1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 }; 51 52 struct nvme_rdma_qe { 53 struct ib_cqe cqe; 54 void *data; 55 u64 dma; 56 }; 57 58 struct nvme_rdma_queue; 59 struct nvme_rdma_request { 60 struct nvme_request req; 61 struct ib_mr *mr; 62 struct nvme_rdma_qe sqe; 63 union nvme_result result; 64 __le16 status; 65 refcount_t ref; 66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 67 u32 num_sge; 68 int nents; 69 bool inline_data; 70 struct ib_reg_wr reg_wr; 71 struct ib_cqe reg_cqe; 72 struct nvme_rdma_queue *queue; 73 struct sg_table sg_table; 74 struct scatterlist first_sgl[]; 75 }; 76 77 enum nvme_rdma_queue_flags { 78 NVME_RDMA_Q_ALLOCATED = 0, 79 NVME_RDMA_Q_LIVE = 1, 80 NVME_RDMA_Q_TR_READY = 2, 81 }; 82 83 struct nvme_rdma_queue { 84 struct nvme_rdma_qe *rsp_ring; 85 int queue_size; 86 size_t cmnd_capsule_len; 87 struct nvme_rdma_ctrl *ctrl; 88 struct nvme_rdma_device *device; 89 struct ib_cq *ib_cq; 90 struct ib_qp *qp; 91 92 unsigned long flags; 93 struct rdma_cm_id *cm_id; 94 int cm_error; 95 struct completion cm_done; 96 }; 97 98 struct nvme_rdma_ctrl { 99 /* read only in the hot path */ 100 struct nvme_rdma_queue *queues; 101 102 /* other member variables */ 103 struct blk_mq_tag_set tag_set; 104 struct work_struct err_work; 105 106 struct nvme_rdma_qe async_event_sqe; 107 108 struct delayed_work reconnect_work; 109 110 struct list_head list; 111 112 struct blk_mq_tag_set admin_tag_set; 113 struct nvme_rdma_device *device; 114 115 u32 max_fr_pages; 116 117 struct sockaddr_storage addr; 118 struct sockaddr_storage src_addr; 119 120 struct nvme_ctrl ctrl; 121 }; 122 123 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 124 { 125 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 126 } 127 128 static LIST_HEAD(device_list); 129 static DEFINE_MUTEX(device_list_mutex); 130 131 static LIST_HEAD(nvme_rdma_ctrl_list); 132 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 133 134 /* 135 * Disabling this option makes small I/O goes faster, but is fundamentally 136 * unsafe. With it turned off we will have to register a global rkey that 137 * allows read and write access to all physical memory. 138 */ 139 static bool register_always = true; 140 module_param(register_always, bool, 0444); 141 MODULE_PARM_DESC(register_always, 142 "Use memory registration even for contiguous memory regions"); 143 144 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 145 struct rdma_cm_event *event); 146 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 147 148 static const struct blk_mq_ops nvme_rdma_mq_ops; 149 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 150 151 /* XXX: really should move to a generic header sooner or later.. */ 152 static inline void put_unaligned_le24(u32 val, u8 *p) 153 { 154 *p++ = val; 155 *p++ = val >> 8; 156 *p++ = val >> 16; 157 } 158 159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 160 { 161 return queue - queue->ctrl->queues; 162 } 163 164 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 165 { 166 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 167 } 168 169 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 170 size_t capsule_size, enum dma_data_direction dir) 171 { 172 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 173 kfree(qe->data); 174 } 175 176 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 177 size_t capsule_size, enum dma_data_direction dir) 178 { 179 qe->data = kzalloc(capsule_size, GFP_KERNEL); 180 if (!qe->data) 181 return -ENOMEM; 182 183 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 184 if (ib_dma_mapping_error(ibdev, qe->dma)) { 185 kfree(qe->data); 186 return -ENOMEM; 187 } 188 189 return 0; 190 } 191 192 static void nvme_rdma_free_ring(struct ib_device *ibdev, 193 struct nvme_rdma_qe *ring, size_t ib_queue_size, 194 size_t capsule_size, enum dma_data_direction dir) 195 { 196 int i; 197 198 for (i = 0; i < ib_queue_size; i++) 199 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 200 kfree(ring); 201 } 202 203 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 204 size_t ib_queue_size, size_t capsule_size, 205 enum dma_data_direction dir) 206 { 207 struct nvme_rdma_qe *ring; 208 int i; 209 210 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 211 if (!ring) 212 return NULL; 213 214 for (i = 0; i < ib_queue_size; i++) { 215 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 216 goto out_free_ring; 217 } 218 219 return ring; 220 221 out_free_ring: 222 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 223 return NULL; 224 } 225 226 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 227 { 228 pr_debug("QP event %s (%d)\n", 229 ib_event_msg(event->event), event->event); 230 231 } 232 233 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 234 { 235 wait_for_completion_interruptible_timeout(&queue->cm_done, 236 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 237 return queue->cm_error; 238 } 239 240 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 241 { 242 struct nvme_rdma_device *dev = queue->device; 243 struct ib_qp_init_attr init_attr; 244 int ret; 245 246 memset(&init_attr, 0, sizeof(init_attr)); 247 init_attr.event_handler = nvme_rdma_qp_event; 248 /* +1 for drain */ 249 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 250 /* +1 for drain */ 251 init_attr.cap.max_recv_wr = queue->queue_size + 1; 252 init_attr.cap.max_recv_sge = 1; 253 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 254 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 255 init_attr.qp_type = IB_QPT_RC; 256 init_attr.send_cq = queue->ib_cq; 257 init_attr.recv_cq = queue->ib_cq; 258 259 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 260 261 queue->qp = queue->cm_id->qp; 262 return ret; 263 } 264 265 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 266 struct request *rq, unsigned int hctx_idx) 267 { 268 struct nvme_rdma_ctrl *ctrl = set->driver_data; 269 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 270 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 271 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 272 struct nvme_rdma_device *dev = queue->device; 273 274 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 275 DMA_TO_DEVICE); 276 } 277 278 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 279 struct request *rq, unsigned int hctx_idx, 280 unsigned int numa_node) 281 { 282 struct nvme_rdma_ctrl *ctrl = set->driver_data; 283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 284 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 285 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 286 struct nvme_rdma_device *dev = queue->device; 287 struct ib_device *ibdev = dev->dev; 288 int ret; 289 290 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 291 DMA_TO_DEVICE); 292 if (ret) 293 return ret; 294 295 req->queue = queue; 296 297 return 0; 298 } 299 300 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 301 unsigned int hctx_idx) 302 { 303 struct nvme_rdma_ctrl *ctrl = data; 304 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 305 306 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 307 308 hctx->driver_data = queue; 309 return 0; 310 } 311 312 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 313 unsigned int hctx_idx) 314 { 315 struct nvme_rdma_ctrl *ctrl = data; 316 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 317 318 BUG_ON(hctx_idx != 0); 319 320 hctx->driver_data = queue; 321 return 0; 322 } 323 324 static void nvme_rdma_free_dev(struct kref *ref) 325 { 326 struct nvme_rdma_device *ndev = 327 container_of(ref, struct nvme_rdma_device, ref); 328 329 mutex_lock(&device_list_mutex); 330 list_del(&ndev->entry); 331 mutex_unlock(&device_list_mutex); 332 333 ib_dealloc_pd(ndev->pd); 334 kfree(ndev); 335 } 336 337 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 338 { 339 kref_put(&dev->ref, nvme_rdma_free_dev); 340 } 341 342 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 343 { 344 return kref_get_unless_zero(&dev->ref); 345 } 346 347 static struct nvme_rdma_device * 348 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 349 { 350 struct nvme_rdma_device *ndev; 351 352 mutex_lock(&device_list_mutex); 353 list_for_each_entry(ndev, &device_list, entry) { 354 if (ndev->dev->node_guid == cm_id->device->node_guid && 355 nvme_rdma_dev_get(ndev)) 356 goto out_unlock; 357 } 358 359 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 360 if (!ndev) 361 goto out_err; 362 363 ndev->dev = cm_id->device; 364 kref_init(&ndev->ref); 365 366 ndev->pd = ib_alloc_pd(ndev->dev, 367 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 368 if (IS_ERR(ndev->pd)) 369 goto out_free_dev; 370 371 if (!(ndev->dev->attrs.device_cap_flags & 372 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 373 dev_err(&ndev->dev->dev, 374 "Memory registrations not supported.\n"); 375 goto out_free_pd; 376 } 377 378 list_add(&ndev->entry, &device_list); 379 out_unlock: 380 mutex_unlock(&device_list_mutex); 381 return ndev; 382 383 out_free_pd: 384 ib_dealloc_pd(ndev->pd); 385 out_free_dev: 386 kfree(ndev); 387 out_err: 388 mutex_unlock(&device_list_mutex); 389 return NULL; 390 } 391 392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 393 { 394 struct nvme_rdma_device *dev; 395 struct ib_device *ibdev; 396 397 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 398 return; 399 400 dev = queue->device; 401 ibdev = dev->dev; 402 403 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 404 405 /* 406 * The cm_id object might have been destroyed during RDMA connection 407 * establishment error flow to avoid getting other cma events, thus 408 * the destruction of the QP shouldn't use rdma_cm API. 409 */ 410 ib_destroy_qp(queue->qp); 411 ib_free_cq(queue->ib_cq); 412 413 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 414 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 415 416 nvme_rdma_dev_put(dev); 417 } 418 419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 420 { 421 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 422 ibdev->attrs.max_fast_reg_page_list_len); 423 } 424 425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 426 { 427 struct ib_device *ibdev; 428 const int send_wr_factor = 3; /* MR, SEND, INV */ 429 const int cq_factor = send_wr_factor + 1; /* + RECV */ 430 int comp_vector, idx = nvme_rdma_queue_idx(queue); 431 int ret; 432 433 queue->device = nvme_rdma_find_get_device(queue->cm_id); 434 if (!queue->device) { 435 dev_err(queue->cm_id->device->dev.parent, 436 "no client data found!\n"); 437 return -ECONNREFUSED; 438 } 439 ibdev = queue->device->dev; 440 441 /* 442 * Spread I/O queues completion vectors according their queue index. 443 * Admin queues can always go on completion vector 0. 444 */ 445 comp_vector = idx == 0 ? idx : idx - 1; 446 447 /* +1 for ib_stop_cq */ 448 queue->ib_cq = ib_alloc_cq(ibdev, queue, 449 cq_factor * queue->queue_size + 1, 450 comp_vector, IB_POLL_SOFTIRQ); 451 if (IS_ERR(queue->ib_cq)) { 452 ret = PTR_ERR(queue->ib_cq); 453 goto out_put_dev; 454 } 455 456 ret = nvme_rdma_create_qp(queue, send_wr_factor); 457 if (ret) 458 goto out_destroy_ib_cq; 459 460 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 461 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 462 if (!queue->rsp_ring) { 463 ret = -ENOMEM; 464 goto out_destroy_qp; 465 } 466 467 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 468 queue->queue_size, 469 IB_MR_TYPE_MEM_REG, 470 nvme_rdma_get_max_fr_pages(ibdev)); 471 if (ret) { 472 dev_err(queue->ctrl->ctrl.device, 473 "failed to initialize MR pool sized %d for QID %d\n", 474 queue->queue_size, idx); 475 goto out_destroy_ring; 476 } 477 478 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 479 480 return 0; 481 482 out_destroy_ring: 483 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 484 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 485 out_destroy_qp: 486 rdma_destroy_qp(queue->cm_id); 487 out_destroy_ib_cq: 488 ib_free_cq(queue->ib_cq); 489 out_put_dev: 490 nvme_rdma_dev_put(queue->device); 491 return ret; 492 } 493 494 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 495 int idx, size_t queue_size) 496 { 497 struct nvme_rdma_queue *queue; 498 struct sockaddr *src_addr = NULL; 499 int ret; 500 501 queue = &ctrl->queues[idx]; 502 queue->ctrl = ctrl; 503 init_completion(&queue->cm_done); 504 505 if (idx > 0) 506 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 507 else 508 queue->cmnd_capsule_len = sizeof(struct nvme_command); 509 510 queue->queue_size = queue_size; 511 512 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 513 RDMA_PS_TCP, IB_QPT_RC); 514 if (IS_ERR(queue->cm_id)) { 515 dev_info(ctrl->ctrl.device, 516 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 517 return PTR_ERR(queue->cm_id); 518 } 519 520 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 521 src_addr = (struct sockaddr *)&ctrl->src_addr; 522 523 queue->cm_error = -ETIMEDOUT; 524 ret = rdma_resolve_addr(queue->cm_id, src_addr, 525 (struct sockaddr *)&ctrl->addr, 526 NVME_RDMA_CONNECT_TIMEOUT_MS); 527 if (ret) { 528 dev_info(ctrl->ctrl.device, 529 "rdma_resolve_addr failed (%d).\n", ret); 530 goto out_destroy_cm_id; 531 } 532 533 ret = nvme_rdma_wait_for_cm(queue); 534 if (ret) { 535 dev_info(ctrl->ctrl.device, 536 "rdma connection establishment failed (%d)\n", ret); 537 goto out_destroy_cm_id; 538 } 539 540 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 541 542 return 0; 543 544 out_destroy_cm_id: 545 rdma_destroy_id(queue->cm_id); 546 nvme_rdma_destroy_queue_ib(queue); 547 return ret; 548 } 549 550 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 551 { 552 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 553 return; 554 555 rdma_disconnect(queue->cm_id); 556 ib_drain_qp(queue->qp); 557 } 558 559 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 560 { 561 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 562 return; 563 564 if (nvme_rdma_queue_idx(queue) == 0) { 565 nvme_rdma_free_qe(queue->device->dev, 566 &queue->ctrl->async_event_sqe, 567 sizeof(struct nvme_command), DMA_TO_DEVICE); 568 } 569 570 nvme_rdma_destroy_queue_ib(queue); 571 rdma_destroy_id(queue->cm_id); 572 } 573 574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 575 { 576 int i; 577 578 for (i = 1; i < ctrl->ctrl.queue_count; i++) 579 nvme_rdma_free_queue(&ctrl->queues[i]); 580 } 581 582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 583 { 584 int i; 585 586 for (i = 1; i < ctrl->ctrl.queue_count; i++) 587 nvme_rdma_stop_queue(&ctrl->queues[i]); 588 } 589 590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 591 { 592 int ret; 593 594 if (idx) 595 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 596 else 597 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 598 599 if (!ret) 600 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 601 else 602 dev_info(ctrl->ctrl.device, 603 "failed to connect queue: %d ret=%d\n", idx, ret); 604 return ret; 605 } 606 607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 608 { 609 int i, ret = 0; 610 611 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 612 ret = nvme_rdma_start_queue(ctrl, i); 613 if (ret) 614 goto out_stop_queues; 615 } 616 617 return 0; 618 619 out_stop_queues: 620 for (i--; i >= 1; i--) 621 nvme_rdma_stop_queue(&ctrl->queues[i]); 622 return ret; 623 } 624 625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 626 { 627 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 628 struct ib_device *ibdev = ctrl->device->dev; 629 unsigned int nr_io_queues; 630 int i, ret; 631 632 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 633 634 /* 635 * we map queues according to the device irq vectors for 636 * optimal locality so we don't need more queues than 637 * completion vectors. 638 */ 639 nr_io_queues = min_t(unsigned int, nr_io_queues, 640 ibdev->num_comp_vectors); 641 642 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 643 if (ret) 644 return ret; 645 646 ctrl->ctrl.queue_count = nr_io_queues + 1; 647 if (ctrl->ctrl.queue_count < 2) 648 return 0; 649 650 dev_info(ctrl->ctrl.device, 651 "creating %d I/O queues.\n", nr_io_queues); 652 653 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 654 ret = nvme_rdma_alloc_queue(ctrl, i, 655 ctrl->ctrl.sqsize + 1); 656 if (ret) 657 goto out_free_queues; 658 } 659 660 return 0; 661 662 out_free_queues: 663 for (i--; i >= 1; i--) 664 nvme_rdma_free_queue(&ctrl->queues[i]); 665 666 return ret; 667 } 668 669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 670 struct blk_mq_tag_set *set) 671 { 672 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 673 674 blk_mq_free_tag_set(set); 675 nvme_rdma_dev_put(ctrl->device); 676 } 677 678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 679 bool admin) 680 { 681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 682 struct blk_mq_tag_set *set; 683 int ret; 684 685 if (admin) { 686 set = &ctrl->admin_tag_set; 687 memset(set, 0, sizeof(*set)); 688 set->ops = &nvme_rdma_admin_mq_ops; 689 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 690 set->reserved_tags = 2; /* connect + keep-alive */ 691 set->numa_node = NUMA_NO_NODE; 692 set->cmd_size = sizeof(struct nvme_rdma_request) + 693 SG_CHUNK_SIZE * sizeof(struct scatterlist); 694 set->driver_data = ctrl; 695 set->nr_hw_queues = 1; 696 set->timeout = ADMIN_TIMEOUT; 697 set->flags = BLK_MQ_F_NO_SCHED; 698 } else { 699 set = &ctrl->tag_set; 700 memset(set, 0, sizeof(*set)); 701 set->ops = &nvme_rdma_mq_ops; 702 set->queue_depth = nctrl->opts->queue_size; 703 set->reserved_tags = 1; /* fabric connect */ 704 set->numa_node = NUMA_NO_NODE; 705 set->flags = BLK_MQ_F_SHOULD_MERGE; 706 set->cmd_size = sizeof(struct nvme_rdma_request) + 707 SG_CHUNK_SIZE * sizeof(struct scatterlist); 708 set->driver_data = ctrl; 709 set->nr_hw_queues = nctrl->queue_count - 1; 710 set->timeout = NVME_IO_TIMEOUT; 711 } 712 713 ret = blk_mq_alloc_tag_set(set); 714 if (ret) 715 goto out; 716 717 /* 718 * We need a reference on the device as long as the tag_set is alive, 719 * as the MRs in the request structures need a valid ib_device. 720 */ 721 ret = nvme_rdma_dev_get(ctrl->device); 722 if (!ret) { 723 ret = -EINVAL; 724 goto out_free_tagset; 725 } 726 727 return set; 728 729 out_free_tagset: 730 blk_mq_free_tag_set(set); 731 out: 732 return ERR_PTR(ret); 733 } 734 735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 736 bool remove) 737 { 738 nvme_rdma_stop_queue(&ctrl->queues[0]); 739 if (remove) { 740 blk_cleanup_queue(ctrl->ctrl.admin_q); 741 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 742 } 743 nvme_rdma_free_queue(&ctrl->queues[0]); 744 } 745 746 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 747 bool new) 748 { 749 int error; 750 751 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 752 if (error) 753 return error; 754 755 ctrl->device = ctrl->queues[0].device; 756 757 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 758 759 if (new) { 760 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 761 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 762 error = PTR_ERR(ctrl->ctrl.admin_tagset); 763 goto out_free_queue; 764 } 765 766 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 767 if (IS_ERR(ctrl->ctrl.admin_q)) { 768 error = PTR_ERR(ctrl->ctrl.admin_q); 769 goto out_free_tagset; 770 } 771 } 772 773 error = nvme_rdma_start_queue(ctrl, 0); 774 if (error) 775 goto out_cleanup_queue; 776 777 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 778 &ctrl->ctrl.cap); 779 if (error) { 780 dev_err(ctrl->ctrl.device, 781 "prop_get NVME_REG_CAP failed\n"); 782 goto out_cleanup_queue; 783 } 784 785 ctrl->ctrl.sqsize = 786 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 787 788 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 789 if (error) 790 goto out_cleanup_queue; 791 792 ctrl->ctrl.max_hw_sectors = 793 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 794 795 error = nvme_init_identify(&ctrl->ctrl); 796 if (error) 797 goto out_cleanup_queue; 798 799 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 800 &ctrl->async_event_sqe, sizeof(struct nvme_command), 801 DMA_TO_DEVICE); 802 if (error) 803 goto out_cleanup_queue; 804 805 return 0; 806 807 out_cleanup_queue: 808 if (new) 809 blk_cleanup_queue(ctrl->ctrl.admin_q); 810 out_free_tagset: 811 if (new) 812 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 813 out_free_queue: 814 nvme_rdma_free_queue(&ctrl->queues[0]); 815 return error; 816 } 817 818 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 819 bool remove) 820 { 821 nvme_rdma_stop_io_queues(ctrl); 822 if (remove) { 823 blk_cleanup_queue(ctrl->ctrl.connect_q); 824 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 825 } 826 nvme_rdma_free_io_queues(ctrl); 827 } 828 829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 830 { 831 int ret; 832 833 ret = nvme_rdma_alloc_io_queues(ctrl); 834 if (ret) 835 return ret; 836 837 if (new) { 838 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 839 if (IS_ERR(ctrl->ctrl.tagset)) { 840 ret = PTR_ERR(ctrl->ctrl.tagset); 841 goto out_free_io_queues; 842 } 843 844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 845 if (IS_ERR(ctrl->ctrl.connect_q)) { 846 ret = PTR_ERR(ctrl->ctrl.connect_q); 847 goto out_free_tag_set; 848 } 849 } else { 850 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 851 ctrl->ctrl.queue_count - 1); 852 } 853 854 ret = nvme_rdma_start_io_queues(ctrl); 855 if (ret) 856 goto out_cleanup_connect_q; 857 858 return 0; 859 860 out_cleanup_connect_q: 861 if (new) 862 blk_cleanup_queue(ctrl->ctrl.connect_q); 863 out_free_tag_set: 864 if (new) 865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 866 out_free_io_queues: 867 nvme_rdma_free_io_queues(ctrl); 868 return ret; 869 } 870 871 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 872 { 873 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 874 875 if (list_empty(&ctrl->list)) 876 goto free_ctrl; 877 878 mutex_lock(&nvme_rdma_ctrl_mutex); 879 list_del(&ctrl->list); 880 mutex_unlock(&nvme_rdma_ctrl_mutex); 881 882 kfree(ctrl->queues); 883 nvmf_free_options(nctrl->opts); 884 free_ctrl: 885 kfree(ctrl); 886 } 887 888 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 889 { 890 /* If we are resetting/deleting then do nothing */ 891 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 892 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 893 ctrl->ctrl.state == NVME_CTRL_LIVE); 894 return; 895 } 896 897 if (nvmf_should_reconnect(&ctrl->ctrl)) { 898 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 899 ctrl->ctrl.opts->reconnect_delay); 900 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 901 ctrl->ctrl.opts->reconnect_delay * HZ); 902 } else { 903 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 904 nvme_delete_ctrl(&ctrl->ctrl); 905 } 906 } 907 908 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 909 { 910 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 911 struct nvme_rdma_ctrl, reconnect_work); 912 bool changed; 913 int ret; 914 915 ++ctrl->ctrl.nr_reconnects; 916 917 ret = nvme_rdma_configure_admin_queue(ctrl, false); 918 if (ret) 919 goto requeue; 920 921 if (ctrl->ctrl.queue_count > 1) { 922 ret = nvme_rdma_configure_io_queues(ctrl, false); 923 if (ret) 924 goto destroy_admin; 925 } 926 927 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 928 if (!changed) { 929 /* state change failure is ok if we're in DELETING state */ 930 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 931 return; 932 } 933 934 nvme_start_ctrl(&ctrl->ctrl); 935 936 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 937 ctrl->ctrl.nr_reconnects); 938 939 ctrl->ctrl.nr_reconnects = 0; 940 941 return; 942 943 destroy_admin: 944 nvme_rdma_destroy_admin_queue(ctrl, false); 945 requeue: 946 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 947 ctrl->ctrl.nr_reconnects); 948 nvme_rdma_reconnect_or_remove(ctrl); 949 } 950 951 static void nvme_rdma_error_recovery_work(struct work_struct *work) 952 { 953 struct nvme_rdma_ctrl *ctrl = container_of(work, 954 struct nvme_rdma_ctrl, err_work); 955 956 nvme_stop_keep_alive(&ctrl->ctrl); 957 958 if (ctrl->ctrl.queue_count > 1) { 959 nvme_stop_queues(&ctrl->ctrl); 960 blk_mq_tagset_busy_iter(&ctrl->tag_set, 961 nvme_cancel_request, &ctrl->ctrl); 962 nvme_rdma_destroy_io_queues(ctrl, false); 963 } 964 965 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 966 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 967 nvme_cancel_request, &ctrl->ctrl); 968 nvme_rdma_destroy_admin_queue(ctrl, false); 969 970 /* 971 * queues are not a live anymore, so restart the queues to fail fast 972 * new IO 973 */ 974 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 975 nvme_start_queues(&ctrl->ctrl); 976 977 nvme_rdma_reconnect_or_remove(ctrl); 978 } 979 980 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 981 { 982 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 983 return; 984 985 queue_work(nvme_wq, &ctrl->err_work); 986 } 987 988 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 989 const char *op) 990 { 991 struct nvme_rdma_queue *queue = cq->cq_context; 992 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 993 994 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 995 dev_info(ctrl->ctrl.device, 996 "%s for CQE 0x%p failed with status %s (%d)\n", 997 op, wc->wr_cqe, 998 ib_wc_status_msg(wc->status), wc->status); 999 nvme_rdma_error_recovery(ctrl); 1000 } 1001 1002 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1003 { 1004 if (unlikely(wc->status != IB_WC_SUCCESS)) 1005 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1006 } 1007 1008 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1009 { 1010 struct nvme_rdma_request *req = 1011 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1012 struct request *rq = blk_mq_rq_from_pdu(req); 1013 1014 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1015 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1016 return; 1017 } 1018 1019 if (refcount_dec_and_test(&req->ref)) 1020 nvme_end_request(rq, req->status, req->result); 1021 1022 } 1023 1024 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1025 struct nvme_rdma_request *req) 1026 { 1027 struct ib_send_wr *bad_wr; 1028 struct ib_send_wr wr = { 1029 .opcode = IB_WR_LOCAL_INV, 1030 .next = NULL, 1031 .num_sge = 0, 1032 .send_flags = IB_SEND_SIGNALED, 1033 .ex.invalidate_rkey = req->mr->rkey, 1034 }; 1035 1036 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1037 wr.wr_cqe = &req->reg_cqe; 1038 1039 return ib_post_send(queue->qp, &wr, &bad_wr); 1040 } 1041 1042 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1043 struct request *rq) 1044 { 1045 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1046 struct nvme_rdma_device *dev = queue->device; 1047 struct ib_device *ibdev = dev->dev; 1048 1049 if (!blk_rq_bytes(rq)) 1050 return; 1051 1052 if (req->mr) { 1053 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1054 req->mr = NULL; 1055 } 1056 1057 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1058 req->nents, rq_data_dir(rq) == 1059 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1060 1061 nvme_cleanup_cmd(rq); 1062 sg_free_table_chained(&req->sg_table, true); 1063 } 1064 1065 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1066 { 1067 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1068 1069 sg->addr = 0; 1070 put_unaligned_le24(0, sg->length); 1071 put_unaligned_le32(0, sg->key); 1072 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1073 return 0; 1074 } 1075 1076 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1077 struct nvme_rdma_request *req, struct nvme_command *c) 1078 { 1079 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1080 1081 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1082 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1083 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1084 1085 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1086 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1087 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1088 1089 req->inline_data = true; 1090 req->num_sge++; 1091 return 0; 1092 } 1093 1094 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1095 struct nvme_rdma_request *req, struct nvme_command *c) 1096 { 1097 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1098 1099 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1100 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1101 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1102 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1103 return 0; 1104 } 1105 1106 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1107 struct nvme_rdma_request *req, struct nvme_command *c, 1108 int count) 1109 { 1110 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1111 int nr; 1112 1113 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1114 if (WARN_ON_ONCE(!req->mr)) 1115 return -EAGAIN; 1116 1117 /* 1118 * Align the MR to a 4K page size to match the ctrl page size and 1119 * the block virtual boundary. 1120 */ 1121 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1122 if (unlikely(nr < count)) { 1123 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1124 req->mr = NULL; 1125 if (nr < 0) 1126 return nr; 1127 return -EINVAL; 1128 } 1129 1130 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1131 1132 req->reg_cqe.done = nvme_rdma_memreg_done; 1133 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1134 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1135 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1136 req->reg_wr.wr.num_sge = 0; 1137 req->reg_wr.mr = req->mr; 1138 req->reg_wr.key = req->mr->rkey; 1139 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1140 IB_ACCESS_REMOTE_READ | 1141 IB_ACCESS_REMOTE_WRITE; 1142 1143 sg->addr = cpu_to_le64(req->mr->iova); 1144 put_unaligned_le24(req->mr->length, sg->length); 1145 put_unaligned_le32(req->mr->rkey, sg->key); 1146 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1147 NVME_SGL_FMT_INVALIDATE; 1148 1149 return 0; 1150 } 1151 1152 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1153 struct request *rq, struct nvme_command *c) 1154 { 1155 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1156 struct nvme_rdma_device *dev = queue->device; 1157 struct ib_device *ibdev = dev->dev; 1158 int count, ret; 1159 1160 req->num_sge = 1; 1161 req->inline_data = false; 1162 refcount_set(&req->ref, 2); /* send and recv completions */ 1163 1164 c->common.flags |= NVME_CMD_SGL_METABUF; 1165 1166 if (!blk_rq_bytes(rq)) 1167 return nvme_rdma_set_sg_null(c); 1168 1169 req->sg_table.sgl = req->first_sgl; 1170 ret = sg_alloc_table_chained(&req->sg_table, 1171 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1172 if (ret) 1173 return -ENOMEM; 1174 1175 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1176 1177 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1178 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1179 if (unlikely(count <= 0)) { 1180 sg_free_table_chained(&req->sg_table, true); 1181 return -EIO; 1182 } 1183 1184 if (count == 1) { 1185 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1186 blk_rq_payload_bytes(rq) <= 1187 nvme_rdma_inline_data_size(queue)) 1188 return nvme_rdma_map_sg_inline(queue, req, c); 1189 1190 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1191 return nvme_rdma_map_sg_single(queue, req, c); 1192 } 1193 1194 return nvme_rdma_map_sg_fr(queue, req, c, count); 1195 } 1196 1197 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1198 { 1199 struct nvme_rdma_qe *qe = 1200 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1201 struct nvme_rdma_request *req = 1202 container_of(qe, struct nvme_rdma_request, sqe); 1203 struct request *rq = blk_mq_rq_from_pdu(req); 1204 1205 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1206 nvme_rdma_wr_error(cq, wc, "SEND"); 1207 return; 1208 } 1209 1210 if (refcount_dec_and_test(&req->ref)) 1211 nvme_end_request(rq, req->status, req->result); 1212 } 1213 1214 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1215 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1216 struct ib_send_wr *first) 1217 { 1218 struct ib_send_wr wr, *bad_wr; 1219 int ret; 1220 1221 sge->addr = qe->dma; 1222 sge->length = sizeof(struct nvme_command), 1223 sge->lkey = queue->device->pd->local_dma_lkey; 1224 1225 wr.next = NULL; 1226 wr.wr_cqe = &qe->cqe; 1227 wr.sg_list = sge; 1228 wr.num_sge = num_sge; 1229 wr.opcode = IB_WR_SEND; 1230 wr.send_flags = IB_SEND_SIGNALED; 1231 1232 if (first) 1233 first->next = ≀ 1234 else 1235 first = ≀ 1236 1237 ret = ib_post_send(queue->qp, first, &bad_wr); 1238 if (unlikely(ret)) { 1239 dev_err(queue->ctrl->ctrl.device, 1240 "%s failed with error code %d\n", __func__, ret); 1241 } 1242 return ret; 1243 } 1244 1245 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1246 struct nvme_rdma_qe *qe) 1247 { 1248 struct ib_recv_wr wr, *bad_wr; 1249 struct ib_sge list; 1250 int ret; 1251 1252 list.addr = qe->dma; 1253 list.length = sizeof(struct nvme_completion); 1254 list.lkey = queue->device->pd->local_dma_lkey; 1255 1256 qe->cqe.done = nvme_rdma_recv_done; 1257 1258 wr.next = NULL; 1259 wr.wr_cqe = &qe->cqe; 1260 wr.sg_list = &list; 1261 wr.num_sge = 1; 1262 1263 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1264 if (unlikely(ret)) { 1265 dev_err(queue->ctrl->ctrl.device, 1266 "%s failed with error code %d\n", __func__, ret); 1267 } 1268 return ret; 1269 } 1270 1271 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1272 { 1273 u32 queue_idx = nvme_rdma_queue_idx(queue); 1274 1275 if (queue_idx == 0) 1276 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1277 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1278 } 1279 1280 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1281 { 1282 if (unlikely(wc->status != IB_WC_SUCCESS)) 1283 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1284 } 1285 1286 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1287 { 1288 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1289 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1290 struct ib_device *dev = queue->device->dev; 1291 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1292 struct nvme_command *cmd = sqe->data; 1293 struct ib_sge sge; 1294 int ret; 1295 1296 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1297 1298 memset(cmd, 0, sizeof(*cmd)); 1299 cmd->common.opcode = nvme_admin_async_event; 1300 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1301 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1302 nvme_rdma_set_sg_null(cmd); 1303 1304 sqe->cqe.done = nvme_rdma_async_done; 1305 1306 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1307 DMA_TO_DEVICE); 1308 1309 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1310 WARN_ON_ONCE(ret); 1311 } 1312 1313 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1314 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1315 { 1316 struct request *rq; 1317 struct nvme_rdma_request *req; 1318 int ret = 0; 1319 1320 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1321 if (!rq) { 1322 dev_err(queue->ctrl->ctrl.device, 1323 "tag 0x%x on QP %#x not found\n", 1324 cqe->command_id, queue->qp->qp_num); 1325 nvme_rdma_error_recovery(queue->ctrl); 1326 return ret; 1327 } 1328 req = blk_mq_rq_to_pdu(rq); 1329 1330 req->status = cqe->status; 1331 req->result = cqe->result; 1332 1333 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1334 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1335 dev_err(queue->ctrl->ctrl.device, 1336 "Bogus remote invalidation for rkey %#x\n", 1337 req->mr->rkey); 1338 nvme_rdma_error_recovery(queue->ctrl); 1339 } 1340 } else if (req->mr) { 1341 ret = nvme_rdma_inv_rkey(queue, req); 1342 if (unlikely(ret < 0)) { 1343 dev_err(queue->ctrl->ctrl.device, 1344 "Queueing INV WR for rkey %#x failed (%d)\n", 1345 req->mr->rkey, ret); 1346 nvme_rdma_error_recovery(queue->ctrl); 1347 } 1348 /* the local invalidation completion will end the request */ 1349 return 0; 1350 } 1351 1352 if (refcount_dec_and_test(&req->ref)) { 1353 if (rq->tag == tag) 1354 ret = 1; 1355 nvme_end_request(rq, req->status, req->result); 1356 } 1357 1358 return ret; 1359 } 1360 1361 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1362 { 1363 struct nvme_rdma_qe *qe = 1364 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1365 struct nvme_rdma_queue *queue = cq->cq_context; 1366 struct ib_device *ibdev = queue->device->dev; 1367 struct nvme_completion *cqe = qe->data; 1368 const size_t len = sizeof(struct nvme_completion); 1369 int ret = 0; 1370 1371 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1372 nvme_rdma_wr_error(cq, wc, "RECV"); 1373 return 0; 1374 } 1375 1376 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1377 /* 1378 * AEN requests are special as they don't time out and can 1379 * survive any kind of queue freeze and often don't respond to 1380 * aborts. We don't even bother to allocate a struct request 1381 * for them but rather special case them here. 1382 */ 1383 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1384 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1385 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1386 &cqe->result); 1387 else 1388 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1389 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1390 1391 nvme_rdma_post_recv(queue, qe); 1392 return ret; 1393 } 1394 1395 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1396 { 1397 __nvme_rdma_recv_done(cq, wc, -1); 1398 } 1399 1400 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1401 { 1402 int ret, i; 1403 1404 for (i = 0; i < queue->queue_size; i++) { 1405 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1406 if (ret) 1407 goto out_destroy_queue_ib; 1408 } 1409 1410 return 0; 1411 1412 out_destroy_queue_ib: 1413 nvme_rdma_destroy_queue_ib(queue); 1414 return ret; 1415 } 1416 1417 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1418 struct rdma_cm_event *ev) 1419 { 1420 struct rdma_cm_id *cm_id = queue->cm_id; 1421 int status = ev->status; 1422 const char *rej_msg; 1423 const struct nvme_rdma_cm_rej *rej_data; 1424 u8 rej_data_len; 1425 1426 rej_msg = rdma_reject_msg(cm_id, status); 1427 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1428 1429 if (rej_data && rej_data_len >= sizeof(u16)) { 1430 u16 sts = le16_to_cpu(rej_data->sts); 1431 1432 dev_err(queue->ctrl->ctrl.device, 1433 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1434 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1435 } else { 1436 dev_err(queue->ctrl->ctrl.device, 1437 "Connect rejected: status %d (%s).\n", status, rej_msg); 1438 } 1439 1440 return -ECONNRESET; 1441 } 1442 1443 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1444 { 1445 int ret; 1446 1447 ret = nvme_rdma_create_queue_ib(queue); 1448 if (ret) 1449 return ret; 1450 1451 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1452 if (ret) { 1453 dev_err(queue->ctrl->ctrl.device, 1454 "rdma_resolve_route failed (%d).\n", 1455 queue->cm_error); 1456 goto out_destroy_queue; 1457 } 1458 1459 return 0; 1460 1461 out_destroy_queue: 1462 nvme_rdma_destroy_queue_ib(queue); 1463 return ret; 1464 } 1465 1466 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1467 { 1468 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1469 struct rdma_conn_param param = { }; 1470 struct nvme_rdma_cm_req priv = { }; 1471 int ret; 1472 1473 param.qp_num = queue->qp->qp_num; 1474 param.flow_control = 1; 1475 1476 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1477 /* maximum retry count */ 1478 param.retry_count = 7; 1479 param.rnr_retry_count = 7; 1480 param.private_data = &priv; 1481 param.private_data_len = sizeof(priv); 1482 1483 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1484 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1485 /* 1486 * set the admin queue depth to the minimum size 1487 * specified by the Fabrics standard. 1488 */ 1489 if (priv.qid == 0) { 1490 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1491 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1492 } else { 1493 /* 1494 * current interpretation of the fabrics spec 1495 * is at minimum you make hrqsize sqsize+1, or a 1496 * 1's based representation of sqsize. 1497 */ 1498 priv.hrqsize = cpu_to_le16(queue->queue_size); 1499 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1500 } 1501 1502 ret = rdma_connect(queue->cm_id, ¶m); 1503 if (ret) { 1504 dev_err(ctrl->ctrl.device, 1505 "rdma_connect failed (%d).\n", ret); 1506 goto out_destroy_queue_ib; 1507 } 1508 1509 return 0; 1510 1511 out_destroy_queue_ib: 1512 nvme_rdma_destroy_queue_ib(queue); 1513 return ret; 1514 } 1515 1516 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1517 struct rdma_cm_event *ev) 1518 { 1519 struct nvme_rdma_queue *queue = cm_id->context; 1520 int cm_error = 0; 1521 1522 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1523 rdma_event_msg(ev->event), ev->event, 1524 ev->status, cm_id); 1525 1526 switch (ev->event) { 1527 case RDMA_CM_EVENT_ADDR_RESOLVED: 1528 cm_error = nvme_rdma_addr_resolved(queue); 1529 break; 1530 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1531 cm_error = nvme_rdma_route_resolved(queue); 1532 break; 1533 case RDMA_CM_EVENT_ESTABLISHED: 1534 queue->cm_error = nvme_rdma_conn_established(queue); 1535 /* complete cm_done regardless of success/failure */ 1536 complete(&queue->cm_done); 1537 return 0; 1538 case RDMA_CM_EVENT_REJECTED: 1539 nvme_rdma_destroy_queue_ib(queue); 1540 cm_error = nvme_rdma_conn_rejected(queue, ev); 1541 break; 1542 case RDMA_CM_EVENT_ROUTE_ERROR: 1543 case RDMA_CM_EVENT_CONNECT_ERROR: 1544 case RDMA_CM_EVENT_UNREACHABLE: 1545 nvme_rdma_destroy_queue_ib(queue); 1546 case RDMA_CM_EVENT_ADDR_ERROR: 1547 dev_dbg(queue->ctrl->ctrl.device, 1548 "CM error event %d\n", ev->event); 1549 cm_error = -ECONNRESET; 1550 break; 1551 case RDMA_CM_EVENT_DISCONNECTED: 1552 case RDMA_CM_EVENT_ADDR_CHANGE: 1553 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1554 dev_dbg(queue->ctrl->ctrl.device, 1555 "disconnect received - connection closed\n"); 1556 nvme_rdma_error_recovery(queue->ctrl); 1557 break; 1558 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1559 /* device removal is handled via the ib_client API */ 1560 break; 1561 default: 1562 dev_err(queue->ctrl->ctrl.device, 1563 "Unexpected RDMA CM event (%d)\n", ev->event); 1564 nvme_rdma_error_recovery(queue->ctrl); 1565 break; 1566 } 1567 1568 if (cm_error) { 1569 queue->cm_error = cm_error; 1570 complete(&queue->cm_done); 1571 } 1572 1573 return 0; 1574 } 1575 1576 static enum blk_eh_timer_return 1577 nvme_rdma_timeout(struct request *rq, bool reserved) 1578 { 1579 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1580 1581 dev_warn(req->queue->ctrl->ctrl.device, 1582 "I/O %d QID %d timeout, reset controller\n", 1583 rq->tag, nvme_rdma_queue_idx(req->queue)); 1584 1585 /* queue error recovery */ 1586 nvme_rdma_error_recovery(req->queue->ctrl); 1587 1588 /* fail with DNR on cmd timeout */ 1589 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1590 1591 return BLK_EH_HANDLED; 1592 } 1593 1594 /* 1595 * We cannot accept any other command until the Connect command has completed. 1596 */ 1597 static inline blk_status_t 1598 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1599 { 1600 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) 1601 return nvmf_check_init_req(&queue->ctrl->ctrl, rq); 1602 return BLK_STS_OK; 1603 } 1604 1605 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1606 const struct blk_mq_queue_data *bd) 1607 { 1608 struct nvme_ns *ns = hctx->queue->queuedata; 1609 struct nvme_rdma_queue *queue = hctx->driver_data; 1610 struct request *rq = bd->rq; 1611 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1612 struct nvme_rdma_qe *sqe = &req->sqe; 1613 struct nvme_command *c = sqe->data; 1614 struct ib_device *dev; 1615 blk_status_t ret; 1616 int err; 1617 1618 WARN_ON_ONCE(rq->tag < 0); 1619 1620 ret = nvme_rdma_is_ready(queue, rq); 1621 if (unlikely(ret)) 1622 return ret; 1623 1624 dev = queue->device->dev; 1625 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1626 sizeof(struct nvme_command), DMA_TO_DEVICE); 1627 1628 ret = nvme_setup_cmd(ns, rq, c); 1629 if (ret) 1630 return ret; 1631 1632 blk_mq_start_request(rq); 1633 1634 err = nvme_rdma_map_data(queue, rq, c); 1635 if (unlikely(err < 0)) { 1636 dev_err(queue->ctrl->ctrl.device, 1637 "Failed to map data (%d)\n", err); 1638 nvme_cleanup_cmd(rq); 1639 goto err; 1640 } 1641 1642 sqe->cqe.done = nvme_rdma_send_done; 1643 1644 ib_dma_sync_single_for_device(dev, sqe->dma, 1645 sizeof(struct nvme_command), DMA_TO_DEVICE); 1646 1647 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1648 req->mr ? &req->reg_wr.wr : NULL); 1649 if (unlikely(err)) { 1650 nvme_rdma_unmap_data(queue, rq); 1651 goto err; 1652 } 1653 1654 return BLK_STS_OK; 1655 err: 1656 if (err == -ENOMEM || err == -EAGAIN) 1657 return BLK_STS_RESOURCE; 1658 return BLK_STS_IOERR; 1659 } 1660 1661 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1662 { 1663 struct nvme_rdma_queue *queue = hctx->driver_data; 1664 struct ib_cq *cq = queue->ib_cq; 1665 struct ib_wc wc; 1666 int found = 0; 1667 1668 while (ib_poll_cq(cq, 1, &wc) > 0) { 1669 struct ib_cqe *cqe = wc.wr_cqe; 1670 1671 if (cqe) { 1672 if (cqe->done == nvme_rdma_recv_done) 1673 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1674 else 1675 cqe->done(cq, &wc); 1676 } 1677 } 1678 1679 return found; 1680 } 1681 1682 static void nvme_rdma_complete_rq(struct request *rq) 1683 { 1684 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1685 1686 nvme_rdma_unmap_data(req->queue, rq); 1687 nvme_complete_rq(rq); 1688 } 1689 1690 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1691 { 1692 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1693 1694 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1695 } 1696 1697 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1698 .queue_rq = nvme_rdma_queue_rq, 1699 .complete = nvme_rdma_complete_rq, 1700 .init_request = nvme_rdma_init_request, 1701 .exit_request = nvme_rdma_exit_request, 1702 .init_hctx = nvme_rdma_init_hctx, 1703 .poll = nvme_rdma_poll, 1704 .timeout = nvme_rdma_timeout, 1705 .map_queues = nvme_rdma_map_queues, 1706 }; 1707 1708 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1709 .queue_rq = nvme_rdma_queue_rq, 1710 .complete = nvme_rdma_complete_rq, 1711 .init_request = nvme_rdma_init_request, 1712 .exit_request = nvme_rdma_exit_request, 1713 .init_hctx = nvme_rdma_init_admin_hctx, 1714 .timeout = nvme_rdma_timeout, 1715 }; 1716 1717 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1718 { 1719 cancel_work_sync(&ctrl->err_work); 1720 cancel_delayed_work_sync(&ctrl->reconnect_work); 1721 1722 if (ctrl->ctrl.queue_count > 1) { 1723 nvme_stop_queues(&ctrl->ctrl); 1724 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1725 nvme_cancel_request, &ctrl->ctrl); 1726 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1727 } 1728 1729 if (shutdown) 1730 nvme_shutdown_ctrl(&ctrl->ctrl); 1731 else 1732 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1733 1734 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1735 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1736 nvme_cancel_request, &ctrl->ctrl); 1737 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1738 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1739 } 1740 1741 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1742 { 1743 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1744 } 1745 1746 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1747 { 1748 struct nvme_rdma_ctrl *ctrl = 1749 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1750 int ret; 1751 bool changed; 1752 1753 nvme_stop_ctrl(&ctrl->ctrl); 1754 nvme_rdma_shutdown_ctrl(ctrl, false); 1755 1756 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1757 if (ret) 1758 goto out_fail; 1759 1760 if (ctrl->ctrl.queue_count > 1) { 1761 ret = nvme_rdma_configure_io_queues(ctrl, false); 1762 if (ret) 1763 goto out_fail; 1764 } 1765 1766 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1767 if (!changed) { 1768 /* state change failure is ok if we're in DELETING state */ 1769 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1770 return; 1771 } 1772 1773 nvme_start_ctrl(&ctrl->ctrl); 1774 1775 return; 1776 1777 out_fail: 1778 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1779 nvme_remove_namespaces(&ctrl->ctrl); 1780 nvme_rdma_shutdown_ctrl(ctrl, true); 1781 nvme_uninit_ctrl(&ctrl->ctrl); 1782 nvme_put_ctrl(&ctrl->ctrl); 1783 } 1784 1785 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1786 .name = "rdma", 1787 .module = THIS_MODULE, 1788 .flags = NVME_F_FABRICS, 1789 .reg_read32 = nvmf_reg_read32, 1790 .reg_read64 = nvmf_reg_read64, 1791 .reg_write32 = nvmf_reg_write32, 1792 .free_ctrl = nvme_rdma_free_ctrl, 1793 .submit_async_event = nvme_rdma_submit_async_event, 1794 .delete_ctrl = nvme_rdma_delete_ctrl, 1795 .get_address = nvmf_get_address, 1796 }; 1797 1798 static inline bool 1799 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1800 struct nvmf_ctrl_options *opts) 1801 { 1802 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1803 1804 1805 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1806 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1807 return false; 1808 1809 if (opts->mask & NVMF_OPT_TRSVCID && 1810 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1811 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1812 return false; 1813 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1814 if (strcmp(opts->trsvcid, stdport)) 1815 return false; 1816 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1817 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1818 return false; 1819 } 1820 /* else, it's a match as both have stdport. Fall to next checks */ 1821 1822 /* 1823 * checking the local address is rough. In most cases, one 1824 * is not specified and the host port is selected by the stack. 1825 * 1826 * Assume no match if: 1827 * local address is specified and address is not the same 1828 * local address is not specified but remote is, or vice versa 1829 * (admin using specific host_traddr when it matters). 1830 */ 1831 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1832 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1833 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1834 return false; 1835 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1836 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1837 return false; 1838 /* 1839 * if neither controller had an host port specified, assume it's 1840 * a match as everything else matched. 1841 */ 1842 1843 return true; 1844 } 1845 1846 /* 1847 * Fails a connection request if it matches an existing controller 1848 * (association) with the same tuple: 1849 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1850 * 1851 * if local address is not specified in the request, it will match an 1852 * existing controller with all the other parameters the same and no 1853 * local port address specified as well. 1854 * 1855 * The ports don't need to be compared as they are intrinsically 1856 * already matched by the port pointers supplied. 1857 */ 1858 static bool 1859 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1860 { 1861 struct nvme_rdma_ctrl *ctrl; 1862 bool found = false; 1863 1864 mutex_lock(&nvme_rdma_ctrl_mutex); 1865 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1866 found = __nvme_rdma_options_match(ctrl, opts); 1867 if (found) 1868 break; 1869 } 1870 mutex_unlock(&nvme_rdma_ctrl_mutex); 1871 1872 return found; 1873 } 1874 1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1876 struct nvmf_ctrl_options *opts) 1877 { 1878 struct nvme_rdma_ctrl *ctrl; 1879 int ret; 1880 bool changed; 1881 char *port; 1882 1883 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1884 if (!ctrl) 1885 return ERR_PTR(-ENOMEM); 1886 ctrl->ctrl.opts = opts; 1887 INIT_LIST_HEAD(&ctrl->list); 1888 1889 if (opts->mask & NVMF_OPT_TRSVCID) 1890 port = opts->trsvcid; 1891 else 1892 port = __stringify(NVME_RDMA_IP_PORT); 1893 1894 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1895 opts->traddr, port, &ctrl->addr); 1896 if (ret) { 1897 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1898 goto out_free_ctrl; 1899 } 1900 1901 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1902 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1903 opts->host_traddr, NULL, &ctrl->src_addr); 1904 if (ret) { 1905 pr_err("malformed src address passed: %s\n", 1906 opts->host_traddr); 1907 goto out_free_ctrl; 1908 } 1909 } 1910 1911 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1912 ret = -EALREADY; 1913 goto out_free_ctrl; 1914 } 1915 1916 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1917 0 /* no quirks, we're perfect! */); 1918 if (ret) 1919 goto out_free_ctrl; 1920 1921 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1922 nvme_rdma_reconnect_ctrl_work); 1923 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1924 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1925 1926 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1927 ctrl->ctrl.sqsize = opts->queue_size - 1; 1928 ctrl->ctrl.kato = opts->kato; 1929 1930 ret = -ENOMEM; 1931 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1932 GFP_KERNEL); 1933 if (!ctrl->queues) 1934 goto out_uninit_ctrl; 1935 1936 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1937 if (ret) 1938 goto out_kfree_queues; 1939 1940 /* sanity check icdoff */ 1941 if (ctrl->ctrl.icdoff) { 1942 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1943 ret = -EINVAL; 1944 goto out_remove_admin_queue; 1945 } 1946 1947 /* sanity check keyed sgls */ 1948 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1949 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1950 ret = -EINVAL; 1951 goto out_remove_admin_queue; 1952 } 1953 1954 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1955 /* warn if maxcmd is lower than queue_size */ 1956 dev_warn(ctrl->ctrl.device, 1957 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1958 opts->queue_size, ctrl->ctrl.maxcmd); 1959 opts->queue_size = ctrl->ctrl.maxcmd; 1960 } 1961 1962 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1963 /* warn if sqsize is lower than queue_size */ 1964 dev_warn(ctrl->ctrl.device, 1965 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1966 opts->queue_size, ctrl->ctrl.sqsize + 1); 1967 opts->queue_size = ctrl->ctrl.sqsize + 1; 1968 } 1969 1970 if (opts->nr_io_queues) { 1971 ret = nvme_rdma_configure_io_queues(ctrl, true); 1972 if (ret) 1973 goto out_remove_admin_queue; 1974 } 1975 1976 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1977 WARN_ON_ONCE(!changed); 1978 1979 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1980 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1981 1982 nvme_get_ctrl(&ctrl->ctrl); 1983 1984 mutex_lock(&nvme_rdma_ctrl_mutex); 1985 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1986 mutex_unlock(&nvme_rdma_ctrl_mutex); 1987 1988 nvme_start_ctrl(&ctrl->ctrl); 1989 1990 return &ctrl->ctrl; 1991 1992 out_remove_admin_queue: 1993 nvme_rdma_destroy_admin_queue(ctrl, true); 1994 out_kfree_queues: 1995 kfree(ctrl->queues); 1996 out_uninit_ctrl: 1997 nvme_uninit_ctrl(&ctrl->ctrl); 1998 nvme_put_ctrl(&ctrl->ctrl); 1999 if (ret > 0) 2000 ret = -EIO; 2001 return ERR_PTR(ret); 2002 out_free_ctrl: 2003 kfree(ctrl); 2004 return ERR_PTR(ret); 2005 } 2006 2007 static struct nvmf_transport_ops nvme_rdma_transport = { 2008 .name = "rdma", 2009 .required_opts = NVMF_OPT_TRADDR, 2010 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2011 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2012 .create_ctrl = nvme_rdma_create_ctrl, 2013 }; 2014 2015 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2016 { 2017 struct nvme_rdma_ctrl *ctrl; 2018 2019 /* Delete all controllers using this device */ 2020 mutex_lock(&nvme_rdma_ctrl_mutex); 2021 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2022 if (ctrl->device->dev != ib_device) 2023 continue; 2024 dev_info(ctrl->ctrl.device, 2025 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2026 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2027 nvme_delete_ctrl(&ctrl->ctrl); 2028 } 2029 mutex_unlock(&nvme_rdma_ctrl_mutex); 2030 2031 flush_workqueue(nvme_wq); 2032 } 2033 2034 static struct ib_client nvme_rdma_ib_client = { 2035 .name = "nvme_rdma", 2036 .remove = nvme_rdma_remove_one 2037 }; 2038 2039 static int __init nvme_rdma_init_module(void) 2040 { 2041 int ret; 2042 2043 ret = ib_register_client(&nvme_rdma_ib_client); 2044 if (ret) 2045 return ret; 2046 2047 ret = nvmf_register_transport(&nvme_rdma_transport); 2048 if (ret) 2049 goto err_unreg_client; 2050 2051 return 0; 2052 2053 err_unreg_client: 2054 ib_unregister_client(&nvme_rdma_ib_client); 2055 return ret; 2056 } 2057 2058 static void __exit nvme_rdma_cleanup_module(void) 2059 { 2060 nvmf_unregister_transport(&nvme_rdma_transport); 2061 ib_unregister_client(&nvme_rdma_ib_client); 2062 } 2063 2064 module_init(nvme_rdma_init_module); 2065 module_exit(nvme_rdma_cleanup_module); 2066 2067 MODULE_LICENSE("GPL v2"); 2068