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
748 			min(nr_default_queues, nr_io_queues);
749 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
750 	} else {
751 		/*
752 		 * shared read/write queues
753 		 * either no write queues were requested, or we don't have
754 		 * sufficient queue count to have dedicated default queues.
755 		 */
756 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 			min(nr_read_queues, nr_io_queues);
758 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759 	}
760 
761 	if (opts->nr_poll_queues && nr_io_queues) {
762 		/* map dedicated poll queues only if we have queues left */
763 		ctrl->io_queues[HCTX_TYPE_POLL] =
764 			min(nr_poll_queues, nr_io_queues);
765 	}
766 
767 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
768 		ret = nvme_rdma_alloc_queue(ctrl, i,
769 				ctrl->ctrl.sqsize + 1);
770 		if (ret)
771 			goto out_free_queues;
772 	}
773 
774 	return 0;
775 
776 out_free_queues:
777 	for (i--; i >= 1; i--)
778 		nvme_rdma_free_queue(&ctrl->queues[i]);
779 
780 	return ret;
781 }
782 
783 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
784 		bool admin)
785 {
786 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
787 	struct blk_mq_tag_set *set;
788 	int ret;
789 
790 	if (admin) {
791 		set = &ctrl->admin_tag_set;
792 		memset(set, 0, sizeof(*set));
793 		set->ops = &nvme_rdma_admin_mq_ops;
794 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
795 		set->reserved_tags = 2; /* connect + keep-alive */
796 		set->numa_node = nctrl->numa_node;
797 		set->cmd_size = sizeof(struct nvme_rdma_request) +
798 				NVME_RDMA_DATA_SGL_SIZE;
799 		set->driver_data = ctrl;
800 		set->nr_hw_queues = 1;
801 		set->timeout = ADMIN_TIMEOUT;
802 		set->flags = BLK_MQ_F_NO_SCHED;
803 	} else {
804 		set = &ctrl->tag_set;
805 		memset(set, 0, sizeof(*set));
806 		set->ops = &nvme_rdma_mq_ops;
807 		set->queue_depth = nctrl->sqsize + 1;
808 		set->reserved_tags = 1; /* fabric connect */
809 		set->numa_node = nctrl->numa_node;
810 		set->flags = BLK_MQ_F_SHOULD_MERGE;
811 		set->cmd_size = sizeof(struct nvme_rdma_request) +
812 				NVME_RDMA_DATA_SGL_SIZE;
813 		if (nctrl->max_integrity_segments)
814 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
815 					 NVME_RDMA_METADATA_SGL_SIZE;
816 		set->driver_data = ctrl;
817 		set->nr_hw_queues = nctrl->queue_count - 1;
818 		set->timeout = NVME_IO_TIMEOUT;
819 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
820 	}
821 
822 	ret = blk_mq_alloc_tag_set(set);
823 	if (ret)
824 		return ERR_PTR(ret);
825 
826 	return set;
827 }
828 
829 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
830 		bool remove)
831 {
832 	if (remove) {
833 		blk_cleanup_queue(ctrl->ctrl.admin_q);
834 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
835 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
836 	}
837 	if (ctrl->async_event_sqe.data) {
838 		cancel_work_sync(&ctrl->ctrl.async_event_work);
839 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
840 				sizeof(struct nvme_command), DMA_TO_DEVICE);
841 		ctrl->async_event_sqe.data = NULL;
842 	}
843 	nvme_rdma_free_queue(&ctrl->queues[0]);
844 }
845 
846 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
847 		bool new)
848 {
849 	bool pi_capable = false;
850 	int error;
851 
852 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
853 	if (error)
854 		return error;
855 
856 	ctrl->device = ctrl->queues[0].device;
857 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
858 
859 	/* T10-PI support */
860 	if (ctrl->device->dev->attrs.device_cap_flags &
861 	    IB_DEVICE_INTEGRITY_HANDOVER)
862 		pi_capable = true;
863 
864 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
865 							pi_capable);
866 
867 	/*
868 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
869 	 * It's safe, since any chage in the underlying RDMA device will issue
870 	 * error recovery and queue re-creation.
871 	 */
872 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
873 			sizeof(struct nvme_command), DMA_TO_DEVICE);
874 	if (error)
875 		goto out_free_queue;
876 
877 	if (new) {
878 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
879 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
880 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
881 			goto out_free_async_qe;
882 		}
883 
884 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
885 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
886 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
887 			goto out_free_tagset;
888 		}
889 
890 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
891 		if (IS_ERR(ctrl->ctrl.admin_q)) {
892 			error = PTR_ERR(ctrl->ctrl.admin_q);
893 			goto out_cleanup_fabrics_q;
894 		}
895 	}
896 
897 	error = nvme_rdma_start_queue(ctrl, 0);
898 	if (error)
899 		goto out_cleanup_queue;
900 
901 	error = nvme_enable_ctrl(&ctrl->ctrl);
902 	if (error)
903 		goto out_stop_queue;
904 
905 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
906 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
907 	if (pi_capable)
908 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
909 	else
910 		ctrl->ctrl.max_integrity_segments = 0;
911 
912 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
913 
914 	error = nvme_init_identify(&ctrl->ctrl);
915 	if (error)
916 		goto out_stop_queue;
917 
918 	return 0;
919 
920 out_stop_queue:
921 	nvme_rdma_stop_queue(&ctrl->queues[0]);
922 out_cleanup_queue:
923 	if (new)
924 		blk_cleanup_queue(ctrl->ctrl.admin_q);
925 out_cleanup_fabrics_q:
926 	if (new)
927 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
928 out_free_tagset:
929 	if (new)
930 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
931 out_free_async_qe:
932 	if (ctrl->async_event_sqe.data) {
933 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
934 			sizeof(struct nvme_command), DMA_TO_DEVICE);
935 		ctrl->async_event_sqe.data = NULL;
936 	}
937 out_free_queue:
938 	nvme_rdma_free_queue(&ctrl->queues[0]);
939 	return error;
940 }
941 
942 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
943 		bool remove)
944 {
945 	if (remove) {
946 		blk_cleanup_queue(ctrl->ctrl.connect_q);
947 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
948 	}
949 	nvme_rdma_free_io_queues(ctrl);
950 }
951 
952 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
953 {
954 	int ret;
955 
956 	ret = nvme_rdma_alloc_io_queues(ctrl);
957 	if (ret)
958 		return ret;
959 
960 	if (new) {
961 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
962 		if (IS_ERR(ctrl->ctrl.tagset)) {
963 			ret = PTR_ERR(ctrl->ctrl.tagset);
964 			goto out_free_io_queues;
965 		}
966 
967 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
968 		if (IS_ERR(ctrl->ctrl.connect_q)) {
969 			ret = PTR_ERR(ctrl->ctrl.connect_q);
970 			goto out_free_tag_set;
971 		}
972 	}
973 
974 	ret = nvme_rdma_start_io_queues(ctrl);
975 	if (ret)
976 		goto out_cleanup_connect_q;
977 
978 	if (!new) {
979 		nvme_start_queues(&ctrl->ctrl);
980 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
981 			/*
982 			 * If we timed out waiting for freeze we are likely to
983 			 * be stuck.  Fail the controller initialization just
984 			 * to be safe.
985 			 */
986 			ret = -ENODEV;
987 			goto out_wait_freeze_timed_out;
988 		}
989 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
990 			ctrl->ctrl.queue_count - 1);
991 		nvme_unfreeze(&ctrl->ctrl);
992 	}
993 
994 	return 0;
995 
996 out_wait_freeze_timed_out:
997 	nvme_stop_queues(&ctrl->ctrl);
998 	nvme_rdma_stop_io_queues(ctrl);
999 out_cleanup_connect_q:
1000 	if (new)
1001 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1002 out_free_tag_set:
1003 	if (new)
1004 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1005 out_free_io_queues:
1006 	nvme_rdma_free_io_queues(ctrl);
1007 	return ret;
1008 }
1009 
1010 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1011 		bool remove)
1012 {
1013 	mutex_lock(&ctrl->teardown_lock);
1014 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1015 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1016 	if (ctrl->ctrl.admin_tagset) {
1017 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1018 			nvme_cancel_request, &ctrl->ctrl);
1019 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1020 	}
1021 	if (remove)
1022 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1023 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1024 	mutex_unlock(&ctrl->teardown_lock);
1025 }
1026 
1027 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1028 		bool remove)
1029 {
1030 	mutex_lock(&ctrl->teardown_lock);
1031 	if (ctrl->ctrl.queue_count > 1) {
1032 		nvme_start_freeze(&ctrl->ctrl);
1033 		nvme_stop_queues(&ctrl->ctrl);
1034 		nvme_rdma_stop_io_queues(ctrl);
1035 		if (ctrl->ctrl.tagset) {
1036 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1037 				nvme_cancel_request, &ctrl->ctrl);
1038 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1039 		}
1040 		if (remove)
1041 			nvme_start_queues(&ctrl->ctrl);
1042 		nvme_rdma_destroy_io_queues(ctrl, remove);
1043 	}
1044 	mutex_unlock(&ctrl->teardown_lock);
1045 }
1046 
1047 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1048 {
1049 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1050 
1051 	if (list_empty(&ctrl->list))
1052 		goto free_ctrl;
1053 
1054 	mutex_lock(&nvme_rdma_ctrl_mutex);
1055 	list_del(&ctrl->list);
1056 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1057 
1058 	nvmf_free_options(nctrl->opts);
1059 free_ctrl:
1060 	kfree(ctrl->queues);
1061 	kfree(ctrl);
1062 }
1063 
1064 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1065 {
1066 	/* If we are resetting/deleting then do nothing */
1067 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1068 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1069 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1070 		return;
1071 	}
1072 
1073 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1074 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1075 			ctrl->ctrl.opts->reconnect_delay);
1076 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1077 				ctrl->ctrl.opts->reconnect_delay * HZ);
1078 	} else {
1079 		nvme_delete_ctrl(&ctrl->ctrl);
1080 	}
1081 }
1082 
1083 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1084 {
1085 	int ret = -EINVAL;
1086 	bool changed;
1087 
1088 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1089 	if (ret)
1090 		return ret;
1091 
1092 	if (ctrl->ctrl.icdoff) {
1093 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1094 		goto destroy_admin;
1095 	}
1096 
1097 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1098 		dev_err(ctrl->ctrl.device,
1099 			"Mandatory keyed sgls are not supported!\n");
1100 		goto destroy_admin;
1101 	}
1102 
1103 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1104 		dev_warn(ctrl->ctrl.device,
1105 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1106 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1107 	}
1108 
1109 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1110 		dev_warn(ctrl->ctrl.device,
1111 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1112 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1113 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1114 	}
1115 
1116 	if (ctrl->ctrl.sgls & (1 << 20))
1117 		ctrl->use_inline_data = true;
1118 
1119 	if (ctrl->ctrl.queue_count > 1) {
1120 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1121 		if (ret)
1122 			goto destroy_admin;
1123 	}
1124 
1125 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1126 	if (!changed) {
1127 		/*
1128 		 * state change failure is ok if we started ctrl delete,
1129 		 * unless we're during creation of a new controller to
1130 		 * avoid races with teardown flow.
1131 		 */
1132 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1133 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1134 		WARN_ON_ONCE(new);
1135 		ret = -EINVAL;
1136 		goto destroy_io;
1137 	}
1138 
1139 	nvme_start_ctrl(&ctrl->ctrl);
1140 	return 0;
1141 
1142 destroy_io:
1143 	if (ctrl->ctrl.queue_count > 1)
1144 		nvme_rdma_destroy_io_queues(ctrl, new);
1145 destroy_admin:
1146 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1147 	nvme_rdma_destroy_admin_queue(ctrl, new);
1148 	return ret;
1149 }
1150 
1151 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1152 {
1153 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1154 			struct nvme_rdma_ctrl, reconnect_work);
1155 
1156 	++ctrl->ctrl.nr_reconnects;
1157 
1158 	if (nvme_rdma_setup_ctrl(ctrl, false))
1159 		goto requeue;
1160 
1161 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1162 			ctrl->ctrl.nr_reconnects);
1163 
1164 	ctrl->ctrl.nr_reconnects = 0;
1165 
1166 	return;
1167 
1168 requeue:
1169 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1170 			ctrl->ctrl.nr_reconnects);
1171 	nvme_rdma_reconnect_or_remove(ctrl);
1172 }
1173 
1174 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1175 {
1176 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1177 			struct nvme_rdma_ctrl, err_work);
1178 
1179 	nvme_stop_keep_alive(&ctrl->ctrl);
1180 	nvme_rdma_teardown_io_queues(ctrl, false);
1181 	nvme_start_queues(&ctrl->ctrl);
1182 	nvme_rdma_teardown_admin_queue(ctrl, false);
1183 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1184 
1185 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1186 		/* state change failure is ok if we started ctrl delete */
1187 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1188 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1189 		return;
1190 	}
1191 
1192 	nvme_rdma_reconnect_or_remove(ctrl);
1193 }
1194 
1195 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1196 {
1197 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1198 		return;
1199 
1200 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1201 	queue_work(nvme_reset_wq, &ctrl->err_work);
1202 }
1203 
1204 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1205 {
1206 	struct request *rq = blk_mq_rq_from_pdu(req);
1207 
1208 	if (!refcount_dec_and_test(&req->ref))
1209 		return;
1210 	if (!nvme_try_complete_req(rq, req->status, req->result))
1211 		nvme_rdma_complete_rq(rq);
1212 }
1213 
1214 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1215 		const char *op)
1216 {
1217 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1218 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1219 
1220 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1221 		dev_info(ctrl->ctrl.device,
1222 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1223 			     op, wc->wr_cqe,
1224 			     ib_wc_status_msg(wc->status), wc->status);
1225 	nvme_rdma_error_recovery(ctrl);
1226 }
1227 
1228 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1229 {
1230 	if (unlikely(wc->status != IB_WC_SUCCESS))
1231 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1232 }
1233 
1234 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1235 {
1236 	struct nvme_rdma_request *req =
1237 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1238 
1239 	if (unlikely(wc->status != IB_WC_SUCCESS))
1240 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1241 	else
1242 		nvme_rdma_end_request(req);
1243 }
1244 
1245 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1246 		struct nvme_rdma_request *req)
1247 {
1248 	struct ib_send_wr wr = {
1249 		.opcode		    = IB_WR_LOCAL_INV,
1250 		.next		    = NULL,
1251 		.num_sge	    = 0,
1252 		.send_flags	    = IB_SEND_SIGNALED,
1253 		.ex.invalidate_rkey = req->mr->rkey,
1254 	};
1255 
1256 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1257 	wr.wr_cqe = &req->reg_cqe;
1258 
1259 	return ib_post_send(queue->qp, &wr, NULL);
1260 }
1261 
1262 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1263 		struct request *rq)
1264 {
1265 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1266 	struct nvme_rdma_device *dev = queue->device;
1267 	struct ib_device *ibdev = dev->dev;
1268 	struct list_head *pool = &queue->qp->rdma_mrs;
1269 
1270 	if (!blk_rq_nr_phys_segments(rq))
1271 		return;
1272 
1273 	if (blk_integrity_rq(rq)) {
1274 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1275 				req->metadata_sgl->nents, rq_dma_dir(rq));
1276 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1277 				      NVME_INLINE_METADATA_SG_CNT);
1278 	}
1279 
1280 	if (req->use_sig_mr)
1281 		pool = &queue->qp->sig_mrs;
1282 
1283 	if (req->mr) {
1284 		ib_mr_pool_put(queue->qp, pool, req->mr);
1285 		req->mr = NULL;
1286 	}
1287 
1288 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1289 			rq_dma_dir(rq));
1290 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1291 }
1292 
1293 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1294 {
1295 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1296 
1297 	sg->addr = 0;
1298 	put_unaligned_le24(0, sg->length);
1299 	put_unaligned_le32(0, sg->key);
1300 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1301 	return 0;
1302 }
1303 
1304 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1305 		struct nvme_rdma_request *req, struct nvme_command *c,
1306 		int count)
1307 {
1308 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1309 	struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1310 	struct ib_sge *sge = &req->sge[1];
1311 	u32 len = 0;
1312 	int i;
1313 
1314 	for (i = 0; i < count; i++, sgl++, sge++) {
1315 		sge->addr = sg_dma_address(sgl);
1316 		sge->length = sg_dma_len(sgl);
1317 		sge->lkey = queue->device->pd->local_dma_lkey;
1318 		len += sge->length;
1319 	}
1320 
1321 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1322 	sg->length = cpu_to_le32(len);
1323 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1324 
1325 	req->num_sge += count;
1326 	return 0;
1327 }
1328 
1329 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1330 		struct nvme_rdma_request *req, struct nvme_command *c)
1331 {
1332 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1333 
1334 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1335 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1336 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1337 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1338 	return 0;
1339 }
1340 
1341 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1342 		struct nvme_rdma_request *req, struct nvme_command *c,
1343 		int count)
1344 {
1345 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1346 	int nr;
1347 
1348 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1349 	if (WARN_ON_ONCE(!req->mr))
1350 		return -EAGAIN;
1351 
1352 	/*
1353 	 * Align the MR to a 4K page size to match the ctrl page size and
1354 	 * the block virtual boundary.
1355 	 */
1356 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1357 			  SZ_4K);
1358 	if (unlikely(nr < count)) {
1359 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1360 		req->mr = NULL;
1361 		if (nr < 0)
1362 			return nr;
1363 		return -EINVAL;
1364 	}
1365 
1366 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1367 
1368 	req->reg_cqe.done = nvme_rdma_memreg_done;
1369 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1370 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1371 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1372 	req->reg_wr.wr.num_sge = 0;
1373 	req->reg_wr.mr = req->mr;
1374 	req->reg_wr.key = req->mr->rkey;
1375 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1376 			     IB_ACCESS_REMOTE_READ |
1377 			     IB_ACCESS_REMOTE_WRITE;
1378 
1379 	sg->addr = cpu_to_le64(req->mr->iova);
1380 	put_unaligned_le24(req->mr->length, sg->length);
1381 	put_unaligned_le32(req->mr->rkey, sg->key);
1382 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1383 			NVME_SGL_FMT_INVALIDATE;
1384 
1385 	return 0;
1386 }
1387 
1388 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1389 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1390 		u16 control, u8 pi_type)
1391 {
1392 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1393 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1394 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1395 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1396 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1397 		domain->sig.dif.ref_remap = true;
1398 
1399 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1400 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1401 	domain->sig.dif.app_escape = true;
1402 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1403 		domain->sig.dif.ref_escape = true;
1404 }
1405 
1406 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1407 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1408 		u8 pi_type)
1409 {
1410 	u16 control = le16_to_cpu(cmd->rw.control);
1411 
1412 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1413 	if (control & NVME_RW_PRINFO_PRACT) {
1414 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1415 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1416 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1417 					 pi_type);
1418 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1419 		control &= ~NVME_RW_PRINFO_PRACT;
1420 		cmd->rw.control = cpu_to_le16(control);
1421 	} else {
1422 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1423 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1424 					 pi_type);
1425 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1426 					 pi_type);
1427 	}
1428 }
1429 
1430 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1431 {
1432 	*mask = 0;
1433 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1434 		*mask |= IB_SIG_CHECK_REFTAG;
1435 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1436 		*mask |= IB_SIG_CHECK_GUARD;
1437 }
1438 
1439 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1440 {
1441 	if (unlikely(wc->status != IB_WC_SUCCESS))
1442 		nvme_rdma_wr_error(cq, wc, "SIG");
1443 }
1444 
1445 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1446 		struct nvme_rdma_request *req, struct nvme_command *c,
1447 		int count, int pi_count)
1448 {
1449 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1450 	struct ib_reg_wr *wr = &req->reg_wr;
1451 	struct request *rq = blk_mq_rq_from_pdu(req);
1452 	struct nvme_ns *ns = rq->q->queuedata;
1453 	struct bio *bio = rq->bio;
1454 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1455 	int nr;
1456 
1457 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1458 	if (WARN_ON_ONCE(!req->mr))
1459 		return -EAGAIN;
1460 
1461 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1462 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1463 			     SZ_4K);
1464 	if (unlikely(nr))
1465 		goto mr_put;
1466 
1467 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1468 				req->mr->sig_attrs, ns->pi_type);
1469 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1470 
1471 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1472 
1473 	req->reg_cqe.done = nvme_rdma_sig_done;
1474 	memset(wr, 0, sizeof(*wr));
1475 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1476 	wr->wr.wr_cqe = &req->reg_cqe;
1477 	wr->wr.num_sge = 0;
1478 	wr->wr.send_flags = 0;
1479 	wr->mr = req->mr;
1480 	wr->key = req->mr->rkey;
1481 	wr->access = IB_ACCESS_LOCAL_WRITE |
1482 		     IB_ACCESS_REMOTE_READ |
1483 		     IB_ACCESS_REMOTE_WRITE;
1484 
1485 	sg->addr = cpu_to_le64(req->mr->iova);
1486 	put_unaligned_le24(req->mr->length, sg->length);
1487 	put_unaligned_le32(req->mr->rkey, sg->key);
1488 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1489 
1490 	return 0;
1491 
1492 mr_put:
1493 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1494 	req->mr = NULL;
1495 	if (nr < 0)
1496 		return nr;
1497 	return -EINVAL;
1498 }
1499 
1500 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1501 		struct request *rq, struct nvme_command *c)
1502 {
1503 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1504 	struct nvme_rdma_device *dev = queue->device;
1505 	struct ib_device *ibdev = dev->dev;
1506 	int pi_count = 0;
1507 	int count, ret;
1508 
1509 	req->num_sge = 1;
1510 	refcount_set(&req->ref, 2); /* send and recv completions */
1511 
1512 	c->common.flags |= NVME_CMD_SGL_METABUF;
1513 
1514 	if (!blk_rq_nr_phys_segments(rq))
1515 		return nvme_rdma_set_sg_null(c);
1516 
1517 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1518 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1519 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1520 			NVME_INLINE_SG_CNT);
1521 	if (ret)
1522 		return -ENOMEM;
1523 
1524 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1525 					    req->data_sgl.sg_table.sgl);
1526 
1527 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1528 			      req->data_sgl.nents, rq_dma_dir(rq));
1529 	if (unlikely(count <= 0)) {
1530 		ret = -EIO;
1531 		goto out_free_table;
1532 	}
1533 
1534 	if (blk_integrity_rq(rq)) {
1535 		req->metadata_sgl->sg_table.sgl =
1536 			(struct scatterlist *)(req->metadata_sgl + 1);
1537 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1538 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1539 				req->metadata_sgl->sg_table.sgl,
1540 				NVME_INLINE_METADATA_SG_CNT);
1541 		if (unlikely(ret)) {
1542 			ret = -ENOMEM;
1543 			goto out_unmap_sg;
1544 		}
1545 
1546 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1547 				rq->bio, req->metadata_sgl->sg_table.sgl);
1548 		pi_count = ib_dma_map_sg(ibdev,
1549 					 req->metadata_sgl->sg_table.sgl,
1550 					 req->metadata_sgl->nents,
1551 					 rq_dma_dir(rq));
1552 		if (unlikely(pi_count <= 0)) {
1553 			ret = -EIO;
1554 			goto out_free_pi_table;
1555 		}
1556 	}
1557 
1558 	if (req->use_sig_mr) {
1559 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1560 		goto out;
1561 	}
1562 
1563 	if (count <= dev->num_inline_segments) {
1564 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1565 		    queue->ctrl->use_inline_data &&
1566 		    blk_rq_payload_bytes(rq) <=
1567 				nvme_rdma_inline_data_size(queue)) {
1568 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1569 			goto out;
1570 		}
1571 
1572 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1573 			ret = nvme_rdma_map_sg_single(queue, req, c);
1574 			goto out;
1575 		}
1576 	}
1577 
1578 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1579 out:
1580 	if (unlikely(ret))
1581 		goto out_unmap_pi_sg;
1582 
1583 	return 0;
1584 
1585 out_unmap_pi_sg:
1586 	if (blk_integrity_rq(rq))
1587 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1588 				req->metadata_sgl->nents, rq_dma_dir(rq));
1589 out_free_pi_table:
1590 	if (blk_integrity_rq(rq))
1591 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1592 				      NVME_INLINE_METADATA_SG_CNT);
1593 out_unmap_sg:
1594 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1595 			rq_dma_dir(rq));
1596 out_free_table:
1597 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1598 	return ret;
1599 }
1600 
1601 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1602 {
1603 	struct nvme_rdma_qe *qe =
1604 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1605 	struct nvme_rdma_request *req =
1606 		container_of(qe, struct nvme_rdma_request, sqe);
1607 
1608 	if (unlikely(wc->status != IB_WC_SUCCESS))
1609 		nvme_rdma_wr_error(cq, wc, "SEND");
1610 	else
1611 		nvme_rdma_end_request(req);
1612 }
1613 
1614 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1615 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1616 		struct ib_send_wr *first)
1617 {
1618 	struct ib_send_wr wr;
1619 	int ret;
1620 
1621 	sge->addr   = qe->dma;
1622 	sge->length = sizeof(struct nvme_command);
1623 	sge->lkey   = queue->device->pd->local_dma_lkey;
1624 
1625 	wr.next       = NULL;
1626 	wr.wr_cqe     = &qe->cqe;
1627 	wr.sg_list    = sge;
1628 	wr.num_sge    = num_sge;
1629 	wr.opcode     = IB_WR_SEND;
1630 	wr.send_flags = IB_SEND_SIGNALED;
1631 
1632 	if (first)
1633 		first->next = &wr;
1634 	else
1635 		first = &wr;
1636 
1637 	ret = ib_post_send(queue->qp, first, NULL);
1638 	if (unlikely(ret)) {
1639 		dev_err(queue->ctrl->ctrl.device,
1640 			     "%s failed with error code %d\n", __func__, ret);
1641 	}
1642 	return ret;
1643 }
1644 
1645 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1646 		struct nvme_rdma_qe *qe)
1647 {
1648 	struct ib_recv_wr wr;
1649 	struct ib_sge list;
1650 	int ret;
1651 
1652 	list.addr   = qe->dma;
1653 	list.length = sizeof(struct nvme_completion);
1654 	list.lkey   = queue->device->pd->local_dma_lkey;
1655 
1656 	qe->cqe.done = nvme_rdma_recv_done;
1657 
1658 	wr.next     = NULL;
1659 	wr.wr_cqe   = &qe->cqe;
1660 	wr.sg_list  = &list;
1661 	wr.num_sge  = 1;
1662 
1663 	ret = ib_post_recv(queue->qp, &wr, NULL);
1664 	if (unlikely(ret)) {
1665 		dev_err(queue->ctrl->ctrl.device,
1666 			"%s failed with error code %d\n", __func__, ret);
1667 	}
1668 	return ret;
1669 }
1670 
1671 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1672 {
1673 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1674 
1675 	if (queue_idx == 0)
1676 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1677 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1678 }
1679 
1680 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1681 {
1682 	if (unlikely(wc->status != IB_WC_SUCCESS))
1683 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1684 }
1685 
1686 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1687 {
1688 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1689 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1690 	struct ib_device *dev = queue->device->dev;
1691 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1692 	struct nvme_command *cmd = sqe->data;
1693 	struct ib_sge sge;
1694 	int ret;
1695 
1696 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1697 
1698 	memset(cmd, 0, sizeof(*cmd));
1699 	cmd->common.opcode = nvme_admin_async_event;
1700 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1701 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1702 	nvme_rdma_set_sg_null(cmd);
1703 
1704 	sqe->cqe.done = nvme_rdma_async_done;
1705 
1706 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1707 			DMA_TO_DEVICE);
1708 
1709 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1710 	WARN_ON_ONCE(ret);
1711 }
1712 
1713 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1714 		struct nvme_completion *cqe, struct ib_wc *wc)
1715 {
1716 	struct request *rq;
1717 	struct nvme_rdma_request *req;
1718 
1719 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1720 	if (!rq) {
1721 		dev_err(queue->ctrl->ctrl.device,
1722 			"tag 0x%x on QP %#x not found\n",
1723 			cqe->command_id, queue->qp->qp_num);
1724 		nvme_rdma_error_recovery(queue->ctrl);
1725 		return;
1726 	}
1727 	req = blk_mq_rq_to_pdu(rq);
1728 
1729 	req->status = cqe->status;
1730 	req->result = cqe->result;
1731 
1732 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1733 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1734 			dev_err(queue->ctrl->ctrl.device,
1735 				"Bogus remote invalidation for rkey %#x\n",
1736 				req->mr->rkey);
1737 			nvme_rdma_error_recovery(queue->ctrl);
1738 		}
1739 	} else if (req->mr) {
1740 		int ret;
1741 
1742 		ret = nvme_rdma_inv_rkey(queue, req);
1743 		if (unlikely(ret < 0)) {
1744 			dev_err(queue->ctrl->ctrl.device,
1745 				"Queueing INV WR for rkey %#x failed (%d)\n",
1746 				req->mr->rkey, ret);
1747 			nvme_rdma_error_recovery(queue->ctrl);
1748 		}
1749 		/* the local invalidation completion will end the request */
1750 		return;
1751 	}
1752 
1753 	nvme_rdma_end_request(req);
1754 }
1755 
1756 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1757 {
1758 	struct nvme_rdma_qe *qe =
1759 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1760 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1761 	struct ib_device *ibdev = queue->device->dev;
1762 	struct nvme_completion *cqe = qe->data;
1763 	const size_t len = sizeof(struct nvme_completion);
1764 
1765 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1766 		nvme_rdma_wr_error(cq, wc, "RECV");
1767 		return;
1768 	}
1769 
1770 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1771 	/*
1772 	 * AEN requests are special as they don't time out and can
1773 	 * survive any kind of queue freeze and often don't respond to
1774 	 * aborts.  We don't even bother to allocate a struct request
1775 	 * for them but rather special case them here.
1776 	 */
1777 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1778 				     cqe->command_id)))
1779 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1780 				&cqe->result);
1781 	else
1782 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1783 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1784 
1785 	nvme_rdma_post_recv(queue, qe);
1786 }
1787 
1788 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1789 {
1790 	int ret, i;
1791 
1792 	for (i = 0; i < queue->queue_size; i++) {
1793 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1794 		if (ret)
1795 			goto out_destroy_queue_ib;
1796 	}
1797 
1798 	return 0;
1799 
1800 out_destroy_queue_ib:
1801 	nvme_rdma_destroy_queue_ib(queue);
1802 	return ret;
1803 }
1804 
1805 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1806 		struct rdma_cm_event *ev)
1807 {
1808 	struct rdma_cm_id *cm_id = queue->cm_id;
1809 	int status = ev->status;
1810 	const char *rej_msg;
1811 	const struct nvme_rdma_cm_rej *rej_data;
1812 	u8 rej_data_len;
1813 
1814 	rej_msg = rdma_reject_msg(cm_id, status);
1815 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1816 
1817 	if (rej_data && rej_data_len >= sizeof(u16)) {
1818 		u16 sts = le16_to_cpu(rej_data->sts);
1819 
1820 		dev_err(queue->ctrl->ctrl.device,
1821 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1822 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1823 	} else {
1824 		dev_err(queue->ctrl->ctrl.device,
1825 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1826 	}
1827 
1828 	return -ECONNRESET;
1829 }
1830 
1831 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1832 {
1833 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1834 	int ret;
1835 
1836 	ret = nvme_rdma_create_queue_ib(queue);
1837 	if (ret)
1838 		return ret;
1839 
1840 	if (ctrl->opts->tos >= 0)
1841 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1842 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1843 	if (ret) {
1844 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1845 			queue->cm_error);
1846 		goto out_destroy_queue;
1847 	}
1848 
1849 	return 0;
1850 
1851 out_destroy_queue:
1852 	nvme_rdma_destroy_queue_ib(queue);
1853 	return ret;
1854 }
1855 
1856 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1857 {
1858 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1859 	struct rdma_conn_param param = { };
1860 	struct nvme_rdma_cm_req priv = { };
1861 	int ret;
1862 
1863 	param.qp_num = queue->qp->qp_num;
1864 	param.flow_control = 1;
1865 
1866 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1867 	/* maximum retry count */
1868 	param.retry_count = 7;
1869 	param.rnr_retry_count = 7;
1870 	param.private_data = &priv;
1871 	param.private_data_len = sizeof(priv);
1872 
1873 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1874 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1875 	/*
1876 	 * set the admin queue depth to the minimum size
1877 	 * specified by the Fabrics standard.
1878 	 */
1879 	if (priv.qid == 0) {
1880 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1881 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1882 	} else {
1883 		/*
1884 		 * current interpretation of the fabrics spec
1885 		 * is at minimum you make hrqsize sqsize+1, or a
1886 		 * 1's based representation of sqsize.
1887 		 */
1888 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1889 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1890 	}
1891 
1892 	ret = rdma_connect(queue->cm_id, &param);
1893 	if (ret) {
1894 		dev_err(ctrl->ctrl.device,
1895 			"rdma_connect failed (%d).\n", ret);
1896 		goto out_destroy_queue_ib;
1897 	}
1898 
1899 	return 0;
1900 
1901 out_destroy_queue_ib:
1902 	nvme_rdma_destroy_queue_ib(queue);
1903 	return ret;
1904 }
1905 
1906 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1907 		struct rdma_cm_event *ev)
1908 {
1909 	struct nvme_rdma_queue *queue = cm_id->context;
1910 	int cm_error = 0;
1911 
1912 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1913 		rdma_event_msg(ev->event), ev->event,
1914 		ev->status, cm_id);
1915 
1916 	switch (ev->event) {
1917 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1918 		cm_error = nvme_rdma_addr_resolved(queue);
1919 		break;
1920 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1921 		cm_error = nvme_rdma_route_resolved(queue);
1922 		break;
1923 	case RDMA_CM_EVENT_ESTABLISHED:
1924 		queue->cm_error = nvme_rdma_conn_established(queue);
1925 		/* complete cm_done regardless of success/failure */
1926 		complete(&queue->cm_done);
1927 		return 0;
1928 	case RDMA_CM_EVENT_REJECTED:
1929 		nvme_rdma_destroy_queue_ib(queue);
1930 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1931 		break;
1932 	case RDMA_CM_EVENT_ROUTE_ERROR:
1933 	case RDMA_CM_EVENT_CONNECT_ERROR:
1934 	case RDMA_CM_EVENT_UNREACHABLE:
1935 		nvme_rdma_destroy_queue_ib(queue);
1936 		fallthrough;
1937 	case RDMA_CM_EVENT_ADDR_ERROR:
1938 		dev_dbg(queue->ctrl->ctrl.device,
1939 			"CM error event %d\n", ev->event);
1940 		cm_error = -ECONNRESET;
1941 		break;
1942 	case RDMA_CM_EVENT_DISCONNECTED:
1943 	case RDMA_CM_EVENT_ADDR_CHANGE:
1944 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1945 		dev_dbg(queue->ctrl->ctrl.device,
1946 			"disconnect received - connection closed\n");
1947 		nvme_rdma_error_recovery(queue->ctrl);
1948 		break;
1949 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1950 		/* device removal is handled via the ib_client API */
1951 		break;
1952 	default:
1953 		dev_err(queue->ctrl->ctrl.device,
1954 			"Unexpected RDMA CM event (%d)\n", ev->event);
1955 		nvme_rdma_error_recovery(queue->ctrl);
1956 		break;
1957 	}
1958 
1959 	if (cm_error) {
1960 		queue->cm_error = cm_error;
1961 		complete(&queue->cm_done);
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 static void nvme_rdma_complete_timed_out(struct request *rq)
1968 {
1969 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1970 	struct nvme_rdma_queue *queue = req->queue;
1971 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1972 
1973 	/* fence other contexts that may complete the command */
1974 	mutex_lock(&ctrl->teardown_lock);
1975 	nvme_rdma_stop_queue(queue);
1976 	if (!blk_mq_request_completed(rq)) {
1977 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1978 		blk_mq_complete_request(rq);
1979 	}
1980 	mutex_unlock(&ctrl->teardown_lock);
1981 }
1982 
1983 static enum blk_eh_timer_return
1984 nvme_rdma_timeout(struct request *rq, bool reserved)
1985 {
1986 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1987 	struct nvme_rdma_queue *queue = req->queue;
1988 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1989 
1990 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1991 		 rq->tag, nvme_rdma_queue_idx(queue));
1992 
1993 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1994 		/*
1995 		 * If we are resetting, connecting or deleting we should
1996 		 * complete immediately because we may block controller
1997 		 * teardown or setup sequence
1998 		 * - ctrl disable/shutdown fabrics requests
1999 		 * - connect requests
2000 		 * - initialization admin requests
2001 		 * - I/O requests that entered after unquiescing and
2002 		 *   the controller stopped responding
2003 		 *
2004 		 * All other requests should be cancelled by the error
2005 		 * recovery work, so it's fine that we fail it here.
2006 		 */
2007 		nvme_rdma_complete_timed_out(rq);
2008 		return BLK_EH_DONE;
2009 	}
2010 
2011 	/*
2012 	 * LIVE state should trigger the normal error recovery which will
2013 	 * handle completing this request.
2014 	 */
2015 	nvme_rdma_error_recovery(ctrl);
2016 	return BLK_EH_RESET_TIMER;
2017 }
2018 
2019 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2020 		const struct blk_mq_queue_data *bd)
2021 {
2022 	struct nvme_ns *ns = hctx->queue->queuedata;
2023 	struct nvme_rdma_queue *queue = hctx->driver_data;
2024 	struct request *rq = bd->rq;
2025 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2026 	struct nvme_rdma_qe *sqe = &req->sqe;
2027 	struct nvme_command *c = sqe->data;
2028 	struct ib_device *dev;
2029 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2030 	blk_status_t ret;
2031 	int err;
2032 
2033 	WARN_ON_ONCE(rq->tag < 0);
2034 
2035 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2036 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2037 
2038 	dev = queue->device->dev;
2039 
2040 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2041 					 sizeof(struct nvme_command),
2042 					 DMA_TO_DEVICE);
2043 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2044 	if (unlikely(err))
2045 		return BLK_STS_RESOURCE;
2046 
2047 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2048 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2049 
2050 	ret = nvme_setup_cmd(ns, rq, c);
2051 	if (ret)
2052 		goto unmap_qe;
2053 
2054 	blk_mq_start_request(rq);
2055 
2056 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2057 	    queue->pi_support &&
2058 	    (c->common.opcode == nvme_cmd_write ||
2059 	     c->common.opcode == nvme_cmd_read) &&
2060 	    nvme_ns_has_pi(ns))
2061 		req->use_sig_mr = true;
2062 	else
2063 		req->use_sig_mr = false;
2064 
2065 	err = nvme_rdma_map_data(queue, rq, c);
2066 	if (unlikely(err < 0)) {
2067 		dev_err(queue->ctrl->ctrl.device,
2068 			     "Failed to map data (%d)\n", err);
2069 		goto err;
2070 	}
2071 
2072 	sqe->cqe.done = nvme_rdma_send_done;
2073 
2074 	ib_dma_sync_single_for_device(dev, sqe->dma,
2075 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2076 
2077 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2078 			req->mr ? &req->reg_wr.wr : NULL);
2079 	if (unlikely(err))
2080 		goto err_unmap;
2081 
2082 	return BLK_STS_OK;
2083 
2084 err_unmap:
2085 	nvme_rdma_unmap_data(queue, rq);
2086 err:
2087 	if (err == -ENOMEM || err == -EAGAIN)
2088 		ret = BLK_STS_RESOURCE;
2089 	else
2090 		ret = BLK_STS_IOERR;
2091 	nvme_cleanup_cmd(rq);
2092 unmap_qe:
2093 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2094 			    DMA_TO_DEVICE);
2095 	return ret;
2096 }
2097 
2098 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2099 {
2100 	struct nvme_rdma_queue *queue = hctx->driver_data;
2101 
2102 	return ib_process_cq_direct(queue->ib_cq, -1);
2103 }
2104 
2105 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2106 {
2107 	struct request *rq = blk_mq_rq_from_pdu(req);
2108 	struct ib_mr_status mr_status;
2109 	int ret;
2110 
2111 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2112 	if (ret) {
2113 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2114 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2115 		return;
2116 	}
2117 
2118 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2119 		switch (mr_status.sig_err.err_type) {
2120 		case IB_SIG_BAD_GUARD:
2121 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2122 			break;
2123 		case IB_SIG_BAD_REFTAG:
2124 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2125 			break;
2126 		case IB_SIG_BAD_APPTAG:
2127 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2128 			break;
2129 		}
2130 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2131 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2132 		       mr_status.sig_err.actual);
2133 	}
2134 }
2135 
2136 static void nvme_rdma_complete_rq(struct request *rq)
2137 {
2138 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2139 	struct nvme_rdma_queue *queue = req->queue;
2140 	struct ib_device *ibdev = queue->device->dev;
2141 
2142 	if (req->use_sig_mr)
2143 		nvme_rdma_check_pi_status(req);
2144 
2145 	nvme_rdma_unmap_data(queue, rq);
2146 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2147 			    DMA_TO_DEVICE);
2148 	nvme_complete_rq(rq);
2149 }
2150 
2151 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2152 {
2153 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2154 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2155 
2156 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2157 		/* separate read/write queues */
2158 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2159 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2160 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2161 		set->map[HCTX_TYPE_READ].nr_queues =
2162 			ctrl->io_queues[HCTX_TYPE_READ];
2163 		set->map[HCTX_TYPE_READ].queue_offset =
2164 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2165 	} else {
2166 		/* shared read/write queues */
2167 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2168 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2169 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2170 		set->map[HCTX_TYPE_READ].nr_queues =
2171 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2172 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2173 	}
2174 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2175 			ctrl->device->dev, 0);
2176 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2177 			ctrl->device->dev, 0);
2178 
2179 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2180 		/* map dedicated poll queues only if we have queues left */
2181 		set->map[HCTX_TYPE_POLL].nr_queues =
2182 				ctrl->io_queues[HCTX_TYPE_POLL];
2183 		set->map[HCTX_TYPE_POLL].queue_offset =
2184 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2185 			ctrl->io_queues[HCTX_TYPE_READ];
2186 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2187 	}
2188 
2189 	dev_info(ctrl->ctrl.device,
2190 		"mapped %d/%d/%d default/read/poll queues.\n",
2191 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2192 		ctrl->io_queues[HCTX_TYPE_READ],
2193 		ctrl->io_queues[HCTX_TYPE_POLL]);
2194 
2195 	return 0;
2196 }
2197 
2198 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2199 	.queue_rq	= nvme_rdma_queue_rq,
2200 	.complete	= nvme_rdma_complete_rq,
2201 	.init_request	= nvme_rdma_init_request,
2202 	.exit_request	= nvme_rdma_exit_request,
2203 	.init_hctx	= nvme_rdma_init_hctx,
2204 	.timeout	= nvme_rdma_timeout,
2205 	.map_queues	= nvme_rdma_map_queues,
2206 	.poll		= nvme_rdma_poll,
2207 };
2208 
2209 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2210 	.queue_rq	= nvme_rdma_queue_rq,
2211 	.complete	= nvme_rdma_complete_rq,
2212 	.init_request	= nvme_rdma_init_request,
2213 	.exit_request	= nvme_rdma_exit_request,
2214 	.init_hctx	= nvme_rdma_init_admin_hctx,
2215 	.timeout	= nvme_rdma_timeout,
2216 };
2217 
2218 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2219 {
2220 	cancel_work_sync(&ctrl->err_work);
2221 	cancel_delayed_work_sync(&ctrl->reconnect_work);
2222 
2223 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2224 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2225 	if (shutdown)
2226 		nvme_shutdown_ctrl(&ctrl->ctrl);
2227 	else
2228 		nvme_disable_ctrl(&ctrl->ctrl);
2229 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2230 }
2231 
2232 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2233 {
2234 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2235 }
2236 
2237 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2238 {
2239 	struct nvme_rdma_ctrl *ctrl =
2240 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2241 
2242 	nvme_stop_ctrl(&ctrl->ctrl);
2243 	nvme_rdma_shutdown_ctrl(ctrl, false);
2244 
2245 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2246 		/* state change failure should never happen */
2247 		WARN_ON_ONCE(1);
2248 		return;
2249 	}
2250 
2251 	if (nvme_rdma_setup_ctrl(ctrl, false))
2252 		goto out_fail;
2253 
2254 	return;
2255 
2256 out_fail:
2257 	++ctrl->ctrl.nr_reconnects;
2258 	nvme_rdma_reconnect_or_remove(ctrl);
2259 }
2260 
2261 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2262 	.name			= "rdma",
2263 	.module			= THIS_MODULE,
2264 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2265 	.reg_read32		= nvmf_reg_read32,
2266 	.reg_read64		= nvmf_reg_read64,
2267 	.reg_write32		= nvmf_reg_write32,
2268 	.free_ctrl		= nvme_rdma_free_ctrl,
2269 	.submit_async_event	= nvme_rdma_submit_async_event,
2270 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2271 	.get_address		= nvmf_get_address,
2272 };
2273 
2274 /*
2275  * Fails a connection request if it matches an existing controller
2276  * (association) with the same tuple:
2277  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2278  *
2279  * if local address is not specified in the request, it will match an
2280  * existing controller with all the other parameters the same and no
2281  * local port address specified as well.
2282  *
2283  * The ports don't need to be compared as they are intrinsically
2284  * already matched by the port pointers supplied.
2285  */
2286 static bool
2287 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2288 {
2289 	struct nvme_rdma_ctrl *ctrl;
2290 	bool found = false;
2291 
2292 	mutex_lock(&nvme_rdma_ctrl_mutex);
2293 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2294 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2295 		if (found)
2296 			break;
2297 	}
2298 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2299 
2300 	return found;
2301 }
2302 
2303 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2304 		struct nvmf_ctrl_options *opts)
2305 {
2306 	struct nvme_rdma_ctrl *ctrl;
2307 	int ret;
2308 	bool changed;
2309 
2310 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2311 	if (!ctrl)
2312 		return ERR_PTR(-ENOMEM);
2313 	ctrl->ctrl.opts = opts;
2314 	INIT_LIST_HEAD(&ctrl->list);
2315 	mutex_init(&ctrl->teardown_lock);
2316 
2317 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2318 		opts->trsvcid =
2319 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2320 		if (!opts->trsvcid) {
2321 			ret = -ENOMEM;
2322 			goto out_free_ctrl;
2323 		}
2324 		opts->mask |= NVMF_OPT_TRSVCID;
2325 	}
2326 
2327 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2328 			opts->traddr, opts->trsvcid, &ctrl->addr);
2329 	if (ret) {
2330 		pr_err("malformed address passed: %s:%s\n",
2331 			opts->traddr, opts->trsvcid);
2332 		goto out_free_ctrl;
2333 	}
2334 
2335 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2336 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2337 			opts->host_traddr, NULL, &ctrl->src_addr);
2338 		if (ret) {
2339 			pr_err("malformed src address passed: %s\n",
2340 			       opts->host_traddr);
2341 			goto out_free_ctrl;
2342 		}
2343 	}
2344 
2345 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2346 		ret = -EALREADY;
2347 		goto out_free_ctrl;
2348 	}
2349 
2350 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2351 			nvme_rdma_reconnect_ctrl_work);
2352 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2353 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2354 
2355 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2356 				opts->nr_poll_queues + 1;
2357 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2358 	ctrl->ctrl.kato = opts->kato;
2359 
2360 	ret = -ENOMEM;
2361 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2362 				GFP_KERNEL);
2363 	if (!ctrl->queues)
2364 		goto out_free_ctrl;
2365 
2366 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2367 				0 /* no quirks, we're perfect! */);
2368 	if (ret)
2369 		goto out_kfree_queues;
2370 
2371 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2372 	WARN_ON_ONCE(!changed);
2373 
2374 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2375 	if (ret)
2376 		goto out_uninit_ctrl;
2377 
2378 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2379 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2380 
2381 	mutex_lock(&nvme_rdma_ctrl_mutex);
2382 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2383 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2384 
2385 	return &ctrl->ctrl;
2386 
2387 out_uninit_ctrl:
2388 	nvme_uninit_ctrl(&ctrl->ctrl);
2389 	nvme_put_ctrl(&ctrl->ctrl);
2390 	if (ret > 0)
2391 		ret = -EIO;
2392 	return ERR_PTR(ret);
2393 out_kfree_queues:
2394 	kfree(ctrl->queues);
2395 out_free_ctrl:
2396 	kfree(ctrl);
2397 	return ERR_PTR(ret);
2398 }
2399 
2400 static struct nvmf_transport_ops nvme_rdma_transport = {
2401 	.name		= "rdma",
2402 	.module		= THIS_MODULE,
2403 	.required_opts	= NVMF_OPT_TRADDR,
2404 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2405 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2406 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2407 			  NVMF_OPT_TOS,
2408 	.create_ctrl	= nvme_rdma_create_ctrl,
2409 };
2410 
2411 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2412 {
2413 	struct nvme_rdma_ctrl *ctrl;
2414 	struct nvme_rdma_device *ndev;
2415 	bool found = false;
2416 
2417 	mutex_lock(&device_list_mutex);
2418 	list_for_each_entry(ndev, &device_list, entry) {
2419 		if (ndev->dev == ib_device) {
2420 			found = true;
2421 			break;
2422 		}
2423 	}
2424 	mutex_unlock(&device_list_mutex);
2425 
2426 	if (!found)
2427 		return;
2428 
2429 	/* Delete all controllers using this device */
2430 	mutex_lock(&nvme_rdma_ctrl_mutex);
2431 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2432 		if (ctrl->device->dev != ib_device)
2433 			continue;
2434 		nvme_delete_ctrl(&ctrl->ctrl);
2435 	}
2436 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2437 
2438 	flush_workqueue(nvme_delete_wq);
2439 }
2440 
2441 static struct ib_client nvme_rdma_ib_client = {
2442 	.name   = "nvme_rdma",
2443 	.remove = nvme_rdma_remove_one
2444 };
2445 
2446 static int __init nvme_rdma_init_module(void)
2447 {
2448 	int ret;
2449 
2450 	ret = ib_register_client(&nvme_rdma_ib_client);
2451 	if (ret)
2452 		return ret;
2453 
2454 	ret = nvmf_register_transport(&nvme_rdma_transport);
2455 	if (ret)
2456 		goto err_unreg_client;
2457 
2458 	return 0;
2459 
2460 err_unreg_client:
2461 	ib_unregister_client(&nvme_rdma_ib_client);
2462 	return ret;
2463 }
2464 
2465 static void __exit nvme_rdma_cleanup_module(void)
2466 {
2467 	struct nvme_rdma_ctrl *ctrl;
2468 
2469 	nvmf_unregister_transport(&nvme_rdma_transport);
2470 	ib_unregister_client(&nvme_rdma_ib_client);
2471 
2472 	mutex_lock(&nvme_rdma_ctrl_mutex);
2473 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2474 		nvme_delete_ctrl(&ctrl->ctrl);
2475 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2476 	flush_workqueue(nvme_delete_wq);
2477 }
2478 
2479 module_init(nvme_rdma_init_module);
2480 module_exit(nvme_rdma_cleanup_module);
2481 
2482 MODULE_LICENSE("GPL v2");
2483