xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 1b39eacd)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 };
51 
52 struct nvme_rdma_qe {
53 	struct ib_cqe		cqe;
54 	void			*data;
55 	u64			dma;
56 };
57 
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60 	struct nvme_request	req;
61 	struct ib_mr		*mr;
62 	struct nvme_rdma_qe	sqe;
63 	union nvme_result	result;
64 	__le16			status;
65 	refcount_t		ref;
66 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67 	u32			num_sge;
68 	int			nents;
69 	bool			inline_data;
70 	struct ib_reg_wr	reg_wr;
71 	struct ib_cqe		reg_cqe;
72 	struct nvme_rdma_queue  *queue;
73 	struct sg_table		sg_table;
74 	struct scatterlist	first_sgl[];
75 };
76 
77 enum nvme_rdma_queue_flags {
78 	NVME_RDMA_Q_ALLOCATED		= 0,
79 	NVME_RDMA_Q_LIVE		= 1,
80 	NVME_RDMA_Q_TR_READY		= 2,
81 };
82 
83 struct nvme_rdma_queue {
84 	struct nvme_rdma_qe	*rsp_ring;
85 	int			queue_size;
86 	size_t			cmnd_capsule_len;
87 	struct nvme_rdma_ctrl	*ctrl;
88 	struct nvme_rdma_device	*device;
89 	struct ib_cq		*ib_cq;
90 	struct ib_qp		*qp;
91 
92 	unsigned long		flags;
93 	struct rdma_cm_id	*cm_id;
94 	int			cm_error;
95 	struct completion	cm_done;
96 };
97 
98 struct nvme_rdma_ctrl {
99 	/* read only in the hot path */
100 	struct nvme_rdma_queue	*queues;
101 
102 	/* other member variables */
103 	struct blk_mq_tag_set	tag_set;
104 	struct work_struct	err_work;
105 
106 	struct nvme_rdma_qe	async_event_sqe;
107 
108 	struct delayed_work	reconnect_work;
109 
110 	struct list_head	list;
111 
112 	struct blk_mq_tag_set	admin_tag_set;
113 	struct nvme_rdma_device	*device;
114 
115 	u32			max_fr_pages;
116 
117 	struct sockaddr_storage addr;
118 	struct sockaddr_storage src_addr;
119 
120 	struct nvme_ctrl	ctrl;
121 };
122 
123 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
124 {
125 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
126 }
127 
128 static LIST_HEAD(device_list);
129 static DEFINE_MUTEX(device_list_mutex);
130 
131 static LIST_HEAD(nvme_rdma_ctrl_list);
132 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
133 
134 /*
135  * Disabling this option makes small I/O goes faster, but is fundamentally
136  * unsafe.  With it turned off we will have to register a global rkey that
137  * allows read and write access to all physical memory.
138  */
139 static bool register_always = true;
140 module_param(register_always, bool, 0444);
141 MODULE_PARM_DESC(register_always,
142 	 "Use memory registration even for contiguous memory regions");
143 
144 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
145 		struct rdma_cm_event *event);
146 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
147 
148 static const struct blk_mq_ops nvme_rdma_mq_ops;
149 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
150 
151 /* XXX: really should move to a generic header sooner or later.. */
152 static inline void put_unaligned_le24(u32 val, u8 *p)
153 {
154 	*p++ = val;
155 	*p++ = val >> 8;
156 	*p++ = val >> 16;
157 }
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
165 {
166 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
167 }
168 
169 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
170 		size_t capsule_size, enum dma_data_direction dir)
171 {
172 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
173 	kfree(qe->data);
174 }
175 
176 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
180 	if (!qe->data)
181 		return -ENOMEM;
182 
183 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
184 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
185 		kfree(qe->data);
186 		return -ENOMEM;
187 	}
188 
189 	return 0;
190 }
191 
192 static void nvme_rdma_free_ring(struct ib_device *ibdev,
193 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
194 		size_t capsule_size, enum dma_data_direction dir)
195 {
196 	int i;
197 
198 	for (i = 0; i < ib_queue_size; i++)
199 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
200 	kfree(ring);
201 }
202 
203 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
204 		size_t ib_queue_size, size_t capsule_size,
205 		enum dma_data_direction dir)
206 {
207 	struct nvme_rdma_qe *ring;
208 	int i;
209 
210 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
211 	if (!ring)
212 		return NULL;
213 
214 	for (i = 0; i < ib_queue_size; i++) {
215 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
216 			goto out_free_ring;
217 	}
218 
219 	return ring;
220 
221 out_free_ring:
222 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
223 	return NULL;
224 }
225 
226 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
227 {
228 	pr_debug("QP event %s (%d)\n",
229 		 ib_event_msg(event->event), event->event);
230 
231 }
232 
233 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
234 {
235 	wait_for_completion_interruptible_timeout(&queue->cm_done,
236 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
237 	return queue->cm_error;
238 }
239 
240 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
241 {
242 	struct nvme_rdma_device *dev = queue->device;
243 	struct ib_qp_init_attr init_attr;
244 	int ret;
245 
246 	memset(&init_attr, 0, sizeof(init_attr));
247 	init_attr.event_handler = nvme_rdma_qp_event;
248 	/* +1 for drain */
249 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
250 	/* +1 for drain */
251 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
252 	init_attr.cap.max_recv_sge = 1;
253 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
254 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
255 	init_attr.qp_type = IB_QPT_RC;
256 	init_attr.send_cq = queue->ib_cq;
257 	init_attr.recv_cq = queue->ib_cq;
258 
259 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
260 
261 	queue->qp = queue->cm_id->qp;
262 	return ret;
263 }
264 
265 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
266 		struct request *rq, unsigned int hctx_idx)
267 {
268 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
269 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
270 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
271 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
272 	struct nvme_rdma_device *dev = queue->device;
273 
274 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
275 			DMA_TO_DEVICE);
276 }
277 
278 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
279 		struct request *rq, unsigned int hctx_idx,
280 		unsigned int numa_node)
281 {
282 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
283 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
285 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
286 	struct nvme_rdma_device *dev = queue->device;
287 	struct ib_device *ibdev = dev->dev;
288 	int ret;
289 
290 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
291 			DMA_TO_DEVICE);
292 	if (ret)
293 		return ret;
294 
295 	req->queue = queue;
296 
297 	return 0;
298 }
299 
300 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
301 		unsigned int hctx_idx)
302 {
303 	struct nvme_rdma_ctrl *ctrl = data;
304 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
305 
306 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
307 
308 	hctx->driver_data = queue;
309 	return 0;
310 }
311 
312 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
313 		unsigned int hctx_idx)
314 {
315 	struct nvme_rdma_ctrl *ctrl = data;
316 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
317 
318 	BUG_ON(hctx_idx != 0);
319 
320 	hctx->driver_data = queue;
321 	return 0;
322 }
323 
324 static void nvme_rdma_free_dev(struct kref *ref)
325 {
326 	struct nvme_rdma_device *ndev =
327 		container_of(ref, struct nvme_rdma_device, ref);
328 
329 	mutex_lock(&device_list_mutex);
330 	list_del(&ndev->entry);
331 	mutex_unlock(&device_list_mutex);
332 
333 	ib_dealloc_pd(ndev->pd);
334 	kfree(ndev);
335 }
336 
337 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
338 {
339 	kref_put(&dev->ref, nvme_rdma_free_dev);
340 }
341 
342 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
343 {
344 	return kref_get_unless_zero(&dev->ref);
345 }
346 
347 static struct nvme_rdma_device *
348 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
349 {
350 	struct nvme_rdma_device *ndev;
351 
352 	mutex_lock(&device_list_mutex);
353 	list_for_each_entry(ndev, &device_list, entry) {
354 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
355 		    nvme_rdma_dev_get(ndev))
356 			goto out_unlock;
357 	}
358 
359 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
360 	if (!ndev)
361 		goto out_err;
362 
363 	ndev->dev = cm_id->device;
364 	kref_init(&ndev->ref);
365 
366 	ndev->pd = ib_alloc_pd(ndev->dev,
367 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
368 	if (IS_ERR(ndev->pd))
369 		goto out_free_dev;
370 
371 	if (!(ndev->dev->attrs.device_cap_flags &
372 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
373 		dev_err(&ndev->dev->dev,
374 			"Memory registrations not supported.\n");
375 		goto out_free_pd;
376 	}
377 
378 	list_add(&ndev->entry, &device_list);
379 out_unlock:
380 	mutex_unlock(&device_list_mutex);
381 	return ndev;
382 
383 out_free_pd:
384 	ib_dealloc_pd(ndev->pd);
385 out_free_dev:
386 	kfree(ndev);
387 out_err:
388 	mutex_unlock(&device_list_mutex);
389 	return NULL;
390 }
391 
392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
393 {
394 	struct nvme_rdma_device *dev;
395 	struct ib_device *ibdev;
396 
397 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
398 		return;
399 
400 	dev = queue->device;
401 	ibdev = dev->dev;
402 
403 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
404 
405 	/*
406 	 * The cm_id object might have been destroyed during RDMA connection
407 	 * establishment error flow to avoid getting other cma events, thus
408 	 * the destruction of the QP shouldn't use rdma_cm API.
409 	 */
410 	ib_destroy_qp(queue->qp);
411 	ib_free_cq(queue->ib_cq);
412 
413 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
414 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
415 
416 	nvme_rdma_dev_put(dev);
417 }
418 
419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
420 {
421 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
422 		     ibdev->attrs.max_fast_reg_page_list_len);
423 }
424 
425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
426 {
427 	struct ib_device *ibdev;
428 	const int send_wr_factor = 3;			/* MR, SEND, INV */
429 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
430 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
431 	int ret;
432 
433 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
434 	if (!queue->device) {
435 		dev_err(queue->cm_id->device->dev.parent,
436 			"no client data found!\n");
437 		return -ECONNREFUSED;
438 	}
439 	ibdev = queue->device->dev;
440 
441 	/*
442 	 * Spread I/O queues completion vectors according their queue index.
443 	 * Admin queues can always go on completion vector 0.
444 	 */
445 	comp_vector = idx == 0 ? idx : idx - 1;
446 
447 	/* +1 for ib_stop_cq */
448 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
449 				cq_factor * queue->queue_size + 1,
450 				comp_vector, IB_POLL_SOFTIRQ);
451 	if (IS_ERR(queue->ib_cq)) {
452 		ret = PTR_ERR(queue->ib_cq);
453 		goto out_put_dev;
454 	}
455 
456 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
457 	if (ret)
458 		goto out_destroy_ib_cq;
459 
460 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
461 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
462 	if (!queue->rsp_ring) {
463 		ret = -ENOMEM;
464 		goto out_destroy_qp;
465 	}
466 
467 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
468 			      queue->queue_size,
469 			      IB_MR_TYPE_MEM_REG,
470 			      nvme_rdma_get_max_fr_pages(ibdev));
471 	if (ret) {
472 		dev_err(queue->ctrl->ctrl.device,
473 			"failed to initialize MR pool sized %d for QID %d\n",
474 			queue->queue_size, idx);
475 		goto out_destroy_ring;
476 	}
477 
478 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
479 
480 	return 0;
481 
482 out_destroy_ring:
483 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
484 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
485 out_destroy_qp:
486 	rdma_destroy_qp(queue->cm_id);
487 out_destroy_ib_cq:
488 	ib_free_cq(queue->ib_cq);
489 out_put_dev:
490 	nvme_rdma_dev_put(queue->device);
491 	return ret;
492 }
493 
494 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
495 		int idx, size_t queue_size)
496 {
497 	struct nvme_rdma_queue *queue;
498 	struct sockaddr *src_addr = NULL;
499 	int ret;
500 
501 	queue = &ctrl->queues[idx];
502 	queue->ctrl = ctrl;
503 	init_completion(&queue->cm_done);
504 
505 	if (idx > 0)
506 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
507 	else
508 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
509 
510 	queue->queue_size = queue_size;
511 
512 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
513 			RDMA_PS_TCP, IB_QPT_RC);
514 	if (IS_ERR(queue->cm_id)) {
515 		dev_info(ctrl->ctrl.device,
516 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
517 		return PTR_ERR(queue->cm_id);
518 	}
519 
520 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
521 		src_addr = (struct sockaddr *)&ctrl->src_addr;
522 
523 	queue->cm_error = -ETIMEDOUT;
524 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
525 			(struct sockaddr *)&ctrl->addr,
526 			NVME_RDMA_CONNECT_TIMEOUT_MS);
527 	if (ret) {
528 		dev_info(ctrl->ctrl.device,
529 			"rdma_resolve_addr failed (%d).\n", ret);
530 		goto out_destroy_cm_id;
531 	}
532 
533 	ret = nvme_rdma_wait_for_cm(queue);
534 	if (ret) {
535 		dev_info(ctrl->ctrl.device,
536 			"rdma connection establishment failed (%d)\n", ret);
537 		goto out_destroy_cm_id;
538 	}
539 
540 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
541 
542 	return 0;
543 
544 out_destroy_cm_id:
545 	rdma_destroy_id(queue->cm_id);
546 	nvme_rdma_destroy_queue_ib(queue);
547 	return ret;
548 }
549 
550 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
551 {
552 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
553 		return;
554 
555 	rdma_disconnect(queue->cm_id);
556 	ib_drain_qp(queue->qp);
557 }
558 
559 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
560 {
561 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
562 		return;
563 
564 	if (nvme_rdma_queue_idx(queue) == 0) {
565 		nvme_rdma_free_qe(queue->device->dev,
566 			&queue->ctrl->async_event_sqe,
567 			sizeof(struct nvme_command), DMA_TO_DEVICE);
568 	}
569 
570 	nvme_rdma_destroy_queue_ib(queue);
571 	rdma_destroy_id(queue->cm_id);
572 }
573 
574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
575 {
576 	int i;
577 
578 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
579 		nvme_rdma_free_queue(&ctrl->queues[i]);
580 }
581 
582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584 	int i;
585 
586 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
587 		nvme_rdma_stop_queue(&ctrl->queues[i]);
588 }
589 
590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
591 {
592 	int ret;
593 
594 	if (idx)
595 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
596 	else
597 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
598 
599 	if (!ret)
600 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
601 	else
602 		dev_info(ctrl->ctrl.device,
603 			"failed to connect queue: %d ret=%d\n", idx, ret);
604 	return ret;
605 }
606 
607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
608 {
609 	int i, ret = 0;
610 
611 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
612 		ret = nvme_rdma_start_queue(ctrl, i);
613 		if (ret)
614 			goto out_stop_queues;
615 	}
616 
617 	return 0;
618 
619 out_stop_queues:
620 	for (i--; i >= 1; i--)
621 		nvme_rdma_stop_queue(&ctrl->queues[i]);
622 	return ret;
623 }
624 
625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
628 	struct ib_device *ibdev = ctrl->device->dev;
629 	unsigned int nr_io_queues;
630 	int i, ret;
631 
632 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
633 
634 	/*
635 	 * we map queues according to the device irq vectors for
636 	 * optimal locality so we don't need more queues than
637 	 * completion vectors.
638 	 */
639 	nr_io_queues = min_t(unsigned int, nr_io_queues,
640 				ibdev->num_comp_vectors);
641 
642 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
643 	if (ret)
644 		return ret;
645 
646 	ctrl->ctrl.queue_count = nr_io_queues + 1;
647 	if (ctrl->ctrl.queue_count < 2)
648 		return 0;
649 
650 	dev_info(ctrl->ctrl.device,
651 		"creating %d I/O queues.\n", nr_io_queues);
652 
653 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
654 		ret = nvme_rdma_alloc_queue(ctrl, i,
655 				ctrl->ctrl.sqsize + 1);
656 		if (ret)
657 			goto out_free_queues;
658 	}
659 
660 	return 0;
661 
662 out_free_queues:
663 	for (i--; i >= 1; i--)
664 		nvme_rdma_free_queue(&ctrl->queues[i]);
665 
666 	return ret;
667 }
668 
669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
670 		struct blk_mq_tag_set *set)
671 {
672 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
673 
674 	blk_mq_free_tag_set(set);
675 	nvme_rdma_dev_put(ctrl->device);
676 }
677 
678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
679 		bool admin)
680 {
681 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682 	struct blk_mq_tag_set *set;
683 	int ret;
684 
685 	if (admin) {
686 		set = &ctrl->admin_tag_set;
687 		memset(set, 0, sizeof(*set));
688 		set->ops = &nvme_rdma_admin_mq_ops;
689 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
690 		set->reserved_tags = 2; /* connect + keep-alive */
691 		set->numa_node = NUMA_NO_NODE;
692 		set->cmd_size = sizeof(struct nvme_rdma_request) +
693 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
694 		set->driver_data = ctrl;
695 		set->nr_hw_queues = 1;
696 		set->timeout = ADMIN_TIMEOUT;
697 		set->flags = BLK_MQ_F_NO_SCHED;
698 	} else {
699 		set = &ctrl->tag_set;
700 		memset(set, 0, sizeof(*set));
701 		set->ops = &nvme_rdma_mq_ops;
702 		set->queue_depth = nctrl->opts->queue_size;
703 		set->reserved_tags = 1; /* fabric connect */
704 		set->numa_node = NUMA_NO_NODE;
705 		set->flags = BLK_MQ_F_SHOULD_MERGE;
706 		set->cmd_size = sizeof(struct nvme_rdma_request) +
707 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
708 		set->driver_data = ctrl;
709 		set->nr_hw_queues = nctrl->queue_count - 1;
710 		set->timeout = NVME_IO_TIMEOUT;
711 	}
712 
713 	ret = blk_mq_alloc_tag_set(set);
714 	if (ret)
715 		goto out;
716 
717 	/*
718 	 * We need a reference on the device as long as the tag_set is alive,
719 	 * as the MRs in the request structures need a valid ib_device.
720 	 */
721 	ret = nvme_rdma_dev_get(ctrl->device);
722 	if (!ret) {
723 		ret = -EINVAL;
724 		goto out_free_tagset;
725 	}
726 
727 	return set;
728 
729 out_free_tagset:
730 	blk_mq_free_tag_set(set);
731 out:
732 	return ERR_PTR(ret);
733 }
734 
735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
736 		bool remove)
737 {
738 	nvme_rdma_stop_queue(&ctrl->queues[0]);
739 	if (remove) {
740 		blk_cleanup_queue(ctrl->ctrl.admin_q);
741 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
742 	}
743 	nvme_rdma_free_queue(&ctrl->queues[0]);
744 }
745 
746 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
747 		bool new)
748 {
749 	int error;
750 
751 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
752 	if (error)
753 		return error;
754 
755 	ctrl->device = ctrl->queues[0].device;
756 
757 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
758 
759 	if (new) {
760 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
761 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
762 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
763 			goto out_free_queue;
764 		}
765 
766 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
767 		if (IS_ERR(ctrl->ctrl.admin_q)) {
768 			error = PTR_ERR(ctrl->ctrl.admin_q);
769 			goto out_free_tagset;
770 		}
771 	}
772 
773 	error = nvme_rdma_start_queue(ctrl, 0);
774 	if (error)
775 		goto out_cleanup_queue;
776 
777 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
778 			&ctrl->ctrl.cap);
779 	if (error) {
780 		dev_err(ctrl->ctrl.device,
781 			"prop_get NVME_REG_CAP failed\n");
782 		goto out_cleanup_queue;
783 	}
784 
785 	ctrl->ctrl.sqsize =
786 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
787 
788 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
789 	if (error)
790 		goto out_cleanup_queue;
791 
792 	ctrl->ctrl.max_hw_sectors =
793 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
794 
795 	error = nvme_init_identify(&ctrl->ctrl);
796 	if (error)
797 		goto out_cleanup_queue;
798 
799 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
800 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
801 			DMA_TO_DEVICE);
802 	if (error)
803 		goto out_cleanup_queue;
804 
805 	return 0;
806 
807 out_cleanup_queue:
808 	if (new)
809 		blk_cleanup_queue(ctrl->ctrl.admin_q);
810 out_free_tagset:
811 	if (new)
812 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
813 out_free_queue:
814 	nvme_rdma_free_queue(&ctrl->queues[0]);
815 	return error;
816 }
817 
818 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
819 		bool remove)
820 {
821 	nvme_rdma_stop_io_queues(ctrl);
822 	if (remove) {
823 		blk_cleanup_queue(ctrl->ctrl.connect_q);
824 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
825 	}
826 	nvme_rdma_free_io_queues(ctrl);
827 }
828 
829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
830 {
831 	int ret;
832 
833 	ret = nvme_rdma_alloc_io_queues(ctrl);
834 	if (ret)
835 		return ret;
836 
837 	if (new) {
838 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
839 		if (IS_ERR(ctrl->ctrl.tagset)) {
840 			ret = PTR_ERR(ctrl->ctrl.tagset);
841 			goto out_free_io_queues;
842 		}
843 
844 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
845 		if (IS_ERR(ctrl->ctrl.connect_q)) {
846 			ret = PTR_ERR(ctrl->ctrl.connect_q);
847 			goto out_free_tag_set;
848 		}
849 	} else {
850 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
851 			ctrl->ctrl.queue_count - 1);
852 	}
853 
854 	ret = nvme_rdma_start_io_queues(ctrl);
855 	if (ret)
856 		goto out_cleanup_connect_q;
857 
858 	return 0;
859 
860 out_cleanup_connect_q:
861 	if (new)
862 		blk_cleanup_queue(ctrl->ctrl.connect_q);
863 out_free_tag_set:
864 	if (new)
865 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 out_free_io_queues:
867 	nvme_rdma_free_io_queues(ctrl);
868 	return ret;
869 }
870 
871 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
872 {
873 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
874 
875 	if (list_empty(&ctrl->list))
876 		goto free_ctrl;
877 
878 	mutex_lock(&nvme_rdma_ctrl_mutex);
879 	list_del(&ctrl->list);
880 	mutex_unlock(&nvme_rdma_ctrl_mutex);
881 
882 	kfree(ctrl->queues);
883 	nvmf_free_options(nctrl->opts);
884 free_ctrl:
885 	kfree(ctrl);
886 }
887 
888 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
889 {
890 	/* If we are resetting/deleting then do nothing */
891 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
892 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
893 			ctrl->ctrl.state == NVME_CTRL_LIVE);
894 		return;
895 	}
896 
897 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
898 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
899 			ctrl->ctrl.opts->reconnect_delay);
900 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
901 				ctrl->ctrl.opts->reconnect_delay * HZ);
902 	} else {
903 		dev_info(ctrl->ctrl.device, "Removing controller...\n");
904 		nvme_delete_ctrl(&ctrl->ctrl);
905 	}
906 }
907 
908 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
909 {
910 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
911 			struct nvme_rdma_ctrl, reconnect_work);
912 	bool changed;
913 	int ret;
914 
915 	++ctrl->ctrl.nr_reconnects;
916 
917 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
918 	if (ret)
919 		goto requeue;
920 
921 	if (ctrl->ctrl.queue_count > 1) {
922 		ret = nvme_rdma_configure_io_queues(ctrl, false);
923 		if (ret)
924 			goto destroy_admin;
925 	}
926 
927 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
928 	if (!changed) {
929 		/* state change failure is ok if we're in DELETING state */
930 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
931 		return;
932 	}
933 
934 	nvme_start_ctrl(&ctrl->ctrl);
935 
936 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
937 			ctrl->ctrl.nr_reconnects);
938 
939 	ctrl->ctrl.nr_reconnects = 0;
940 
941 	return;
942 
943 destroy_admin:
944 	nvme_rdma_destroy_admin_queue(ctrl, false);
945 requeue:
946 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
947 			ctrl->ctrl.nr_reconnects);
948 	nvme_rdma_reconnect_or_remove(ctrl);
949 }
950 
951 static void nvme_rdma_error_recovery_work(struct work_struct *work)
952 {
953 	struct nvme_rdma_ctrl *ctrl = container_of(work,
954 			struct nvme_rdma_ctrl, err_work);
955 
956 	nvme_stop_keep_alive(&ctrl->ctrl);
957 
958 	if (ctrl->ctrl.queue_count > 1) {
959 		nvme_stop_queues(&ctrl->ctrl);
960 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
961 					nvme_cancel_request, &ctrl->ctrl);
962 		nvme_rdma_destroy_io_queues(ctrl, false);
963 	}
964 
965 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
966 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
967 				nvme_cancel_request, &ctrl->ctrl);
968 	nvme_rdma_destroy_admin_queue(ctrl, false);
969 
970 	/*
971 	 * queues are not a live anymore, so restart the queues to fail fast
972 	 * new IO
973 	 */
974 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
975 	nvme_start_queues(&ctrl->ctrl);
976 
977 	nvme_rdma_reconnect_or_remove(ctrl);
978 }
979 
980 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
981 {
982 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
983 		return;
984 
985 	queue_work(nvme_wq, &ctrl->err_work);
986 }
987 
988 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
989 		const char *op)
990 {
991 	struct nvme_rdma_queue *queue = cq->cq_context;
992 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
993 
994 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
995 		dev_info(ctrl->ctrl.device,
996 			     "%s for CQE 0x%p failed with status %s (%d)\n",
997 			     op, wc->wr_cqe,
998 			     ib_wc_status_msg(wc->status), wc->status);
999 	nvme_rdma_error_recovery(ctrl);
1000 }
1001 
1002 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1003 {
1004 	if (unlikely(wc->status != IB_WC_SUCCESS))
1005 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1006 }
1007 
1008 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010 	struct nvme_rdma_request *req =
1011 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1012 	struct request *rq = blk_mq_rq_from_pdu(req);
1013 
1014 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1016 		return;
1017 	}
1018 
1019 	if (refcount_dec_and_test(&req->ref))
1020 		nvme_end_request(rq, req->status, req->result);
1021 
1022 }
1023 
1024 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1025 		struct nvme_rdma_request *req)
1026 {
1027 	struct ib_send_wr *bad_wr;
1028 	struct ib_send_wr wr = {
1029 		.opcode		    = IB_WR_LOCAL_INV,
1030 		.next		    = NULL,
1031 		.num_sge	    = 0,
1032 		.send_flags	    = IB_SEND_SIGNALED,
1033 		.ex.invalidate_rkey = req->mr->rkey,
1034 	};
1035 
1036 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1037 	wr.wr_cqe = &req->reg_cqe;
1038 
1039 	return ib_post_send(queue->qp, &wr, &bad_wr);
1040 }
1041 
1042 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1043 		struct request *rq)
1044 {
1045 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1046 	struct nvme_rdma_device *dev = queue->device;
1047 	struct ib_device *ibdev = dev->dev;
1048 
1049 	if (!blk_rq_bytes(rq))
1050 		return;
1051 
1052 	if (req->mr) {
1053 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1054 		req->mr = NULL;
1055 	}
1056 
1057 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1058 			req->nents, rq_data_dir(rq) ==
1059 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1060 
1061 	nvme_cleanup_cmd(rq);
1062 	sg_free_table_chained(&req->sg_table, true);
1063 }
1064 
1065 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1066 {
1067 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1068 
1069 	sg->addr = 0;
1070 	put_unaligned_le24(0, sg->length);
1071 	put_unaligned_le32(0, sg->key);
1072 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1073 	return 0;
1074 }
1075 
1076 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1077 		struct nvme_rdma_request *req, struct nvme_command *c)
1078 {
1079 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1080 
1081 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1082 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1083 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1084 
1085 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1086 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1087 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1088 
1089 	req->inline_data = true;
1090 	req->num_sge++;
1091 	return 0;
1092 }
1093 
1094 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1095 		struct nvme_rdma_request *req, struct nvme_command *c)
1096 {
1097 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1098 
1099 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1100 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1101 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1102 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1103 	return 0;
1104 }
1105 
1106 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1107 		struct nvme_rdma_request *req, struct nvme_command *c,
1108 		int count)
1109 {
1110 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1111 	int nr;
1112 
1113 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1114 	if (WARN_ON_ONCE(!req->mr))
1115 		return -EAGAIN;
1116 
1117 	/*
1118 	 * Align the MR to a 4K page size to match the ctrl page size and
1119 	 * the block virtual boundary.
1120 	 */
1121 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1122 	if (unlikely(nr < count)) {
1123 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1124 		req->mr = NULL;
1125 		if (nr < 0)
1126 			return nr;
1127 		return -EINVAL;
1128 	}
1129 
1130 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1131 
1132 	req->reg_cqe.done = nvme_rdma_memreg_done;
1133 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1134 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1135 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1136 	req->reg_wr.wr.num_sge = 0;
1137 	req->reg_wr.mr = req->mr;
1138 	req->reg_wr.key = req->mr->rkey;
1139 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1140 			     IB_ACCESS_REMOTE_READ |
1141 			     IB_ACCESS_REMOTE_WRITE;
1142 
1143 	sg->addr = cpu_to_le64(req->mr->iova);
1144 	put_unaligned_le24(req->mr->length, sg->length);
1145 	put_unaligned_le32(req->mr->rkey, sg->key);
1146 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1147 			NVME_SGL_FMT_INVALIDATE;
1148 
1149 	return 0;
1150 }
1151 
1152 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1153 		struct request *rq, struct nvme_command *c)
1154 {
1155 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1156 	struct nvme_rdma_device *dev = queue->device;
1157 	struct ib_device *ibdev = dev->dev;
1158 	int count, ret;
1159 
1160 	req->num_sge = 1;
1161 	req->inline_data = false;
1162 	refcount_set(&req->ref, 2); /* send and recv completions */
1163 
1164 	c->common.flags |= NVME_CMD_SGL_METABUF;
1165 
1166 	if (!blk_rq_bytes(rq))
1167 		return nvme_rdma_set_sg_null(c);
1168 
1169 	req->sg_table.sgl = req->first_sgl;
1170 	ret = sg_alloc_table_chained(&req->sg_table,
1171 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1172 	if (ret)
1173 		return -ENOMEM;
1174 
1175 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1176 
1177 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1178 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1179 	if (unlikely(count <= 0)) {
1180 		sg_free_table_chained(&req->sg_table, true);
1181 		return -EIO;
1182 	}
1183 
1184 	if (count == 1) {
1185 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1186 		    blk_rq_payload_bytes(rq) <=
1187 				nvme_rdma_inline_data_size(queue))
1188 			return nvme_rdma_map_sg_inline(queue, req, c);
1189 
1190 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1191 			return nvme_rdma_map_sg_single(queue, req, c);
1192 	}
1193 
1194 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1195 }
1196 
1197 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1198 {
1199 	struct nvme_rdma_qe *qe =
1200 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1201 	struct nvme_rdma_request *req =
1202 		container_of(qe, struct nvme_rdma_request, sqe);
1203 	struct request *rq = blk_mq_rq_from_pdu(req);
1204 
1205 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1206 		nvme_rdma_wr_error(cq, wc, "SEND");
1207 		return;
1208 	}
1209 
1210 	if (refcount_dec_and_test(&req->ref))
1211 		nvme_end_request(rq, req->status, req->result);
1212 }
1213 
1214 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1215 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1216 		struct ib_send_wr *first)
1217 {
1218 	struct ib_send_wr wr, *bad_wr;
1219 	int ret;
1220 
1221 	sge->addr   = qe->dma;
1222 	sge->length = sizeof(struct nvme_command),
1223 	sge->lkey   = queue->device->pd->local_dma_lkey;
1224 
1225 	wr.next       = NULL;
1226 	wr.wr_cqe     = &qe->cqe;
1227 	wr.sg_list    = sge;
1228 	wr.num_sge    = num_sge;
1229 	wr.opcode     = IB_WR_SEND;
1230 	wr.send_flags = IB_SEND_SIGNALED;
1231 
1232 	if (first)
1233 		first->next = &wr;
1234 	else
1235 		first = &wr;
1236 
1237 	ret = ib_post_send(queue->qp, first, &bad_wr);
1238 	if (unlikely(ret)) {
1239 		dev_err(queue->ctrl->ctrl.device,
1240 			     "%s failed with error code %d\n", __func__, ret);
1241 	}
1242 	return ret;
1243 }
1244 
1245 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1246 		struct nvme_rdma_qe *qe)
1247 {
1248 	struct ib_recv_wr wr, *bad_wr;
1249 	struct ib_sge list;
1250 	int ret;
1251 
1252 	list.addr   = qe->dma;
1253 	list.length = sizeof(struct nvme_completion);
1254 	list.lkey   = queue->device->pd->local_dma_lkey;
1255 
1256 	qe->cqe.done = nvme_rdma_recv_done;
1257 
1258 	wr.next     = NULL;
1259 	wr.wr_cqe   = &qe->cqe;
1260 	wr.sg_list  = &list;
1261 	wr.num_sge  = 1;
1262 
1263 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1264 	if (unlikely(ret)) {
1265 		dev_err(queue->ctrl->ctrl.device,
1266 			"%s failed with error code %d\n", __func__, ret);
1267 	}
1268 	return ret;
1269 }
1270 
1271 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1272 {
1273 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1274 
1275 	if (queue_idx == 0)
1276 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1277 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1278 }
1279 
1280 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1281 {
1282 	if (unlikely(wc->status != IB_WC_SUCCESS))
1283 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1284 }
1285 
1286 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1287 {
1288 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1289 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1290 	struct ib_device *dev = queue->device->dev;
1291 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1292 	struct nvme_command *cmd = sqe->data;
1293 	struct ib_sge sge;
1294 	int ret;
1295 
1296 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1297 
1298 	memset(cmd, 0, sizeof(*cmd));
1299 	cmd->common.opcode = nvme_admin_async_event;
1300 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1301 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1302 	nvme_rdma_set_sg_null(cmd);
1303 
1304 	sqe->cqe.done = nvme_rdma_async_done;
1305 
1306 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1307 			DMA_TO_DEVICE);
1308 
1309 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1310 	WARN_ON_ONCE(ret);
1311 }
1312 
1313 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1314 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1315 {
1316 	struct request *rq;
1317 	struct nvme_rdma_request *req;
1318 	int ret = 0;
1319 
1320 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1321 	if (!rq) {
1322 		dev_err(queue->ctrl->ctrl.device,
1323 			"tag 0x%x on QP %#x not found\n",
1324 			cqe->command_id, queue->qp->qp_num);
1325 		nvme_rdma_error_recovery(queue->ctrl);
1326 		return ret;
1327 	}
1328 	req = blk_mq_rq_to_pdu(rq);
1329 
1330 	req->status = cqe->status;
1331 	req->result = cqe->result;
1332 
1333 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1334 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1335 			dev_err(queue->ctrl->ctrl.device,
1336 				"Bogus remote invalidation for rkey %#x\n",
1337 				req->mr->rkey);
1338 			nvme_rdma_error_recovery(queue->ctrl);
1339 		}
1340 	} else if (req->mr) {
1341 		ret = nvme_rdma_inv_rkey(queue, req);
1342 		if (unlikely(ret < 0)) {
1343 			dev_err(queue->ctrl->ctrl.device,
1344 				"Queueing INV WR for rkey %#x failed (%d)\n",
1345 				req->mr->rkey, ret);
1346 			nvme_rdma_error_recovery(queue->ctrl);
1347 		}
1348 		/* the local invalidation completion will end the request */
1349 		return 0;
1350 	}
1351 
1352 	if (refcount_dec_and_test(&req->ref)) {
1353 		if (rq->tag == tag)
1354 			ret = 1;
1355 		nvme_end_request(rq, req->status, req->result);
1356 	}
1357 
1358 	return ret;
1359 }
1360 
1361 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1362 {
1363 	struct nvme_rdma_qe *qe =
1364 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1365 	struct nvme_rdma_queue *queue = cq->cq_context;
1366 	struct ib_device *ibdev = queue->device->dev;
1367 	struct nvme_completion *cqe = qe->data;
1368 	const size_t len = sizeof(struct nvme_completion);
1369 	int ret = 0;
1370 
1371 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1372 		nvme_rdma_wr_error(cq, wc, "RECV");
1373 		return 0;
1374 	}
1375 
1376 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1377 	/*
1378 	 * AEN requests are special as they don't time out and can
1379 	 * survive any kind of queue freeze and often don't respond to
1380 	 * aborts.  We don't even bother to allocate a struct request
1381 	 * for them but rather special case them here.
1382 	 */
1383 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1384 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1385 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1386 				&cqe->result);
1387 	else
1388 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1389 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1390 
1391 	nvme_rdma_post_recv(queue, qe);
1392 	return ret;
1393 }
1394 
1395 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1396 {
1397 	__nvme_rdma_recv_done(cq, wc, -1);
1398 }
1399 
1400 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1401 {
1402 	int ret, i;
1403 
1404 	for (i = 0; i < queue->queue_size; i++) {
1405 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1406 		if (ret)
1407 			goto out_destroy_queue_ib;
1408 	}
1409 
1410 	return 0;
1411 
1412 out_destroy_queue_ib:
1413 	nvme_rdma_destroy_queue_ib(queue);
1414 	return ret;
1415 }
1416 
1417 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1418 		struct rdma_cm_event *ev)
1419 {
1420 	struct rdma_cm_id *cm_id = queue->cm_id;
1421 	int status = ev->status;
1422 	const char *rej_msg;
1423 	const struct nvme_rdma_cm_rej *rej_data;
1424 	u8 rej_data_len;
1425 
1426 	rej_msg = rdma_reject_msg(cm_id, status);
1427 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1428 
1429 	if (rej_data && rej_data_len >= sizeof(u16)) {
1430 		u16 sts = le16_to_cpu(rej_data->sts);
1431 
1432 		dev_err(queue->ctrl->ctrl.device,
1433 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1434 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1435 	} else {
1436 		dev_err(queue->ctrl->ctrl.device,
1437 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1438 	}
1439 
1440 	return -ECONNRESET;
1441 }
1442 
1443 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1444 {
1445 	int ret;
1446 
1447 	ret = nvme_rdma_create_queue_ib(queue);
1448 	if (ret)
1449 		return ret;
1450 
1451 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1452 	if (ret) {
1453 		dev_err(queue->ctrl->ctrl.device,
1454 			"rdma_resolve_route failed (%d).\n",
1455 			queue->cm_error);
1456 		goto out_destroy_queue;
1457 	}
1458 
1459 	return 0;
1460 
1461 out_destroy_queue:
1462 	nvme_rdma_destroy_queue_ib(queue);
1463 	return ret;
1464 }
1465 
1466 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1467 {
1468 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1469 	struct rdma_conn_param param = { };
1470 	struct nvme_rdma_cm_req priv = { };
1471 	int ret;
1472 
1473 	param.qp_num = queue->qp->qp_num;
1474 	param.flow_control = 1;
1475 
1476 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1477 	/* maximum retry count */
1478 	param.retry_count = 7;
1479 	param.rnr_retry_count = 7;
1480 	param.private_data = &priv;
1481 	param.private_data_len = sizeof(priv);
1482 
1483 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1484 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1485 	/*
1486 	 * set the admin queue depth to the minimum size
1487 	 * specified by the Fabrics standard.
1488 	 */
1489 	if (priv.qid == 0) {
1490 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1491 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1492 	} else {
1493 		/*
1494 		 * current interpretation of the fabrics spec
1495 		 * is at minimum you make hrqsize sqsize+1, or a
1496 		 * 1's based representation of sqsize.
1497 		 */
1498 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1499 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1500 	}
1501 
1502 	ret = rdma_connect(queue->cm_id, &param);
1503 	if (ret) {
1504 		dev_err(ctrl->ctrl.device,
1505 			"rdma_connect failed (%d).\n", ret);
1506 		goto out_destroy_queue_ib;
1507 	}
1508 
1509 	return 0;
1510 
1511 out_destroy_queue_ib:
1512 	nvme_rdma_destroy_queue_ib(queue);
1513 	return ret;
1514 }
1515 
1516 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1517 		struct rdma_cm_event *ev)
1518 {
1519 	struct nvme_rdma_queue *queue = cm_id->context;
1520 	int cm_error = 0;
1521 
1522 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1523 		rdma_event_msg(ev->event), ev->event,
1524 		ev->status, cm_id);
1525 
1526 	switch (ev->event) {
1527 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1528 		cm_error = nvme_rdma_addr_resolved(queue);
1529 		break;
1530 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1531 		cm_error = nvme_rdma_route_resolved(queue);
1532 		break;
1533 	case RDMA_CM_EVENT_ESTABLISHED:
1534 		queue->cm_error = nvme_rdma_conn_established(queue);
1535 		/* complete cm_done regardless of success/failure */
1536 		complete(&queue->cm_done);
1537 		return 0;
1538 	case RDMA_CM_EVENT_REJECTED:
1539 		nvme_rdma_destroy_queue_ib(queue);
1540 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1541 		break;
1542 	case RDMA_CM_EVENT_ROUTE_ERROR:
1543 	case RDMA_CM_EVENT_CONNECT_ERROR:
1544 	case RDMA_CM_EVENT_UNREACHABLE:
1545 		nvme_rdma_destroy_queue_ib(queue);
1546 	case RDMA_CM_EVENT_ADDR_ERROR:
1547 		dev_dbg(queue->ctrl->ctrl.device,
1548 			"CM error event %d\n", ev->event);
1549 		cm_error = -ECONNRESET;
1550 		break;
1551 	case RDMA_CM_EVENT_DISCONNECTED:
1552 	case RDMA_CM_EVENT_ADDR_CHANGE:
1553 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1554 		dev_dbg(queue->ctrl->ctrl.device,
1555 			"disconnect received - connection closed\n");
1556 		nvme_rdma_error_recovery(queue->ctrl);
1557 		break;
1558 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1559 		/* device removal is handled via the ib_client API */
1560 		break;
1561 	default:
1562 		dev_err(queue->ctrl->ctrl.device,
1563 			"Unexpected RDMA CM event (%d)\n", ev->event);
1564 		nvme_rdma_error_recovery(queue->ctrl);
1565 		break;
1566 	}
1567 
1568 	if (cm_error) {
1569 		queue->cm_error = cm_error;
1570 		complete(&queue->cm_done);
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static enum blk_eh_timer_return
1577 nvme_rdma_timeout(struct request *rq, bool reserved)
1578 {
1579 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1580 
1581 	dev_warn(req->queue->ctrl->ctrl.device,
1582 		 "I/O %d QID %d timeout, reset controller\n",
1583 		 rq->tag, nvme_rdma_queue_idx(req->queue));
1584 
1585 	/* queue error recovery */
1586 	nvme_rdma_error_recovery(req->queue->ctrl);
1587 
1588 	/* fail with DNR on cmd timeout */
1589 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1590 
1591 	return BLK_EH_HANDLED;
1592 }
1593 
1594 /*
1595  * We cannot accept any other command until the Connect command has completed.
1596  */
1597 static inline blk_status_t
1598 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1599 {
1600 	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
1601 		return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
1602 	return BLK_STS_OK;
1603 }
1604 
1605 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1606 		const struct blk_mq_queue_data *bd)
1607 {
1608 	struct nvme_ns *ns = hctx->queue->queuedata;
1609 	struct nvme_rdma_queue *queue = hctx->driver_data;
1610 	struct request *rq = bd->rq;
1611 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1612 	struct nvme_rdma_qe *sqe = &req->sqe;
1613 	struct nvme_command *c = sqe->data;
1614 	struct ib_device *dev;
1615 	blk_status_t ret;
1616 	int err;
1617 
1618 	WARN_ON_ONCE(rq->tag < 0);
1619 
1620 	ret = nvme_rdma_is_ready(queue, rq);
1621 	if (unlikely(ret))
1622 		return ret;
1623 
1624 	dev = queue->device->dev;
1625 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1626 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1627 
1628 	ret = nvme_setup_cmd(ns, rq, c);
1629 	if (ret)
1630 		return ret;
1631 
1632 	blk_mq_start_request(rq);
1633 
1634 	err = nvme_rdma_map_data(queue, rq, c);
1635 	if (unlikely(err < 0)) {
1636 		dev_err(queue->ctrl->ctrl.device,
1637 			     "Failed to map data (%d)\n", err);
1638 		nvme_cleanup_cmd(rq);
1639 		goto err;
1640 	}
1641 
1642 	sqe->cqe.done = nvme_rdma_send_done;
1643 
1644 	ib_dma_sync_single_for_device(dev, sqe->dma,
1645 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1646 
1647 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1648 			req->mr ? &req->reg_wr.wr : NULL);
1649 	if (unlikely(err)) {
1650 		nvme_rdma_unmap_data(queue, rq);
1651 		goto err;
1652 	}
1653 
1654 	return BLK_STS_OK;
1655 err:
1656 	if (err == -ENOMEM || err == -EAGAIN)
1657 		return BLK_STS_RESOURCE;
1658 	return BLK_STS_IOERR;
1659 }
1660 
1661 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1662 {
1663 	struct nvme_rdma_queue *queue = hctx->driver_data;
1664 	struct ib_cq *cq = queue->ib_cq;
1665 	struct ib_wc wc;
1666 	int found = 0;
1667 
1668 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1669 		struct ib_cqe *cqe = wc.wr_cqe;
1670 
1671 		if (cqe) {
1672 			if (cqe->done == nvme_rdma_recv_done)
1673 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1674 			else
1675 				cqe->done(cq, &wc);
1676 		}
1677 	}
1678 
1679 	return found;
1680 }
1681 
1682 static void nvme_rdma_complete_rq(struct request *rq)
1683 {
1684 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1685 
1686 	nvme_rdma_unmap_data(req->queue, rq);
1687 	nvme_complete_rq(rq);
1688 }
1689 
1690 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1691 {
1692 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1693 
1694 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1695 }
1696 
1697 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1698 	.queue_rq	= nvme_rdma_queue_rq,
1699 	.complete	= nvme_rdma_complete_rq,
1700 	.init_request	= nvme_rdma_init_request,
1701 	.exit_request	= nvme_rdma_exit_request,
1702 	.init_hctx	= nvme_rdma_init_hctx,
1703 	.poll		= nvme_rdma_poll,
1704 	.timeout	= nvme_rdma_timeout,
1705 	.map_queues	= nvme_rdma_map_queues,
1706 };
1707 
1708 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1709 	.queue_rq	= nvme_rdma_queue_rq,
1710 	.complete	= nvme_rdma_complete_rq,
1711 	.init_request	= nvme_rdma_init_request,
1712 	.exit_request	= nvme_rdma_exit_request,
1713 	.init_hctx	= nvme_rdma_init_admin_hctx,
1714 	.timeout	= nvme_rdma_timeout,
1715 };
1716 
1717 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1718 {
1719 	cancel_work_sync(&ctrl->err_work);
1720 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1721 
1722 	if (ctrl->ctrl.queue_count > 1) {
1723 		nvme_stop_queues(&ctrl->ctrl);
1724 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1725 					nvme_cancel_request, &ctrl->ctrl);
1726 		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1727 	}
1728 
1729 	if (shutdown)
1730 		nvme_shutdown_ctrl(&ctrl->ctrl);
1731 	else
1732 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1733 
1734 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1735 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1736 				nvme_cancel_request, &ctrl->ctrl);
1737 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1738 	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1739 }
1740 
1741 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1742 {
1743 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1744 }
1745 
1746 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1747 {
1748 	struct nvme_rdma_ctrl *ctrl =
1749 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1750 	int ret;
1751 	bool changed;
1752 
1753 	nvme_stop_ctrl(&ctrl->ctrl);
1754 	nvme_rdma_shutdown_ctrl(ctrl, false);
1755 
1756 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1757 	if (ret)
1758 		goto out_fail;
1759 
1760 	if (ctrl->ctrl.queue_count > 1) {
1761 		ret = nvme_rdma_configure_io_queues(ctrl, false);
1762 		if (ret)
1763 			goto out_fail;
1764 	}
1765 
1766 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1767 	if (!changed) {
1768 		/* state change failure is ok if we're in DELETING state */
1769 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1770 		return;
1771 	}
1772 
1773 	nvme_start_ctrl(&ctrl->ctrl);
1774 
1775 	return;
1776 
1777 out_fail:
1778 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1779 	nvme_remove_namespaces(&ctrl->ctrl);
1780 	nvme_rdma_shutdown_ctrl(ctrl, true);
1781 	nvme_uninit_ctrl(&ctrl->ctrl);
1782 	nvme_put_ctrl(&ctrl->ctrl);
1783 }
1784 
1785 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1786 	.name			= "rdma",
1787 	.module			= THIS_MODULE,
1788 	.flags			= NVME_F_FABRICS,
1789 	.reg_read32		= nvmf_reg_read32,
1790 	.reg_read64		= nvmf_reg_read64,
1791 	.reg_write32		= nvmf_reg_write32,
1792 	.free_ctrl		= nvme_rdma_free_ctrl,
1793 	.submit_async_event	= nvme_rdma_submit_async_event,
1794 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1795 	.get_address		= nvmf_get_address,
1796 };
1797 
1798 static inline bool
1799 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1800 	struct nvmf_ctrl_options *opts)
1801 {
1802 	char *stdport = __stringify(NVME_RDMA_IP_PORT);
1803 
1804 
1805 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1806 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1807 		return false;
1808 
1809 	if (opts->mask & NVMF_OPT_TRSVCID &&
1810 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1811 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1812 			return false;
1813 	} else if (opts->mask & NVMF_OPT_TRSVCID) {
1814 		if (strcmp(opts->trsvcid, stdport))
1815 			return false;
1816 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1817 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1818 			return false;
1819 	}
1820 	/* else, it's a match as both have stdport. Fall to next checks */
1821 
1822 	/*
1823 	 * checking the local address is rough. In most cases, one
1824 	 * is not specified and the host port is selected by the stack.
1825 	 *
1826 	 * Assume no match if:
1827 	 *  local address is specified and address is not the same
1828 	 *  local address is not specified but remote is, or vice versa
1829 	 *    (admin using specific host_traddr when it matters).
1830 	 */
1831 	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1832 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1833 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1834 			return false;
1835 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1836 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1837 		return false;
1838 	/*
1839 	 * if neither controller had an host port specified, assume it's
1840 	 * a match as everything else matched.
1841 	 */
1842 
1843 	return true;
1844 }
1845 
1846 /*
1847  * Fails a connection request if it matches an existing controller
1848  * (association) with the same tuple:
1849  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1850  *
1851  * if local address is not specified in the request, it will match an
1852  * existing controller with all the other parameters the same and no
1853  * local port address specified as well.
1854  *
1855  * The ports don't need to be compared as they are intrinsically
1856  * already matched by the port pointers supplied.
1857  */
1858 static bool
1859 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1860 {
1861 	struct nvme_rdma_ctrl *ctrl;
1862 	bool found = false;
1863 
1864 	mutex_lock(&nvme_rdma_ctrl_mutex);
1865 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1866 		found = __nvme_rdma_options_match(ctrl, opts);
1867 		if (found)
1868 			break;
1869 	}
1870 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1871 
1872 	return found;
1873 }
1874 
1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1876 		struct nvmf_ctrl_options *opts)
1877 {
1878 	struct nvme_rdma_ctrl *ctrl;
1879 	int ret;
1880 	bool changed;
1881 	char *port;
1882 
1883 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1884 	if (!ctrl)
1885 		return ERR_PTR(-ENOMEM);
1886 	ctrl->ctrl.opts = opts;
1887 	INIT_LIST_HEAD(&ctrl->list);
1888 
1889 	if (opts->mask & NVMF_OPT_TRSVCID)
1890 		port = opts->trsvcid;
1891 	else
1892 		port = __stringify(NVME_RDMA_IP_PORT);
1893 
1894 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1895 			opts->traddr, port, &ctrl->addr);
1896 	if (ret) {
1897 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1898 		goto out_free_ctrl;
1899 	}
1900 
1901 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1902 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1903 			opts->host_traddr, NULL, &ctrl->src_addr);
1904 		if (ret) {
1905 			pr_err("malformed src address passed: %s\n",
1906 			       opts->host_traddr);
1907 			goto out_free_ctrl;
1908 		}
1909 	}
1910 
1911 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1912 		ret = -EALREADY;
1913 		goto out_free_ctrl;
1914 	}
1915 
1916 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1917 				0 /* no quirks, we're perfect! */);
1918 	if (ret)
1919 		goto out_free_ctrl;
1920 
1921 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1922 			nvme_rdma_reconnect_ctrl_work);
1923 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1924 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1925 
1926 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1927 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1928 	ctrl->ctrl.kato = opts->kato;
1929 
1930 	ret = -ENOMEM;
1931 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1932 				GFP_KERNEL);
1933 	if (!ctrl->queues)
1934 		goto out_uninit_ctrl;
1935 
1936 	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1937 	if (ret)
1938 		goto out_kfree_queues;
1939 
1940 	/* sanity check icdoff */
1941 	if (ctrl->ctrl.icdoff) {
1942 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1943 		ret = -EINVAL;
1944 		goto out_remove_admin_queue;
1945 	}
1946 
1947 	/* sanity check keyed sgls */
1948 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1949 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1950 		ret = -EINVAL;
1951 		goto out_remove_admin_queue;
1952 	}
1953 
1954 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1955 		/* warn if maxcmd is lower than queue_size */
1956 		dev_warn(ctrl->ctrl.device,
1957 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1958 			opts->queue_size, ctrl->ctrl.maxcmd);
1959 		opts->queue_size = ctrl->ctrl.maxcmd;
1960 	}
1961 
1962 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1963 		/* warn if sqsize is lower than queue_size */
1964 		dev_warn(ctrl->ctrl.device,
1965 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1966 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1967 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1968 	}
1969 
1970 	if (opts->nr_io_queues) {
1971 		ret = nvme_rdma_configure_io_queues(ctrl, true);
1972 		if (ret)
1973 			goto out_remove_admin_queue;
1974 	}
1975 
1976 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1977 	WARN_ON_ONCE(!changed);
1978 
1979 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1980 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1981 
1982 	nvme_get_ctrl(&ctrl->ctrl);
1983 
1984 	mutex_lock(&nvme_rdma_ctrl_mutex);
1985 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1986 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1987 
1988 	nvme_start_ctrl(&ctrl->ctrl);
1989 
1990 	return &ctrl->ctrl;
1991 
1992 out_remove_admin_queue:
1993 	nvme_rdma_destroy_admin_queue(ctrl, true);
1994 out_kfree_queues:
1995 	kfree(ctrl->queues);
1996 out_uninit_ctrl:
1997 	nvme_uninit_ctrl(&ctrl->ctrl);
1998 	nvme_put_ctrl(&ctrl->ctrl);
1999 	if (ret > 0)
2000 		ret = -EIO;
2001 	return ERR_PTR(ret);
2002 out_free_ctrl:
2003 	kfree(ctrl);
2004 	return ERR_PTR(ret);
2005 }
2006 
2007 static struct nvmf_transport_ops nvme_rdma_transport = {
2008 	.name		= "rdma",
2009 	.required_opts	= NVMF_OPT_TRADDR,
2010 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2011 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2012 	.create_ctrl	= nvme_rdma_create_ctrl,
2013 };
2014 
2015 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2016 {
2017 	struct nvme_rdma_ctrl *ctrl;
2018 
2019 	/* Delete all controllers using this device */
2020 	mutex_lock(&nvme_rdma_ctrl_mutex);
2021 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2022 		if (ctrl->device->dev != ib_device)
2023 			continue;
2024 		dev_info(ctrl->ctrl.device,
2025 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
2026 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2027 		nvme_delete_ctrl(&ctrl->ctrl);
2028 	}
2029 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2030 
2031 	flush_workqueue(nvme_wq);
2032 }
2033 
2034 static struct ib_client nvme_rdma_ib_client = {
2035 	.name   = "nvme_rdma",
2036 	.remove = nvme_rdma_remove_one
2037 };
2038 
2039 static int __init nvme_rdma_init_module(void)
2040 {
2041 	int ret;
2042 
2043 	ret = ib_register_client(&nvme_rdma_ib_client);
2044 	if (ret)
2045 		return ret;
2046 
2047 	ret = nvmf_register_transport(&nvme_rdma_transport);
2048 	if (ret)
2049 		goto err_unreg_client;
2050 
2051 	return 0;
2052 
2053 err_unreg_client:
2054 	ib_unregister_client(&nvme_rdma_ib_client);
2055 	return ret;
2056 }
2057 
2058 static void __exit nvme_rdma_cleanup_module(void)
2059 {
2060 	nvmf_unregister_transport(&nvme_rdma_transport);
2061 	ib_unregister_client(&nvme_rdma_ib_client);
2062 }
2063 
2064 module_init(nvme_rdma_init_module);
2065 module_exit(nvme_rdma_cleanup_module);
2066 
2067 MODULE_LICENSE("GPL v2");
2068