1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 unsigned int num_inline_segments; 51 }; 52 53 struct nvme_rdma_qe { 54 struct ib_cqe cqe; 55 void *data; 56 u64 dma; 57 }; 58 59 struct nvme_rdma_queue; 60 struct nvme_rdma_request { 61 struct nvme_request req; 62 struct ib_mr *mr; 63 struct nvme_rdma_qe sqe; 64 union nvme_result result; 65 __le16 status; 66 refcount_t ref; 67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 68 u32 num_sge; 69 int nents; 70 struct ib_reg_wr reg_wr; 71 struct ib_cqe reg_cqe; 72 struct nvme_rdma_queue *queue; 73 struct sg_table sg_table; 74 struct scatterlist first_sgl[]; 75 }; 76 77 enum nvme_rdma_queue_flags { 78 NVME_RDMA_Q_ALLOCATED = 0, 79 NVME_RDMA_Q_LIVE = 1, 80 NVME_RDMA_Q_TR_READY = 2, 81 }; 82 83 struct nvme_rdma_queue { 84 struct nvme_rdma_qe *rsp_ring; 85 int queue_size; 86 size_t cmnd_capsule_len; 87 struct nvme_rdma_ctrl *ctrl; 88 struct nvme_rdma_device *device; 89 struct ib_cq *ib_cq; 90 struct ib_qp *qp; 91 92 unsigned long flags; 93 struct rdma_cm_id *cm_id; 94 int cm_error; 95 struct completion cm_done; 96 }; 97 98 struct nvme_rdma_ctrl { 99 /* read only in the hot path */ 100 struct nvme_rdma_queue *queues; 101 102 /* other member variables */ 103 struct blk_mq_tag_set tag_set; 104 struct work_struct err_work; 105 106 struct nvme_rdma_qe async_event_sqe; 107 108 struct delayed_work reconnect_work; 109 110 struct list_head list; 111 112 struct blk_mq_tag_set admin_tag_set; 113 struct nvme_rdma_device *device; 114 115 u32 max_fr_pages; 116 117 struct sockaddr_storage addr; 118 struct sockaddr_storage src_addr; 119 120 struct nvme_ctrl ctrl; 121 bool use_inline_data; 122 }; 123 124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 125 { 126 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 127 } 128 129 static LIST_HEAD(device_list); 130 static DEFINE_MUTEX(device_list_mutex); 131 132 static LIST_HEAD(nvme_rdma_ctrl_list); 133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 134 135 /* 136 * Disabling this option makes small I/O goes faster, but is fundamentally 137 * unsafe. With it turned off we will have to register a global rkey that 138 * allows read and write access to all physical memory. 139 */ 140 static bool register_always = true; 141 module_param(register_always, bool, 0444); 142 MODULE_PARM_DESC(register_always, 143 "Use memory registration even for contiguous memory regions"); 144 145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 146 struct rdma_cm_event *event); 147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 148 149 static const struct blk_mq_ops nvme_rdma_mq_ops; 150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 151 152 /* XXX: really should move to a generic header sooner or later.. */ 153 static inline void put_unaligned_le24(u32 val, u8 *p) 154 { 155 *p++ = val; 156 *p++ = val >> 8; 157 *p++ = val >> 16; 158 } 159 160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 161 { 162 return queue - queue->ctrl->queues; 163 } 164 165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 166 { 167 return nvme_rdma_queue_idx(queue) > 168 queue->ctrl->ctrl.opts->nr_io_queues + 169 queue->ctrl->ctrl.opts->nr_write_queues; 170 } 171 172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 173 { 174 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 175 } 176 177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 181 kfree(qe->data); 182 } 183 184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 185 size_t capsule_size, enum dma_data_direction dir) 186 { 187 qe->data = kzalloc(capsule_size, GFP_KERNEL); 188 if (!qe->data) 189 return -ENOMEM; 190 191 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 192 if (ib_dma_mapping_error(ibdev, qe->dma)) { 193 kfree(qe->data); 194 qe->data = NULL; 195 return -ENOMEM; 196 } 197 198 return 0; 199 } 200 201 static void nvme_rdma_free_ring(struct ib_device *ibdev, 202 struct nvme_rdma_qe *ring, size_t ib_queue_size, 203 size_t capsule_size, enum dma_data_direction dir) 204 { 205 int i; 206 207 for (i = 0; i < ib_queue_size; i++) 208 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 209 kfree(ring); 210 } 211 212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 213 size_t ib_queue_size, size_t capsule_size, 214 enum dma_data_direction dir) 215 { 216 struct nvme_rdma_qe *ring; 217 int i; 218 219 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 220 if (!ring) 221 return NULL; 222 223 for (i = 0; i < ib_queue_size; i++) { 224 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 225 goto out_free_ring; 226 } 227 228 return ring; 229 230 out_free_ring: 231 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 232 return NULL; 233 } 234 235 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 236 { 237 pr_debug("QP event %s (%d)\n", 238 ib_event_msg(event->event), event->event); 239 240 } 241 242 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 243 { 244 int ret; 245 246 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 247 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 248 if (ret < 0) 249 return ret; 250 if (ret == 0) 251 return -ETIMEDOUT; 252 WARN_ON_ONCE(queue->cm_error > 0); 253 return queue->cm_error; 254 } 255 256 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 257 { 258 struct nvme_rdma_device *dev = queue->device; 259 struct ib_qp_init_attr init_attr; 260 int ret; 261 262 memset(&init_attr, 0, sizeof(init_attr)); 263 init_attr.event_handler = nvme_rdma_qp_event; 264 /* +1 for drain */ 265 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 266 /* +1 for drain */ 267 init_attr.cap.max_recv_wr = queue->queue_size + 1; 268 init_attr.cap.max_recv_sge = 1; 269 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 270 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 271 init_attr.qp_type = IB_QPT_RC; 272 init_attr.send_cq = queue->ib_cq; 273 init_attr.recv_cq = queue->ib_cq; 274 275 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 276 277 queue->qp = queue->cm_id->qp; 278 return ret; 279 } 280 281 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 282 struct request *rq, unsigned int hctx_idx) 283 { 284 struct nvme_rdma_ctrl *ctrl = set->driver_data; 285 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 286 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 287 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 288 struct nvme_rdma_device *dev = queue->device; 289 290 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 291 DMA_TO_DEVICE); 292 } 293 294 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 295 struct request *rq, unsigned int hctx_idx, 296 unsigned int numa_node) 297 { 298 struct nvme_rdma_ctrl *ctrl = set->driver_data; 299 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 300 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 301 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 302 struct nvme_rdma_device *dev = queue->device; 303 struct ib_device *ibdev = dev->dev; 304 int ret; 305 306 nvme_req(rq)->ctrl = &ctrl->ctrl; 307 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 308 DMA_TO_DEVICE); 309 if (ret) 310 return ret; 311 312 req->queue = queue; 313 314 return 0; 315 } 316 317 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 318 unsigned int hctx_idx) 319 { 320 struct nvme_rdma_ctrl *ctrl = data; 321 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 322 323 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 324 325 hctx->driver_data = queue; 326 return 0; 327 } 328 329 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 330 unsigned int hctx_idx) 331 { 332 struct nvme_rdma_ctrl *ctrl = data; 333 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 334 335 BUG_ON(hctx_idx != 0); 336 337 hctx->driver_data = queue; 338 return 0; 339 } 340 341 static void nvme_rdma_free_dev(struct kref *ref) 342 { 343 struct nvme_rdma_device *ndev = 344 container_of(ref, struct nvme_rdma_device, ref); 345 346 mutex_lock(&device_list_mutex); 347 list_del(&ndev->entry); 348 mutex_unlock(&device_list_mutex); 349 350 ib_dealloc_pd(ndev->pd); 351 kfree(ndev); 352 } 353 354 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 355 { 356 kref_put(&dev->ref, nvme_rdma_free_dev); 357 } 358 359 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 360 { 361 return kref_get_unless_zero(&dev->ref); 362 } 363 364 static struct nvme_rdma_device * 365 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 366 { 367 struct nvme_rdma_device *ndev; 368 369 mutex_lock(&device_list_mutex); 370 list_for_each_entry(ndev, &device_list, entry) { 371 if (ndev->dev->node_guid == cm_id->device->node_guid && 372 nvme_rdma_dev_get(ndev)) 373 goto out_unlock; 374 } 375 376 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 377 if (!ndev) 378 goto out_err; 379 380 ndev->dev = cm_id->device; 381 kref_init(&ndev->ref); 382 383 ndev->pd = ib_alloc_pd(ndev->dev, 384 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 385 if (IS_ERR(ndev->pd)) 386 goto out_free_dev; 387 388 if (!(ndev->dev->attrs.device_cap_flags & 389 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 390 dev_err(&ndev->dev->dev, 391 "Memory registrations not supported.\n"); 392 goto out_free_pd; 393 } 394 395 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 396 ndev->dev->attrs.max_send_sge - 1); 397 list_add(&ndev->entry, &device_list); 398 out_unlock: 399 mutex_unlock(&device_list_mutex); 400 return ndev; 401 402 out_free_pd: 403 ib_dealloc_pd(ndev->pd); 404 out_free_dev: 405 kfree(ndev); 406 out_err: 407 mutex_unlock(&device_list_mutex); 408 return NULL; 409 } 410 411 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 412 { 413 struct nvme_rdma_device *dev; 414 struct ib_device *ibdev; 415 416 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 417 return; 418 419 dev = queue->device; 420 ibdev = dev->dev; 421 422 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 423 424 /* 425 * The cm_id object might have been destroyed during RDMA connection 426 * establishment error flow to avoid getting other cma events, thus 427 * the destruction of the QP shouldn't use rdma_cm API. 428 */ 429 ib_destroy_qp(queue->qp); 430 ib_free_cq(queue->ib_cq); 431 432 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 433 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 434 435 nvme_rdma_dev_put(dev); 436 } 437 438 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 439 { 440 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 441 ibdev->attrs.max_fast_reg_page_list_len); 442 } 443 444 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 445 { 446 struct ib_device *ibdev; 447 const int send_wr_factor = 3; /* MR, SEND, INV */ 448 const int cq_factor = send_wr_factor + 1; /* + RECV */ 449 int comp_vector, idx = nvme_rdma_queue_idx(queue); 450 enum ib_poll_context poll_ctx; 451 int ret; 452 453 queue->device = nvme_rdma_find_get_device(queue->cm_id); 454 if (!queue->device) { 455 dev_err(queue->cm_id->device->dev.parent, 456 "no client data found!\n"); 457 return -ECONNREFUSED; 458 } 459 ibdev = queue->device->dev; 460 461 /* 462 * Spread I/O queues completion vectors according their queue index. 463 * Admin queues can always go on completion vector 0. 464 */ 465 comp_vector = idx == 0 ? idx : idx - 1; 466 467 /* Polling queues need direct cq polling context */ 468 if (nvme_rdma_poll_queue(queue)) 469 poll_ctx = IB_POLL_DIRECT; 470 else 471 poll_ctx = IB_POLL_SOFTIRQ; 472 473 /* +1 for ib_stop_cq */ 474 queue->ib_cq = ib_alloc_cq(ibdev, queue, 475 cq_factor * queue->queue_size + 1, 476 comp_vector, poll_ctx); 477 if (IS_ERR(queue->ib_cq)) { 478 ret = PTR_ERR(queue->ib_cq); 479 goto out_put_dev; 480 } 481 482 ret = nvme_rdma_create_qp(queue, send_wr_factor); 483 if (ret) 484 goto out_destroy_ib_cq; 485 486 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 487 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 488 if (!queue->rsp_ring) { 489 ret = -ENOMEM; 490 goto out_destroy_qp; 491 } 492 493 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 494 queue->queue_size, 495 IB_MR_TYPE_MEM_REG, 496 nvme_rdma_get_max_fr_pages(ibdev)); 497 if (ret) { 498 dev_err(queue->ctrl->ctrl.device, 499 "failed to initialize MR pool sized %d for QID %d\n", 500 queue->queue_size, idx); 501 goto out_destroy_ring; 502 } 503 504 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 505 506 return 0; 507 508 out_destroy_ring: 509 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 510 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 511 out_destroy_qp: 512 rdma_destroy_qp(queue->cm_id); 513 out_destroy_ib_cq: 514 ib_free_cq(queue->ib_cq); 515 out_put_dev: 516 nvme_rdma_dev_put(queue->device); 517 return ret; 518 } 519 520 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 521 int idx, size_t queue_size) 522 { 523 struct nvme_rdma_queue *queue; 524 struct sockaddr *src_addr = NULL; 525 int ret; 526 527 queue = &ctrl->queues[idx]; 528 queue->ctrl = ctrl; 529 init_completion(&queue->cm_done); 530 531 if (idx > 0) 532 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 533 else 534 queue->cmnd_capsule_len = sizeof(struct nvme_command); 535 536 queue->queue_size = queue_size; 537 538 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 539 RDMA_PS_TCP, IB_QPT_RC); 540 if (IS_ERR(queue->cm_id)) { 541 dev_info(ctrl->ctrl.device, 542 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 543 return PTR_ERR(queue->cm_id); 544 } 545 546 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 547 src_addr = (struct sockaddr *)&ctrl->src_addr; 548 549 queue->cm_error = -ETIMEDOUT; 550 ret = rdma_resolve_addr(queue->cm_id, src_addr, 551 (struct sockaddr *)&ctrl->addr, 552 NVME_RDMA_CONNECT_TIMEOUT_MS); 553 if (ret) { 554 dev_info(ctrl->ctrl.device, 555 "rdma_resolve_addr failed (%d).\n", ret); 556 goto out_destroy_cm_id; 557 } 558 559 ret = nvme_rdma_wait_for_cm(queue); 560 if (ret) { 561 dev_info(ctrl->ctrl.device, 562 "rdma connection establishment failed (%d)\n", ret); 563 goto out_destroy_cm_id; 564 } 565 566 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 567 568 return 0; 569 570 out_destroy_cm_id: 571 rdma_destroy_id(queue->cm_id); 572 nvme_rdma_destroy_queue_ib(queue); 573 return ret; 574 } 575 576 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 577 { 578 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 579 return; 580 581 rdma_disconnect(queue->cm_id); 582 ib_drain_qp(queue->qp); 583 } 584 585 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 586 { 587 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 588 return; 589 590 nvme_rdma_destroy_queue_ib(queue); 591 rdma_destroy_id(queue->cm_id); 592 } 593 594 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 595 { 596 int i; 597 598 for (i = 1; i < ctrl->ctrl.queue_count; i++) 599 nvme_rdma_free_queue(&ctrl->queues[i]); 600 } 601 602 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 603 { 604 int i; 605 606 for (i = 1; i < ctrl->ctrl.queue_count; i++) 607 nvme_rdma_stop_queue(&ctrl->queues[i]); 608 } 609 610 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 611 { 612 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 613 bool poll = nvme_rdma_poll_queue(queue); 614 int ret; 615 616 if (idx) 617 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 618 else 619 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 620 621 if (!ret) 622 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 623 else 624 dev_info(ctrl->ctrl.device, 625 "failed to connect queue: %d ret=%d\n", idx, ret); 626 return ret; 627 } 628 629 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 630 { 631 int i, ret = 0; 632 633 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 634 ret = nvme_rdma_start_queue(ctrl, i); 635 if (ret) 636 goto out_stop_queues; 637 } 638 639 return 0; 640 641 out_stop_queues: 642 for (i--; i >= 1; i--) 643 nvme_rdma_stop_queue(&ctrl->queues[i]); 644 return ret; 645 } 646 647 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 648 { 649 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 650 struct ib_device *ibdev = ctrl->device->dev; 651 unsigned int nr_io_queues; 652 int i, ret; 653 654 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 655 656 /* 657 * we map queues according to the device irq vectors for 658 * optimal locality so we don't need more queues than 659 * completion vectors. 660 */ 661 nr_io_queues = min_t(unsigned int, nr_io_queues, 662 ibdev->num_comp_vectors); 663 664 nr_io_queues += min(opts->nr_write_queues, num_online_cpus()); 665 nr_io_queues += min(opts->nr_poll_queues, num_online_cpus()); 666 667 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 668 if (ret) 669 return ret; 670 671 ctrl->ctrl.queue_count = nr_io_queues + 1; 672 if (ctrl->ctrl.queue_count < 2) 673 return 0; 674 675 dev_info(ctrl->ctrl.device, 676 "creating %d I/O queues.\n", nr_io_queues); 677 678 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 679 ret = nvme_rdma_alloc_queue(ctrl, i, 680 ctrl->ctrl.sqsize + 1); 681 if (ret) 682 goto out_free_queues; 683 } 684 685 return 0; 686 687 out_free_queues: 688 for (i--; i >= 1; i--) 689 nvme_rdma_free_queue(&ctrl->queues[i]); 690 691 return ret; 692 } 693 694 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 695 struct blk_mq_tag_set *set) 696 { 697 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 698 699 blk_mq_free_tag_set(set); 700 nvme_rdma_dev_put(ctrl->device); 701 } 702 703 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 704 bool admin) 705 { 706 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 707 struct blk_mq_tag_set *set; 708 int ret; 709 710 if (admin) { 711 set = &ctrl->admin_tag_set; 712 memset(set, 0, sizeof(*set)); 713 set->ops = &nvme_rdma_admin_mq_ops; 714 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 715 set->reserved_tags = 2; /* connect + keep-alive */ 716 set->numa_node = nctrl->numa_node; 717 set->cmd_size = sizeof(struct nvme_rdma_request) + 718 SG_CHUNK_SIZE * sizeof(struct scatterlist); 719 set->driver_data = ctrl; 720 set->nr_hw_queues = 1; 721 set->timeout = ADMIN_TIMEOUT; 722 set->flags = BLK_MQ_F_NO_SCHED; 723 } else { 724 set = &ctrl->tag_set; 725 memset(set, 0, sizeof(*set)); 726 set->ops = &nvme_rdma_mq_ops; 727 set->queue_depth = nctrl->sqsize + 1; 728 set->reserved_tags = 1; /* fabric connect */ 729 set->numa_node = nctrl->numa_node; 730 set->flags = BLK_MQ_F_SHOULD_MERGE; 731 set->cmd_size = sizeof(struct nvme_rdma_request) + 732 SG_CHUNK_SIZE * sizeof(struct scatterlist); 733 set->driver_data = ctrl; 734 set->nr_hw_queues = nctrl->queue_count - 1; 735 set->timeout = NVME_IO_TIMEOUT; 736 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 737 } 738 739 ret = blk_mq_alloc_tag_set(set); 740 if (ret) 741 goto out; 742 743 /* 744 * We need a reference on the device as long as the tag_set is alive, 745 * as the MRs in the request structures need a valid ib_device. 746 */ 747 ret = nvme_rdma_dev_get(ctrl->device); 748 if (!ret) { 749 ret = -EINVAL; 750 goto out_free_tagset; 751 } 752 753 return set; 754 755 out_free_tagset: 756 blk_mq_free_tag_set(set); 757 out: 758 return ERR_PTR(ret); 759 } 760 761 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 762 bool remove) 763 { 764 if (remove) { 765 blk_cleanup_queue(ctrl->ctrl.admin_q); 766 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 767 } 768 if (ctrl->async_event_sqe.data) { 769 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 770 sizeof(struct nvme_command), DMA_TO_DEVICE); 771 ctrl->async_event_sqe.data = NULL; 772 } 773 nvme_rdma_free_queue(&ctrl->queues[0]); 774 } 775 776 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 777 bool new) 778 { 779 int error; 780 781 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 782 if (error) 783 return error; 784 785 ctrl->device = ctrl->queues[0].device; 786 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 787 788 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 789 790 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 791 sizeof(struct nvme_command), DMA_TO_DEVICE); 792 if (error) 793 goto out_free_queue; 794 795 if (new) { 796 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 797 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 798 error = PTR_ERR(ctrl->ctrl.admin_tagset); 799 goto out_free_async_qe; 800 } 801 802 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 803 if (IS_ERR(ctrl->ctrl.admin_q)) { 804 error = PTR_ERR(ctrl->ctrl.admin_q); 805 goto out_free_tagset; 806 } 807 } 808 809 error = nvme_rdma_start_queue(ctrl, 0); 810 if (error) 811 goto out_cleanup_queue; 812 813 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 814 &ctrl->ctrl.cap); 815 if (error) { 816 dev_err(ctrl->ctrl.device, 817 "prop_get NVME_REG_CAP failed\n"); 818 goto out_stop_queue; 819 } 820 821 ctrl->ctrl.sqsize = 822 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 823 824 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 825 if (error) 826 goto out_stop_queue; 827 828 ctrl->ctrl.max_hw_sectors = 829 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 830 831 error = nvme_init_identify(&ctrl->ctrl); 832 if (error) 833 goto out_stop_queue; 834 835 return 0; 836 837 out_stop_queue: 838 nvme_rdma_stop_queue(&ctrl->queues[0]); 839 out_cleanup_queue: 840 if (new) 841 blk_cleanup_queue(ctrl->ctrl.admin_q); 842 out_free_tagset: 843 if (new) 844 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 845 out_free_async_qe: 846 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 847 sizeof(struct nvme_command), DMA_TO_DEVICE); 848 ctrl->async_event_sqe.data = NULL; 849 out_free_queue: 850 nvme_rdma_free_queue(&ctrl->queues[0]); 851 return error; 852 } 853 854 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 855 bool remove) 856 { 857 if (remove) { 858 blk_cleanup_queue(ctrl->ctrl.connect_q); 859 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 860 } 861 nvme_rdma_free_io_queues(ctrl); 862 } 863 864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 865 { 866 int ret; 867 868 ret = nvme_rdma_alloc_io_queues(ctrl); 869 if (ret) 870 return ret; 871 872 if (new) { 873 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 874 if (IS_ERR(ctrl->ctrl.tagset)) { 875 ret = PTR_ERR(ctrl->ctrl.tagset); 876 goto out_free_io_queues; 877 } 878 879 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 880 if (IS_ERR(ctrl->ctrl.connect_q)) { 881 ret = PTR_ERR(ctrl->ctrl.connect_q); 882 goto out_free_tag_set; 883 } 884 } else { 885 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 886 ctrl->ctrl.queue_count - 1); 887 } 888 889 ret = nvme_rdma_start_io_queues(ctrl); 890 if (ret) 891 goto out_cleanup_connect_q; 892 893 return 0; 894 895 out_cleanup_connect_q: 896 if (new) 897 blk_cleanup_queue(ctrl->ctrl.connect_q); 898 out_free_tag_set: 899 if (new) 900 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 901 out_free_io_queues: 902 nvme_rdma_free_io_queues(ctrl); 903 return ret; 904 } 905 906 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 907 bool remove) 908 { 909 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 910 nvme_rdma_stop_queue(&ctrl->queues[0]); 911 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, 912 &ctrl->ctrl); 913 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 914 nvme_rdma_destroy_admin_queue(ctrl, remove); 915 } 916 917 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 918 bool remove) 919 { 920 if (ctrl->ctrl.queue_count > 1) { 921 nvme_stop_queues(&ctrl->ctrl); 922 nvme_rdma_stop_io_queues(ctrl); 923 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, 924 &ctrl->ctrl); 925 if (remove) 926 nvme_start_queues(&ctrl->ctrl); 927 nvme_rdma_destroy_io_queues(ctrl, remove); 928 } 929 } 930 931 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 932 { 933 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 934 935 cancel_work_sync(&ctrl->err_work); 936 cancel_delayed_work_sync(&ctrl->reconnect_work); 937 } 938 939 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 940 { 941 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 942 943 if (list_empty(&ctrl->list)) 944 goto free_ctrl; 945 946 mutex_lock(&nvme_rdma_ctrl_mutex); 947 list_del(&ctrl->list); 948 mutex_unlock(&nvme_rdma_ctrl_mutex); 949 950 nvmf_free_options(nctrl->opts); 951 free_ctrl: 952 kfree(ctrl->queues); 953 kfree(ctrl); 954 } 955 956 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 957 { 958 /* If we are resetting/deleting then do nothing */ 959 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 960 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 961 ctrl->ctrl.state == NVME_CTRL_LIVE); 962 return; 963 } 964 965 if (nvmf_should_reconnect(&ctrl->ctrl)) { 966 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 967 ctrl->ctrl.opts->reconnect_delay); 968 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 969 ctrl->ctrl.opts->reconnect_delay * HZ); 970 } else { 971 nvme_delete_ctrl(&ctrl->ctrl); 972 } 973 } 974 975 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 976 { 977 int ret = -EINVAL; 978 bool changed; 979 980 ret = nvme_rdma_configure_admin_queue(ctrl, new); 981 if (ret) 982 return ret; 983 984 if (ctrl->ctrl.icdoff) { 985 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 986 goto destroy_admin; 987 } 988 989 if (!(ctrl->ctrl.sgls & (1 << 2))) { 990 dev_err(ctrl->ctrl.device, 991 "Mandatory keyed sgls are not supported!\n"); 992 goto destroy_admin; 993 } 994 995 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 996 dev_warn(ctrl->ctrl.device, 997 "queue_size %zu > ctrl sqsize %u, clamping down\n", 998 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 999 } 1000 1001 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1002 dev_warn(ctrl->ctrl.device, 1003 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1004 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1005 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1006 } 1007 1008 if (ctrl->ctrl.sgls & (1 << 20)) 1009 ctrl->use_inline_data = true; 1010 1011 if (ctrl->ctrl.queue_count > 1) { 1012 ret = nvme_rdma_configure_io_queues(ctrl, new); 1013 if (ret) 1014 goto destroy_admin; 1015 } 1016 1017 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1018 if (!changed) { 1019 /* state change failure is ok if we're in DELETING state */ 1020 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1021 ret = -EINVAL; 1022 goto destroy_io; 1023 } 1024 1025 nvme_start_ctrl(&ctrl->ctrl); 1026 return 0; 1027 1028 destroy_io: 1029 if (ctrl->ctrl.queue_count > 1) 1030 nvme_rdma_destroy_io_queues(ctrl, new); 1031 destroy_admin: 1032 nvme_rdma_stop_queue(&ctrl->queues[0]); 1033 nvme_rdma_destroy_admin_queue(ctrl, new); 1034 return ret; 1035 } 1036 1037 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1038 { 1039 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1040 struct nvme_rdma_ctrl, reconnect_work); 1041 1042 ++ctrl->ctrl.nr_reconnects; 1043 1044 if (nvme_rdma_setup_ctrl(ctrl, false)) 1045 goto requeue; 1046 1047 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1048 ctrl->ctrl.nr_reconnects); 1049 1050 ctrl->ctrl.nr_reconnects = 0; 1051 1052 return; 1053 1054 requeue: 1055 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1056 ctrl->ctrl.nr_reconnects); 1057 nvme_rdma_reconnect_or_remove(ctrl); 1058 } 1059 1060 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1061 { 1062 struct nvme_rdma_ctrl *ctrl = container_of(work, 1063 struct nvme_rdma_ctrl, err_work); 1064 1065 nvme_stop_keep_alive(&ctrl->ctrl); 1066 nvme_rdma_teardown_io_queues(ctrl, false); 1067 nvme_start_queues(&ctrl->ctrl); 1068 nvme_rdma_teardown_admin_queue(ctrl, false); 1069 1070 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1071 /* state change failure is ok if we're in DELETING state */ 1072 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1073 return; 1074 } 1075 1076 nvme_rdma_reconnect_or_remove(ctrl); 1077 } 1078 1079 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1080 { 1081 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1082 return; 1083 1084 queue_work(nvme_wq, &ctrl->err_work); 1085 } 1086 1087 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1088 const char *op) 1089 { 1090 struct nvme_rdma_queue *queue = cq->cq_context; 1091 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1092 1093 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1094 dev_info(ctrl->ctrl.device, 1095 "%s for CQE 0x%p failed with status %s (%d)\n", 1096 op, wc->wr_cqe, 1097 ib_wc_status_msg(wc->status), wc->status); 1098 nvme_rdma_error_recovery(ctrl); 1099 } 1100 1101 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1102 { 1103 if (unlikely(wc->status != IB_WC_SUCCESS)) 1104 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1105 } 1106 1107 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1108 { 1109 struct nvme_rdma_request *req = 1110 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1111 struct request *rq = blk_mq_rq_from_pdu(req); 1112 1113 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1114 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1115 return; 1116 } 1117 1118 if (refcount_dec_and_test(&req->ref)) 1119 nvme_end_request(rq, req->status, req->result); 1120 1121 } 1122 1123 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1124 struct nvme_rdma_request *req) 1125 { 1126 struct ib_send_wr wr = { 1127 .opcode = IB_WR_LOCAL_INV, 1128 .next = NULL, 1129 .num_sge = 0, 1130 .send_flags = IB_SEND_SIGNALED, 1131 .ex.invalidate_rkey = req->mr->rkey, 1132 }; 1133 1134 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1135 wr.wr_cqe = &req->reg_cqe; 1136 1137 return ib_post_send(queue->qp, &wr, NULL); 1138 } 1139 1140 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1141 struct request *rq) 1142 { 1143 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1144 struct nvme_rdma_device *dev = queue->device; 1145 struct ib_device *ibdev = dev->dev; 1146 1147 if (!blk_rq_payload_bytes(rq)) 1148 return; 1149 1150 if (req->mr) { 1151 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1152 req->mr = NULL; 1153 } 1154 1155 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1156 req->nents, rq_data_dir(rq) == 1157 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1158 1159 nvme_cleanup_cmd(rq); 1160 sg_free_table_chained(&req->sg_table, true); 1161 } 1162 1163 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1164 { 1165 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1166 1167 sg->addr = 0; 1168 put_unaligned_le24(0, sg->length); 1169 put_unaligned_le32(0, sg->key); 1170 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1171 return 0; 1172 } 1173 1174 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1175 struct nvme_rdma_request *req, struct nvme_command *c, 1176 int count) 1177 { 1178 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1179 struct scatterlist *sgl = req->sg_table.sgl; 1180 struct ib_sge *sge = &req->sge[1]; 1181 u32 len = 0; 1182 int i; 1183 1184 for (i = 0; i < count; i++, sgl++, sge++) { 1185 sge->addr = sg_dma_address(sgl); 1186 sge->length = sg_dma_len(sgl); 1187 sge->lkey = queue->device->pd->local_dma_lkey; 1188 len += sge->length; 1189 } 1190 1191 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1192 sg->length = cpu_to_le32(len); 1193 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1194 1195 req->num_sge += count; 1196 return 0; 1197 } 1198 1199 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1200 struct nvme_rdma_request *req, struct nvme_command *c) 1201 { 1202 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1203 1204 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1205 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1206 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1207 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1208 return 0; 1209 } 1210 1211 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1212 struct nvme_rdma_request *req, struct nvme_command *c, 1213 int count) 1214 { 1215 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1216 int nr; 1217 1218 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1219 if (WARN_ON_ONCE(!req->mr)) 1220 return -EAGAIN; 1221 1222 /* 1223 * Align the MR to a 4K page size to match the ctrl page size and 1224 * the block virtual boundary. 1225 */ 1226 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1227 if (unlikely(nr < count)) { 1228 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1229 req->mr = NULL; 1230 if (nr < 0) 1231 return nr; 1232 return -EINVAL; 1233 } 1234 1235 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1236 1237 req->reg_cqe.done = nvme_rdma_memreg_done; 1238 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1239 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1240 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1241 req->reg_wr.wr.num_sge = 0; 1242 req->reg_wr.mr = req->mr; 1243 req->reg_wr.key = req->mr->rkey; 1244 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1245 IB_ACCESS_REMOTE_READ | 1246 IB_ACCESS_REMOTE_WRITE; 1247 1248 sg->addr = cpu_to_le64(req->mr->iova); 1249 put_unaligned_le24(req->mr->length, sg->length); 1250 put_unaligned_le32(req->mr->rkey, sg->key); 1251 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1252 NVME_SGL_FMT_INVALIDATE; 1253 1254 return 0; 1255 } 1256 1257 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1258 struct request *rq, struct nvme_command *c) 1259 { 1260 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1261 struct nvme_rdma_device *dev = queue->device; 1262 struct ib_device *ibdev = dev->dev; 1263 int count, ret; 1264 1265 req->num_sge = 1; 1266 refcount_set(&req->ref, 2); /* send and recv completions */ 1267 1268 c->common.flags |= NVME_CMD_SGL_METABUF; 1269 1270 if (!blk_rq_payload_bytes(rq)) 1271 return nvme_rdma_set_sg_null(c); 1272 1273 req->sg_table.sgl = req->first_sgl; 1274 ret = sg_alloc_table_chained(&req->sg_table, 1275 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1276 if (ret) 1277 return -ENOMEM; 1278 1279 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1280 1281 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1282 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1283 if (unlikely(count <= 0)) { 1284 ret = -EIO; 1285 goto out_free_table; 1286 } 1287 1288 if (count <= dev->num_inline_segments) { 1289 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1290 queue->ctrl->use_inline_data && 1291 blk_rq_payload_bytes(rq) <= 1292 nvme_rdma_inline_data_size(queue)) { 1293 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1294 goto out; 1295 } 1296 1297 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1298 ret = nvme_rdma_map_sg_single(queue, req, c); 1299 goto out; 1300 } 1301 } 1302 1303 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1304 out: 1305 if (unlikely(ret)) 1306 goto out_unmap_sg; 1307 1308 return 0; 1309 1310 out_unmap_sg: 1311 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1312 req->nents, rq_data_dir(rq) == 1313 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1314 out_free_table: 1315 sg_free_table_chained(&req->sg_table, true); 1316 return ret; 1317 } 1318 1319 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1320 { 1321 struct nvme_rdma_qe *qe = 1322 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1323 struct nvme_rdma_request *req = 1324 container_of(qe, struct nvme_rdma_request, sqe); 1325 struct request *rq = blk_mq_rq_from_pdu(req); 1326 1327 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1328 nvme_rdma_wr_error(cq, wc, "SEND"); 1329 return; 1330 } 1331 1332 if (refcount_dec_and_test(&req->ref)) 1333 nvme_end_request(rq, req->status, req->result); 1334 } 1335 1336 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1337 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1338 struct ib_send_wr *first) 1339 { 1340 struct ib_send_wr wr; 1341 int ret; 1342 1343 sge->addr = qe->dma; 1344 sge->length = sizeof(struct nvme_command), 1345 sge->lkey = queue->device->pd->local_dma_lkey; 1346 1347 wr.next = NULL; 1348 wr.wr_cqe = &qe->cqe; 1349 wr.sg_list = sge; 1350 wr.num_sge = num_sge; 1351 wr.opcode = IB_WR_SEND; 1352 wr.send_flags = IB_SEND_SIGNALED; 1353 1354 if (first) 1355 first->next = ≀ 1356 else 1357 first = ≀ 1358 1359 ret = ib_post_send(queue->qp, first, NULL); 1360 if (unlikely(ret)) { 1361 dev_err(queue->ctrl->ctrl.device, 1362 "%s failed with error code %d\n", __func__, ret); 1363 } 1364 return ret; 1365 } 1366 1367 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1368 struct nvme_rdma_qe *qe) 1369 { 1370 struct ib_recv_wr wr; 1371 struct ib_sge list; 1372 int ret; 1373 1374 list.addr = qe->dma; 1375 list.length = sizeof(struct nvme_completion); 1376 list.lkey = queue->device->pd->local_dma_lkey; 1377 1378 qe->cqe.done = nvme_rdma_recv_done; 1379 1380 wr.next = NULL; 1381 wr.wr_cqe = &qe->cqe; 1382 wr.sg_list = &list; 1383 wr.num_sge = 1; 1384 1385 ret = ib_post_recv(queue->qp, &wr, NULL); 1386 if (unlikely(ret)) { 1387 dev_err(queue->ctrl->ctrl.device, 1388 "%s failed with error code %d\n", __func__, ret); 1389 } 1390 return ret; 1391 } 1392 1393 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1394 { 1395 u32 queue_idx = nvme_rdma_queue_idx(queue); 1396 1397 if (queue_idx == 0) 1398 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1399 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1400 } 1401 1402 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1403 { 1404 if (unlikely(wc->status != IB_WC_SUCCESS)) 1405 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1406 } 1407 1408 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1409 { 1410 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1411 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1412 struct ib_device *dev = queue->device->dev; 1413 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1414 struct nvme_command *cmd = sqe->data; 1415 struct ib_sge sge; 1416 int ret; 1417 1418 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1419 1420 memset(cmd, 0, sizeof(*cmd)); 1421 cmd->common.opcode = nvme_admin_async_event; 1422 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1423 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1424 nvme_rdma_set_sg_null(cmd); 1425 1426 sqe->cqe.done = nvme_rdma_async_done; 1427 1428 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1429 DMA_TO_DEVICE); 1430 1431 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1432 WARN_ON_ONCE(ret); 1433 } 1434 1435 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1436 struct nvme_completion *cqe, struct ib_wc *wc) 1437 { 1438 struct request *rq; 1439 struct nvme_rdma_request *req; 1440 1441 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1442 if (!rq) { 1443 dev_err(queue->ctrl->ctrl.device, 1444 "tag 0x%x on QP %#x not found\n", 1445 cqe->command_id, queue->qp->qp_num); 1446 nvme_rdma_error_recovery(queue->ctrl); 1447 return; 1448 } 1449 req = blk_mq_rq_to_pdu(rq); 1450 1451 req->status = cqe->status; 1452 req->result = cqe->result; 1453 1454 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1455 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1456 dev_err(queue->ctrl->ctrl.device, 1457 "Bogus remote invalidation for rkey %#x\n", 1458 req->mr->rkey); 1459 nvme_rdma_error_recovery(queue->ctrl); 1460 } 1461 } else if (req->mr) { 1462 int ret; 1463 1464 ret = nvme_rdma_inv_rkey(queue, req); 1465 if (unlikely(ret < 0)) { 1466 dev_err(queue->ctrl->ctrl.device, 1467 "Queueing INV WR for rkey %#x failed (%d)\n", 1468 req->mr->rkey, ret); 1469 nvme_rdma_error_recovery(queue->ctrl); 1470 } 1471 /* the local invalidation completion will end the request */ 1472 return; 1473 } 1474 1475 if (refcount_dec_and_test(&req->ref)) 1476 nvme_end_request(rq, req->status, req->result); 1477 } 1478 1479 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1480 { 1481 struct nvme_rdma_qe *qe = 1482 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1483 struct nvme_rdma_queue *queue = cq->cq_context; 1484 struct ib_device *ibdev = queue->device->dev; 1485 struct nvme_completion *cqe = qe->data; 1486 const size_t len = sizeof(struct nvme_completion); 1487 1488 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1489 nvme_rdma_wr_error(cq, wc, "RECV"); 1490 return; 1491 } 1492 1493 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1494 /* 1495 * AEN requests are special as they don't time out and can 1496 * survive any kind of queue freeze and often don't respond to 1497 * aborts. We don't even bother to allocate a struct request 1498 * for them but rather special case them here. 1499 */ 1500 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1501 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1502 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1503 &cqe->result); 1504 else 1505 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1506 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1507 1508 nvme_rdma_post_recv(queue, qe); 1509 } 1510 1511 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1512 { 1513 int ret, i; 1514 1515 for (i = 0; i < queue->queue_size; i++) { 1516 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1517 if (ret) 1518 goto out_destroy_queue_ib; 1519 } 1520 1521 return 0; 1522 1523 out_destroy_queue_ib: 1524 nvme_rdma_destroy_queue_ib(queue); 1525 return ret; 1526 } 1527 1528 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1529 struct rdma_cm_event *ev) 1530 { 1531 struct rdma_cm_id *cm_id = queue->cm_id; 1532 int status = ev->status; 1533 const char *rej_msg; 1534 const struct nvme_rdma_cm_rej *rej_data; 1535 u8 rej_data_len; 1536 1537 rej_msg = rdma_reject_msg(cm_id, status); 1538 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1539 1540 if (rej_data && rej_data_len >= sizeof(u16)) { 1541 u16 sts = le16_to_cpu(rej_data->sts); 1542 1543 dev_err(queue->ctrl->ctrl.device, 1544 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1545 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1546 } else { 1547 dev_err(queue->ctrl->ctrl.device, 1548 "Connect rejected: status %d (%s).\n", status, rej_msg); 1549 } 1550 1551 return -ECONNRESET; 1552 } 1553 1554 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1555 { 1556 int ret; 1557 1558 ret = nvme_rdma_create_queue_ib(queue); 1559 if (ret) 1560 return ret; 1561 1562 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1563 if (ret) { 1564 dev_err(queue->ctrl->ctrl.device, 1565 "rdma_resolve_route failed (%d).\n", 1566 queue->cm_error); 1567 goto out_destroy_queue; 1568 } 1569 1570 return 0; 1571 1572 out_destroy_queue: 1573 nvme_rdma_destroy_queue_ib(queue); 1574 return ret; 1575 } 1576 1577 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1578 { 1579 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1580 struct rdma_conn_param param = { }; 1581 struct nvme_rdma_cm_req priv = { }; 1582 int ret; 1583 1584 param.qp_num = queue->qp->qp_num; 1585 param.flow_control = 1; 1586 1587 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1588 /* maximum retry count */ 1589 param.retry_count = 7; 1590 param.rnr_retry_count = 7; 1591 param.private_data = &priv; 1592 param.private_data_len = sizeof(priv); 1593 1594 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1595 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1596 /* 1597 * set the admin queue depth to the minimum size 1598 * specified by the Fabrics standard. 1599 */ 1600 if (priv.qid == 0) { 1601 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1602 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1603 } else { 1604 /* 1605 * current interpretation of the fabrics spec 1606 * is at minimum you make hrqsize sqsize+1, or a 1607 * 1's based representation of sqsize. 1608 */ 1609 priv.hrqsize = cpu_to_le16(queue->queue_size); 1610 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1611 } 1612 1613 ret = rdma_connect(queue->cm_id, ¶m); 1614 if (ret) { 1615 dev_err(ctrl->ctrl.device, 1616 "rdma_connect failed (%d).\n", ret); 1617 goto out_destroy_queue_ib; 1618 } 1619 1620 return 0; 1621 1622 out_destroy_queue_ib: 1623 nvme_rdma_destroy_queue_ib(queue); 1624 return ret; 1625 } 1626 1627 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1628 struct rdma_cm_event *ev) 1629 { 1630 struct nvme_rdma_queue *queue = cm_id->context; 1631 int cm_error = 0; 1632 1633 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1634 rdma_event_msg(ev->event), ev->event, 1635 ev->status, cm_id); 1636 1637 switch (ev->event) { 1638 case RDMA_CM_EVENT_ADDR_RESOLVED: 1639 cm_error = nvme_rdma_addr_resolved(queue); 1640 break; 1641 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1642 cm_error = nvme_rdma_route_resolved(queue); 1643 break; 1644 case RDMA_CM_EVENT_ESTABLISHED: 1645 queue->cm_error = nvme_rdma_conn_established(queue); 1646 /* complete cm_done regardless of success/failure */ 1647 complete(&queue->cm_done); 1648 return 0; 1649 case RDMA_CM_EVENT_REJECTED: 1650 nvme_rdma_destroy_queue_ib(queue); 1651 cm_error = nvme_rdma_conn_rejected(queue, ev); 1652 break; 1653 case RDMA_CM_EVENT_ROUTE_ERROR: 1654 case RDMA_CM_EVENT_CONNECT_ERROR: 1655 case RDMA_CM_EVENT_UNREACHABLE: 1656 nvme_rdma_destroy_queue_ib(queue); 1657 /* fall through */ 1658 case RDMA_CM_EVENT_ADDR_ERROR: 1659 dev_dbg(queue->ctrl->ctrl.device, 1660 "CM error event %d\n", ev->event); 1661 cm_error = -ECONNRESET; 1662 break; 1663 case RDMA_CM_EVENT_DISCONNECTED: 1664 case RDMA_CM_EVENT_ADDR_CHANGE: 1665 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1666 dev_dbg(queue->ctrl->ctrl.device, 1667 "disconnect received - connection closed\n"); 1668 nvme_rdma_error_recovery(queue->ctrl); 1669 break; 1670 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1671 /* device removal is handled via the ib_client API */ 1672 break; 1673 default: 1674 dev_err(queue->ctrl->ctrl.device, 1675 "Unexpected RDMA CM event (%d)\n", ev->event); 1676 nvme_rdma_error_recovery(queue->ctrl); 1677 break; 1678 } 1679 1680 if (cm_error) { 1681 queue->cm_error = cm_error; 1682 complete(&queue->cm_done); 1683 } 1684 1685 return 0; 1686 } 1687 1688 static enum blk_eh_timer_return 1689 nvme_rdma_timeout(struct request *rq, bool reserved) 1690 { 1691 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1692 1693 dev_warn(req->queue->ctrl->ctrl.device, 1694 "I/O %d QID %d timeout, reset controller\n", 1695 rq->tag, nvme_rdma_queue_idx(req->queue)); 1696 1697 /* queue error recovery */ 1698 nvme_rdma_error_recovery(req->queue->ctrl); 1699 1700 /* fail with DNR on cmd timeout */ 1701 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1702 1703 return BLK_EH_DONE; 1704 } 1705 1706 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1707 const struct blk_mq_queue_data *bd) 1708 { 1709 struct nvme_ns *ns = hctx->queue->queuedata; 1710 struct nvme_rdma_queue *queue = hctx->driver_data; 1711 struct request *rq = bd->rq; 1712 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1713 struct nvme_rdma_qe *sqe = &req->sqe; 1714 struct nvme_command *c = sqe->data; 1715 struct ib_device *dev; 1716 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1717 blk_status_t ret; 1718 int err; 1719 1720 WARN_ON_ONCE(rq->tag < 0); 1721 1722 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1723 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1724 1725 dev = queue->device->dev; 1726 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1727 sizeof(struct nvme_command), DMA_TO_DEVICE); 1728 1729 ret = nvme_setup_cmd(ns, rq, c); 1730 if (ret) 1731 return ret; 1732 1733 blk_mq_start_request(rq); 1734 1735 err = nvme_rdma_map_data(queue, rq, c); 1736 if (unlikely(err < 0)) { 1737 dev_err(queue->ctrl->ctrl.device, 1738 "Failed to map data (%d)\n", err); 1739 nvme_cleanup_cmd(rq); 1740 goto err; 1741 } 1742 1743 sqe->cqe.done = nvme_rdma_send_done; 1744 1745 ib_dma_sync_single_for_device(dev, sqe->dma, 1746 sizeof(struct nvme_command), DMA_TO_DEVICE); 1747 1748 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1749 req->mr ? &req->reg_wr.wr : NULL); 1750 if (unlikely(err)) { 1751 nvme_rdma_unmap_data(queue, rq); 1752 goto err; 1753 } 1754 1755 return BLK_STS_OK; 1756 err: 1757 if (err == -ENOMEM || err == -EAGAIN) 1758 return BLK_STS_RESOURCE; 1759 return BLK_STS_IOERR; 1760 } 1761 1762 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1763 { 1764 struct nvme_rdma_queue *queue = hctx->driver_data; 1765 1766 return ib_process_cq_direct(queue->ib_cq, -1); 1767 } 1768 1769 static void nvme_rdma_complete_rq(struct request *rq) 1770 { 1771 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1772 1773 nvme_rdma_unmap_data(req->queue, rq); 1774 nvme_complete_rq(rq); 1775 } 1776 1777 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1778 { 1779 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1780 1781 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1782 set->map[HCTX_TYPE_READ].nr_queues = ctrl->ctrl.opts->nr_io_queues; 1783 if (ctrl->ctrl.opts->nr_write_queues) { 1784 /* separate read/write queues */ 1785 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1786 ctrl->ctrl.opts->nr_write_queues; 1787 set->map[HCTX_TYPE_READ].queue_offset = 1788 ctrl->ctrl.opts->nr_write_queues; 1789 } else { 1790 /* mixed read/write queues */ 1791 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1792 ctrl->ctrl.opts->nr_io_queues; 1793 set->map[HCTX_TYPE_READ].queue_offset = 0; 1794 } 1795 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1796 ctrl->device->dev, 0); 1797 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1798 ctrl->device->dev, 0); 1799 1800 if (ctrl->ctrl.opts->nr_poll_queues) { 1801 set->map[HCTX_TYPE_POLL].nr_queues = 1802 ctrl->ctrl.opts->nr_poll_queues; 1803 set->map[HCTX_TYPE_POLL].queue_offset = 1804 ctrl->ctrl.opts->nr_io_queues; 1805 if (ctrl->ctrl.opts->nr_write_queues) 1806 set->map[HCTX_TYPE_POLL].queue_offset += 1807 ctrl->ctrl.opts->nr_write_queues; 1808 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1809 } 1810 return 0; 1811 } 1812 1813 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1814 .queue_rq = nvme_rdma_queue_rq, 1815 .complete = nvme_rdma_complete_rq, 1816 .init_request = nvme_rdma_init_request, 1817 .exit_request = nvme_rdma_exit_request, 1818 .init_hctx = nvme_rdma_init_hctx, 1819 .timeout = nvme_rdma_timeout, 1820 .map_queues = nvme_rdma_map_queues, 1821 .poll = nvme_rdma_poll, 1822 }; 1823 1824 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1825 .queue_rq = nvme_rdma_queue_rq, 1826 .complete = nvme_rdma_complete_rq, 1827 .init_request = nvme_rdma_init_request, 1828 .exit_request = nvme_rdma_exit_request, 1829 .init_hctx = nvme_rdma_init_admin_hctx, 1830 .timeout = nvme_rdma_timeout, 1831 }; 1832 1833 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1834 { 1835 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1836 if (shutdown) 1837 nvme_shutdown_ctrl(&ctrl->ctrl); 1838 else 1839 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1840 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1841 } 1842 1843 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1844 { 1845 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1846 } 1847 1848 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1849 { 1850 struct nvme_rdma_ctrl *ctrl = 1851 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1852 1853 nvme_stop_ctrl(&ctrl->ctrl); 1854 nvme_rdma_shutdown_ctrl(ctrl, false); 1855 1856 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1857 /* state change failure should never happen */ 1858 WARN_ON_ONCE(1); 1859 return; 1860 } 1861 1862 if (nvme_rdma_setup_ctrl(ctrl, false)) 1863 goto out_fail; 1864 1865 return; 1866 1867 out_fail: 1868 ++ctrl->ctrl.nr_reconnects; 1869 nvme_rdma_reconnect_or_remove(ctrl); 1870 } 1871 1872 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1873 .name = "rdma", 1874 .module = THIS_MODULE, 1875 .flags = NVME_F_FABRICS, 1876 .reg_read32 = nvmf_reg_read32, 1877 .reg_read64 = nvmf_reg_read64, 1878 .reg_write32 = nvmf_reg_write32, 1879 .free_ctrl = nvme_rdma_free_ctrl, 1880 .submit_async_event = nvme_rdma_submit_async_event, 1881 .delete_ctrl = nvme_rdma_delete_ctrl, 1882 .get_address = nvmf_get_address, 1883 .stop_ctrl = nvme_rdma_stop_ctrl, 1884 }; 1885 1886 /* 1887 * Fails a connection request if it matches an existing controller 1888 * (association) with the same tuple: 1889 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1890 * 1891 * if local address is not specified in the request, it will match an 1892 * existing controller with all the other parameters the same and no 1893 * local port address specified as well. 1894 * 1895 * The ports don't need to be compared as they are intrinsically 1896 * already matched by the port pointers supplied. 1897 */ 1898 static bool 1899 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1900 { 1901 struct nvme_rdma_ctrl *ctrl; 1902 bool found = false; 1903 1904 mutex_lock(&nvme_rdma_ctrl_mutex); 1905 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1906 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1907 if (found) 1908 break; 1909 } 1910 mutex_unlock(&nvme_rdma_ctrl_mutex); 1911 1912 return found; 1913 } 1914 1915 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1916 struct nvmf_ctrl_options *opts) 1917 { 1918 struct nvme_rdma_ctrl *ctrl; 1919 int ret; 1920 bool changed; 1921 1922 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1923 if (!ctrl) 1924 return ERR_PTR(-ENOMEM); 1925 ctrl->ctrl.opts = opts; 1926 INIT_LIST_HEAD(&ctrl->list); 1927 1928 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1929 opts->trsvcid = 1930 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1931 if (!opts->trsvcid) { 1932 ret = -ENOMEM; 1933 goto out_free_ctrl; 1934 } 1935 opts->mask |= NVMF_OPT_TRSVCID; 1936 } 1937 1938 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1939 opts->traddr, opts->trsvcid, &ctrl->addr); 1940 if (ret) { 1941 pr_err("malformed address passed: %s:%s\n", 1942 opts->traddr, opts->trsvcid); 1943 goto out_free_ctrl; 1944 } 1945 1946 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1947 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1948 opts->host_traddr, NULL, &ctrl->src_addr); 1949 if (ret) { 1950 pr_err("malformed src address passed: %s\n", 1951 opts->host_traddr); 1952 goto out_free_ctrl; 1953 } 1954 } 1955 1956 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1957 ret = -EALREADY; 1958 goto out_free_ctrl; 1959 } 1960 1961 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1962 nvme_rdma_reconnect_ctrl_work); 1963 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1964 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1965 1966 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1967 opts->nr_poll_queues + 1; 1968 ctrl->ctrl.sqsize = opts->queue_size - 1; 1969 ctrl->ctrl.kato = opts->kato; 1970 1971 ret = -ENOMEM; 1972 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1973 GFP_KERNEL); 1974 if (!ctrl->queues) 1975 goto out_free_ctrl; 1976 1977 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1978 0 /* no quirks, we're perfect! */); 1979 if (ret) 1980 goto out_kfree_queues; 1981 1982 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1983 WARN_ON_ONCE(!changed); 1984 1985 ret = nvme_rdma_setup_ctrl(ctrl, true); 1986 if (ret) 1987 goto out_uninit_ctrl; 1988 1989 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1990 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1991 1992 nvme_get_ctrl(&ctrl->ctrl); 1993 1994 mutex_lock(&nvme_rdma_ctrl_mutex); 1995 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1996 mutex_unlock(&nvme_rdma_ctrl_mutex); 1997 1998 return &ctrl->ctrl; 1999 2000 out_uninit_ctrl: 2001 nvme_uninit_ctrl(&ctrl->ctrl); 2002 nvme_put_ctrl(&ctrl->ctrl); 2003 if (ret > 0) 2004 ret = -EIO; 2005 return ERR_PTR(ret); 2006 out_kfree_queues: 2007 kfree(ctrl->queues); 2008 out_free_ctrl: 2009 kfree(ctrl); 2010 return ERR_PTR(ret); 2011 } 2012 2013 static struct nvmf_transport_ops nvme_rdma_transport = { 2014 .name = "rdma", 2015 .module = THIS_MODULE, 2016 .required_opts = NVMF_OPT_TRADDR, 2017 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2018 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2019 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES, 2020 .create_ctrl = nvme_rdma_create_ctrl, 2021 }; 2022 2023 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2024 { 2025 struct nvme_rdma_ctrl *ctrl; 2026 struct nvme_rdma_device *ndev; 2027 bool found = false; 2028 2029 mutex_lock(&device_list_mutex); 2030 list_for_each_entry(ndev, &device_list, entry) { 2031 if (ndev->dev == ib_device) { 2032 found = true; 2033 break; 2034 } 2035 } 2036 mutex_unlock(&device_list_mutex); 2037 2038 if (!found) 2039 return; 2040 2041 /* Delete all controllers using this device */ 2042 mutex_lock(&nvme_rdma_ctrl_mutex); 2043 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2044 if (ctrl->device->dev != ib_device) 2045 continue; 2046 nvme_delete_ctrl(&ctrl->ctrl); 2047 } 2048 mutex_unlock(&nvme_rdma_ctrl_mutex); 2049 2050 flush_workqueue(nvme_delete_wq); 2051 } 2052 2053 static struct ib_client nvme_rdma_ib_client = { 2054 .name = "nvme_rdma", 2055 .remove = nvme_rdma_remove_one 2056 }; 2057 2058 static int __init nvme_rdma_init_module(void) 2059 { 2060 int ret; 2061 2062 ret = ib_register_client(&nvme_rdma_ib_client); 2063 if (ret) 2064 return ret; 2065 2066 ret = nvmf_register_transport(&nvme_rdma_transport); 2067 if (ret) 2068 goto err_unreg_client; 2069 2070 return 0; 2071 2072 err_unreg_client: 2073 ib_unregister_client(&nvme_rdma_ib_client); 2074 return ret; 2075 } 2076 2077 static void __exit nvme_rdma_cleanup_module(void) 2078 { 2079 nvmf_unregister_transport(&nvme_rdma_transport); 2080 ib_unregister_client(&nvme_rdma_ib_client); 2081 } 2082 2083 module_init(nvme_rdma_init_module); 2084 module_exit(nvme_rdma_cleanup_module); 2085 2086 MODULE_LICENSE("GPL v2"); 2087