xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 26b32974)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible(&queue->cm_done);
251 	if (ret)
252 		return ret;
253 	WARN_ON_ONCE(queue->cm_error > 0);
254 	return queue->cm_error;
255 }
256 
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 	struct nvme_rdma_device *dev = queue->device;
260 	struct ib_qp_init_attr init_attr;
261 	int ret;
262 
263 	memset(&init_attr, 0, sizeof(init_attr));
264 	init_attr.event_handler = nvme_rdma_qp_event;
265 	/* +1 for drain */
266 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 	/* +1 for drain */
268 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 	init_attr.cap.max_recv_sge = 1;
270 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 	init_attr.qp_type = IB_QPT_RC;
273 	init_attr.send_cq = queue->ib_cq;
274 	init_attr.recv_cq = queue->ib_cq;
275 	if (queue->pi_support)
276 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 	init_attr.qp_context = queue;
278 
279 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280 
281 	queue->qp = queue->cm_id->qp;
282 	return ret;
283 }
284 
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 		struct request *rq, unsigned int hctx_idx)
287 {
288 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289 
290 	kfree(req->sqe.data);
291 }
292 
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 		struct request *rq, unsigned int hctx_idx,
295 		unsigned int numa_node)
296 {
297 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301 
302 	nvme_req(rq)->ctrl = &ctrl->ctrl;
303 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 	if (!req->sqe.data)
305 		return -ENOMEM;
306 
307 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 	if (queue->pi_support)
309 		req->metadata_sgl = (void *)nvme_req(rq) +
310 			sizeof(struct nvme_rdma_request) +
311 			NVME_RDMA_DATA_SGL_SIZE;
312 
313 	req->queue = queue;
314 	nvme_req(rq)->cmd = req->sqe.data;
315 
316 	return 0;
317 }
318 
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 		unsigned int hctx_idx)
321 {
322 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324 
325 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326 
327 	hctx->driver_data = queue;
328 	return 0;
329 }
330 
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 		unsigned int hctx_idx)
333 {
334 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
336 
337 	BUG_ON(hctx_idx != 0);
338 
339 	hctx->driver_data = queue;
340 	return 0;
341 }
342 
343 static void nvme_rdma_free_dev(struct kref *ref)
344 {
345 	struct nvme_rdma_device *ndev =
346 		container_of(ref, struct nvme_rdma_device, ref);
347 
348 	mutex_lock(&device_list_mutex);
349 	list_del(&ndev->entry);
350 	mutex_unlock(&device_list_mutex);
351 
352 	ib_dealloc_pd(ndev->pd);
353 	kfree(ndev);
354 }
355 
356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357 {
358 	kref_put(&dev->ref, nvme_rdma_free_dev);
359 }
360 
361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362 {
363 	return kref_get_unless_zero(&dev->ref);
364 }
365 
366 static struct nvme_rdma_device *
367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368 {
369 	struct nvme_rdma_device *ndev;
370 
371 	mutex_lock(&device_list_mutex);
372 	list_for_each_entry(ndev, &device_list, entry) {
373 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 		    nvme_rdma_dev_get(ndev))
375 			goto out_unlock;
376 	}
377 
378 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 	if (!ndev)
380 		goto out_err;
381 
382 	ndev->dev = cm_id->device;
383 	kref_init(&ndev->ref);
384 
385 	ndev->pd = ib_alloc_pd(ndev->dev,
386 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 	if (IS_ERR(ndev->pd))
388 		goto out_free_dev;
389 
390 	if (!(ndev->dev->attrs.device_cap_flags &
391 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 		dev_err(&ndev->dev->dev,
393 			"Memory registrations not supported.\n");
394 		goto out_free_pd;
395 	}
396 
397 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 					ndev->dev->attrs.max_send_sge - 1);
399 	list_add(&ndev->entry, &device_list);
400 out_unlock:
401 	mutex_unlock(&device_list_mutex);
402 	return ndev;
403 
404 out_free_pd:
405 	ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407 	kfree(ndev);
408 out_err:
409 	mutex_unlock(&device_list_mutex);
410 	return NULL;
411 }
412 
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414 {
415 	if (nvme_rdma_poll_queue(queue))
416 		ib_free_cq(queue->ib_cq);
417 	else
418 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419 }
420 
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422 {
423 	struct nvme_rdma_device *dev;
424 	struct ib_device *ibdev;
425 
426 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427 		return;
428 
429 	dev = queue->device;
430 	ibdev = dev->dev;
431 
432 	if (queue->pi_support)
433 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435 
436 	/*
437 	 * The cm_id object might have been destroyed during RDMA connection
438 	 * establishment error flow to avoid getting other cma events, thus
439 	 * the destruction of the QP shouldn't use rdma_cm API.
440 	 */
441 	ib_destroy_qp(queue->qp);
442 	nvme_rdma_free_cq(queue);
443 
444 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446 
447 	nvme_rdma_dev_put(dev);
448 }
449 
450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451 {
452 	u32 max_page_list_len;
453 
454 	if (pi_support)
455 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 	else
457 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458 
459 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460 }
461 
462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 		struct nvme_rdma_queue *queue)
464 {
465 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466 
467 	/*
468 	 * Spread I/O queues completion vectors according their queue index.
469 	 * Admin queues can always go on completion vector 0.
470 	 */
471 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472 
473 	/* Polling queues need direct cq polling context */
474 	if (nvme_rdma_poll_queue(queue))
475 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 					   comp_vector, IB_POLL_DIRECT);
477 	else
478 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 					      comp_vector, IB_POLL_SOFTIRQ);
480 
481 	if (IS_ERR(queue->ib_cq)) {
482 		ret = PTR_ERR(queue->ib_cq);
483 		return ret;
484 	}
485 
486 	return 0;
487 }
488 
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490 {
491 	struct ib_device *ibdev;
492 	const int send_wr_factor = 3;			/* MR, SEND, INV */
493 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494 	int ret, pages_per_mr;
495 
496 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 	if (!queue->device) {
498 		dev_err(queue->cm_id->device->dev.parent,
499 			"no client data found!\n");
500 		return -ECONNREFUSED;
501 	}
502 	ibdev = queue->device->dev;
503 
504 	/* +1 for ib_drain_qp */
505 	queue->cq_size = cq_factor * queue->queue_size + 1;
506 
507 	ret = nvme_rdma_create_cq(ibdev, queue);
508 	if (ret)
509 		goto out_put_dev;
510 
511 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
512 	if (ret)
513 		goto out_destroy_ib_cq;
514 
515 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 	if (!queue->rsp_ring) {
518 		ret = -ENOMEM;
519 		goto out_destroy_qp;
520 	}
521 
522 	/*
523 	 * Currently we don't use SG_GAPS MR's so if the first entry is
524 	 * misaligned we'll end up using two entries for a single data page,
525 	 * so one additional entry is required.
526 	 */
527 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529 			      queue->queue_size,
530 			      IB_MR_TYPE_MEM_REG,
531 			      pages_per_mr, 0);
532 	if (ret) {
533 		dev_err(queue->ctrl->ctrl.device,
534 			"failed to initialize MR pool sized %d for QID %d\n",
535 			queue->queue_size, nvme_rdma_queue_idx(queue));
536 		goto out_destroy_ring;
537 	}
538 
539 	if (queue->pi_support) {
540 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 				      pages_per_mr, pages_per_mr);
543 		if (ret) {
544 			dev_err(queue->ctrl->ctrl.device,
545 				"failed to initialize PI MR pool sized %d for QID %d\n",
546 				queue->queue_size, nvme_rdma_queue_idx(queue));
547 			goto out_destroy_mr_pool;
548 		}
549 	}
550 
551 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552 
553 	return 0;
554 
555 out_destroy_mr_pool:
556 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561 	rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563 	nvme_rdma_free_cq(queue);
564 out_put_dev:
565 	nvme_rdma_dev_put(queue->device);
566 	return ret;
567 }
568 
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 		int idx, size_t queue_size)
571 {
572 	struct nvme_rdma_queue *queue;
573 	struct sockaddr *src_addr = NULL;
574 	int ret;
575 
576 	queue = &ctrl->queues[idx];
577 	mutex_init(&queue->queue_lock);
578 	queue->ctrl = ctrl;
579 	if (idx && ctrl->ctrl.max_integrity_segments)
580 		queue->pi_support = true;
581 	else
582 		queue->pi_support = false;
583 	init_completion(&queue->cm_done);
584 
585 	if (idx > 0)
586 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 	else
588 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
589 
590 	queue->queue_size = queue_size;
591 
592 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 			RDMA_PS_TCP, IB_QPT_RC);
594 	if (IS_ERR(queue->cm_id)) {
595 		dev_info(ctrl->ctrl.device,
596 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 		ret = PTR_ERR(queue->cm_id);
598 		goto out_destroy_mutex;
599 	}
600 
601 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 		src_addr = (struct sockaddr *)&ctrl->src_addr;
603 
604 	queue->cm_error = -ETIMEDOUT;
605 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 			(struct sockaddr *)&ctrl->addr,
607 			NVME_RDMA_CM_TIMEOUT_MS);
608 	if (ret) {
609 		dev_info(ctrl->ctrl.device,
610 			"rdma_resolve_addr failed (%d).\n", ret);
611 		goto out_destroy_cm_id;
612 	}
613 
614 	ret = nvme_rdma_wait_for_cm(queue);
615 	if (ret) {
616 		dev_info(ctrl->ctrl.device,
617 			"rdma connection establishment failed (%d)\n", ret);
618 		goto out_destroy_cm_id;
619 	}
620 
621 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622 
623 	return 0;
624 
625 out_destroy_cm_id:
626 	rdma_destroy_id(queue->cm_id);
627 	nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629 	mutex_destroy(&queue->queue_lock);
630 	return ret;
631 }
632 
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634 {
635 	rdma_disconnect(queue->cm_id);
636 	ib_drain_qp(queue->qp);
637 }
638 
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 	mutex_lock(&queue->queue_lock);
642 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
643 		__nvme_rdma_stop_queue(queue);
644 	mutex_unlock(&queue->queue_lock);
645 }
646 
647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
648 {
649 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
650 		return;
651 
652 	rdma_destroy_id(queue->cm_id);
653 	nvme_rdma_destroy_queue_ib(queue);
654 	mutex_destroy(&queue->queue_lock);
655 }
656 
657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658 {
659 	int i;
660 
661 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
662 		nvme_rdma_free_queue(&ctrl->queues[i]);
663 }
664 
665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 {
667 	int i;
668 
669 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
670 		nvme_rdma_stop_queue(&ctrl->queues[i]);
671 }
672 
673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
674 {
675 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 	int ret;
677 
678 	if (idx)
679 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
680 	else
681 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
682 
683 	if (!ret) {
684 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
685 	} else {
686 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
687 			__nvme_rdma_stop_queue(queue);
688 		dev_info(ctrl->ctrl.device,
689 			"failed to connect queue: %d ret=%d\n", idx, ret);
690 	}
691 	return ret;
692 }
693 
694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
695 				     int first, int last)
696 {
697 	int i, ret = 0;
698 
699 	for (i = first; i < last; i++) {
700 		ret = nvme_rdma_start_queue(ctrl, i);
701 		if (ret)
702 			goto out_stop_queues;
703 	}
704 
705 	return 0;
706 
707 out_stop_queues:
708 	for (i--; i >= first; i--)
709 		nvme_rdma_stop_queue(&ctrl->queues[i]);
710 	return ret;
711 }
712 
713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714 {
715 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716 	unsigned int nr_io_queues;
717 	int i, ret;
718 
719 	nr_io_queues = nvmf_nr_io_queues(opts);
720 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
721 	if (ret)
722 		return ret;
723 
724 	if (nr_io_queues == 0) {
725 		dev_err(ctrl->ctrl.device,
726 			"unable to set any I/O queues\n");
727 		return -ENOMEM;
728 	}
729 
730 	ctrl->ctrl.queue_count = nr_io_queues + 1;
731 	dev_info(ctrl->ctrl.device,
732 		"creating %d I/O queues.\n", nr_io_queues);
733 
734 	nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
735 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
736 		ret = nvme_rdma_alloc_queue(ctrl, i,
737 				ctrl->ctrl.sqsize + 1);
738 		if (ret)
739 			goto out_free_queues;
740 	}
741 
742 	return 0;
743 
744 out_free_queues:
745 	for (i--; i >= 1; i--)
746 		nvme_rdma_free_queue(&ctrl->queues[i]);
747 
748 	return ret;
749 }
750 
751 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
752 {
753 	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
754 				NVME_RDMA_DATA_SGL_SIZE;
755 
756 	if (ctrl->max_integrity_segments)
757 		cmd_size += sizeof(struct nvme_rdma_sgl) +
758 			    NVME_RDMA_METADATA_SGL_SIZE;
759 
760 	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
761 			&nvme_rdma_mq_ops,
762 			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
763 			cmd_size);
764 }
765 
766 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
767 {
768 	if (ctrl->async_event_sqe.data) {
769 		cancel_work_sync(&ctrl->ctrl.async_event_work);
770 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
771 				sizeof(struct nvme_command), DMA_TO_DEVICE);
772 		ctrl->async_event_sqe.data = NULL;
773 	}
774 	nvme_rdma_free_queue(&ctrl->queues[0]);
775 }
776 
777 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
778 		bool new)
779 {
780 	bool pi_capable = false;
781 	int error;
782 
783 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
784 	if (error)
785 		return error;
786 
787 	ctrl->device = ctrl->queues[0].device;
788 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
789 
790 	/* T10-PI support */
791 	if (ctrl->device->dev->attrs.kernel_cap_flags &
792 	    IBK_INTEGRITY_HANDOVER)
793 		pi_capable = true;
794 
795 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
796 							pi_capable);
797 
798 	/*
799 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
800 	 * It's safe, since any chage in the underlying RDMA device will issue
801 	 * error recovery and queue re-creation.
802 	 */
803 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
804 			sizeof(struct nvme_command), DMA_TO_DEVICE);
805 	if (error)
806 		goto out_free_queue;
807 
808 	if (new) {
809 		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
810 				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
811 				sizeof(struct nvme_rdma_request) +
812 				NVME_RDMA_DATA_SGL_SIZE);
813 		if (error)
814 			goto out_free_async_qe;
815 
816 	}
817 
818 	error = nvme_rdma_start_queue(ctrl, 0);
819 	if (error)
820 		goto out_remove_admin_tag_set;
821 
822 	error = nvme_enable_ctrl(&ctrl->ctrl);
823 	if (error)
824 		goto out_stop_queue;
825 
826 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
827 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
828 	if (pi_capable)
829 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
830 	else
831 		ctrl->ctrl.max_integrity_segments = 0;
832 
833 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
834 
835 	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
836 	if (error)
837 		goto out_quiesce_queue;
838 
839 	return 0;
840 
841 out_quiesce_queue:
842 	nvme_quiesce_admin_queue(&ctrl->ctrl);
843 	blk_sync_queue(ctrl->ctrl.admin_q);
844 out_stop_queue:
845 	nvme_rdma_stop_queue(&ctrl->queues[0]);
846 	nvme_cancel_admin_tagset(&ctrl->ctrl);
847 out_remove_admin_tag_set:
848 	if (new)
849 		nvme_remove_admin_tag_set(&ctrl->ctrl);
850 out_free_async_qe:
851 	if (ctrl->async_event_sqe.data) {
852 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
853 			sizeof(struct nvme_command), DMA_TO_DEVICE);
854 		ctrl->async_event_sqe.data = NULL;
855 	}
856 out_free_queue:
857 	nvme_rdma_free_queue(&ctrl->queues[0]);
858 	return error;
859 }
860 
861 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
862 {
863 	int ret, nr_queues;
864 
865 	ret = nvme_rdma_alloc_io_queues(ctrl);
866 	if (ret)
867 		return ret;
868 
869 	if (new) {
870 		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
871 		if (ret)
872 			goto out_free_io_queues;
873 	}
874 
875 	/*
876 	 * Only start IO queues for which we have allocated the tagset
877 	 * and limitted it to the available queues. On reconnects, the
878 	 * queue number might have changed.
879 	 */
880 	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
881 	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
882 	if (ret)
883 		goto out_cleanup_tagset;
884 
885 	if (!new) {
886 		nvme_unquiesce_io_queues(&ctrl->ctrl);
887 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
888 			/*
889 			 * If we timed out waiting for freeze we are likely to
890 			 * be stuck.  Fail the controller initialization just
891 			 * to be safe.
892 			 */
893 			ret = -ENODEV;
894 			goto out_wait_freeze_timed_out;
895 		}
896 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
897 			ctrl->ctrl.queue_count - 1);
898 		nvme_unfreeze(&ctrl->ctrl);
899 	}
900 
901 	/*
902 	 * If the number of queues has increased (reconnect case)
903 	 * start all new queues now.
904 	 */
905 	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
906 					ctrl->tag_set.nr_hw_queues + 1);
907 	if (ret)
908 		goto out_wait_freeze_timed_out;
909 
910 	return 0;
911 
912 out_wait_freeze_timed_out:
913 	nvme_quiesce_io_queues(&ctrl->ctrl);
914 	nvme_sync_io_queues(&ctrl->ctrl);
915 	nvme_rdma_stop_io_queues(ctrl);
916 out_cleanup_tagset:
917 	nvme_cancel_tagset(&ctrl->ctrl);
918 	if (new)
919 		nvme_remove_io_tag_set(&ctrl->ctrl);
920 out_free_io_queues:
921 	nvme_rdma_free_io_queues(ctrl);
922 	return ret;
923 }
924 
925 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
926 		bool remove)
927 {
928 	nvme_quiesce_admin_queue(&ctrl->ctrl);
929 	blk_sync_queue(ctrl->ctrl.admin_q);
930 	nvme_rdma_stop_queue(&ctrl->queues[0]);
931 	nvme_cancel_admin_tagset(&ctrl->ctrl);
932 	if (remove) {
933 		nvme_unquiesce_admin_queue(&ctrl->ctrl);
934 		nvme_remove_admin_tag_set(&ctrl->ctrl);
935 	}
936 	nvme_rdma_destroy_admin_queue(ctrl);
937 }
938 
939 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
940 		bool remove)
941 {
942 	if (ctrl->ctrl.queue_count > 1) {
943 		nvme_start_freeze(&ctrl->ctrl);
944 		nvme_quiesce_io_queues(&ctrl->ctrl);
945 		nvme_sync_io_queues(&ctrl->ctrl);
946 		nvme_rdma_stop_io_queues(ctrl);
947 		nvme_cancel_tagset(&ctrl->ctrl);
948 		if (remove) {
949 			nvme_unquiesce_io_queues(&ctrl->ctrl);
950 			nvme_remove_io_tag_set(&ctrl->ctrl);
951 		}
952 		nvme_rdma_free_io_queues(ctrl);
953 	}
954 }
955 
956 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
957 {
958 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
959 
960 	flush_work(&ctrl->err_work);
961 	cancel_delayed_work_sync(&ctrl->reconnect_work);
962 }
963 
964 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
965 {
966 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
967 
968 	if (list_empty(&ctrl->list))
969 		goto free_ctrl;
970 
971 	mutex_lock(&nvme_rdma_ctrl_mutex);
972 	list_del(&ctrl->list);
973 	mutex_unlock(&nvme_rdma_ctrl_mutex);
974 
975 	nvmf_free_options(nctrl->opts);
976 free_ctrl:
977 	kfree(ctrl->queues);
978 	kfree(ctrl);
979 }
980 
981 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
982 {
983 	/* If we are resetting/deleting then do nothing */
984 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
985 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
986 			ctrl->ctrl.state == NVME_CTRL_LIVE);
987 		return;
988 	}
989 
990 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
991 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
992 			ctrl->ctrl.opts->reconnect_delay);
993 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
994 				ctrl->ctrl.opts->reconnect_delay * HZ);
995 	} else {
996 		nvme_delete_ctrl(&ctrl->ctrl);
997 	}
998 }
999 
1000 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1001 {
1002 	int ret;
1003 	bool changed;
1004 
1005 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1006 	if (ret)
1007 		return ret;
1008 
1009 	if (ctrl->ctrl.icdoff) {
1010 		ret = -EOPNOTSUPP;
1011 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1012 		goto destroy_admin;
1013 	}
1014 
1015 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1016 		ret = -EOPNOTSUPP;
1017 		dev_err(ctrl->ctrl.device,
1018 			"Mandatory keyed sgls are not supported!\n");
1019 		goto destroy_admin;
1020 	}
1021 
1022 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1023 		dev_warn(ctrl->ctrl.device,
1024 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1025 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1026 	}
1027 
1028 	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1029 		dev_warn(ctrl->ctrl.device,
1030 			"ctrl sqsize %u > max queue size %u, clamping down\n",
1031 			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1032 		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1033 	}
1034 
1035 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1036 		dev_warn(ctrl->ctrl.device,
1037 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1038 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1039 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1040 	}
1041 
1042 	if (ctrl->ctrl.sgls & (1 << 20))
1043 		ctrl->use_inline_data = true;
1044 
1045 	if (ctrl->ctrl.queue_count > 1) {
1046 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1047 		if (ret)
1048 			goto destroy_admin;
1049 	}
1050 
1051 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1052 	if (!changed) {
1053 		/*
1054 		 * state change failure is ok if we started ctrl delete,
1055 		 * unless we're during creation of a new controller to
1056 		 * avoid races with teardown flow.
1057 		 */
1058 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1059 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1060 		WARN_ON_ONCE(new);
1061 		ret = -EINVAL;
1062 		goto destroy_io;
1063 	}
1064 
1065 	nvme_start_ctrl(&ctrl->ctrl);
1066 	return 0;
1067 
1068 destroy_io:
1069 	if (ctrl->ctrl.queue_count > 1) {
1070 		nvme_quiesce_io_queues(&ctrl->ctrl);
1071 		nvme_sync_io_queues(&ctrl->ctrl);
1072 		nvme_rdma_stop_io_queues(ctrl);
1073 		nvme_cancel_tagset(&ctrl->ctrl);
1074 		if (new)
1075 			nvme_remove_io_tag_set(&ctrl->ctrl);
1076 		nvme_rdma_free_io_queues(ctrl);
1077 	}
1078 destroy_admin:
1079 	nvme_quiesce_admin_queue(&ctrl->ctrl);
1080 	blk_sync_queue(ctrl->ctrl.admin_q);
1081 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1082 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1083 	if (new)
1084 		nvme_remove_admin_tag_set(&ctrl->ctrl);
1085 	nvme_rdma_destroy_admin_queue(ctrl);
1086 	return ret;
1087 }
1088 
1089 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1090 {
1091 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1092 			struct nvme_rdma_ctrl, reconnect_work);
1093 
1094 	++ctrl->ctrl.nr_reconnects;
1095 
1096 	if (nvme_rdma_setup_ctrl(ctrl, false))
1097 		goto requeue;
1098 
1099 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1100 			ctrl->ctrl.nr_reconnects);
1101 
1102 	ctrl->ctrl.nr_reconnects = 0;
1103 
1104 	return;
1105 
1106 requeue:
1107 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1108 			ctrl->ctrl.nr_reconnects);
1109 	nvme_rdma_reconnect_or_remove(ctrl);
1110 }
1111 
1112 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1113 {
1114 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1115 			struct nvme_rdma_ctrl, err_work);
1116 
1117 	nvme_stop_keep_alive(&ctrl->ctrl);
1118 	flush_work(&ctrl->ctrl.async_event_work);
1119 	nvme_rdma_teardown_io_queues(ctrl, false);
1120 	nvme_unquiesce_io_queues(&ctrl->ctrl);
1121 	nvme_rdma_teardown_admin_queue(ctrl, false);
1122 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1123 	nvme_auth_stop(&ctrl->ctrl);
1124 
1125 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1126 		/* state change failure is ok if we started ctrl delete */
1127 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1128 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1129 		return;
1130 	}
1131 
1132 	nvme_rdma_reconnect_or_remove(ctrl);
1133 }
1134 
1135 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1136 {
1137 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1138 		return;
1139 
1140 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1141 	queue_work(nvme_reset_wq, &ctrl->err_work);
1142 }
1143 
1144 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1145 {
1146 	struct request *rq = blk_mq_rq_from_pdu(req);
1147 
1148 	if (!refcount_dec_and_test(&req->ref))
1149 		return;
1150 	if (!nvme_try_complete_req(rq, req->status, req->result))
1151 		nvme_rdma_complete_rq(rq);
1152 }
1153 
1154 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1155 		const char *op)
1156 {
1157 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1158 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1159 
1160 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1161 		dev_info(ctrl->ctrl.device,
1162 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1163 			     op, wc->wr_cqe,
1164 			     ib_wc_status_msg(wc->status), wc->status);
1165 	nvme_rdma_error_recovery(ctrl);
1166 }
1167 
1168 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1169 {
1170 	if (unlikely(wc->status != IB_WC_SUCCESS))
1171 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1172 }
1173 
1174 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1175 {
1176 	struct nvme_rdma_request *req =
1177 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1178 
1179 	if (unlikely(wc->status != IB_WC_SUCCESS))
1180 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1181 	else
1182 		nvme_rdma_end_request(req);
1183 }
1184 
1185 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1186 		struct nvme_rdma_request *req)
1187 {
1188 	struct ib_send_wr wr = {
1189 		.opcode		    = IB_WR_LOCAL_INV,
1190 		.next		    = NULL,
1191 		.num_sge	    = 0,
1192 		.send_flags	    = IB_SEND_SIGNALED,
1193 		.ex.invalidate_rkey = req->mr->rkey,
1194 	};
1195 
1196 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1197 	wr.wr_cqe = &req->reg_cqe;
1198 
1199 	return ib_post_send(queue->qp, &wr, NULL);
1200 }
1201 
1202 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1203 {
1204 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1205 
1206 	if (blk_integrity_rq(rq)) {
1207 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1208 				req->metadata_sgl->nents, rq_dma_dir(rq));
1209 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1210 				      NVME_INLINE_METADATA_SG_CNT);
1211 	}
1212 
1213 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1214 			rq_dma_dir(rq));
1215 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1216 }
1217 
1218 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1219 		struct request *rq)
1220 {
1221 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1222 	struct nvme_rdma_device *dev = queue->device;
1223 	struct ib_device *ibdev = dev->dev;
1224 	struct list_head *pool = &queue->qp->rdma_mrs;
1225 
1226 	if (!blk_rq_nr_phys_segments(rq))
1227 		return;
1228 
1229 	if (req->use_sig_mr)
1230 		pool = &queue->qp->sig_mrs;
1231 
1232 	if (req->mr) {
1233 		ib_mr_pool_put(queue->qp, pool, req->mr);
1234 		req->mr = NULL;
1235 	}
1236 
1237 	nvme_rdma_dma_unmap_req(ibdev, rq);
1238 }
1239 
1240 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1241 {
1242 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1243 
1244 	sg->addr = 0;
1245 	put_unaligned_le24(0, sg->length);
1246 	put_unaligned_le32(0, sg->key);
1247 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1248 	return 0;
1249 }
1250 
1251 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1252 		struct nvme_rdma_request *req, struct nvme_command *c,
1253 		int count)
1254 {
1255 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1256 	struct ib_sge *sge = &req->sge[1];
1257 	struct scatterlist *sgl;
1258 	u32 len = 0;
1259 	int i;
1260 
1261 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1262 		sge->addr = sg_dma_address(sgl);
1263 		sge->length = sg_dma_len(sgl);
1264 		sge->lkey = queue->device->pd->local_dma_lkey;
1265 		len += sge->length;
1266 		sge++;
1267 	}
1268 
1269 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1270 	sg->length = cpu_to_le32(len);
1271 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1272 
1273 	req->num_sge += count;
1274 	return 0;
1275 }
1276 
1277 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1278 		struct nvme_rdma_request *req, struct nvme_command *c)
1279 {
1280 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1281 
1282 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1283 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1284 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1285 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1286 	return 0;
1287 }
1288 
1289 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1290 		struct nvme_rdma_request *req, struct nvme_command *c,
1291 		int count)
1292 {
1293 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1294 	int nr;
1295 
1296 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1297 	if (WARN_ON_ONCE(!req->mr))
1298 		return -EAGAIN;
1299 
1300 	/*
1301 	 * Align the MR to a 4K page size to match the ctrl page size and
1302 	 * the block virtual boundary.
1303 	 */
1304 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1305 			  SZ_4K);
1306 	if (unlikely(nr < count)) {
1307 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1308 		req->mr = NULL;
1309 		if (nr < 0)
1310 			return nr;
1311 		return -EINVAL;
1312 	}
1313 
1314 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1315 
1316 	req->reg_cqe.done = nvme_rdma_memreg_done;
1317 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1318 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1319 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1320 	req->reg_wr.wr.num_sge = 0;
1321 	req->reg_wr.mr = req->mr;
1322 	req->reg_wr.key = req->mr->rkey;
1323 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1324 			     IB_ACCESS_REMOTE_READ |
1325 			     IB_ACCESS_REMOTE_WRITE;
1326 
1327 	sg->addr = cpu_to_le64(req->mr->iova);
1328 	put_unaligned_le24(req->mr->length, sg->length);
1329 	put_unaligned_le32(req->mr->rkey, sg->key);
1330 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1331 			NVME_SGL_FMT_INVALIDATE;
1332 
1333 	return 0;
1334 }
1335 
1336 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1337 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1338 		u16 control, u8 pi_type)
1339 {
1340 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1341 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1342 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1343 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1344 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1345 		domain->sig.dif.ref_remap = true;
1346 
1347 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1348 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1349 	domain->sig.dif.app_escape = true;
1350 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1351 		domain->sig.dif.ref_escape = true;
1352 }
1353 
1354 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1355 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1356 		u8 pi_type)
1357 {
1358 	u16 control = le16_to_cpu(cmd->rw.control);
1359 
1360 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1361 	if (control & NVME_RW_PRINFO_PRACT) {
1362 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1363 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1364 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1365 					 pi_type);
1366 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1367 		control &= ~NVME_RW_PRINFO_PRACT;
1368 		cmd->rw.control = cpu_to_le16(control);
1369 	} else {
1370 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1371 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1372 					 pi_type);
1373 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1374 					 pi_type);
1375 	}
1376 }
1377 
1378 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1379 {
1380 	*mask = 0;
1381 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1382 		*mask |= IB_SIG_CHECK_REFTAG;
1383 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1384 		*mask |= IB_SIG_CHECK_GUARD;
1385 }
1386 
1387 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1388 {
1389 	if (unlikely(wc->status != IB_WC_SUCCESS))
1390 		nvme_rdma_wr_error(cq, wc, "SIG");
1391 }
1392 
1393 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1394 		struct nvme_rdma_request *req, struct nvme_command *c,
1395 		int count, int pi_count)
1396 {
1397 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1398 	struct ib_reg_wr *wr = &req->reg_wr;
1399 	struct request *rq = blk_mq_rq_from_pdu(req);
1400 	struct nvme_ns *ns = rq->q->queuedata;
1401 	struct bio *bio = rq->bio;
1402 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1403 	int nr;
1404 
1405 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1406 	if (WARN_ON_ONCE(!req->mr))
1407 		return -EAGAIN;
1408 
1409 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1410 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1411 			     SZ_4K);
1412 	if (unlikely(nr))
1413 		goto mr_put;
1414 
1415 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1416 				req->mr->sig_attrs, ns->pi_type);
1417 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1418 
1419 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1420 
1421 	req->reg_cqe.done = nvme_rdma_sig_done;
1422 	memset(wr, 0, sizeof(*wr));
1423 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1424 	wr->wr.wr_cqe = &req->reg_cqe;
1425 	wr->wr.num_sge = 0;
1426 	wr->wr.send_flags = 0;
1427 	wr->mr = req->mr;
1428 	wr->key = req->mr->rkey;
1429 	wr->access = IB_ACCESS_LOCAL_WRITE |
1430 		     IB_ACCESS_REMOTE_READ |
1431 		     IB_ACCESS_REMOTE_WRITE;
1432 
1433 	sg->addr = cpu_to_le64(req->mr->iova);
1434 	put_unaligned_le24(req->mr->length, sg->length);
1435 	put_unaligned_le32(req->mr->rkey, sg->key);
1436 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1437 
1438 	return 0;
1439 
1440 mr_put:
1441 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1442 	req->mr = NULL;
1443 	if (nr < 0)
1444 		return nr;
1445 	return -EINVAL;
1446 }
1447 
1448 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1449 		int *count, int *pi_count)
1450 {
1451 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1452 	int ret;
1453 
1454 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1455 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1456 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1457 			NVME_INLINE_SG_CNT);
1458 	if (ret)
1459 		return -ENOMEM;
1460 
1461 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1462 					    req->data_sgl.sg_table.sgl);
1463 
1464 	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1465 			       req->data_sgl.nents, rq_dma_dir(rq));
1466 	if (unlikely(*count <= 0)) {
1467 		ret = -EIO;
1468 		goto out_free_table;
1469 	}
1470 
1471 	if (blk_integrity_rq(rq)) {
1472 		req->metadata_sgl->sg_table.sgl =
1473 			(struct scatterlist *)(req->metadata_sgl + 1);
1474 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1475 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1476 				req->metadata_sgl->sg_table.sgl,
1477 				NVME_INLINE_METADATA_SG_CNT);
1478 		if (unlikely(ret)) {
1479 			ret = -ENOMEM;
1480 			goto out_unmap_sg;
1481 		}
1482 
1483 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1484 				rq->bio, req->metadata_sgl->sg_table.sgl);
1485 		*pi_count = ib_dma_map_sg(ibdev,
1486 					  req->metadata_sgl->sg_table.sgl,
1487 					  req->metadata_sgl->nents,
1488 					  rq_dma_dir(rq));
1489 		if (unlikely(*pi_count <= 0)) {
1490 			ret = -EIO;
1491 			goto out_free_pi_table;
1492 		}
1493 	}
1494 
1495 	return 0;
1496 
1497 out_free_pi_table:
1498 	sg_free_table_chained(&req->metadata_sgl->sg_table,
1499 			      NVME_INLINE_METADATA_SG_CNT);
1500 out_unmap_sg:
1501 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1502 			rq_dma_dir(rq));
1503 out_free_table:
1504 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1505 	return ret;
1506 }
1507 
1508 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1509 		struct request *rq, struct nvme_command *c)
1510 {
1511 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1512 	struct nvme_rdma_device *dev = queue->device;
1513 	struct ib_device *ibdev = dev->dev;
1514 	int pi_count = 0;
1515 	int count, ret;
1516 
1517 	req->num_sge = 1;
1518 	refcount_set(&req->ref, 2); /* send and recv completions */
1519 
1520 	c->common.flags |= NVME_CMD_SGL_METABUF;
1521 
1522 	if (!blk_rq_nr_phys_segments(rq))
1523 		return nvme_rdma_set_sg_null(c);
1524 
1525 	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1526 	if (unlikely(ret))
1527 		return ret;
1528 
1529 	if (req->use_sig_mr) {
1530 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1531 		goto out;
1532 	}
1533 
1534 	if (count <= dev->num_inline_segments) {
1535 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1536 		    queue->ctrl->use_inline_data &&
1537 		    blk_rq_payload_bytes(rq) <=
1538 				nvme_rdma_inline_data_size(queue)) {
1539 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1540 			goto out;
1541 		}
1542 
1543 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1544 			ret = nvme_rdma_map_sg_single(queue, req, c);
1545 			goto out;
1546 		}
1547 	}
1548 
1549 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1550 out:
1551 	if (unlikely(ret))
1552 		goto out_dma_unmap_req;
1553 
1554 	return 0;
1555 
1556 out_dma_unmap_req:
1557 	nvme_rdma_dma_unmap_req(ibdev, rq);
1558 	return ret;
1559 }
1560 
1561 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1562 {
1563 	struct nvme_rdma_qe *qe =
1564 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1565 	struct nvme_rdma_request *req =
1566 		container_of(qe, struct nvme_rdma_request, sqe);
1567 
1568 	if (unlikely(wc->status != IB_WC_SUCCESS))
1569 		nvme_rdma_wr_error(cq, wc, "SEND");
1570 	else
1571 		nvme_rdma_end_request(req);
1572 }
1573 
1574 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1575 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1576 		struct ib_send_wr *first)
1577 {
1578 	struct ib_send_wr wr;
1579 	int ret;
1580 
1581 	sge->addr   = qe->dma;
1582 	sge->length = sizeof(struct nvme_command);
1583 	sge->lkey   = queue->device->pd->local_dma_lkey;
1584 
1585 	wr.next       = NULL;
1586 	wr.wr_cqe     = &qe->cqe;
1587 	wr.sg_list    = sge;
1588 	wr.num_sge    = num_sge;
1589 	wr.opcode     = IB_WR_SEND;
1590 	wr.send_flags = IB_SEND_SIGNALED;
1591 
1592 	if (first)
1593 		first->next = &wr;
1594 	else
1595 		first = &wr;
1596 
1597 	ret = ib_post_send(queue->qp, first, NULL);
1598 	if (unlikely(ret)) {
1599 		dev_err(queue->ctrl->ctrl.device,
1600 			     "%s failed with error code %d\n", __func__, ret);
1601 	}
1602 	return ret;
1603 }
1604 
1605 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1606 		struct nvme_rdma_qe *qe)
1607 {
1608 	struct ib_recv_wr wr;
1609 	struct ib_sge list;
1610 	int ret;
1611 
1612 	list.addr   = qe->dma;
1613 	list.length = sizeof(struct nvme_completion);
1614 	list.lkey   = queue->device->pd->local_dma_lkey;
1615 
1616 	qe->cqe.done = nvme_rdma_recv_done;
1617 
1618 	wr.next     = NULL;
1619 	wr.wr_cqe   = &qe->cqe;
1620 	wr.sg_list  = &list;
1621 	wr.num_sge  = 1;
1622 
1623 	ret = ib_post_recv(queue->qp, &wr, NULL);
1624 	if (unlikely(ret)) {
1625 		dev_err(queue->ctrl->ctrl.device,
1626 			"%s failed with error code %d\n", __func__, ret);
1627 	}
1628 	return ret;
1629 }
1630 
1631 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1632 {
1633 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1634 
1635 	if (queue_idx == 0)
1636 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1637 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1638 }
1639 
1640 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1641 {
1642 	if (unlikely(wc->status != IB_WC_SUCCESS))
1643 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1644 }
1645 
1646 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1647 {
1648 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1649 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1650 	struct ib_device *dev = queue->device->dev;
1651 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1652 	struct nvme_command *cmd = sqe->data;
1653 	struct ib_sge sge;
1654 	int ret;
1655 
1656 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1657 
1658 	memset(cmd, 0, sizeof(*cmd));
1659 	cmd->common.opcode = nvme_admin_async_event;
1660 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1661 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1662 	nvme_rdma_set_sg_null(cmd);
1663 
1664 	sqe->cqe.done = nvme_rdma_async_done;
1665 
1666 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1667 			DMA_TO_DEVICE);
1668 
1669 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1670 	WARN_ON_ONCE(ret);
1671 }
1672 
1673 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1674 		struct nvme_completion *cqe, struct ib_wc *wc)
1675 {
1676 	struct request *rq;
1677 	struct nvme_rdma_request *req;
1678 
1679 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1680 	if (!rq) {
1681 		dev_err(queue->ctrl->ctrl.device,
1682 			"got bad command_id %#x on QP %#x\n",
1683 			cqe->command_id, queue->qp->qp_num);
1684 		nvme_rdma_error_recovery(queue->ctrl);
1685 		return;
1686 	}
1687 	req = blk_mq_rq_to_pdu(rq);
1688 
1689 	req->status = cqe->status;
1690 	req->result = cqe->result;
1691 
1692 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1693 		if (unlikely(!req->mr ||
1694 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1695 			dev_err(queue->ctrl->ctrl.device,
1696 				"Bogus remote invalidation for rkey %#x\n",
1697 				req->mr ? req->mr->rkey : 0);
1698 			nvme_rdma_error_recovery(queue->ctrl);
1699 		}
1700 	} else if (req->mr) {
1701 		int ret;
1702 
1703 		ret = nvme_rdma_inv_rkey(queue, req);
1704 		if (unlikely(ret < 0)) {
1705 			dev_err(queue->ctrl->ctrl.device,
1706 				"Queueing INV WR for rkey %#x failed (%d)\n",
1707 				req->mr->rkey, ret);
1708 			nvme_rdma_error_recovery(queue->ctrl);
1709 		}
1710 		/* the local invalidation completion will end the request */
1711 		return;
1712 	}
1713 
1714 	nvme_rdma_end_request(req);
1715 }
1716 
1717 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1718 {
1719 	struct nvme_rdma_qe *qe =
1720 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1721 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1722 	struct ib_device *ibdev = queue->device->dev;
1723 	struct nvme_completion *cqe = qe->data;
1724 	const size_t len = sizeof(struct nvme_completion);
1725 
1726 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1727 		nvme_rdma_wr_error(cq, wc, "RECV");
1728 		return;
1729 	}
1730 
1731 	/* sanity checking for received data length */
1732 	if (unlikely(wc->byte_len < len)) {
1733 		dev_err(queue->ctrl->ctrl.device,
1734 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1735 		nvme_rdma_error_recovery(queue->ctrl);
1736 		return;
1737 	}
1738 
1739 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1740 	/*
1741 	 * AEN requests are special as they don't time out and can
1742 	 * survive any kind of queue freeze and often don't respond to
1743 	 * aborts.  We don't even bother to allocate a struct request
1744 	 * for them but rather special case them here.
1745 	 */
1746 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1747 				     cqe->command_id)))
1748 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1749 				&cqe->result);
1750 	else
1751 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1752 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1753 
1754 	nvme_rdma_post_recv(queue, qe);
1755 }
1756 
1757 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1758 {
1759 	int ret, i;
1760 
1761 	for (i = 0; i < queue->queue_size; i++) {
1762 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1763 		if (ret)
1764 			return ret;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1771 		struct rdma_cm_event *ev)
1772 {
1773 	struct rdma_cm_id *cm_id = queue->cm_id;
1774 	int status = ev->status;
1775 	const char *rej_msg;
1776 	const struct nvme_rdma_cm_rej *rej_data;
1777 	u8 rej_data_len;
1778 
1779 	rej_msg = rdma_reject_msg(cm_id, status);
1780 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1781 
1782 	if (rej_data && rej_data_len >= sizeof(u16)) {
1783 		u16 sts = le16_to_cpu(rej_data->sts);
1784 
1785 		dev_err(queue->ctrl->ctrl.device,
1786 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1787 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1788 	} else {
1789 		dev_err(queue->ctrl->ctrl.device,
1790 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1791 	}
1792 
1793 	return -ECONNRESET;
1794 }
1795 
1796 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1797 {
1798 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1799 	int ret;
1800 
1801 	ret = nvme_rdma_create_queue_ib(queue);
1802 	if (ret)
1803 		return ret;
1804 
1805 	if (ctrl->opts->tos >= 0)
1806 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1807 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1808 	if (ret) {
1809 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1810 			queue->cm_error);
1811 		goto out_destroy_queue;
1812 	}
1813 
1814 	return 0;
1815 
1816 out_destroy_queue:
1817 	nvme_rdma_destroy_queue_ib(queue);
1818 	return ret;
1819 }
1820 
1821 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1822 {
1823 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1824 	struct rdma_conn_param param = { };
1825 	struct nvme_rdma_cm_req priv = { };
1826 	int ret;
1827 
1828 	param.qp_num = queue->qp->qp_num;
1829 	param.flow_control = 1;
1830 
1831 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1832 	/* maximum retry count */
1833 	param.retry_count = 7;
1834 	param.rnr_retry_count = 7;
1835 	param.private_data = &priv;
1836 	param.private_data_len = sizeof(priv);
1837 
1838 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1839 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1840 	/*
1841 	 * set the admin queue depth to the minimum size
1842 	 * specified by the Fabrics standard.
1843 	 */
1844 	if (priv.qid == 0) {
1845 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1846 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1847 	} else {
1848 		/*
1849 		 * current interpretation of the fabrics spec
1850 		 * is at minimum you make hrqsize sqsize+1, or a
1851 		 * 1's based representation of sqsize.
1852 		 */
1853 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1854 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1855 	}
1856 
1857 	ret = rdma_connect_locked(queue->cm_id, &param);
1858 	if (ret) {
1859 		dev_err(ctrl->ctrl.device,
1860 			"rdma_connect_locked failed (%d).\n", ret);
1861 		return ret;
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1868 		struct rdma_cm_event *ev)
1869 {
1870 	struct nvme_rdma_queue *queue = cm_id->context;
1871 	int cm_error = 0;
1872 
1873 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1874 		rdma_event_msg(ev->event), ev->event,
1875 		ev->status, cm_id);
1876 
1877 	switch (ev->event) {
1878 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1879 		cm_error = nvme_rdma_addr_resolved(queue);
1880 		break;
1881 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1882 		cm_error = nvme_rdma_route_resolved(queue);
1883 		break;
1884 	case RDMA_CM_EVENT_ESTABLISHED:
1885 		queue->cm_error = nvme_rdma_conn_established(queue);
1886 		/* complete cm_done regardless of success/failure */
1887 		complete(&queue->cm_done);
1888 		return 0;
1889 	case RDMA_CM_EVENT_REJECTED:
1890 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1891 		break;
1892 	case RDMA_CM_EVENT_ROUTE_ERROR:
1893 	case RDMA_CM_EVENT_CONNECT_ERROR:
1894 	case RDMA_CM_EVENT_UNREACHABLE:
1895 	case RDMA_CM_EVENT_ADDR_ERROR:
1896 		dev_dbg(queue->ctrl->ctrl.device,
1897 			"CM error event %d\n", ev->event);
1898 		cm_error = -ECONNRESET;
1899 		break;
1900 	case RDMA_CM_EVENT_DISCONNECTED:
1901 	case RDMA_CM_EVENT_ADDR_CHANGE:
1902 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1903 		dev_dbg(queue->ctrl->ctrl.device,
1904 			"disconnect received - connection closed\n");
1905 		nvme_rdma_error_recovery(queue->ctrl);
1906 		break;
1907 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1908 		/* device removal is handled via the ib_client API */
1909 		break;
1910 	default:
1911 		dev_err(queue->ctrl->ctrl.device,
1912 			"Unexpected RDMA CM event (%d)\n", ev->event);
1913 		nvme_rdma_error_recovery(queue->ctrl);
1914 		break;
1915 	}
1916 
1917 	if (cm_error) {
1918 		queue->cm_error = cm_error;
1919 		complete(&queue->cm_done);
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 static void nvme_rdma_complete_timed_out(struct request *rq)
1926 {
1927 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1928 	struct nvme_rdma_queue *queue = req->queue;
1929 
1930 	nvme_rdma_stop_queue(queue);
1931 	nvmf_complete_timed_out_request(rq);
1932 }
1933 
1934 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1935 {
1936 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1937 	struct nvme_rdma_queue *queue = req->queue;
1938 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1939 
1940 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1941 		 rq->tag, nvme_rdma_queue_idx(queue));
1942 
1943 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1944 		/*
1945 		 * If we are resetting, connecting or deleting we should
1946 		 * complete immediately because we may block controller
1947 		 * teardown or setup sequence
1948 		 * - ctrl disable/shutdown fabrics requests
1949 		 * - connect requests
1950 		 * - initialization admin requests
1951 		 * - I/O requests that entered after unquiescing and
1952 		 *   the controller stopped responding
1953 		 *
1954 		 * All other requests should be cancelled by the error
1955 		 * recovery work, so it's fine that we fail it here.
1956 		 */
1957 		nvme_rdma_complete_timed_out(rq);
1958 		return BLK_EH_DONE;
1959 	}
1960 
1961 	/*
1962 	 * LIVE state should trigger the normal error recovery which will
1963 	 * handle completing this request.
1964 	 */
1965 	nvme_rdma_error_recovery(ctrl);
1966 	return BLK_EH_RESET_TIMER;
1967 }
1968 
1969 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1970 		const struct blk_mq_queue_data *bd)
1971 {
1972 	struct nvme_ns *ns = hctx->queue->queuedata;
1973 	struct nvme_rdma_queue *queue = hctx->driver_data;
1974 	struct request *rq = bd->rq;
1975 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1976 	struct nvme_rdma_qe *sqe = &req->sqe;
1977 	struct nvme_command *c = nvme_req(rq)->cmd;
1978 	struct ib_device *dev;
1979 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1980 	blk_status_t ret;
1981 	int err;
1982 
1983 	WARN_ON_ONCE(rq->tag < 0);
1984 
1985 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1986 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1987 
1988 	dev = queue->device->dev;
1989 
1990 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1991 					 sizeof(struct nvme_command),
1992 					 DMA_TO_DEVICE);
1993 	err = ib_dma_mapping_error(dev, req->sqe.dma);
1994 	if (unlikely(err))
1995 		return BLK_STS_RESOURCE;
1996 
1997 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1998 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1999 
2000 	ret = nvme_setup_cmd(ns, rq);
2001 	if (ret)
2002 		goto unmap_qe;
2003 
2004 	nvme_start_request(rq);
2005 
2006 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2007 	    queue->pi_support &&
2008 	    (c->common.opcode == nvme_cmd_write ||
2009 	     c->common.opcode == nvme_cmd_read) &&
2010 	    nvme_ns_has_pi(ns))
2011 		req->use_sig_mr = true;
2012 	else
2013 		req->use_sig_mr = false;
2014 
2015 	err = nvme_rdma_map_data(queue, rq, c);
2016 	if (unlikely(err < 0)) {
2017 		dev_err(queue->ctrl->ctrl.device,
2018 			     "Failed to map data (%d)\n", err);
2019 		goto err;
2020 	}
2021 
2022 	sqe->cqe.done = nvme_rdma_send_done;
2023 
2024 	ib_dma_sync_single_for_device(dev, sqe->dma,
2025 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2026 
2027 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2028 			req->mr ? &req->reg_wr.wr : NULL);
2029 	if (unlikely(err))
2030 		goto err_unmap;
2031 
2032 	return BLK_STS_OK;
2033 
2034 err_unmap:
2035 	nvme_rdma_unmap_data(queue, rq);
2036 err:
2037 	if (err == -EIO)
2038 		ret = nvme_host_path_error(rq);
2039 	else if (err == -ENOMEM || err == -EAGAIN)
2040 		ret = BLK_STS_RESOURCE;
2041 	else
2042 		ret = BLK_STS_IOERR;
2043 	nvme_cleanup_cmd(rq);
2044 unmap_qe:
2045 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2046 			    DMA_TO_DEVICE);
2047 	return ret;
2048 }
2049 
2050 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2051 {
2052 	struct nvme_rdma_queue *queue = hctx->driver_data;
2053 
2054 	return ib_process_cq_direct(queue->ib_cq, -1);
2055 }
2056 
2057 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2058 {
2059 	struct request *rq = blk_mq_rq_from_pdu(req);
2060 	struct ib_mr_status mr_status;
2061 	int ret;
2062 
2063 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2064 	if (ret) {
2065 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2066 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2067 		return;
2068 	}
2069 
2070 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2071 		switch (mr_status.sig_err.err_type) {
2072 		case IB_SIG_BAD_GUARD:
2073 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2074 			break;
2075 		case IB_SIG_BAD_REFTAG:
2076 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2077 			break;
2078 		case IB_SIG_BAD_APPTAG:
2079 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2080 			break;
2081 		}
2082 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2083 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2084 		       mr_status.sig_err.actual);
2085 	}
2086 }
2087 
2088 static void nvme_rdma_complete_rq(struct request *rq)
2089 {
2090 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2091 	struct nvme_rdma_queue *queue = req->queue;
2092 	struct ib_device *ibdev = queue->device->dev;
2093 
2094 	if (req->use_sig_mr)
2095 		nvme_rdma_check_pi_status(req);
2096 
2097 	nvme_rdma_unmap_data(queue, rq);
2098 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2099 			    DMA_TO_DEVICE);
2100 	nvme_complete_rq(rq);
2101 }
2102 
2103 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2104 {
2105 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2106 
2107 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2108 }
2109 
2110 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2111 	.queue_rq	= nvme_rdma_queue_rq,
2112 	.complete	= nvme_rdma_complete_rq,
2113 	.init_request	= nvme_rdma_init_request,
2114 	.exit_request	= nvme_rdma_exit_request,
2115 	.init_hctx	= nvme_rdma_init_hctx,
2116 	.timeout	= nvme_rdma_timeout,
2117 	.map_queues	= nvme_rdma_map_queues,
2118 	.poll		= nvme_rdma_poll,
2119 };
2120 
2121 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2122 	.queue_rq	= nvme_rdma_queue_rq,
2123 	.complete	= nvme_rdma_complete_rq,
2124 	.init_request	= nvme_rdma_init_request,
2125 	.exit_request	= nvme_rdma_exit_request,
2126 	.init_hctx	= nvme_rdma_init_admin_hctx,
2127 	.timeout	= nvme_rdma_timeout,
2128 };
2129 
2130 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2131 {
2132 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2133 	nvme_quiesce_admin_queue(&ctrl->ctrl);
2134 	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2135 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2136 }
2137 
2138 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2139 {
2140 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2141 }
2142 
2143 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2144 {
2145 	struct nvme_rdma_ctrl *ctrl =
2146 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2147 
2148 	nvme_stop_ctrl(&ctrl->ctrl);
2149 	nvme_rdma_shutdown_ctrl(ctrl, false);
2150 
2151 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2152 		/* state change failure should never happen */
2153 		WARN_ON_ONCE(1);
2154 		return;
2155 	}
2156 
2157 	if (nvme_rdma_setup_ctrl(ctrl, false))
2158 		goto out_fail;
2159 
2160 	return;
2161 
2162 out_fail:
2163 	++ctrl->ctrl.nr_reconnects;
2164 	nvme_rdma_reconnect_or_remove(ctrl);
2165 }
2166 
2167 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2168 	.name			= "rdma",
2169 	.module			= THIS_MODULE,
2170 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2171 	.reg_read32		= nvmf_reg_read32,
2172 	.reg_read64		= nvmf_reg_read64,
2173 	.reg_write32		= nvmf_reg_write32,
2174 	.free_ctrl		= nvme_rdma_free_ctrl,
2175 	.submit_async_event	= nvme_rdma_submit_async_event,
2176 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2177 	.get_address		= nvmf_get_address,
2178 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2179 };
2180 
2181 /*
2182  * Fails a connection request if it matches an existing controller
2183  * (association) with the same tuple:
2184  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2185  *
2186  * if local address is not specified in the request, it will match an
2187  * existing controller with all the other parameters the same and no
2188  * local port address specified as well.
2189  *
2190  * The ports don't need to be compared as they are intrinsically
2191  * already matched by the port pointers supplied.
2192  */
2193 static bool
2194 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2195 {
2196 	struct nvme_rdma_ctrl *ctrl;
2197 	bool found = false;
2198 
2199 	mutex_lock(&nvme_rdma_ctrl_mutex);
2200 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2201 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2202 		if (found)
2203 			break;
2204 	}
2205 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2206 
2207 	return found;
2208 }
2209 
2210 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2211 		struct nvmf_ctrl_options *opts)
2212 {
2213 	struct nvme_rdma_ctrl *ctrl;
2214 	int ret;
2215 	bool changed;
2216 
2217 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2218 	if (!ctrl)
2219 		return ERR_PTR(-ENOMEM);
2220 	ctrl->ctrl.opts = opts;
2221 	INIT_LIST_HEAD(&ctrl->list);
2222 
2223 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2224 		opts->trsvcid =
2225 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2226 		if (!opts->trsvcid) {
2227 			ret = -ENOMEM;
2228 			goto out_free_ctrl;
2229 		}
2230 		opts->mask |= NVMF_OPT_TRSVCID;
2231 	}
2232 
2233 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2234 			opts->traddr, opts->trsvcid, &ctrl->addr);
2235 	if (ret) {
2236 		pr_err("malformed address passed: %s:%s\n",
2237 			opts->traddr, opts->trsvcid);
2238 		goto out_free_ctrl;
2239 	}
2240 
2241 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2242 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2243 			opts->host_traddr, NULL, &ctrl->src_addr);
2244 		if (ret) {
2245 			pr_err("malformed src address passed: %s\n",
2246 			       opts->host_traddr);
2247 			goto out_free_ctrl;
2248 		}
2249 	}
2250 
2251 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2252 		ret = -EALREADY;
2253 		goto out_free_ctrl;
2254 	}
2255 
2256 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2257 			nvme_rdma_reconnect_ctrl_work);
2258 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2259 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2260 
2261 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2262 				opts->nr_poll_queues + 1;
2263 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2264 	ctrl->ctrl.kato = opts->kato;
2265 
2266 	ret = -ENOMEM;
2267 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2268 				GFP_KERNEL);
2269 	if (!ctrl->queues)
2270 		goto out_free_ctrl;
2271 
2272 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2273 				0 /* no quirks, we're perfect! */);
2274 	if (ret)
2275 		goto out_kfree_queues;
2276 
2277 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2278 	WARN_ON_ONCE(!changed);
2279 
2280 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2281 	if (ret)
2282 		goto out_uninit_ctrl;
2283 
2284 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2285 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2286 
2287 	mutex_lock(&nvme_rdma_ctrl_mutex);
2288 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2289 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2290 
2291 	return &ctrl->ctrl;
2292 
2293 out_uninit_ctrl:
2294 	nvme_uninit_ctrl(&ctrl->ctrl);
2295 	nvme_put_ctrl(&ctrl->ctrl);
2296 	if (ret > 0)
2297 		ret = -EIO;
2298 	return ERR_PTR(ret);
2299 out_kfree_queues:
2300 	kfree(ctrl->queues);
2301 out_free_ctrl:
2302 	kfree(ctrl);
2303 	return ERR_PTR(ret);
2304 }
2305 
2306 static struct nvmf_transport_ops nvme_rdma_transport = {
2307 	.name		= "rdma",
2308 	.module		= THIS_MODULE,
2309 	.required_opts	= NVMF_OPT_TRADDR,
2310 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2311 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2312 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2313 			  NVMF_OPT_TOS,
2314 	.create_ctrl	= nvme_rdma_create_ctrl,
2315 };
2316 
2317 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2318 {
2319 	struct nvme_rdma_ctrl *ctrl;
2320 	struct nvme_rdma_device *ndev;
2321 	bool found = false;
2322 
2323 	mutex_lock(&device_list_mutex);
2324 	list_for_each_entry(ndev, &device_list, entry) {
2325 		if (ndev->dev == ib_device) {
2326 			found = true;
2327 			break;
2328 		}
2329 	}
2330 	mutex_unlock(&device_list_mutex);
2331 
2332 	if (!found)
2333 		return;
2334 
2335 	/* Delete all controllers using this device */
2336 	mutex_lock(&nvme_rdma_ctrl_mutex);
2337 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2338 		if (ctrl->device->dev != ib_device)
2339 			continue;
2340 		nvme_delete_ctrl(&ctrl->ctrl);
2341 	}
2342 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2343 
2344 	flush_workqueue(nvme_delete_wq);
2345 }
2346 
2347 static struct ib_client nvme_rdma_ib_client = {
2348 	.name   = "nvme_rdma",
2349 	.remove = nvme_rdma_remove_one
2350 };
2351 
2352 static int __init nvme_rdma_init_module(void)
2353 {
2354 	int ret;
2355 
2356 	ret = ib_register_client(&nvme_rdma_ib_client);
2357 	if (ret)
2358 		return ret;
2359 
2360 	ret = nvmf_register_transport(&nvme_rdma_transport);
2361 	if (ret)
2362 		goto err_unreg_client;
2363 
2364 	return 0;
2365 
2366 err_unreg_client:
2367 	ib_unregister_client(&nvme_rdma_ib_client);
2368 	return ret;
2369 }
2370 
2371 static void __exit nvme_rdma_cleanup_module(void)
2372 {
2373 	struct nvme_rdma_ctrl *ctrl;
2374 
2375 	nvmf_unregister_transport(&nvme_rdma_transport);
2376 	ib_unregister_client(&nvme_rdma_ib_client);
2377 
2378 	mutex_lock(&nvme_rdma_ctrl_mutex);
2379 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2380 		nvme_delete_ctrl(&ctrl->ctrl);
2381 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2382 	flush_workqueue(nvme_delete_wq);
2383 }
2384 
2385 module_init(nvme_rdma_init_module);
2386 module_exit(nvme_rdma_cleanup_module);
2387 
2388 MODULE_LICENSE("GPL v2");
2389