1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/blk-mq-rdma.h> 23 #include <linux/types.h> 24 #include <linux/list.h> 25 #include <linux/mutex.h> 26 #include <linux/scatterlist.h> 27 #include <linux/nvme.h> 28 #include <asm/unaligned.h> 29 30 #include <rdma/ib_verbs.h> 31 #include <rdma/rdma_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 39 40 #define NVME_RDMA_MAX_SEGMENTS 256 41 42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 43 44 /* 45 * We handle AEN commands ourselves and don't even let the 46 * block layer know about them. 47 */ 48 #define NVME_RDMA_NR_AEN_COMMANDS 1 49 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 50 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 51 52 struct nvme_rdma_device { 53 struct ib_device *dev; 54 struct ib_pd *pd; 55 struct kref ref; 56 struct list_head entry; 57 }; 58 59 struct nvme_rdma_qe { 60 struct ib_cqe cqe; 61 void *data; 62 u64 dma; 63 }; 64 65 struct nvme_rdma_queue; 66 struct nvme_rdma_request { 67 struct nvme_request req; 68 struct ib_mr *mr; 69 struct nvme_rdma_qe sqe; 70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 71 u32 num_sge; 72 int nents; 73 bool inline_data; 74 struct ib_reg_wr reg_wr; 75 struct ib_cqe reg_cqe; 76 struct nvme_rdma_queue *queue; 77 struct sg_table sg_table; 78 struct scatterlist first_sgl[]; 79 }; 80 81 enum nvme_rdma_queue_flags { 82 NVME_RDMA_Q_LIVE = 0, 83 NVME_RDMA_Q_DELETING = 1, 84 }; 85 86 struct nvme_rdma_queue { 87 struct nvme_rdma_qe *rsp_ring; 88 atomic_t sig_count; 89 int queue_size; 90 size_t cmnd_capsule_len; 91 struct nvme_rdma_ctrl *ctrl; 92 struct nvme_rdma_device *device; 93 struct ib_cq *ib_cq; 94 struct ib_qp *qp; 95 96 unsigned long flags; 97 struct rdma_cm_id *cm_id; 98 int cm_error; 99 struct completion cm_done; 100 }; 101 102 struct nvme_rdma_ctrl { 103 /* read only in the hot path */ 104 struct nvme_rdma_queue *queues; 105 106 /* other member variables */ 107 struct blk_mq_tag_set tag_set; 108 struct work_struct delete_work; 109 struct work_struct err_work; 110 111 struct nvme_rdma_qe async_event_sqe; 112 113 struct delayed_work reconnect_work; 114 115 struct list_head list; 116 117 struct blk_mq_tag_set admin_tag_set; 118 struct nvme_rdma_device *device; 119 120 u32 max_fr_pages; 121 122 struct sockaddr_storage addr; 123 struct sockaddr_storage src_addr; 124 125 struct nvme_ctrl ctrl; 126 }; 127 128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 129 { 130 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 131 } 132 133 static LIST_HEAD(device_list); 134 static DEFINE_MUTEX(device_list_mutex); 135 136 static LIST_HEAD(nvme_rdma_ctrl_list); 137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 138 139 /* 140 * Disabling this option makes small I/O goes faster, but is fundamentally 141 * unsafe. With it turned off we will have to register a global rkey that 142 * allows read and write access to all physical memory. 143 */ 144 static bool register_always = true; 145 module_param(register_always, bool, 0444); 146 MODULE_PARM_DESC(register_always, 147 "Use memory registration even for contiguous memory regions"); 148 149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 150 struct rdma_cm_event *event); 151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 152 153 static const struct blk_mq_ops nvme_rdma_mq_ops; 154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 155 156 /* XXX: really should move to a generic header sooner or later.. */ 157 static inline void put_unaligned_le24(u32 val, u8 *p) 158 { 159 *p++ = val; 160 *p++ = val >> 8; 161 *p++ = val >> 16; 162 } 163 164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 165 { 166 return queue - queue->ctrl->queues; 167 } 168 169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 170 { 171 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 172 } 173 174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 175 size_t capsule_size, enum dma_data_direction dir) 176 { 177 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 178 kfree(qe->data); 179 } 180 181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 182 size_t capsule_size, enum dma_data_direction dir) 183 { 184 qe->data = kzalloc(capsule_size, GFP_KERNEL); 185 if (!qe->data) 186 return -ENOMEM; 187 188 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 189 if (ib_dma_mapping_error(ibdev, qe->dma)) { 190 kfree(qe->data); 191 return -ENOMEM; 192 } 193 194 return 0; 195 } 196 197 static void nvme_rdma_free_ring(struct ib_device *ibdev, 198 struct nvme_rdma_qe *ring, size_t ib_queue_size, 199 size_t capsule_size, enum dma_data_direction dir) 200 { 201 int i; 202 203 for (i = 0; i < ib_queue_size; i++) 204 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 205 kfree(ring); 206 } 207 208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 209 size_t ib_queue_size, size_t capsule_size, 210 enum dma_data_direction dir) 211 { 212 struct nvme_rdma_qe *ring; 213 int i; 214 215 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 216 if (!ring) 217 return NULL; 218 219 for (i = 0; i < ib_queue_size; i++) { 220 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 221 goto out_free_ring; 222 } 223 224 return ring; 225 226 out_free_ring: 227 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 228 return NULL; 229 } 230 231 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 232 { 233 pr_debug("QP event %s (%d)\n", 234 ib_event_msg(event->event), event->event); 235 236 } 237 238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 239 { 240 wait_for_completion_interruptible_timeout(&queue->cm_done, 241 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 242 return queue->cm_error; 243 } 244 245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 246 { 247 struct nvme_rdma_device *dev = queue->device; 248 struct ib_qp_init_attr init_attr; 249 int ret; 250 251 memset(&init_attr, 0, sizeof(init_attr)); 252 init_attr.event_handler = nvme_rdma_qp_event; 253 /* +1 for drain */ 254 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 255 /* +1 for drain */ 256 init_attr.cap.max_recv_wr = queue->queue_size + 1; 257 init_attr.cap.max_recv_sge = 1; 258 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 259 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 260 init_attr.qp_type = IB_QPT_RC; 261 init_attr.send_cq = queue->ib_cq; 262 init_attr.recv_cq = queue->ib_cq; 263 264 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 265 266 queue->qp = queue->cm_id->qp; 267 return ret; 268 } 269 270 static int nvme_rdma_reinit_request(void *data, struct request *rq) 271 { 272 struct nvme_rdma_ctrl *ctrl = data; 273 struct nvme_rdma_device *dev = ctrl->device; 274 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 275 int ret = 0; 276 277 ib_dereg_mr(req->mr); 278 279 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 280 ctrl->max_fr_pages); 281 if (IS_ERR(req->mr)) { 282 ret = PTR_ERR(req->mr); 283 req->mr = NULL; 284 goto out; 285 } 286 287 req->mr->need_inval = false; 288 289 out: 290 return ret; 291 } 292 293 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 294 struct request *rq, unsigned int hctx_idx) 295 { 296 struct nvme_rdma_ctrl *ctrl = set->driver_data; 297 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 298 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 299 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 300 struct nvme_rdma_device *dev = queue->device; 301 302 if (req->mr) 303 ib_dereg_mr(req->mr); 304 305 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 306 DMA_TO_DEVICE); 307 } 308 309 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 310 struct request *rq, unsigned int hctx_idx, 311 unsigned int numa_node) 312 { 313 struct nvme_rdma_ctrl *ctrl = set->driver_data; 314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 315 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 316 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 317 struct nvme_rdma_device *dev = queue->device; 318 struct ib_device *ibdev = dev->dev; 319 int ret; 320 321 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 322 DMA_TO_DEVICE); 323 if (ret) 324 return ret; 325 326 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 327 ctrl->max_fr_pages); 328 if (IS_ERR(req->mr)) { 329 ret = PTR_ERR(req->mr); 330 goto out_free_qe; 331 } 332 333 req->queue = queue; 334 335 return 0; 336 337 out_free_qe: 338 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 339 DMA_TO_DEVICE); 340 return -ENOMEM; 341 } 342 343 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 344 unsigned int hctx_idx) 345 { 346 struct nvme_rdma_ctrl *ctrl = data; 347 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 348 349 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 350 351 hctx->driver_data = queue; 352 return 0; 353 } 354 355 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 356 unsigned int hctx_idx) 357 { 358 struct nvme_rdma_ctrl *ctrl = data; 359 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 360 361 BUG_ON(hctx_idx != 0); 362 363 hctx->driver_data = queue; 364 return 0; 365 } 366 367 static void nvme_rdma_free_dev(struct kref *ref) 368 { 369 struct nvme_rdma_device *ndev = 370 container_of(ref, struct nvme_rdma_device, ref); 371 372 mutex_lock(&device_list_mutex); 373 list_del(&ndev->entry); 374 mutex_unlock(&device_list_mutex); 375 376 ib_dealloc_pd(ndev->pd); 377 kfree(ndev); 378 } 379 380 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 381 { 382 kref_put(&dev->ref, nvme_rdma_free_dev); 383 } 384 385 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 386 { 387 return kref_get_unless_zero(&dev->ref); 388 } 389 390 static struct nvme_rdma_device * 391 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 392 { 393 struct nvme_rdma_device *ndev; 394 395 mutex_lock(&device_list_mutex); 396 list_for_each_entry(ndev, &device_list, entry) { 397 if (ndev->dev->node_guid == cm_id->device->node_guid && 398 nvme_rdma_dev_get(ndev)) 399 goto out_unlock; 400 } 401 402 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 403 if (!ndev) 404 goto out_err; 405 406 ndev->dev = cm_id->device; 407 kref_init(&ndev->ref); 408 409 ndev->pd = ib_alloc_pd(ndev->dev, 410 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 411 if (IS_ERR(ndev->pd)) 412 goto out_free_dev; 413 414 if (!(ndev->dev->attrs.device_cap_flags & 415 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 416 dev_err(&ndev->dev->dev, 417 "Memory registrations not supported.\n"); 418 goto out_free_pd; 419 } 420 421 list_add(&ndev->entry, &device_list); 422 out_unlock: 423 mutex_unlock(&device_list_mutex); 424 return ndev; 425 426 out_free_pd: 427 ib_dealloc_pd(ndev->pd); 428 out_free_dev: 429 kfree(ndev); 430 out_err: 431 mutex_unlock(&device_list_mutex); 432 return NULL; 433 } 434 435 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 436 { 437 struct nvme_rdma_device *dev; 438 struct ib_device *ibdev; 439 440 dev = queue->device; 441 ibdev = dev->dev; 442 rdma_destroy_qp(queue->cm_id); 443 ib_free_cq(queue->ib_cq); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 452 { 453 struct ib_device *ibdev; 454 const int send_wr_factor = 3; /* MR, SEND, INV */ 455 const int cq_factor = send_wr_factor + 1; /* + RECV */ 456 int comp_vector, idx = nvme_rdma_queue_idx(queue); 457 int ret; 458 459 queue->device = nvme_rdma_find_get_device(queue->cm_id); 460 if (!queue->device) { 461 dev_err(queue->cm_id->device->dev.parent, 462 "no client data found!\n"); 463 return -ECONNREFUSED; 464 } 465 ibdev = queue->device->dev; 466 467 /* 468 * Spread I/O queues completion vectors according their queue index. 469 * Admin queues can always go on completion vector 0. 470 */ 471 comp_vector = idx == 0 ? idx : idx - 1; 472 473 /* +1 for ib_stop_cq */ 474 queue->ib_cq = ib_alloc_cq(ibdev, queue, 475 cq_factor * queue->queue_size + 1, 476 comp_vector, IB_POLL_SOFTIRQ); 477 if (IS_ERR(queue->ib_cq)) { 478 ret = PTR_ERR(queue->ib_cq); 479 goto out_put_dev; 480 } 481 482 ret = nvme_rdma_create_qp(queue, send_wr_factor); 483 if (ret) 484 goto out_destroy_ib_cq; 485 486 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 487 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 488 if (!queue->rsp_ring) { 489 ret = -ENOMEM; 490 goto out_destroy_qp; 491 } 492 493 return 0; 494 495 out_destroy_qp: 496 ib_destroy_qp(queue->qp); 497 out_destroy_ib_cq: 498 ib_free_cq(queue->ib_cq); 499 out_put_dev: 500 nvme_rdma_dev_put(queue->device); 501 return ret; 502 } 503 504 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 505 int idx, size_t queue_size) 506 { 507 struct nvme_rdma_queue *queue; 508 struct sockaddr *src_addr = NULL; 509 int ret; 510 511 queue = &ctrl->queues[idx]; 512 queue->ctrl = ctrl; 513 init_completion(&queue->cm_done); 514 515 if (idx > 0) 516 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 517 else 518 queue->cmnd_capsule_len = sizeof(struct nvme_command); 519 520 queue->queue_size = queue_size; 521 atomic_set(&queue->sig_count, 0); 522 523 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 524 RDMA_PS_TCP, IB_QPT_RC); 525 if (IS_ERR(queue->cm_id)) { 526 dev_info(ctrl->ctrl.device, 527 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 528 return PTR_ERR(queue->cm_id); 529 } 530 531 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 532 src_addr = (struct sockaddr *)&ctrl->src_addr; 533 534 queue->cm_error = -ETIMEDOUT; 535 ret = rdma_resolve_addr(queue->cm_id, src_addr, 536 (struct sockaddr *)&ctrl->addr, 537 NVME_RDMA_CONNECT_TIMEOUT_MS); 538 if (ret) { 539 dev_info(ctrl->ctrl.device, 540 "rdma_resolve_addr failed (%d).\n", ret); 541 goto out_destroy_cm_id; 542 } 543 544 ret = nvme_rdma_wait_for_cm(queue); 545 if (ret) { 546 dev_info(ctrl->ctrl.device, 547 "rdma_resolve_addr wait failed (%d).\n", ret); 548 goto out_destroy_cm_id; 549 } 550 551 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 552 553 return 0; 554 555 out_destroy_cm_id: 556 rdma_destroy_id(queue->cm_id); 557 return ret; 558 } 559 560 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 561 { 562 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 563 return; 564 565 rdma_disconnect(queue->cm_id); 566 ib_drain_qp(queue->qp); 567 } 568 569 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 570 { 571 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 572 return; 573 574 if (nvme_rdma_queue_idx(queue) == 0) { 575 nvme_rdma_free_qe(queue->device->dev, 576 &queue->ctrl->async_event_sqe, 577 sizeof(struct nvme_command), DMA_TO_DEVICE); 578 } 579 580 nvme_rdma_destroy_queue_ib(queue); 581 rdma_destroy_id(queue->cm_id); 582 } 583 584 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 585 { 586 int i; 587 588 for (i = 1; i < ctrl->ctrl.queue_count; i++) 589 nvme_rdma_free_queue(&ctrl->queues[i]); 590 } 591 592 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 593 { 594 int i; 595 596 for (i = 1; i < ctrl->ctrl.queue_count; i++) 597 nvme_rdma_stop_queue(&ctrl->queues[i]); 598 } 599 600 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 601 { 602 int ret; 603 604 if (idx) 605 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 606 else 607 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 608 609 if (!ret) 610 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 611 else 612 dev_info(ctrl->ctrl.device, 613 "failed to connect queue: %d ret=%d\n", idx, ret); 614 return ret; 615 } 616 617 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 618 { 619 int i, ret = 0; 620 621 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 622 ret = nvme_rdma_start_queue(ctrl, i); 623 if (ret) 624 goto out_stop_queues; 625 } 626 627 return 0; 628 629 out_stop_queues: 630 for (i--; i >= 1; i--) 631 nvme_rdma_stop_queue(&ctrl->queues[i]); 632 return ret; 633 } 634 635 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 636 { 637 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 638 struct ib_device *ibdev = ctrl->device->dev; 639 unsigned int nr_io_queues; 640 int i, ret; 641 642 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 643 644 /* 645 * we map queues according to the device irq vectors for 646 * optimal locality so we don't need more queues than 647 * completion vectors. 648 */ 649 nr_io_queues = min_t(unsigned int, nr_io_queues, 650 ibdev->num_comp_vectors); 651 652 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 653 if (ret) 654 return ret; 655 656 ctrl->ctrl.queue_count = nr_io_queues + 1; 657 if (ctrl->ctrl.queue_count < 2) 658 return 0; 659 660 dev_info(ctrl->ctrl.device, 661 "creating %d I/O queues.\n", nr_io_queues); 662 663 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 664 ret = nvme_rdma_alloc_queue(ctrl, i, 665 ctrl->ctrl.sqsize + 1); 666 if (ret) 667 goto out_free_queues; 668 } 669 670 return 0; 671 672 out_free_queues: 673 for (i--; i >= 1; i--) 674 nvme_rdma_free_queue(&ctrl->queues[i]); 675 676 return ret; 677 } 678 679 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin) 680 { 681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 682 struct blk_mq_tag_set *set = admin ? 683 &ctrl->admin_tag_set : &ctrl->tag_set; 684 685 blk_mq_free_tag_set(set); 686 nvme_rdma_dev_put(ctrl->device); 687 } 688 689 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 690 bool admin) 691 { 692 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 693 struct blk_mq_tag_set *set; 694 int ret; 695 696 if (admin) { 697 set = &ctrl->admin_tag_set; 698 memset(set, 0, sizeof(*set)); 699 set->ops = &nvme_rdma_admin_mq_ops; 700 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 701 set->reserved_tags = 2; /* connect + keep-alive */ 702 set->numa_node = NUMA_NO_NODE; 703 set->cmd_size = sizeof(struct nvme_rdma_request) + 704 SG_CHUNK_SIZE * sizeof(struct scatterlist); 705 set->driver_data = ctrl; 706 set->nr_hw_queues = 1; 707 set->timeout = ADMIN_TIMEOUT; 708 } else { 709 set = &ctrl->tag_set; 710 memset(set, 0, sizeof(*set)); 711 set->ops = &nvme_rdma_mq_ops; 712 set->queue_depth = nctrl->opts->queue_size; 713 set->reserved_tags = 1; /* fabric connect */ 714 set->numa_node = NUMA_NO_NODE; 715 set->flags = BLK_MQ_F_SHOULD_MERGE; 716 set->cmd_size = sizeof(struct nvme_rdma_request) + 717 SG_CHUNK_SIZE * sizeof(struct scatterlist); 718 set->driver_data = ctrl; 719 set->nr_hw_queues = nctrl->queue_count - 1; 720 set->timeout = NVME_IO_TIMEOUT; 721 } 722 723 ret = blk_mq_alloc_tag_set(set); 724 if (ret) 725 goto out; 726 727 /* 728 * We need a reference on the device as long as the tag_set is alive, 729 * as the MRs in the request structures need a valid ib_device. 730 */ 731 ret = nvme_rdma_dev_get(ctrl->device); 732 if (!ret) { 733 ret = -EINVAL; 734 goto out_free_tagset; 735 } 736 737 return set; 738 739 out_free_tagset: 740 blk_mq_free_tag_set(set); 741 out: 742 return ERR_PTR(ret); 743 } 744 745 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 746 bool remove) 747 { 748 nvme_rdma_stop_queue(&ctrl->queues[0]); 749 if (remove) { 750 blk_cleanup_queue(ctrl->ctrl.admin_q); 751 nvme_rdma_free_tagset(&ctrl->ctrl, true); 752 } 753 nvme_rdma_free_queue(&ctrl->queues[0]); 754 } 755 756 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 757 bool new) 758 { 759 int error; 760 761 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 762 if (error) 763 return error; 764 765 ctrl->device = ctrl->queues[0].device; 766 767 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 768 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 769 770 if (new) { 771 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 772 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 773 error = PTR_ERR(ctrl->ctrl.admin_tagset); 774 goto out_free_queue; 775 } 776 777 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 778 if (IS_ERR(ctrl->ctrl.admin_q)) { 779 error = PTR_ERR(ctrl->ctrl.admin_q); 780 goto out_free_tagset; 781 } 782 } else { 783 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set, 784 nvme_rdma_reinit_request); 785 if (error) 786 goto out_free_queue; 787 } 788 789 error = nvme_rdma_start_queue(ctrl, 0); 790 if (error) 791 goto out_cleanup_queue; 792 793 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 794 &ctrl->ctrl.cap); 795 if (error) { 796 dev_err(ctrl->ctrl.device, 797 "prop_get NVME_REG_CAP failed\n"); 798 goto out_cleanup_queue; 799 } 800 801 ctrl->ctrl.sqsize = 802 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 803 804 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 805 if (error) 806 goto out_cleanup_queue; 807 808 ctrl->ctrl.max_hw_sectors = 809 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 810 811 error = nvme_init_identify(&ctrl->ctrl); 812 if (error) 813 goto out_cleanup_queue; 814 815 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 816 &ctrl->async_event_sqe, sizeof(struct nvme_command), 817 DMA_TO_DEVICE); 818 if (error) 819 goto out_cleanup_queue; 820 821 return 0; 822 823 out_cleanup_queue: 824 if (new) 825 blk_cleanup_queue(ctrl->ctrl.admin_q); 826 out_free_tagset: 827 if (new) 828 nvme_rdma_free_tagset(&ctrl->ctrl, true); 829 out_free_queue: 830 nvme_rdma_free_queue(&ctrl->queues[0]); 831 return error; 832 } 833 834 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 835 bool remove) 836 { 837 nvme_rdma_stop_io_queues(ctrl); 838 if (remove) { 839 blk_cleanup_queue(ctrl->ctrl.connect_q); 840 nvme_rdma_free_tagset(&ctrl->ctrl, false); 841 } 842 nvme_rdma_free_io_queues(ctrl); 843 } 844 845 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 846 { 847 int ret; 848 849 ret = nvme_rdma_alloc_io_queues(ctrl); 850 if (ret) 851 return ret; 852 853 if (new) { 854 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 855 if (IS_ERR(ctrl->ctrl.tagset)) { 856 ret = PTR_ERR(ctrl->ctrl.tagset); 857 goto out_free_io_queues; 858 } 859 860 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 861 if (IS_ERR(ctrl->ctrl.connect_q)) { 862 ret = PTR_ERR(ctrl->ctrl.connect_q); 863 goto out_free_tag_set; 864 } 865 } else { 866 ret = blk_mq_reinit_tagset(&ctrl->tag_set, 867 nvme_rdma_reinit_request); 868 if (ret) 869 goto out_free_io_queues; 870 871 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 872 ctrl->ctrl.queue_count - 1); 873 } 874 875 ret = nvme_rdma_start_io_queues(ctrl); 876 if (ret) 877 goto out_cleanup_connect_q; 878 879 return 0; 880 881 out_cleanup_connect_q: 882 if (new) 883 blk_cleanup_queue(ctrl->ctrl.connect_q); 884 out_free_tag_set: 885 if (new) 886 nvme_rdma_free_tagset(&ctrl->ctrl, false); 887 out_free_io_queues: 888 nvme_rdma_free_io_queues(ctrl); 889 return ret; 890 } 891 892 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 893 { 894 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 895 896 if (list_empty(&ctrl->list)) 897 goto free_ctrl; 898 899 mutex_lock(&nvme_rdma_ctrl_mutex); 900 list_del(&ctrl->list); 901 mutex_unlock(&nvme_rdma_ctrl_mutex); 902 903 kfree(ctrl->queues); 904 nvmf_free_options(nctrl->opts); 905 free_ctrl: 906 kfree(ctrl); 907 } 908 909 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 910 { 911 /* If we are resetting/deleting then do nothing */ 912 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 913 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 914 ctrl->ctrl.state == NVME_CTRL_LIVE); 915 return; 916 } 917 918 if (nvmf_should_reconnect(&ctrl->ctrl)) { 919 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 920 ctrl->ctrl.opts->reconnect_delay); 921 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 922 ctrl->ctrl.opts->reconnect_delay * HZ); 923 } else { 924 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 925 queue_work(nvme_wq, &ctrl->delete_work); 926 } 927 } 928 929 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 930 { 931 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 932 struct nvme_rdma_ctrl, reconnect_work); 933 bool changed; 934 int ret; 935 936 ++ctrl->ctrl.nr_reconnects; 937 938 if (ctrl->ctrl.queue_count > 1) 939 nvme_rdma_destroy_io_queues(ctrl, false); 940 941 nvme_rdma_destroy_admin_queue(ctrl, false); 942 ret = nvme_rdma_configure_admin_queue(ctrl, false); 943 if (ret) 944 goto requeue; 945 946 if (ctrl->ctrl.queue_count > 1) { 947 ret = nvme_rdma_configure_io_queues(ctrl, false); 948 if (ret) 949 goto requeue; 950 } 951 952 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 953 if (!changed) { 954 /* state change failure is ok if we're in DELETING state */ 955 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 956 return; 957 } 958 959 ctrl->ctrl.nr_reconnects = 0; 960 961 nvme_start_ctrl(&ctrl->ctrl); 962 963 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 964 965 return; 966 967 requeue: 968 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 969 ctrl->ctrl.nr_reconnects); 970 nvme_rdma_reconnect_or_remove(ctrl); 971 } 972 973 static void nvme_rdma_error_recovery_work(struct work_struct *work) 974 { 975 struct nvme_rdma_ctrl *ctrl = container_of(work, 976 struct nvme_rdma_ctrl, err_work); 977 978 nvme_stop_keep_alive(&ctrl->ctrl); 979 980 if (ctrl->ctrl.queue_count > 1) { 981 nvme_stop_queues(&ctrl->ctrl); 982 nvme_rdma_stop_io_queues(ctrl); 983 } 984 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 985 nvme_rdma_stop_queue(&ctrl->queues[0]); 986 987 /* We must take care of fastfail/requeue all our inflight requests */ 988 if (ctrl->ctrl.queue_count > 1) 989 blk_mq_tagset_busy_iter(&ctrl->tag_set, 990 nvme_cancel_request, &ctrl->ctrl); 991 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 992 nvme_cancel_request, &ctrl->ctrl); 993 994 /* 995 * queues are not a live anymore, so restart the queues to fail fast 996 * new IO 997 */ 998 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 999 nvme_start_queues(&ctrl->ctrl); 1000 1001 nvme_rdma_reconnect_or_remove(ctrl); 1002 } 1003 1004 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1005 { 1006 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 1007 return; 1008 1009 queue_work(nvme_wq, &ctrl->err_work); 1010 } 1011 1012 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1013 const char *op) 1014 { 1015 struct nvme_rdma_queue *queue = cq->cq_context; 1016 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1017 1018 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1019 dev_info(ctrl->ctrl.device, 1020 "%s for CQE 0x%p failed with status %s (%d)\n", 1021 op, wc->wr_cqe, 1022 ib_wc_status_msg(wc->status), wc->status); 1023 nvme_rdma_error_recovery(ctrl); 1024 } 1025 1026 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1027 { 1028 if (unlikely(wc->status != IB_WC_SUCCESS)) 1029 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1030 } 1031 1032 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1033 { 1034 if (unlikely(wc->status != IB_WC_SUCCESS)) 1035 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1036 } 1037 1038 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1039 struct nvme_rdma_request *req) 1040 { 1041 struct ib_send_wr *bad_wr; 1042 struct ib_send_wr wr = { 1043 .opcode = IB_WR_LOCAL_INV, 1044 .next = NULL, 1045 .num_sge = 0, 1046 .send_flags = 0, 1047 .ex.invalidate_rkey = req->mr->rkey, 1048 }; 1049 1050 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1051 wr.wr_cqe = &req->reg_cqe; 1052 1053 return ib_post_send(queue->qp, &wr, &bad_wr); 1054 } 1055 1056 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1057 struct request *rq) 1058 { 1059 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1060 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1061 struct nvme_rdma_device *dev = queue->device; 1062 struct ib_device *ibdev = dev->dev; 1063 int res; 1064 1065 if (!blk_rq_bytes(rq)) 1066 return; 1067 1068 if (req->mr->need_inval) { 1069 res = nvme_rdma_inv_rkey(queue, req); 1070 if (unlikely(res < 0)) { 1071 dev_err(ctrl->ctrl.device, 1072 "Queueing INV WR for rkey %#x failed (%d)\n", 1073 req->mr->rkey, res); 1074 nvme_rdma_error_recovery(queue->ctrl); 1075 } 1076 } 1077 1078 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1079 req->nents, rq_data_dir(rq) == 1080 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1081 1082 nvme_cleanup_cmd(rq); 1083 sg_free_table_chained(&req->sg_table, true); 1084 } 1085 1086 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1087 { 1088 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1089 1090 sg->addr = 0; 1091 put_unaligned_le24(0, sg->length); 1092 put_unaligned_le32(0, sg->key); 1093 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1094 return 0; 1095 } 1096 1097 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1098 struct nvme_rdma_request *req, struct nvme_command *c) 1099 { 1100 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1101 1102 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1103 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1104 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1105 1106 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1107 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1108 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1109 1110 req->inline_data = true; 1111 req->num_sge++; 1112 return 0; 1113 } 1114 1115 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1116 struct nvme_rdma_request *req, struct nvme_command *c) 1117 { 1118 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1119 1120 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1121 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1122 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1123 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1124 return 0; 1125 } 1126 1127 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1128 struct nvme_rdma_request *req, struct nvme_command *c, 1129 int count) 1130 { 1131 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1132 int nr; 1133 1134 /* 1135 * Align the MR to a 4K page size to match the ctrl page size and 1136 * the block virtual boundary. 1137 */ 1138 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1139 if (unlikely(nr < count)) { 1140 if (nr < 0) 1141 return nr; 1142 return -EINVAL; 1143 } 1144 1145 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1146 1147 req->reg_cqe.done = nvme_rdma_memreg_done; 1148 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1149 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1150 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1151 req->reg_wr.wr.num_sge = 0; 1152 req->reg_wr.mr = req->mr; 1153 req->reg_wr.key = req->mr->rkey; 1154 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1155 IB_ACCESS_REMOTE_READ | 1156 IB_ACCESS_REMOTE_WRITE; 1157 1158 req->mr->need_inval = true; 1159 1160 sg->addr = cpu_to_le64(req->mr->iova); 1161 put_unaligned_le24(req->mr->length, sg->length); 1162 put_unaligned_le32(req->mr->rkey, sg->key); 1163 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1164 NVME_SGL_FMT_INVALIDATE; 1165 1166 return 0; 1167 } 1168 1169 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1170 struct request *rq, struct nvme_command *c) 1171 { 1172 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1173 struct nvme_rdma_device *dev = queue->device; 1174 struct ib_device *ibdev = dev->dev; 1175 int count, ret; 1176 1177 req->num_sge = 1; 1178 req->inline_data = false; 1179 req->mr->need_inval = false; 1180 1181 c->common.flags |= NVME_CMD_SGL_METABUF; 1182 1183 if (!blk_rq_bytes(rq)) 1184 return nvme_rdma_set_sg_null(c); 1185 1186 req->sg_table.sgl = req->first_sgl; 1187 ret = sg_alloc_table_chained(&req->sg_table, 1188 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1189 if (ret) 1190 return -ENOMEM; 1191 1192 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1193 1194 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1195 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1196 if (unlikely(count <= 0)) { 1197 sg_free_table_chained(&req->sg_table, true); 1198 return -EIO; 1199 } 1200 1201 if (count == 1) { 1202 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1203 blk_rq_payload_bytes(rq) <= 1204 nvme_rdma_inline_data_size(queue)) 1205 return nvme_rdma_map_sg_inline(queue, req, c); 1206 1207 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1208 return nvme_rdma_map_sg_single(queue, req, c); 1209 } 1210 1211 return nvme_rdma_map_sg_fr(queue, req, c, count); 1212 } 1213 1214 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1215 { 1216 if (unlikely(wc->status != IB_WC_SUCCESS)) 1217 nvme_rdma_wr_error(cq, wc, "SEND"); 1218 } 1219 1220 /* 1221 * We want to signal completion at least every queue depth/2. This returns the 1222 * largest power of two that is not above half of (queue size + 1) to optimize 1223 * (avoid divisions). 1224 */ 1225 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1226 { 1227 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1228 1229 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1230 } 1231 1232 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1233 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1234 struct ib_send_wr *first, bool flush) 1235 { 1236 struct ib_send_wr wr, *bad_wr; 1237 int ret; 1238 1239 sge->addr = qe->dma; 1240 sge->length = sizeof(struct nvme_command), 1241 sge->lkey = queue->device->pd->local_dma_lkey; 1242 1243 qe->cqe.done = nvme_rdma_send_done; 1244 1245 wr.next = NULL; 1246 wr.wr_cqe = &qe->cqe; 1247 wr.sg_list = sge; 1248 wr.num_sge = num_sge; 1249 wr.opcode = IB_WR_SEND; 1250 wr.send_flags = 0; 1251 1252 /* 1253 * Unsignalled send completions are another giant desaster in the 1254 * IB Verbs spec: If we don't regularly post signalled sends 1255 * the send queue will fill up and only a QP reset will rescue us. 1256 * Would have been way to obvious to handle this in hardware or 1257 * at least the RDMA stack.. 1258 * 1259 * Always signal the flushes. The magic request used for the flush 1260 * sequencer is not allocated in our driver's tagset and it's 1261 * triggered to be freed by blk_cleanup_queue(). So we need to 1262 * always mark it as signaled to ensure that the "wr_cqe", which is 1263 * embedded in request's payload, is not freed when __ib_process_cq() 1264 * calls wr_cqe->done(). 1265 */ 1266 if (nvme_rdma_queue_sig_limit(queue) || flush) 1267 wr.send_flags |= IB_SEND_SIGNALED; 1268 1269 if (first) 1270 first->next = ≀ 1271 else 1272 first = ≀ 1273 1274 ret = ib_post_send(queue->qp, first, &bad_wr); 1275 if (unlikely(ret)) { 1276 dev_err(queue->ctrl->ctrl.device, 1277 "%s failed with error code %d\n", __func__, ret); 1278 } 1279 return ret; 1280 } 1281 1282 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1283 struct nvme_rdma_qe *qe) 1284 { 1285 struct ib_recv_wr wr, *bad_wr; 1286 struct ib_sge list; 1287 int ret; 1288 1289 list.addr = qe->dma; 1290 list.length = sizeof(struct nvme_completion); 1291 list.lkey = queue->device->pd->local_dma_lkey; 1292 1293 qe->cqe.done = nvme_rdma_recv_done; 1294 1295 wr.next = NULL; 1296 wr.wr_cqe = &qe->cqe; 1297 wr.sg_list = &list; 1298 wr.num_sge = 1; 1299 1300 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1301 if (unlikely(ret)) { 1302 dev_err(queue->ctrl->ctrl.device, 1303 "%s failed with error code %d\n", __func__, ret); 1304 } 1305 return ret; 1306 } 1307 1308 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1309 { 1310 u32 queue_idx = nvme_rdma_queue_idx(queue); 1311 1312 if (queue_idx == 0) 1313 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1314 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1315 } 1316 1317 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1318 { 1319 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1320 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1321 struct ib_device *dev = queue->device->dev; 1322 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1323 struct nvme_command *cmd = sqe->data; 1324 struct ib_sge sge; 1325 int ret; 1326 1327 if (WARN_ON_ONCE(aer_idx != 0)) 1328 return; 1329 1330 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1331 1332 memset(cmd, 0, sizeof(*cmd)); 1333 cmd->common.opcode = nvme_admin_async_event; 1334 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1335 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1336 nvme_rdma_set_sg_null(cmd); 1337 1338 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1339 DMA_TO_DEVICE); 1340 1341 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1342 WARN_ON_ONCE(ret); 1343 } 1344 1345 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1346 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1347 { 1348 struct request *rq; 1349 struct nvme_rdma_request *req; 1350 int ret = 0; 1351 1352 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1353 if (!rq) { 1354 dev_err(queue->ctrl->ctrl.device, 1355 "tag 0x%x on QP %#x not found\n", 1356 cqe->command_id, queue->qp->qp_num); 1357 nvme_rdma_error_recovery(queue->ctrl); 1358 return ret; 1359 } 1360 req = blk_mq_rq_to_pdu(rq); 1361 1362 if (rq->tag == tag) 1363 ret = 1; 1364 1365 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1366 wc->ex.invalidate_rkey == req->mr->rkey) 1367 req->mr->need_inval = false; 1368 1369 nvme_end_request(rq, cqe->status, cqe->result); 1370 return ret; 1371 } 1372 1373 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1374 { 1375 struct nvme_rdma_qe *qe = 1376 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1377 struct nvme_rdma_queue *queue = cq->cq_context; 1378 struct ib_device *ibdev = queue->device->dev; 1379 struct nvme_completion *cqe = qe->data; 1380 const size_t len = sizeof(struct nvme_completion); 1381 int ret = 0; 1382 1383 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1384 nvme_rdma_wr_error(cq, wc, "RECV"); 1385 return 0; 1386 } 1387 1388 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1389 /* 1390 * AEN requests are special as they don't time out and can 1391 * survive any kind of queue freeze and often don't respond to 1392 * aborts. We don't even bother to allocate a struct request 1393 * for them but rather special case them here. 1394 */ 1395 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1396 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1397 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1398 &cqe->result); 1399 else 1400 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1401 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1402 1403 nvme_rdma_post_recv(queue, qe); 1404 return ret; 1405 } 1406 1407 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1408 { 1409 __nvme_rdma_recv_done(cq, wc, -1); 1410 } 1411 1412 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1413 { 1414 int ret, i; 1415 1416 for (i = 0; i < queue->queue_size; i++) { 1417 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1418 if (ret) 1419 goto out_destroy_queue_ib; 1420 } 1421 1422 return 0; 1423 1424 out_destroy_queue_ib: 1425 nvme_rdma_destroy_queue_ib(queue); 1426 return ret; 1427 } 1428 1429 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1430 struct rdma_cm_event *ev) 1431 { 1432 struct rdma_cm_id *cm_id = queue->cm_id; 1433 int status = ev->status; 1434 const char *rej_msg; 1435 const struct nvme_rdma_cm_rej *rej_data; 1436 u8 rej_data_len; 1437 1438 rej_msg = rdma_reject_msg(cm_id, status); 1439 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1440 1441 if (rej_data && rej_data_len >= sizeof(u16)) { 1442 u16 sts = le16_to_cpu(rej_data->sts); 1443 1444 dev_err(queue->ctrl->ctrl.device, 1445 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1446 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1447 } else { 1448 dev_err(queue->ctrl->ctrl.device, 1449 "Connect rejected: status %d (%s).\n", status, rej_msg); 1450 } 1451 1452 return -ECONNRESET; 1453 } 1454 1455 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1456 { 1457 int ret; 1458 1459 ret = nvme_rdma_create_queue_ib(queue); 1460 if (ret) 1461 return ret; 1462 1463 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1464 if (ret) { 1465 dev_err(queue->ctrl->ctrl.device, 1466 "rdma_resolve_route failed (%d).\n", 1467 queue->cm_error); 1468 goto out_destroy_queue; 1469 } 1470 1471 return 0; 1472 1473 out_destroy_queue: 1474 nvme_rdma_destroy_queue_ib(queue); 1475 return ret; 1476 } 1477 1478 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1479 { 1480 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1481 struct rdma_conn_param param = { }; 1482 struct nvme_rdma_cm_req priv = { }; 1483 int ret; 1484 1485 param.qp_num = queue->qp->qp_num; 1486 param.flow_control = 1; 1487 1488 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1489 /* maximum retry count */ 1490 param.retry_count = 7; 1491 param.rnr_retry_count = 7; 1492 param.private_data = &priv; 1493 param.private_data_len = sizeof(priv); 1494 1495 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1496 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1497 /* 1498 * set the admin queue depth to the minimum size 1499 * specified by the Fabrics standard. 1500 */ 1501 if (priv.qid == 0) { 1502 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1503 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1504 } else { 1505 /* 1506 * current interpretation of the fabrics spec 1507 * is at minimum you make hrqsize sqsize+1, or a 1508 * 1's based representation of sqsize. 1509 */ 1510 priv.hrqsize = cpu_to_le16(queue->queue_size); 1511 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1512 } 1513 1514 ret = rdma_connect(queue->cm_id, ¶m); 1515 if (ret) { 1516 dev_err(ctrl->ctrl.device, 1517 "rdma_connect failed (%d).\n", ret); 1518 goto out_destroy_queue_ib; 1519 } 1520 1521 return 0; 1522 1523 out_destroy_queue_ib: 1524 nvme_rdma_destroy_queue_ib(queue); 1525 return ret; 1526 } 1527 1528 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1529 struct rdma_cm_event *ev) 1530 { 1531 struct nvme_rdma_queue *queue = cm_id->context; 1532 int cm_error = 0; 1533 1534 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1535 rdma_event_msg(ev->event), ev->event, 1536 ev->status, cm_id); 1537 1538 switch (ev->event) { 1539 case RDMA_CM_EVENT_ADDR_RESOLVED: 1540 cm_error = nvme_rdma_addr_resolved(queue); 1541 break; 1542 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1543 cm_error = nvme_rdma_route_resolved(queue); 1544 break; 1545 case RDMA_CM_EVENT_ESTABLISHED: 1546 queue->cm_error = nvme_rdma_conn_established(queue); 1547 /* complete cm_done regardless of success/failure */ 1548 complete(&queue->cm_done); 1549 return 0; 1550 case RDMA_CM_EVENT_REJECTED: 1551 nvme_rdma_destroy_queue_ib(queue); 1552 cm_error = nvme_rdma_conn_rejected(queue, ev); 1553 break; 1554 case RDMA_CM_EVENT_ROUTE_ERROR: 1555 case RDMA_CM_EVENT_CONNECT_ERROR: 1556 case RDMA_CM_EVENT_UNREACHABLE: 1557 nvme_rdma_destroy_queue_ib(queue); 1558 case RDMA_CM_EVENT_ADDR_ERROR: 1559 dev_dbg(queue->ctrl->ctrl.device, 1560 "CM error event %d\n", ev->event); 1561 cm_error = -ECONNRESET; 1562 break; 1563 case RDMA_CM_EVENT_DISCONNECTED: 1564 case RDMA_CM_EVENT_ADDR_CHANGE: 1565 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1566 dev_dbg(queue->ctrl->ctrl.device, 1567 "disconnect received - connection closed\n"); 1568 nvme_rdma_error_recovery(queue->ctrl); 1569 break; 1570 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1571 /* device removal is handled via the ib_client API */ 1572 break; 1573 default: 1574 dev_err(queue->ctrl->ctrl.device, 1575 "Unexpected RDMA CM event (%d)\n", ev->event); 1576 nvme_rdma_error_recovery(queue->ctrl); 1577 break; 1578 } 1579 1580 if (cm_error) { 1581 queue->cm_error = cm_error; 1582 complete(&queue->cm_done); 1583 } 1584 1585 return 0; 1586 } 1587 1588 static enum blk_eh_timer_return 1589 nvme_rdma_timeout(struct request *rq, bool reserved) 1590 { 1591 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1592 1593 /* queue error recovery */ 1594 nvme_rdma_error_recovery(req->queue->ctrl); 1595 1596 /* fail with DNR on cmd timeout */ 1597 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1598 1599 return BLK_EH_HANDLED; 1600 } 1601 1602 /* 1603 * We cannot accept any other command until the Connect command has completed. 1604 */ 1605 static inline blk_status_t 1606 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1607 { 1608 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1609 struct nvme_command *cmd = nvme_req(rq)->cmd; 1610 1611 if (!blk_rq_is_passthrough(rq) || 1612 cmd->common.opcode != nvme_fabrics_command || 1613 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1614 /* 1615 * reconnecting state means transport disruption, which 1616 * can take a long time and even might fail permanently, 1617 * fail fast to give upper layers a chance to failover. 1618 * deleting state means that the ctrl will never accept 1619 * commands again, fail it permanently. 1620 */ 1621 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING || 1622 queue->ctrl->ctrl.state == NVME_CTRL_DELETING) { 1623 nvme_req(rq)->status = NVME_SC_ABORT_REQ; 1624 return BLK_STS_IOERR; 1625 } 1626 return BLK_STS_RESOURCE; /* try again later */ 1627 } 1628 } 1629 1630 return 0; 1631 } 1632 1633 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1634 const struct blk_mq_queue_data *bd) 1635 { 1636 struct nvme_ns *ns = hctx->queue->queuedata; 1637 struct nvme_rdma_queue *queue = hctx->driver_data; 1638 struct request *rq = bd->rq; 1639 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1640 struct nvme_rdma_qe *sqe = &req->sqe; 1641 struct nvme_command *c = sqe->data; 1642 bool flush = false; 1643 struct ib_device *dev; 1644 blk_status_t ret; 1645 int err; 1646 1647 WARN_ON_ONCE(rq->tag < 0); 1648 1649 ret = nvme_rdma_queue_is_ready(queue, rq); 1650 if (unlikely(ret)) 1651 return ret; 1652 1653 dev = queue->device->dev; 1654 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1655 sizeof(struct nvme_command), DMA_TO_DEVICE); 1656 1657 ret = nvme_setup_cmd(ns, rq, c); 1658 if (ret) 1659 return ret; 1660 1661 blk_mq_start_request(rq); 1662 1663 err = nvme_rdma_map_data(queue, rq, c); 1664 if (unlikely(err < 0)) { 1665 dev_err(queue->ctrl->ctrl.device, 1666 "Failed to map data (%d)\n", err); 1667 nvme_cleanup_cmd(rq); 1668 goto err; 1669 } 1670 1671 ib_dma_sync_single_for_device(dev, sqe->dma, 1672 sizeof(struct nvme_command), DMA_TO_DEVICE); 1673 1674 if (req_op(rq) == REQ_OP_FLUSH) 1675 flush = true; 1676 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1677 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1678 if (unlikely(err)) { 1679 nvme_rdma_unmap_data(queue, rq); 1680 goto err; 1681 } 1682 1683 return BLK_STS_OK; 1684 err: 1685 if (err == -ENOMEM || err == -EAGAIN) 1686 return BLK_STS_RESOURCE; 1687 return BLK_STS_IOERR; 1688 } 1689 1690 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1691 { 1692 struct nvme_rdma_queue *queue = hctx->driver_data; 1693 struct ib_cq *cq = queue->ib_cq; 1694 struct ib_wc wc; 1695 int found = 0; 1696 1697 while (ib_poll_cq(cq, 1, &wc) > 0) { 1698 struct ib_cqe *cqe = wc.wr_cqe; 1699 1700 if (cqe) { 1701 if (cqe->done == nvme_rdma_recv_done) 1702 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1703 else 1704 cqe->done(cq, &wc); 1705 } 1706 } 1707 1708 return found; 1709 } 1710 1711 static void nvme_rdma_complete_rq(struct request *rq) 1712 { 1713 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1714 1715 nvme_rdma_unmap_data(req->queue, rq); 1716 nvme_complete_rq(rq); 1717 } 1718 1719 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1720 { 1721 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1722 1723 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1724 } 1725 1726 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1727 .queue_rq = nvme_rdma_queue_rq, 1728 .complete = nvme_rdma_complete_rq, 1729 .init_request = nvme_rdma_init_request, 1730 .exit_request = nvme_rdma_exit_request, 1731 .init_hctx = nvme_rdma_init_hctx, 1732 .poll = nvme_rdma_poll, 1733 .timeout = nvme_rdma_timeout, 1734 .map_queues = nvme_rdma_map_queues, 1735 }; 1736 1737 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1738 .queue_rq = nvme_rdma_queue_rq, 1739 .complete = nvme_rdma_complete_rq, 1740 .init_request = nvme_rdma_init_request, 1741 .exit_request = nvme_rdma_exit_request, 1742 .init_hctx = nvme_rdma_init_admin_hctx, 1743 .timeout = nvme_rdma_timeout, 1744 }; 1745 1746 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1747 { 1748 cancel_work_sync(&ctrl->err_work); 1749 cancel_delayed_work_sync(&ctrl->reconnect_work); 1750 1751 if (ctrl->ctrl.queue_count > 1) { 1752 nvme_stop_queues(&ctrl->ctrl); 1753 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1754 nvme_cancel_request, &ctrl->ctrl); 1755 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1756 } 1757 1758 if (shutdown) 1759 nvme_shutdown_ctrl(&ctrl->ctrl); 1760 else 1761 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1762 1763 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1764 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1765 nvme_cancel_request, &ctrl->ctrl); 1766 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1767 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1768 } 1769 1770 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl) 1771 { 1772 nvme_remove_namespaces(&ctrl->ctrl); 1773 nvme_rdma_shutdown_ctrl(ctrl, true); 1774 nvme_uninit_ctrl(&ctrl->ctrl); 1775 nvme_put_ctrl(&ctrl->ctrl); 1776 } 1777 1778 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1779 { 1780 struct nvme_rdma_ctrl *ctrl = container_of(work, 1781 struct nvme_rdma_ctrl, delete_work); 1782 1783 nvme_stop_ctrl(&ctrl->ctrl); 1784 nvme_rdma_remove_ctrl(ctrl); 1785 } 1786 1787 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1788 { 1789 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1790 return -EBUSY; 1791 1792 if (!queue_work(nvme_wq, &ctrl->delete_work)) 1793 return -EBUSY; 1794 1795 return 0; 1796 } 1797 1798 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1799 { 1800 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1801 int ret = 0; 1802 1803 /* 1804 * Keep a reference until all work is flushed since 1805 * __nvme_rdma_del_ctrl can free the ctrl mem 1806 */ 1807 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1808 return -EBUSY; 1809 ret = __nvme_rdma_del_ctrl(ctrl); 1810 if (!ret) 1811 flush_work(&ctrl->delete_work); 1812 nvme_put_ctrl(&ctrl->ctrl); 1813 return ret; 1814 } 1815 1816 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1817 { 1818 struct nvme_rdma_ctrl *ctrl = 1819 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1820 int ret; 1821 bool changed; 1822 1823 nvme_stop_ctrl(&ctrl->ctrl); 1824 nvme_rdma_shutdown_ctrl(ctrl, false); 1825 1826 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1827 if (ret) 1828 goto out_fail; 1829 1830 if (ctrl->ctrl.queue_count > 1) { 1831 ret = nvme_rdma_configure_io_queues(ctrl, false); 1832 if (ret) 1833 goto out_fail; 1834 } 1835 1836 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1837 WARN_ON_ONCE(!changed); 1838 1839 nvme_start_ctrl(&ctrl->ctrl); 1840 1841 return; 1842 1843 out_fail: 1844 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1845 nvme_rdma_remove_ctrl(ctrl); 1846 } 1847 1848 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1849 .name = "rdma", 1850 .module = THIS_MODULE, 1851 .flags = NVME_F_FABRICS, 1852 .reg_read32 = nvmf_reg_read32, 1853 .reg_read64 = nvmf_reg_read64, 1854 .reg_write32 = nvmf_reg_write32, 1855 .free_ctrl = nvme_rdma_free_ctrl, 1856 .submit_async_event = nvme_rdma_submit_async_event, 1857 .delete_ctrl = nvme_rdma_del_ctrl, 1858 .get_address = nvmf_get_address, 1859 }; 1860 1861 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1862 struct nvmf_ctrl_options *opts) 1863 { 1864 struct nvme_rdma_ctrl *ctrl; 1865 int ret; 1866 bool changed; 1867 char *port; 1868 1869 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1870 if (!ctrl) 1871 return ERR_PTR(-ENOMEM); 1872 ctrl->ctrl.opts = opts; 1873 INIT_LIST_HEAD(&ctrl->list); 1874 1875 if (opts->mask & NVMF_OPT_TRSVCID) 1876 port = opts->trsvcid; 1877 else 1878 port = __stringify(NVME_RDMA_IP_PORT); 1879 1880 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1881 opts->traddr, port, &ctrl->addr); 1882 if (ret) { 1883 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1884 goto out_free_ctrl; 1885 } 1886 1887 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1888 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1889 opts->host_traddr, NULL, &ctrl->src_addr); 1890 if (ret) { 1891 pr_err("malformed src address passed: %s\n", 1892 opts->host_traddr); 1893 goto out_free_ctrl; 1894 } 1895 } 1896 1897 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1898 0 /* no quirks, we're perfect! */); 1899 if (ret) 1900 goto out_free_ctrl; 1901 1902 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1903 nvme_rdma_reconnect_ctrl_work); 1904 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1905 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1906 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1907 1908 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1909 ctrl->ctrl.sqsize = opts->queue_size - 1; 1910 ctrl->ctrl.kato = opts->kato; 1911 1912 ret = -ENOMEM; 1913 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1914 GFP_KERNEL); 1915 if (!ctrl->queues) 1916 goto out_uninit_ctrl; 1917 1918 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1919 if (ret) 1920 goto out_kfree_queues; 1921 1922 /* sanity check icdoff */ 1923 if (ctrl->ctrl.icdoff) { 1924 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1925 ret = -EINVAL; 1926 goto out_remove_admin_queue; 1927 } 1928 1929 /* sanity check keyed sgls */ 1930 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1931 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1932 ret = -EINVAL; 1933 goto out_remove_admin_queue; 1934 } 1935 1936 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1937 /* warn if maxcmd is lower than queue_size */ 1938 dev_warn(ctrl->ctrl.device, 1939 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1940 opts->queue_size, ctrl->ctrl.maxcmd); 1941 opts->queue_size = ctrl->ctrl.maxcmd; 1942 } 1943 1944 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1945 /* warn if sqsize is lower than queue_size */ 1946 dev_warn(ctrl->ctrl.device, 1947 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1948 opts->queue_size, ctrl->ctrl.sqsize + 1); 1949 opts->queue_size = ctrl->ctrl.sqsize + 1; 1950 } 1951 1952 if (opts->nr_io_queues) { 1953 ret = nvme_rdma_configure_io_queues(ctrl, true); 1954 if (ret) 1955 goto out_remove_admin_queue; 1956 } 1957 1958 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1959 WARN_ON_ONCE(!changed); 1960 1961 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1962 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1963 1964 kref_get(&ctrl->ctrl.kref); 1965 1966 mutex_lock(&nvme_rdma_ctrl_mutex); 1967 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1968 mutex_unlock(&nvme_rdma_ctrl_mutex); 1969 1970 nvme_start_ctrl(&ctrl->ctrl); 1971 1972 return &ctrl->ctrl; 1973 1974 out_remove_admin_queue: 1975 nvme_rdma_destroy_admin_queue(ctrl, true); 1976 out_kfree_queues: 1977 kfree(ctrl->queues); 1978 out_uninit_ctrl: 1979 nvme_uninit_ctrl(&ctrl->ctrl); 1980 nvme_put_ctrl(&ctrl->ctrl); 1981 if (ret > 0) 1982 ret = -EIO; 1983 return ERR_PTR(ret); 1984 out_free_ctrl: 1985 kfree(ctrl); 1986 return ERR_PTR(ret); 1987 } 1988 1989 static struct nvmf_transport_ops nvme_rdma_transport = { 1990 .name = "rdma", 1991 .required_opts = NVMF_OPT_TRADDR, 1992 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 1993 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 1994 .create_ctrl = nvme_rdma_create_ctrl, 1995 }; 1996 1997 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1998 { 1999 struct nvme_rdma_ctrl *ctrl; 2000 2001 /* Delete all controllers using this device */ 2002 mutex_lock(&nvme_rdma_ctrl_mutex); 2003 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2004 if (ctrl->device->dev != ib_device) 2005 continue; 2006 dev_info(ctrl->ctrl.device, 2007 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2008 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2009 __nvme_rdma_del_ctrl(ctrl); 2010 } 2011 mutex_unlock(&nvme_rdma_ctrl_mutex); 2012 2013 flush_workqueue(nvme_wq); 2014 } 2015 2016 static struct ib_client nvme_rdma_ib_client = { 2017 .name = "nvme_rdma", 2018 .remove = nvme_rdma_remove_one 2019 }; 2020 2021 static int __init nvme_rdma_init_module(void) 2022 { 2023 int ret; 2024 2025 ret = ib_register_client(&nvme_rdma_ib_client); 2026 if (ret) 2027 return ret; 2028 2029 ret = nvmf_register_transport(&nvme_rdma_transport); 2030 if (ret) 2031 goto err_unreg_client; 2032 2033 return 0; 2034 2035 err_unreg_client: 2036 ib_unregister_client(&nvme_rdma_ib_client); 2037 return ret; 2038 } 2039 2040 static void __exit nvme_rdma_cleanup_module(void) 2041 { 2042 nvmf_unregister_transport(&nvme_rdma_transport); 2043 ib_unregister_client(&nvme_rdma_ib_client); 2044 } 2045 2046 module_init(nvme_rdma_init_module); 2047 module_exit(nvme_rdma_cleanup_module); 2048 2049 MODULE_LICENSE("GPL v2"); 2050