1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/blk-mq-rdma.h> 23 #include <linux/types.h> 24 #include <linux/list.h> 25 #include <linux/mutex.h> 26 #include <linux/scatterlist.h> 27 #include <linux/nvme.h> 28 #include <asm/unaligned.h> 29 30 #include <rdma/ib_verbs.h> 31 #include <rdma/rdma_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 39 40 #define NVME_RDMA_MAX_SEGMENTS 256 41 42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 43 44 /* 45 * We handle AEN commands ourselves and don't even let the 46 * block layer know about them. 47 */ 48 #define NVME_RDMA_NR_AEN_COMMANDS 1 49 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 50 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 51 52 struct nvme_rdma_device { 53 struct ib_device *dev; 54 struct ib_pd *pd; 55 struct kref ref; 56 struct list_head entry; 57 }; 58 59 struct nvme_rdma_qe { 60 struct ib_cqe cqe; 61 void *data; 62 u64 dma; 63 }; 64 65 struct nvme_rdma_queue; 66 struct nvme_rdma_request { 67 struct nvme_request req; 68 struct ib_mr *mr; 69 struct nvme_rdma_qe sqe; 70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 71 u32 num_sge; 72 int nents; 73 bool inline_data; 74 struct ib_reg_wr reg_wr; 75 struct ib_cqe reg_cqe; 76 struct nvme_rdma_queue *queue; 77 struct sg_table sg_table; 78 struct scatterlist first_sgl[]; 79 }; 80 81 enum nvme_rdma_queue_flags { 82 NVME_RDMA_Q_LIVE = 0, 83 NVME_RDMA_Q_DELETING = 1, 84 }; 85 86 struct nvme_rdma_queue { 87 struct nvme_rdma_qe *rsp_ring; 88 atomic_t sig_count; 89 int queue_size; 90 size_t cmnd_capsule_len; 91 struct nvme_rdma_ctrl *ctrl; 92 struct nvme_rdma_device *device; 93 struct ib_cq *ib_cq; 94 struct ib_qp *qp; 95 96 unsigned long flags; 97 struct rdma_cm_id *cm_id; 98 int cm_error; 99 struct completion cm_done; 100 }; 101 102 struct nvme_rdma_ctrl { 103 /* read only in the hot path */ 104 struct nvme_rdma_queue *queues; 105 106 /* other member variables */ 107 struct blk_mq_tag_set tag_set; 108 struct work_struct delete_work; 109 struct work_struct err_work; 110 111 struct nvme_rdma_qe async_event_sqe; 112 113 struct delayed_work reconnect_work; 114 115 struct list_head list; 116 117 struct blk_mq_tag_set admin_tag_set; 118 struct nvme_rdma_device *device; 119 120 u32 max_fr_pages; 121 122 struct sockaddr_storage addr; 123 struct sockaddr_storage src_addr; 124 125 struct nvme_ctrl ctrl; 126 }; 127 128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 129 { 130 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 131 } 132 133 static LIST_HEAD(device_list); 134 static DEFINE_MUTEX(device_list_mutex); 135 136 static LIST_HEAD(nvme_rdma_ctrl_list); 137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 138 139 /* 140 * Disabling this option makes small I/O goes faster, but is fundamentally 141 * unsafe. With it turned off we will have to register a global rkey that 142 * allows read and write access to all physical memory. 143 */ 144 static bool register_always = true; 145 module_param(register_always, bool, 0444); 146 MODULE_PARM_DESC(register_always, 147 "Use memory registration even for contiguous memory regions"); 148 149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 150 struct rdma_cm_event *event); 151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 152 153 static const struct blk_mq_ops nvme_rdma_mq_ops; 154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 155 156 /* XXX: really should move to a generic header sooner or later.. */ 157 static inline void put_unaligned_le24(u32 val, u8 *p) 158 { 159 *p++ = val; 160 *p++ = val >> 8; 161 *p++ = val >> 16; 162 } 163 164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 165 { 166 return queue - queue->ctrl->queues; 167 } 168 169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 170 { 171 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 172 } 173 174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 175 size_t capsule_size, enum dma_data_direction dir) 176 { 177 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 178 kfree(qe->data); 179 } 180 181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 182 size_t capsule_size, enum dma_data_direction dir) 183 { 184 qe->data = kzalloc(capsule_size, GFP_KERNEL); 185 if (!qe->data) 186 return -ENOMEM; 187 188 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 189 if (ib_dma_mapping_error(ibdev, qe->dma)) { 190 kfree(qe->data); 191 return -ENOMEM; 192 } 193 194 return 0; 195 } 196 197 static void nvme_rdma_free_ring(struct ib_device *ibdev, 198 struct nvme_rdma_qe *ring, size_t ib_queue_size, 199 size_t capsule_size, enum dma_data_direction dir) 200 { 201 int i; 202 203 for (i = 0; i < ib_queue_size; i++) 204 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 205 kfree(ring); 206 } 207 208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 209 size_t ib_queue_size, size_t capsule_size, 210 enum dma_data_direction dir) 211 { 212 struct nvme_rdma_qe *ring; 213 int i; 214 215 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 216 if (!ring) 217 return NULL; 218 219 for (i = 0; i < ib_queue_size; i++) { 220 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 221 goto out_free_ring; 222 } 223 224 return ring; 225 226 out_free_ring: 227 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 228 return NULL; 229 } 230 231 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 232 { 233 pr_debug("QP event %s (%d)\n", 234 ib_event_msg(event->event), event->event); 235 236 } 237 238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 239 { 240 wait_for_completion_interruptible_timeout(&queue->cm_done, 241 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 242 return queue->cm_error; 243 } 244 245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 246 { 247 struct nvme_rdma_device *dev = queue->device; 248 struct ib_qp_init_attr init_attr; 249 int ret; 250 251 memset(&init_attr, 0, sizeof(init_attr)); 252 init_attr.event_handler = nvme_rdma_qp_event; 253 /* +1 for drain */ 254 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 255 /* +1 for drain */ 256 init_attr.cap.max_recv_wr = queue->queue_size + 1; 257 init_attr.cap.max_recv_sge = 1; 258 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 259 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 260 init_attr.qp_type = IB_QPT_RC; 261 init_attr.send_cq = queue->ib_cq; 262 init_attr.recv_cq = queue->ib_cq; 263 264 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 265 266 queue->qp = queue->cm_id->qp; 267 return ret; 268 } 269 270 static int nvme_rdma_reinit_request(void *data, struct request *rq) 271 { 272 struct nvme_rdma_ctrl *ctrl = data; 273 struct nvme_rdma_device *dev = ctrl->device; 274 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 275 int ret = 0; 276 277 ib_dereg_mr(req->mr); 278 279 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 280 ctrl->max_fr_pages); 281 if (IS_ERR(req->mr)) { 282 ret = PTR_ERR(req->mr); 283 req->mr = NULL; 284 goto out; 285 } 286 287 req->mr->need_inval = false; 288 289 out: 290 return ret; 291 } 292 293 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 294 struct request *rq, unsigned int hctx_idx) 295 { 296 struct nvme_rdma_ctrl *ctrl = set->driver_data; 297 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 298 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 299 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 300 struct nvme_rdma_device *dev = queue->device; 301 302 if (req->mr) 303 ib_dereg_mr(req->mr); 304 305 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 306 DMA_TO_DEVICE); 307 } 308 309 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 310 struct request *rq, unsigned int hctx_idx, 311 unsigned int numa_node) 312 { 313 struct nvme_rdma_ctrl *ctrl = set->driver_data; 314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 315 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 316 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 317 struct nvme_rdma_device *dev = queue->device; 318 struct ib_device *ibdev = dev->dev; 319 int ret; 320 321 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 322 DMA_TO_DEVICE); 323 if (ret) 324 return ret; 325 326 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 327 ctrl->max_fr_pages); 328 if (IS_ERR(req->mr)) { 329 ret = PTR_ERR(req->mr); 330 goto out_free_qe; 331 } 332 333 req->queue = queue; 334 335 return 0; 336 337 out_free_qe: 338 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 339 DMA_TO_DEVICE); 340 return -ENOMEM; 341 } 342 343 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 344 unsigned int hctx_idx) 345 { 346 struct nvme_rdma_ctrl *ctrl = data; 347 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 348 349 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 350 351 hctx->driver_data = queue; 352 return 0; 353 } 354 355 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 356 unsigned int hctx_idx) 357 { 358 struct nvme_rdma_ctrl *ctrl = data; 359 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 360 361 BUG_ON(hctx_idx != 0); 362 363 hctx->driver_data = queue; 364 return 0; 365 } 366 367 static void nvme_rdma_free_dev(struct kref *ref) 368 { 369 struct nvme_rdma_device *ndev = 370 container_of(ref, struct nvme_rdma_device, ref); 371 372 mutex_lock(&device_list_mutex); 373 list_del(&ndev->entry); 374 mutex_unlock(&device_list_mutex); 375 376 ib_dealloc_pd(ndev->pd); 377 kfree(ndev); 378 } 379 380 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 381 { 382 kref_put(&dev->ref, nvme_rdma_free_dev); 383 } 384 385 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 386 { 387 return kref_get_unless_zero(&dev->ref); 388 } 389 390 static struct nvme_rdma_device * 391 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 392 { 393 struct nvme_rdma_device *ndev; 394 395 mutex_lock(&device_list_mutex); 396 list_for_each_entry(ndev, &device_list, entry) { 397 if (ndev->dev->node_guid == cm_id->device->node_guid && 398 nvme_rdma_dev_get(ndev)) 399 goto out_unlock; 400 } 401 402 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 403 if (!ndev) 404 goto out_err; 405 406 ndev->dev = cm_id->device; 407 kref_init(&ndev->ref); 408 409 ndev->pd = ib_alloc_pd(ndev->dev, 410 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 411 if (IS_ERR(ndev->pd)) 412 goto out_free_dev; 413 414 if (!(ndev->dev->attrs.device_cap_flags & 415 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 416 dev_err(&ndev->dev->dev, 417 "Memory registrations not supported.\n"); 418 goto out_free_pd; 419 } 420 421 list_add(&ndev->entry, &device_list); 422 out_unlock: 423 mutex_unlock(&device_list_mutex); 424 return ndev; 425 426 out_free_pd: 427 ib_dealloc_pd(ndev->pd); 428 out_free_dev: 429 kfree(ndev); 430 out_err: 431 mutex_unlock(&device_list_mutex); 432 return NULL; 433 } 434 435 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 436 { 437 struct nvme_rdma_device *dev; 438 struct ib_device *ibdev; 439 440 dev = queue->device; 441 ibdev = dev->dev; 442 rdma_destroy_qp(queue->cm_id); 443 ib_free_cq(queue->ib_cq); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 452 { 453 struct ib_device *ibdev; 454 const int send_wr_factor = 3; /* MR, SEND, INV */ 455 const int cq_factor = send_wr_factor + 1; /* + RECV */ 456 int comp_vector, idx = nvme_rdma_queue_idx(queue); 457 int ret; 458 459 queue->device = nvme_rdma_find_get_device(queue->cm_id); 460 if (!queue->device) { 461 dev_err(queue->cm_id->device->dev.parent, 462 "no client data found!\n"); 463 return -ECONNREFUSED; 464 } 465 ibdev = queue->device->dev; 466 467 /* 468 * Spread I/O queues completion vectors according their queue index. 469 * Admin queues can always go on completion vector 0. 470 */ 471 comp_vector = idx == 0 ? idx : idx - 1; 472 473 /* +1 for ib_stop_cq */ 474 queue->ib_cq = ib_alloc_cq(ibdev, queue, 475 cq_factor * queue->queue_size + 1, 476 comp_vector, IB_POLL_SOFTIRQ); 477 if (IS_ERR(queue->ib_cq)) { 478 ret = PTR_ERR(queue->ib_cq); 479 goto out_put_dev; 480 } 481 482 ret = nvme_rdma_create_qp(queue, send_wr_factor); 483 if (ret) 484 goto out_destroy_ib_cq; 485 486 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 487 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 488 if (!queue->rsp_ring) { 489 ret = -ENOMEM; 490 goto out_destroy_qp; 491 } 492 493 return 0; 494 495 out_destroy_qp: 496 ib_destroy_qp(queue->qp); 497 out_destroy_ib_cq: 498 ib_free_cq(queue->ib_cq); 499 out_put_dev: 500 nvme_rdma_dev_put(queue->device); 501 return ret; 502 } 503 504 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 505 int idx, size_t queue_size) 506 { 507 struct nvme_rdma_queue *queue; 508 struct sockaddr *src_addr = NULL; 509 int ret; 510 511 queue = &ctrl->queues[idx]; 512 queue->ctrl = ctrl; 513 init_completion(&queue->cm_done); 514 515 if (idx > 0) 516 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 517 else 518 queue->cmnd_capsule_len = sizeof(struct nvme_command); 519 520 queue->queue_size = queue_size; 521 atomic_set(&queue->sig_count, 0); 522 523 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 524 RDMA_PS_TCP, IB_QPT_RC); 525 if (IS_ERR(queue->cm_id)) { 526 dev_info(ctrl->ctrl.device, 527 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 528 return PTR_ERR(queue->cm_id); 529 } 530 531 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 532 src_addr = (struct sockaddr *)&ctrl->src_addr; 533 534 queue->cm_error = -ETIMEDOUT; 535 ret = rdma_resolve_addr(queue->cm_id, src_addr, 536 (struct sockaddr *)&ctrl->addr, 537 NVME_RDMA_CONNECT_TIMEOUT_MS); 538 if (ret) { 539 dev_info(ctrl->ctrl.device, 540 "rdma_resolve_addr failed (%d).\n", ret); 541 goto out_destroy_cm_id; 542 } 543 544 ret = nvme_rdma_wait_for_cm(queue); 545 if (ret) { 546 dev_info(ctrl->ctrl.device, 547 "rdma_resolve_addr wait failed (%d).\n", ret); 548 goto out_destroy_cm_id; 549 } 550 551 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 552 553 return 0; 554 555 out_destroy_cm_id: 556 rdma_destroy_id(queue->cm_id); 557 return ret; 558 } 559 560 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 561 { 562 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 563 return; 564 565 rdma_disconnect(queue->cm_id); 566 ib_drain_qp(queue->qp); 567 } 568 569 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 570 { 571 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 572 return; 573 574 nvme_rdma_destroy_queue_ib(queue); 575 rdma_destroy_id(queue->cm_id); 576 } 577 578 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 579 { 580 int i; 581 582 for (i = 1; i < ctrl->ctrl.queue_count; i++) 583 nvme_rdma_free_queue(&ctrl->queues[i]); 584 } 585 586 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 587 { 588 int i; 589 590 for (i = 1; i < ctrl->ctrl.queue_count; i++) 591 nvme_rdma_stop_queue(&ctrl->queues[i]); 592 } 593 594 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 595 { 596 int ret; 597 598 if (idx) 599 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 600 else 601 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 602 603 if (!ret) 604 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 605 else 606 dev_info(ctrl->ctrl.device, 607 "failed to connect queue: %d ret=%d\n", idx, ret); 608 return ret; 609 } 610 611 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 612 { 613 int i, ret = 0; 614 615 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 616 ret = nvme_rdma_start_queue(ctrl, i); 617 if (ret) 618 goto out_stop_queues; 619 } 620 621 return 0; 622 623 out_stop_queues: 624 for (i--; i >= 1; i--) 625 nvme_rdma_stop_queue(&ctrl->queues[i]); 626 return ret; 627 } 628 629 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 630 { 631 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 632 struct ib_device *ibdev = ctrl->device->dev; 633 unsigned int nr_io_queues; 634 int i, ret; 635 636 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 637 638 /* 639 * we map queues according to the device irq vectors for 640 * optimal locality so we don't need more queues than 641 * completion vectors. 642 */ 643 nr_io_queues = min_t(unsigned int, nr_io_queues, 644 ibdev->num_comp_vectors); 645 646 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 647 if (ret) 648 return ret; 649 650 ctrl->ctrl.queue_count = nr_io_queues + 1; 651 if (ctrl->ctrl.queue_count < 2) 652 return 0; 653 654 dev_info(ctrl->ctrl.device, 655 "creating %d I/O queues.\n", nr_io_queues); 656 657 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 658 ret = nvme_rdma_alloc_queue(ctrl, i, 659 ctrl->ctrl.sqsize + 1); 660 if (ret) 661 goto out_free_queues; 662 } 663 664 return 0; 665 666 out_free_queues: 667 for (i--; i >= 1; i--) 668 nvme_rdma_free_queue(&ctrl->queues[i]); 669 670 return ret; 671 } 672 673 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin) 674 { 675 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 676 struct blk_mq_tag_set *set = admin ? 677 &ctrl->admin_tag_set : &ctrl->tag_set; 678 679 blk_mq_free_tag_set(set); 680 nvme_rdma_dev_put(ctrl->device); 681 } 682 683 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 684 bool admin) 685 { 686 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 687 struct blk_mq_tag_set *set; 688 int ret; 689 690 if (admin) { 691 set = &ctrl->admin_tag_set; 692 memset(set, 0, sizeof(*set)); 693 set->ops = &nvme_rdma_admin_mq_ops; 694 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 695 set->reserved_tags = 2; /* connect + keep-alive */ 696 set->numa_node = NUMA_NO_NODE; 697 set->cmd_size = sizeof(struct nvme_rdma_request) + 698 SG_CHUNK_SIZE * sizeof(struct scatterlist); 699 set->driver_data = ctrl; 700 set->nr_hw_queues = 1; 701 set->timeout = ADMIN_TIMEOUT; 702 } else { 703 set = &ctrl->tag_set; 704 memset(set, 0, sizeof(*set)); 705 set->ops = &nvme_rdma_mq_ops; 706 set->queue_depth = nctrl->opts->queue_size; 707 set->reserved_tags = 1; /* fabric connect */ 708 set->numa_node = NUMA_NO_NODE; 709 set->flags = BLK_MQ_F_SHOULD_MERGE; 710 set->cmd_size = sizeof(struct nvme_rdma_request) + 711 SG_CHUNK_SIZE * sizeof(struct scatterlist); 712 set->driver_data = ctrl; 713 set->nr_hw_queues = nctrl->queue_count - 1; 714 set->timeout = NVME_IO_TIMEOUT; 715 } 716 717 ret = blk_mq_alloc_tag_set(set); 718 if (ret) 719 goto out; 720 721 /* 722 * We need a reference on the device as long as the tag_set is alive, 723 * as the MRs in the request structures need a valid ib_device. 724 */ 725 ret = nvme_rdma_dev_get(ctrl->device); 726 if (!ret) { 727 ret = -EINVAL; 728 goto out_free_tagset; 729 } 730 731 return set; 732 733 out_free_tagset: 734 blk_mq_free_tag_set(set); 735 out: 736 return ERR_PTR(ret); 737 } 738 739 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 740 bool remove) 741 { 742 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 743 sizeof(struct nvme_command), DMA_TO_DEVICE); 744 nvme_rdma_stop_queue(&ctrl->queues[0]); 745 if (remove) { 746 blk_cleanup_queue(ctrl->ctrl.admin_q); 747 nvme_rdma_free_tagset(&ctrl->ctrl, true); 748 } 749 nvme_rdma_free_queue(&ctrl->queues[0]); 750 } 751 752 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 753 bool new) 754 { 755 int error; 756 757 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 758 if (error) 759 return error; 760 761 ctrl->device = ctrl->queues[0].device; 762 763 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 764 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 765 766 if (new) { 767 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 768 if (IS_ERR(ctrl->ctrl.admin_tagset)) 769 goto out_free_queue; 770 771 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 772 if (IS_ERR(ctrl->ctrl.admin_q)) { 773 error = PTR_ERR(ctrl->ctrl.admin_q); 774 goto out_free_tagset; 775 } 776 } else { 777 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set, 778 nvme_rdma_reinit_request); 779 if (error) 780 goto out_free_queue; 781 } 782 783 error = nvme_rdma_start_queue(ctrl, 0); 784 if (error) 785 goto out_cleanup_queue; 786 787 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 788 &ctrl->ctrl.cap); 789 if (error) { 790 dev_err(ctrl->ctrl.device, 791 "prop_get NVME_REG_CAP failed\n"); 792 goto out_cleanup_queue; 793 } 794 795 ctrl->ctrl.sqsize = 796 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 797 798 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 799 if (error) 800 goto out_cleanup_queue; 801 802 ctrl->ctrl.max_hw_sectors = 803 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 804 805 error = nvme_init_identify(&ctrl->ctrl); 806 if (error) 807 goto out_cleanup_queue; 808 809 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 810 &ctrl->async_event_sqe, sizeof(struct nvme_command), 811 DMA_TO_DEVICE); 812 if (error) 813 goto out_cleanup_queue; 814 815 return 0; 816 817 out_cleanup_queue: 818 if (new) 819 blk_cleanup_queue(ctrl->ctrl.admin_q); 820 out_free_tagset: 821 if (new) 822 nvme_rdma_free_tagset(&ctrl->ctrl, true); 823 out_free_queue: 824 nvme_rdma_free_queue(&ctrl->queues[0]); 825 return error; 826 } 827 828 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 829 bool remove) 830 { 831 nvme_rdma_stop_io_queues(ctrl); 832 if (remove) { 833 blk_cleanup_queue(ctrl->ctrl.connect_q); 834 nvme_rdma_free_tagset(&ctrl->ctrl, false); 835 } 836 nvme_rdma_free_io_queues(ctrl); 837 } 838 839 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 840 { 841 int ret; 842 843 ret = nvme_rdma_alloc_io_queues(ctrl); 844 if (ret) 845 return ret; 846 847 if (new) { 848 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 849 if (IS_ERR(ctrl->ctrl.tagset)) 850 goto out_free_io_queues; 851 852 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 853 if (IS_ERR(ctrl->ctrl.connect_q)) { 854 ret = PTR_ERR(ctrl->ctrl.connect_q); 855 goto out_free_tag_set; 856 } 857 } else { 858 ret = blk_mq_reinit_tagset(&ctrl->tag_set, 859 nvme_rdma_reinit_request); 860 if (ret) 861 goto out_free_io_queues; 862 863 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 864 ctrl->ctrl.queue_count - 1); 865 } 866 867 ret = nvme_rdma_start_io_queues(ctrl); 868 if (ret) 869 goto out_cleanup_connect_q; 870 871 return 0; 872 873 out_cleanup_connect_q: 874 if (new) 875 blk_cleanup_queue(ctrl->ctrl.connect_q); 876 out_free_tag_set: 877 if (new) 878 nvme_rdma_free_tagset(&ctrl->ctrl, false); 879 out_free_io_queues: 880 nvme_rdma_free_io_queues(ctrl); 881 return ret; 882 } 883 884 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 885 { 886 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 887 888 if (list_empty(&ctrl->list)) 889 goto free_ctrl; 890 891 mutex_lock(&nvme_rdma_ctrl_mutex); 892 list_del(&ctrl->list); 893 mutex_unlock(&nvme_rdma_ctrl_mutex); 894 895 kfree(ctrl->queues); 896 nvmf_free_options(nctrl->opts); 897 free_ctrl: 898 kfree(ctrl); 899 } 900 901 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 902 { 903 /* If we are resetting/deleting then do nothing */ 904 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 905 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 906 ctrl->ctrl.state == NVME_CTRL_LIVE); 907 return; 908 } 909 910 if (nvmf_should_reconnect(&ctrl->ctrl)) { 911 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 912 ctrl->ctrl.opts->reconnect_delay); 913 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 914 ctrl->ctrl.opts->reconnect_delay * HZ); 915 } else { 916 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 917 queue_work(nvme_wq, &ctrl->delete_work); 918 } 919 } 920 921 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 922 { 923 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 924 struct nvme_rdma_ctrl, reconnect_work); 925 bool changed; 926 int ret; 927 928 ++ctrl->ctrl.nr_reconnects; 929 930 if (ctrl->ctrl.queue_count > 1) 931 nvme_rdma_destroy_io_queues(ctrl, false); 932 933 nvme_rdma_destroy_admin_queue(ctrl, false); 934 ret = nvme_rdma_configure_admin_queue(ctrl, false); 935 if (ret) 936 goto requeue; 937 938 if (ctrl->ctrl.queue_count > 1) { 939 ret = nvme_rdma_configure_io_queues(ctrl, false); 940 if (ret) 941 goto requeue; 942 } 943 944 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 945 WARN_ON_ONCE(!changed); 946 ctrl->ctrl.nr_reconnects = 0; 947 948 nvme_start_ctrl(&ctrl->ctrl); 949 950 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 951 952 return; 953 954 requeue: 955 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 956 ctrl->ctrl.nr_reconnects); 957 nvme_rdma_reconnect_or_remove(ctrl); 958 } 959 960 static void nvme_rdma_error_recovery_work(struct work_struct *work) 961 { 962 struct nvme_rdma_ctrl *ctrl = container_of(work, 963 struct nvme_rdma_ctrl, err_work); 964 965 nvme_stop_ctrl(&ctrl->ctrl); 966 967 if (ctrl->ctrl.queue_count > 1) { 968 nvme_stop_queues(&ctrl->ctrl); 969 nvme_rdma_stop_io_queues(ctrl); 970 } 971 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 972 nvme_rdma_stop_queue(&ctrl->queues[0]); 973 974 /* We must take care of fastfail/requeue all our inflight requests */ 975 if (ctrl->ctrl.queue_count > 1) 976 blk_mq_tagset_busy_iter(&ctrl->tag_set, 977 nvme_cancel_request, &ctrl->ctrl); 978 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 979 nvme_cancel_request, &ctrl->ctrl); 980 981 /* 982 * queues are not a live anymore, so restart the queues to fail fast 983 * new IO 984 */ 985 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 986 nvme_start_queues(&ctrl->ctrl); 987 988 nvme_rdma_reconnect_or_remove(ctrl); 989 } 990 991 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 992 { 993 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 994 return; 995 996 queue_work(nvme_wq, &ctrl->err_work); 997 } 998 999 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1000 const char *op) 1001 { 1002 struct nvme_rdma_queue *queue = cq->cq_context; 1003 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1004 1005 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1006 dev_info(ctrl->ctrl.device, 1007 "%s for CQE 0x%p failed with status %s (%d)\n", 1008 op, wc->wr_cqe, 1009 ib_wc_status_msg(wc->status), wc->status); 1010 nvme_rdma_error_recovery(ctrl); 1011 } 1012 1013 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1014 { 1015 if (unlikely(wc->status != IB_WC_SUCCESS)) 1016 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1017 } 1018 1019 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1020 { 1021 if (unlikely(wc->status != IB_WC_SUCCESS)) 1022 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1023 } 1024 1025 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1026 struct nvme_rdma_request *req) 1027 { 1028 struct ib_send_wr *bad_wr; 1029 struct ib_send_wr wr = { 1030 .opcode = IB_WR_LOCAL_INV, 1031 .next = NULL, 1032 .num_sge = 0, 1033 .send_flags = 0, 1034 .ex.invalidate_rkey = req->mr->rkey, 1035 }; 1036 1037 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1038 wr.wr_cqe = &req->reg_cqe; 1039 1040 return ib_post_send(queue->qp, &wr, &bad_wr); 1041 } 1042 1043 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1044 struct request *rq) 1045 { 1046 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1047 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1048 struct nvme_rdma_device *dev = queue->device; 1049 struct ib_device *ibdev = dev->dev; 1050 int res; 1051 1052 if (!blk_rq_bytes(rq)) 1053 return; 1054 1055 if (req->mr->need_inval) { 1056 res = nvme_rdma_inv_rkey(queue, req); 1057 if (unlikely(res < 0)) { 1058 dev_err(ctrl->ctrl.device, 1059 "Queueing INV WR for rkey %#x failed (%d)\n", 1060 req->mr->rkey, res); 1061 nvme_rdma_error_recovery(queue->ctrl); 1062 } 1063 } 1064 1065 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1066 req->nents, rq_data_dir(rq) == 1067 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1068 1069 nvme_cleanup_cmd(rq); 1070 sg_free_table_chained(&req->sg_table, true); 1071 } 1072 1073 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1074 { 1075 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1076 1077 sg->addr = 0; 1078 put_unaligned_le24(0, sg->length); 1079 put_unaligned_le32(0, sg->key); 1080 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1081 return 0; 1082 } 1083 1084 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1085 struct nvme_rdma_request *req, struct nvme_command *c) 1086 { 1087 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1088 1089 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1090 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1091 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1092 1093 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1094 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1095 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1096 1097 req->inline_data = true; 1098 req->num_sge++; 1099 return 0; 1100 } 1101 1102 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1103 struct nvme_rdma_request *req, struct nvme_command *c) 1104 { 1105 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1106 1107 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1108 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1109 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1110 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1111 return 0; 1112 } 1113 1114 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1115 struct nvme_rdma_request *req, struct nvme_command *c, 1116 int count) 1117 { 1118 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1119 int nr; 1120 1121 /* 1122 * Align the MR to a 4K page size to match the ctrl page size and 1123 * the block virtual boundary. 1124 */ 1125 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1126 if (unlikely(nr < count)) { 1127 if (nr < 0) 1128 return nr; 1129 return -EINVAL; 1130 } 1131 1132 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1133 1134 req->reg_cqe.done = nvme_rdma_memreg_done; 1135 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1136 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1137 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1138 req->reg_wr.wr.num_sge = 0; 1139 req->reg_wr.mr = req->mr; 1140 req->reg_wr.key = req->mr->rkey; 1141 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1142 IB_ACCESS_REMOTE_READ | 1143 IB_ACCESS_REMOTE_WRITE; 1144 1145 req->mr->need_inval = true; 1146 1147 sg->addr = cpu_to_le64(req->mr->iova); 1148 put_unaligned_le24(req->mr->length, sg->length); 1149 put_unaligned_le32(req->mr->rkey, sg->key); 1150 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1151 NVME_SGL_FMT_INVALIDATE; 1152 1153 return 0; 1154 } 1155 1156 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1157 struct request *rq, struct nvme_command *c) 1158 { 1159 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1160 struct nvme_rdma_device *dev = queue->device; 1161 struct ib_device *ibdev = dev->dev; 1162 int count, ret; 1163 1164 req->num_sge = 1; 1165 req->inline_data = false; 1166 req->mr->need_inval = false; 1167 1168 c->common.flags |= NVME_CMD_SGL_METABUF; 1169 1170 if (!blk_rq_bytes(rq)) 1171 return nvme_rdma_set_sg_null(c); 1172 1173 req->sg_table.sgl = req->first_sgl; 1174 ret = sg_alloc_table_chained(&req->sg_table, 1175 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1176 if (ret) 1177 return -ENOMEM; 1178 1179 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1180 1181 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1182 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1183 if (unlikely(count <= 0)) { 1184 sg_free_table_chained(&req->sg_table, true); 1185 return -EIO; 1186 } 1187 1188 if (count == 1) { 1189 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1190 blk_rq_payload_bytes(rq) <= 1191 nvme_rdma_inline_data_size(queue)) 1192 return nvme_rdma_map_sg_inline(queue, req, c); 1193 1194 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1195 return nvme_rdma_map_sg_single(queue, req, c); 1196 } 1197 1198 return nvme_rdma_map_sg_fr(queue, req, c, count); 1199 } 1200 1201 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1202 { 1203 if (unlikely(wc->status != IB_WC_SUCCESS)) 1204 nvme_rdma_wr_error(cq, wc, "SEND"); 1205 } 1206 1207 /* 1208 * We want to signal completion at least every queue depth/2. This returns the 1209 * largest power of two that is not above half of (queue size + 1) to optimize 1210 * (avoid divisions). 1211 */ 1212 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1213 { 1214 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1215 1216 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1217 } 1218 1219 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1220 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1221 struct ib_send_wr *first, bool flush) 1222 { 1223 struct ib_send_wr wr, *bad_wr; 1224 int ret; 1225 1226 sge->addr = qe->dma; 1227 sge->length = sizeof(struct nvme_command), 1228 sge->lkey = queue->device->pd->local_dma_lkey; 1229 1230 qe->cqe.done = nvme_rdma_send_done; 1231 1232 wr.next = NULL; 1233 wr.wr_cqe = &qe->cqe; 1234 wr.sg_list = sge; 1235 wr.num_sge = num_sge; 1236 wr.opcode = IB_WR_SEND; 1237 wr.send_flags = 0; 1238 1239 /* 1240 * Unsignalled send completions are another giant desaster in the 1241 * IB Verbs spec: If we don't regularly post signalled sends 1242 * the send queue will fill up and only a QP reset will rescue us. 1243 * Would have been way to obvious to handle this in hardware or 1244 * at least the RDMA stack.. 1245 * 1246 * Always signal the flushes. The magic request used for the flush 1247 * sequencer is not allocated in our driver's tagset and it's 1248 * triggered to be freed by blk_cleanup_queue(). So we need to 1249 * always mark it as signaled to ensure that the "wr_cqe", which is 1250 * embedded in request's payload, is not freed when __ib_process_cq() 1251 * calls wr_cqe->done(). 1252 */ 1253 if (nvme_rdma_queue_sig_limit(queue) || flush) 1254 wr.send_flags |= IB_SEND_SIGNALED; 1255 1256 if (first) 1257 first->next = ≀ 1258 else 1259 first = ≀ 1260 1261 ret = ib_post_send(queue->qp, first, &bad_wr); 1262 if (unlikely(ret)) { 1263 dev_err(queue->ctrl->ctrl.device, 1264 "%s failed with error code %d\n", __func__, ret); 1265 } 1266 return ret; 1267 } 1268 1269 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1270 struct nvme_rdma_qe *qe) 1271 { 1272 struct ib_recv_wr wr, *bad_wr; 1273 struct ib_sge list; 1274 int ret; 1275 1276 list.addr = qe->dma; 1277 list.length = sizeof(struct nvme_completion); 1278 list.lkey = queue->device->pd->local_dma_lkey; 1279 1280 qe->cqe.done = nvme_rdma_recv_done; 1281 1282 wr.next = NULL; 1283 wr.wr_cqe = &qe->cqe; 1284 wr.sg_list = &list; 1285 wr.num_sge = 1; 1286 1287 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1288 if (unlikely(ret)) { 1289 dev_err(queue->ctrl->ctrl.device, 1290 "%s failed with error code %d\n", __func__, ret); 1291 } 1292 return ret; 1293 } 1294 1295 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1296 { 1297 u32 queue_idx = nvme_rdma_queue_idx(queue); 1298 1299 if (queue_idx == 0) 1300 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1301 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1302 } 1303 1304 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1305 { 1306 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1307 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1308 struct ib_device *dev = queue->device->dev; 1309 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1310 struct nvme_command *cmd = sqe->data; 1311 struct ib_sge sge; 1312 int ret; 1313 1314 if (WARN_ON_ONCE(aer_idx != 0)) 1315 return; 1316 1317 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1318 1319 memset(cmd, 0, sizeof(*cmd)); 1320 cmd->common.opcode = nvme_admin_async_event; 1321 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1322 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1323 nvme_rdma_set_sg_null(cmd); 1324 1325 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1326 DMA_TO_DEVICE); 1327 1328 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1329 WARN_ON_ONCE(ret); 1330 } 1331 1332 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1333 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1334 { 1335 struct request *rq; 1336 struct nvme_rdma_request *req; 1337 int ret = 0; 1338 1339 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1340 if (!rq) { 1341 dev_err(queue->ctrl->ctrl.device, 1342 "tag 0x%x on QP %#x not found\n", 1343 cqe->command_id, queue->qp->qp_num); 1344 nvme_rdma_error_recovery(queue->ctrl); 1345 return ret; 1346 } 1347 req = blk_mq_rq_to_pdu(rq); 1348 1349 if (rq->tag == tag) 1350 ret = 1; 1351 1352 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1353 wc->ex.invalidate_rkey == req->mr->rkey) 1354 req->mr->need_inval = false; 1355 1356 nvme_end_request(rq, cqe->status, cqe->result); 1357 return ret; 1358 } 1359 1360 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1361 { 1362 struct nvme_rdma_qe *qe = 1363 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1364 struct nvme_rdma_queue *queue = cq->cq_context; 1365 struct ib_device *ibdev = queue->device->dev; 1366 struct nvme_completion *cqe = qe->data; 1367 const size_t len = sizeof(struct nvme_completion); 1368 int ret = 0; 1369 1370 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1371 nvme_rdma_wr_error(cq, wc, "RECV"); 1372 return 0; 1373 } 1374 1375 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1376 /* 1377 * AEN requests are special as they don't time out and can 1378 * survive any kind of queue freeze and often don't respond to 1379 * aborts. We don't even bother to allocate a struct request 1380 * for them but rather special case them here. 1381 */ 1382 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1383 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1384 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1385 &cqe->result); 1386 else 1387 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1388 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1389 1390 nvme_rdma_post_recv(queue, qe); 1391 return ret; 1392 } 1393 1394 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1395 { 1396 __nvme_rdma_recv_done(cq, wc, -1); 1397 } 1398 1399 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1400 { 1401 int ret, i; 1402 1403 for (i = 0; i < queue->queue_size; i++) { 1404 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1405 if (ret) 1406 goto out_destroy_queue_ib; 1407 } 1408 1409 return 0; 1410 1411 out_destroy_queue_ib: 1412 nvme_rdma_destroy_queue_ib(queue); 1413 return ret; 1414 } 1415 1416 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1417 struct rdma_cm_event *ev) 1418 { 1419 struct rdma_cm_id *cm_id = queue->cm_id; 1420 int status = ev->status; 1421 const char *rej_msg; 1422 const struct nvme_rdma_cm_rej *rej_data; 1423 u8 rej_data_len; 1424 1425 rej_msg = rdma_reject_msg(cm_id, status); 1426 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1427 1428 if (rej_data && rej_data_len >= sizeof(u16)) { 1429 u16 sts = le16_to_cpu(rej_data->sts); 1430 1431 dev_err(queue->ctrl->ctrl.device, 1432 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1433 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1434 } else { 1435 dev_err(queue->ctrl->ctrl.device, 1436 "Connect rejected: status %d (%s).\n", status, rej_msg); 1437 } 1438 1439 return -ECONNRESET; 1440 } 1441 1442 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1443 { 1444 int ret; 1445 1446 ret = nvme_rdma_create_queue_ib(queue); 1447 if (ret) 1448 return ret; 1449 1450 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1451 if (ret) { 1452 dev_err(queue->ctrl->ctrl.device, 1453 "rdma_resolve_route failed (%d).\n", 1454 queue->cm_error); 1455 goto out_destroy_queue; 1456 } 1457 1458 return 0; 1459 1460 out_destroy_queue: 1461 nvme_rdma_destroy_queue_ib(queue); 1462 return ret; 1463 } 1464 1465 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1466 { 1467 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1468 struct rdma_conn_param param = { }; 1469 struct nvme_rdma_cm_req priv = { }; 1470 int ret; 1471 1472 param.qp_num = queue->qp->qp_num; 1473 param.flow_control = 1; 1474 1475 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1476 /* maximum retry count */ 1477 param.retry_count = 7; 1478 param.rnr_retry_count = 7; 1479 param.private_data = &priv; 1480 param.private_data_len = sizeof(priv); 1481 1482 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1483 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1484 /* 1485 * set the admin queue depth to the minimum size 1486 * specified by the Fabrics standard. 1487 */ 1488 if (priv.qid == 0) { 1489 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1490 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1491 } else { 1492 /* 1493 * current interpretation of the fabrics spec 1494 * is at minimum you make hrqsize sqsize+1, or a 1495 * 1's based representation of sqsize. 1496 */ 1497 priv.hrqsize = cpu_to_le16(queue->queue_size); 1498 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1499 } 1500 1501 ret = rdma_connect(queue->cm_id, ¶m); 1502 if (ret) { 1503 dev_err(ctrl->ctrl.device, 1504 "rdma_connect failed (%d).\n", ret); 1505 goto out_destroy_queue_ib; 1506 } 1507 1508 return 0; 1509 1510 out_destroy_queue_ib: 1511 nvme_rdma_destroy_queue_ib(queue); 1512 return ret; 1513 } 1514 1515 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1516 struct rdma_cm_event *ev) 1517 { 1518 struct nvme_rdma_queue *queue = cm_id->context; 1519 int cm_error = 0; 1520 1521 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1522 rdma_event_msg(ev->event), ev->event, 1523 ev->status, cm_id); 1524 1525 switch (ev->event) { 1526 case RDMA_CM_EVENT_ADDR_RESOLVED: 1527 cm_error = nvme_rdma_addr_resolved(queue); 1528 break; 1529 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1530 cm_error = nvme_rdma_route_resolved(queue); 1531 break; 1532 case RDMA_CM_EVENT_ESTABLISHED: 1533 queue->cm_error = nvme_rdma_conn_established(queue); 1534 /* complete cm_done regardless of success/failure */ 1535 complete(&queue->cm_done); 1536 return 0; 1537 case RDMA_CM_EVENT_REJECTED: 1538 nvme_rdma_destroy_queue_ib(queue); 1539 cm_error = nvme_rdma_conn_rejected(queue, ev); 1540 break; 1541 case RDMA_CM_EVENT_ROUTE_ERROR: 1542 case RDMA_CM_EVENT_CONNECT_ERROR: 1543 case RDMA_CM_EVENT_UNREACHABLE: 1544 nvme_rdma_destroy_queue_ib(queue); 1545 case RDMA_CM_EVENT_ADDR_ERROR: 1546 dev_dbg(queue->ctrl->ctrl.device, 1547 "CM error event %d\n", ev->event); 1548 cm_error = -ECONNRESET; 1549 break; 1550 case RDMA_CM_EVENT_DISCONNECTED: 1551 case RDMA_CM_EVENT_ADDR_CHANGE: 1552 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1553 dev_dbg(queue->ctrl->ctrl.device, 1554 "disconnect received - connection closed\n"); 1555 nvme_rdma_error_recovery(queue->ctrl); 1556 break; 1557 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1558 /* device removal is handled via the ib_client API */ 1559 break; 1560 default: 1561 dev_err(queue->ctrl->ctrl.device, 1562 "Unexpected RDMA CM event (%d)\n", ev->event); 1563 nvme_rdma_error_recovery(queue->ctrl); 1564 break; 1565 } 1566 1567 if (cm_error) { 1568 queue->cm_error = cm_error; 1569 complete(&queue->cm_done); 1570 } 1571 1572 return 0; 1573 } 1574 1575 static enum blk_eh_timer_return 1576 nvme_rdma_timeout(struct request *rq, bool reserved) 1577 { 1578 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1579 1580 /* queue error recovery */ 1581 nvme_rdma_error_recovery(req->queue->ctrl); 1582 1583 /* fail with DNR on cmd timeout */ 1584 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1585 1586 return BLK_EH_HANDLED; 1587 } 1588 1589 /* 1590 * We cannot accept any other command until the Connect command has completed. 1591 */ 1592 static inline blk_status_t 1593 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1594 { 1595 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1596 struct nvme_command *cmd = nvme_req(rq)->cmd; 1597 1598 if (!blk_rq_is_passthrough(rq) || 1599 cmd->common.opcode != nvme_fabrics_command || 1600 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1601 /* 1602 * reconnecting state means transport disruption, which 1603 * can take a long time and even might fail permanently, 1604 * so we can't let incoming I/O be requeued forever. 1605 * fail it fast to allow upper layers a chance to 1606 * failover. 1607 */ 1608 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING) 1609 return BLK_STS_IOERR; 1610 return BLK_STS_RESOURCE; /* try again later */ 1611 } 1612 } 1613 1614 return 0; 1615 } 1616 1617 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1618 const struct blk_mq_queue_data *bd) 1619 { 1620 struct nvme_ns *ns = hctx->queue->queuedata; 1621 struct nvme_rdma_queue *queue = hctx->driver_data; 1622 struct request *rq = bd->rq; 1623 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1624 struct nvme_rdma_qe *sqe = &req->sqe; 1625 struct nvme_command *c = sqe->data; 1626 bool flush = false; 1627 struct ib_device *dev; 1628 blk_status_t ret; 1629 int err; 1630 1631 WARN_ON_ONCE(rq->tag < 0); 1632 1633 ret = nvme_rdma_queue_is_ready(queue, rq); 1634 if (unlikely(ret)) 1635 return ret; 1636 1637 dev = queue->device->dev; 1638 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1639 sizeof(struct nvme_command), DMA_TO_DEVICE); 1640 1641 ret = nvme_setup_cmd(ns, rq, c); 1642 if (ret) 1643 return ret; 1644 1645 blk_mq_start_request(rq); 1646 1647 err = nvme_rdma_map_data(queue, rq, c); 1648 if (unlikely(err < 0)) { 1649 dev_err(queue->ctrl->ctrl.device, 1650 "Failed to map data (%d)\n", err); 1651 nvme_cleanup_cmd(rq); 1652 goto err; 1653 } 1654 1655 ib_dma_sync_single_for_device(dev, sqe->dma, 1656 sizeof(struct nvme_command), DMA_TO_DEVICE); 1657 1658 if (req_op(rq) == REQ_OP_FLUSH) 1659 flush = true; 1660 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1661 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1662 if (unlikely(err)) { 1663 nvme_rdma_unmap_data(queue, rq); 1664 goto err; 1665 } 1666 1667 return BLK_STS_OK; 1668 err: 1669 if (err == -ENOMEM || err == -EAGAIN) 1670 return BLK_STS_RESOURCE; 1671 return BLK_STS_IOERR; 1672 } 1673 1674 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1675 { 1676 struct nvme_rdma_queue *queue = hctx->driver_data; 1677 struct ib_cq *cq = queue->ib_cq; 1678 struct ib_wc wc; 1679 int found = 0; 1680 1681 while (ib_poll_cq(cq, 1, &wc) > 0) { 1682 struct ib_cqe *cqe = wc.wr_cqe; 1683 1684 if (cqe) { 1685 if (cqe->done == nvme_rdma_recv_done) 1686 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1687 else 1688 cqe->done(cq, &wc); 1689 } 1690 } 1691 1692 return found; 1693 } 1694 1695 static void nvme_rdma_complete_rq(struct request *rq) 1696 { 1697 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1698 1699 nvme_rdma_unmap_data(req->queue, rq); 1700 nvme_complete_rq(rq); 1701 } 1702 1703 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1704 { 1705 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1706 1707 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1708 } 1709 1710 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1711 .queue_rq = nvme_rdma_queue_rq, 1712 .complete = nvme_rdma_complete_rq, 1713 .init_request = nvme_rdma_init_request, 1714 .exit_request = nvme_rdma_exit_request, 1715 .init_hctx = nvme_rdma_init_hctx, 1716 .poll = nvme_rdma_poll, 1717 .timeout = nvme_rdma_timeout, 1718 .map_queues = nvme_rdma_map_queues, 1719 }; 1720 1721 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1722 .queue_rq = nvme_rdma_queue_rq, 1723 .complete = nvme_rdma_complete_rq, 1724 .init_request = nvme_rdma_init_request, 1725 .exit_request = nvme_rdma_exit_request, 1726 .init_hctx = nvme_rdma_init_admin_hctx, 1727 .timeout = nvme_rdma_timeout, 1728 }; 1729 1730 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1731 { 1732 cancel_work_sync(&ctrl->err_work); 1733 cancel_delayed_work_sync(&ctrl->reconnect_work); 1734 1735 if (ctrl->ctrl.queue_count > 1) { 1736 nvme_stop_queues(&ctrl->ctrl); 1737 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1738 nvme_cancel_request, &ctrl->ctrl); 1739 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1740 } 1741 1742 if (shutdown) 1743 nvme_shutdown_ctrl(&ctrl->ctrl); 1744 else 1745 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1746 1747 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1748 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1749 nvme_cancel_request, &ctrl->ctrl); 1750 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1751 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1752 } 1753 1754 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl) 1755 { 1756 nvme_remove_namespaces(&ctrl->ctrl); 1757 nvme_rdma_shutdown_ctrl(ctrl, true); 1758 nvme_uninit_ctrl(&ctrl->ctrl); 1759 nvme_put_ctrl(&ctrl->ctrl); 1760 } 1761 1762 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1763 { 1764 struct nvme_rdma_ctrl *ctrl = container_of(work, 1765 struct nvme_rdma_ctrl, delete_work); 1766 1767 nvme_stop_ctrl(&ctrl->ctrl); 1768 nvme_rdma_remove_ctrl(ctrl); 1769 } 1770 1771 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1772 { 1773 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1774 return -EBUSY; 1775 1776 if (!queue_work(nvme_wq, &ctrl->delete_work)) 1777 return -EBUSY; 1778 1779 return 0; 1780 } 1781 1782 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1783 { 1784 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1785 int ret = 0; 1786 1787 /* 1788 * Keep a reference until all work is flushed since 1789 * __nvme_rdma_del_ctrl can free the ctrl mem 1790 */ 1791 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1792 return -EBUSY; 1793 ret = __nvme_rdma_del_ctrl(ctrl); 1794 if (!ret) 1795 flush_work(&ctrl->delete_work); 1796 nvme_put_ctrl(&ctrl->ctrl); 1797 return ret; 1798 } 1799 1800 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1801 { 1802 struct nvme_rdma_ctrl *ctrl = 1803 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1804 int ret; 1805 bool changed; 1806 1807 nvme_stop_ctrl(&ctrl->ctrl); 1808 nvme_rdma_shutdown_ctrl(ctrl, false); 1809 1810 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1811 if (ret) 1812 goto out_fail; 1813 1814 if (ctrl->ctrl.queue_count > 1) { 1815 ret = nvme_rdma_configure_io_queues(ctrl, false); 1816 if (ret) 1817 goto out_fail; 1818 } 1819 1820 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1821 WARN_ON_ONCE(!changed); 1822 1823 nvme_start_ctrl(&ctrl->ctrl); 1824 1825 return; 1826 1827 out_fail: 1828 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1829 nvme_rdma_remove_ctrl(ctrl); 1830 } 1831 1832 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1833 .name = "rdma", 1834 .module = THIS_MODULE, 1835 .flags = NVME_F_FABRICS, 1836 .reg_read32 = nvmf_reg_read32, 1837 .reg_read64 = nvmf_reg_read64, 1838 .reg_write32 = nvmf_reg_write32, 1839 .free_ctrl = nvme_rdma_free_ctrl, 1840 .submit_async_event = nvme_rdma_submit_async_event, 1841 .delete_ctrl = nvme_rdma_del_ctrl, 1842 .get_address = nvmf_get_address, 1843 }; 1844 1845 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1846 struct nvmf_ctrl_options *opts) 1847 { 1848 struct nvme_rdma_ctrl *ctrl; 1849 int ret; 1850 bool changed; 1851 char *port; 1852 1853 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1854 if (!ctrl) 1855 return ERR_PTR(-ENOMEM); 1856 ctrl->ctrl.opts = opts; 1857 INIT_LIST_HEAD(&ctrl->list); 1858 1859 if (opts->mask & NVMF_OPT_TRSVCID) 1860 port = opts->trsvcid; 1861 else 1862 port = __stringify(NVME_RDMA_IP_PORT); 1863 1864 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1865 opts->traddr, port, &ctrl->addr); 1866 if (ret) { 1867 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1868 goto out_free_ctrl; 1869 } 1870 1871 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1872 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1873 opts->host_traddr, NULL, &ctrl->src_addr); 1874 if (ret) { 1875 pr_err("malformed src address passed: %s\n", 1876 opts->host_traddr); 1877 goto out_free_ctrl; 1878 } 1879 } 1880 1881 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1882 0 /* no quirks, we're perfect! */); 1883 if (ret) 1884 goto out_free_ctrl; 1885 1886 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1887 nvme_rdma_reconnect_ctrl_work); 1888 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1889 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1890 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1891 1892 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1893 ctrl->ctrl.sqsize = opts->queue_size - 1; 1894 ctrl->ctrl.kato = opts->kato; 1895 1896 ret = -ENOMEM; 1897 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1898 GFP_KERNEL); 1899 if (!ctrl->queues) 1900 goto out_uninit_ctrl; 1901 1902 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1903 if (ret) 1904 goto out_kfree_queues; 1905 1906 /* sanity check icdoff */ 1907 if (ctrl->ctrl.icdoff) { 1908 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1909 ret = -EINVAL; 1910 goto out_remove_admin_queue; 1911 } 1912 1913 /* sanity check keyed sgls */ 1914 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1915 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1916 ret = -EINVAL; 1917 goto out_remove_admin_queue; 1918 } 1919 1920 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1921 /* warn if maxcmd is lower than queue_size */ 1922 dev_warn(ctrl->ctrl.device, 1923 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1924 opts->queue_size, ctrl->ctrl.maxcmd); 1925 opts->queue_size = ctrl->ctrl.maxcmd; 1926 } 1927 1928 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1929 /* warn if sqsize is lower than queue_size */ 1930 dev_warn(ctrl->ctrl.device, 1931 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1932 opts->queue_size, ctrl->ctrl.sqsize + 1); 1933 opts->queue_size = ctrl->ctrl.sqsize + 1; 1934 } 1935 1936 if (opts->nr_io_queues) { 1937 ret = nvme_rdma_configure_io_queues(ctrl, true); 1938 if (ret) 1939 goto out_remove_admin_queue; 1940 } 1941 1942 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1943 WARN_ON_ONCE(!changed); 1944 1945 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1946 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1947 1948 kref_get(&ctrl->ctrl.kref); 1949 1950 mutex_lock(&nvme_rdma_ctrl_mutex); 1951 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1952 mutex_unlock(&nvme_rdma_ctrl_mutex); 1953 1954 nvme_start_ctrl(&ctrl->ctrl); 1955 1956 return &ctrl->ctrl; 1957 1958 out_remove_admin_queue: 1959 nvme_rdma_destroy_admin_queue(ctrl, true); 1960 out_kfree_queues: 1961 kfree(ctrl->queues); 1962 out_uninit_ctrl: 1963 nvme_uninit_ctrl(&ctrl->ctrl); 1964 nvme_put_ctrl(&ctrl->ctrl); 1965 if (ret > 0) 1966 ret = -EIO; 1967 return ERR_PTR(ret); 1968 out_free_ctrl: 1969 kfree(ctrl); 1970 return ERR_PTR(ret); 1971 } 1972 1973 static struct nvmf_transport_ops nvme_rdma_transport = { 1974 .name = "rdma", 1975 .required_opts = NVMF_OPT_TRADDR, 1976 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 1977 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 1978 .create_ctrl = nvme_rdma_create_ctrl, 1979 }; 1980 1981 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1982 { 1983 struct nvme_rdma_ctrl *ctrl; 1984 1985 /* Delete all controllers using this device */ 1986 mutex_lock(&nvme_rdma_ctrl_mutex); 1987 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1988 if (ctrl->device->dev != ib_device) 1989 continue; 1990 dev_info(ctrl->ctrl.device, 1991 "Removing ctrl: NQN \"%s\", addr %pISp\n", 1992 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1993 __nvme_rdma_del_ctrl(ctrl); 1994 } 1995 mutex_unlock(&nvme_rdma_ctrl_mutex); 1996 1997 flush_workqueue(nvme_wq); 1998 } 1999 2000 static struct ib_client nvme_rdma_ib_client = { 2001 .name = "nvme_rdma", 2002 .remove = nvme_rdma_remove_one 2003 }; 2004 2005 static int __init nvme_rdma_init_module(void) 2006 { 2007 int ret; 2008 2009 ret = ib_register_client(&nvme_rdma_ib_client); 2010 if (ret) 2011 return ret; 2012 2013 ret = nvmf_register_transport(&nvme_rdma_transport); 2014 if (ret) 2015 goto err_unreg_client; 2016 2017 return 0; 2018 2019 err_unreg_client: 2020 ib_unregister_client(&nvme_rdma_ib_client); 2021 return ret; 2022 } 2023 2024 static void __exit nvme_rdma_cleanup_module(void) 2025 { 2026 nvmf_unregister_transport(&nvme_rdma_transport); 2027 ib_unregister_client(&nvme_rdma_ib_client); 2028 } 2029 2030 module_init(nvme_rdma_init_module); 2031 module_exit(nvme_rdma_cleanup_module); 2032 2033 MODULE_LICENSE("GPL v2"); 2034