xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 0da7e432)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 };
51 
52 struct nvme_rdma_qe {
53 	struct ib_cqe		cqe;
54 	void			*data;
55 	u64			dma;
56 };
57 
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60 	struct nvme_request	req;
61 	struct ib_mr		*mr;
62 	struct nvme_rdma_qe	sqe;
63 	union nvme_result	result;
64 	__le16			status;
65 	refcount_t		ref;
66 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67 	u32			num_sge;
68 	int			nents;
69 	struct ib_reg_wr	reg_wr;
70 	struct ib_cqe		reg_cqe;
71 	struct nvme_rdma_queue  *queue;
72 	struct sg_table		sg_table;
73 	struct scatterlist	first_sgl[];
74 };
75 
76 enum nvme_rdma_queue_flags {
77 	NVME_RDMA_Q_ALLOCATED		= 0,
78 	NVME_RDMA_Q_LIVE		= 1,
79 	NVME_RDMA_Q_TR_READY		= 2,
80 };
81 
82 struct nvme_rdma_queue {
83 	struct nvme_rdma_qe	*rsp_ring;
84 	int			queue_size;
85 	size_t			cmnd_capsule_len;
86 	struct nvme_rdma_ctrl	*ctrl;
87 	struct nvme_rdma_device	*device;
88 	struct ib_cq		*ib_cq;
89 	struct ib_qp		*qp;
90 
91 	unsigned long		flags;
92 	struct rdma_cm_id	*cm_id;
93 	int			cm_error;
94 	struct completion	cm_done;
95 };
96 
97 struct nvme_rdma_ctrl {
98 	/* read only in the hot path */
99 	struct nvme_rdma_queue	*queues;
100 
101 	/* other member variables */
102 	struct blk_mq_tag_set	tag_set;
103 	struct work_struct	err_work;
104 
105 	struct nvme_rdma_qe	async_event_sqe;
106 
107 	struct delayed_work	reconnect_work;
108 
109 	struct list_head	list;
110 
111 	struct blk_mq_tag_set	admin_tag_set;
112 	struct nvme_rdma_device	*device;
113 
114 	u32			max_fr_pages;
115 
116 	struct sockaddr_storage addr;
117 	struct sockaddr_storage src_addr;
118 
119 	struct nvme_ctrl	ctrl;
120 };
121 
122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
123 {
124 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
125 }
126 
127 static LIST_HEAD(device_list);
128 static DEFINE_MUTEX(device_list_mutex);
129 
130 static LIST_HEAD(nvme_rdma_ctrl_list);
131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
132 
133 /*
134  * Disabling this option makes small I/O goes faster, but is fundamentally
135  * unsafe.  With it turned off we will have to register a global rkey that
136  * allows read and write access to all physical memory.
137  */
138 static bool register_always = true;
139 module_param(register_always, bool, 0444);
140 MODULE_PARM_DESC(register_always,
141 	 "Use memory registration even for contiguous memory regions");
142 
143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
144 		struct rdma_cm_event *event);
145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
146 
147 static const struct blk_mq_ops nvme_rdma_mq_ops;
148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
149 
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline void put_unaligned_le24(u32 val, u8 *p)
152 {
153 	*p++ = val;
154 	*p++ = val >> 8;
155 	*p++ = val >> 16;
156 }
157 
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160 	return queue - queue->ctrl->queues;
161 }
162 
163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
164 {
165 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
166 }
167 
168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
169 		size_t capsule_size, enum dma_data_direction dir)
170 {
171 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
172 	kfree(qe->data);
173 }
174 
175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176 		size_t capsule_size, enum dma_data_direction dir)
177 {
178 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
179 	if (!qe->data)
180 		return -ENOMEM;
181 
182 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
183 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
184 		kfree(qe->data);
185 		return -ENOMEM;
186 	}
187 
188 	return 0;
189 }
190 
191 static void nvme_rdma_free_ring(struct ib_device *ibdev,
192 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
193 		size_t capsule_size, enum dma_data_direction dir)
194 {
195 	int i;
196 
197 	for (i = 0; i < ib_queue_size; i++)
198 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
199 	kfree(ring);
200 }
201 
202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
203 		size_t ib_queue_size, size_t capsule_size,
204 		enum dma_data_direction dir)
205 {
206 	struct nvme_rdma_qe *ring;
207 	int i;
208 
209 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
210 	if (!ring)
211 		return NULL;
212 
213 	for (i = 0; i < ib_queue_size; i++) {
214 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215 			goto out_free_ring;
216 	}
217 
218 	return ring;
219 
220 out_free_ring:
221 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222 	return NULL;
223 }
224 
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227 	pr_debug("QP event %s (%d)\n",
228 		 ib_event_msg(event->event), event->event);
229 
230 }
231 
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234 	wait_for_completion_interruptible_timeout(&queue->cm_done,
235 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
236 	return queue->cm_error;
237 }
238 
239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
240 {
241 	struct nvme_rdma_device *dev = queue->device;
242 	struct ib_qp_init_attr init_attr;
243 	int ret;
244 
245 	memset(&init_attr, 0, sizeof(init_attr));
246 	init_attr.event_handler = nvme_rdma_qp_event;
247 	/* +1 for drain */
248 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
249 	/* +1 for drain */
250 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
251 	init_attr.cap.max_recv_sge = 1;
252 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
253 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
254 	init_attr.qp_type = IB_QPT_RC;
255 	init_attr.send_cq = queue->ib_cq;
256 	init_attr.recv_cq = queue->ib_cq;
257 
258 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
259 
260 	queue->qp = queue->cm_id->qp;
261 	return ret;
262 }
263 
264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
265 		struct request *rq, unsigned int hctx_idx)
266 {
267 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
268 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
271 	struct nvme_rdma_device *dev = queue->device;
272 
273 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
274 			DMA_TO_DEVICE);
275 }
276 
277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
278 		struct request *rq, unsigned int hctx_idx,
279 		unsigned int numa_node)
280 {
281 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
282 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
285 	struct nvme_rdma_device *dev = queue->device;
286 	struct ib_device *ibdev = dev->dev;
287 	int ret;
288 
289 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
290 			DMA_TO_DEVICE);
291 	if (ret)
292 		return ret;
293 
294 	req->queue = queue;
295 
296 	return 0;
297 }
298 
299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
300 		unsigned int hctx_idx)
301 {
302 	struct nvme_rdma_ctrl *ctrl = data;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
304 
305 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306 
307 	hctx->driver_data = queue;
308 	return 0;
309 }
310 
311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
312 		unsigned int hctx_idx)
313 {
314 	struct nvme_rdma_ctrl *ctrl = data;
315 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
316 
317 	BUG_ON(hctx_idx != 0);
318 
319 	hctx->driver_data = queue;
320 	return 0;
321 }
322 
323 static void nvme_rdma_free_dev(struct kref *ref)
324 {
325 	struct nvme_rdma_device *ndev =
326 		container_of(ref, struct nvme_rdma_device, ref);
327 
328 	mutex_lock(&device_list_mutex);
329 	list_del(&ndev->entry);
330 	mutex_unlock(&device_list_mutex);
331 
332 	ib_dealloc_pd(ndev->pd);
333 	kfree(ndev);
334 }
335 
336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
337 {
338 	kref_put(&dev->ref, nvme_rdma_free_dev);
339 }
340 
341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
342 {
343 	return kref_get_unless_zero(&dev->ref);
344 }
345 
346 static struct nvme_rdma_device *
347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
348 {
349 	struct nvme_rdma_device *ndev;
350 
351 	mutex_lock(&device_list_mutex);
352 	list_for_each_entry(ndev, &device_list, entry) {
353 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
354 		    nvme_rdma_dev_get(ndev))
355 			goto out_unlock;
356 	}
357 
358 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
359 	if (!ndev)
360 		goto out_err;
361 
362 	ndev->dev = cm_id->device;
363 	kref_init(&ndev->ref);
364 
365 	ndev->pd = ib_alloc_pd(ndev->dev,
366 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367 	if (IS_ERR(ndev->pd))
368 		goto out_free_dev;
369 
370 	if (!(ndev->dev->attrs.device_cap_flags &
371 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
372 		dev_err(&ndev->dev->dev,
373 			"Memory registrations not supported.\n");
374 		goto out_free_pd;
375 	}
376 
377 	list_add(&ndev->entry, &device_list);
378 out_unlock:
379 	mutex_unlock(&device_list_mutex);
380 	return ndev;
381 
382 out_free_pd:
383 	ib_dealloc_pd(ndev->pd);
384 out_free_dev:
385 	kfree(ndev);
386 out_err:
387 	mutex_unlock(&device_list_mutex);
388 	return NULL;
389 }
390 
391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
392 {
393 	struct nvme_rdma_device *dev;
394 	struct ib_device *ibdev;
395 
396 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
397 		return;
398 
399 	dev = queue->device;
400 	ibdev = dev->dev;
401 
402 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
403 
404 	/*
405 	 * The cm_id object might have been destroyed during RDMA connection
406 	 * establishment error flow to avoid getting other cma events, thus
407 	 * the destruction of the QP shouldn't use rdma_cm API.
408 	 */
409 	ib_destroy_qp(queue->qp);
410 	ib_free_cq(queue->ib_cq);
411 
412 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
413 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
414 
415 	nvme_rdma_dev_put(dev);
416 }
417 
418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
419 {
420 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
421 		     ibdev->attrs.max_fast_reg_page_list_len);
422 }
423 
424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425 {
426 	struct ib_device *ibdev;
427 	const int send_wr_factor = 3;			/* MR, SEND, INV */
428 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
429 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
430 	int ret;
431 
432 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
433 	if (!queue->device) {
434 		dev_err(queue->cm_id->device->dev.parent,
435 			"no client data found!\n");
436 		return -ECONNREFUSED;
437 	}
438 	ibdev = queue->device->dev;
439 
440 	/*
441 	 * Spread I/O queues completion vectors according their queue index.
442 	 * Admin queues can always go on completion vector 0.
443 	 */
444 	comp_vector = idx == 0 ? idx : idx - 1;
445 
446 	/* +1 for ib_stop_cq */
447 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
448 				cq_factor * queue->queue_size + 1,
449 				comp_vector, IB_POLL_SOFTIRQ);
450 	if (IS_ERR(queue->ib_cq)) {
451 		ret = PTR_ERR(queue->ib_cq);
452 		goto out_put_dev;
453 	}
454 
455 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
456 	if (ret)
457 		goto out_destroy_ib_cq;
458 
459 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
460 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
461 	if (!queue->rsp_ring) {
462 		ret = -ENOMEM;
463 		goto out_destroy_qp;
464 	}
465 
466 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
467 			      queue->queue_size,
468 			      IB_MR_TYPE_MEM_REG,
469 			      nvme_rdma_get_max_fr_pages(ibdev));
470 	if (ret) {
471 		dev_err(queue->ctrl->ctrl.device,
472 			"failed to initialize MR pool sized %d for QID %d\n",
473 			queue->queue_size, idx);
474 		goto out_destroy_ring;
475 	}
476 
477 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
478 
479 	return 0;
480 
481 out_destroy_ring:
482 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 out_destroy_qp:
485 	rdma_destroy_qp(queue->cm_id);
486 out_destroy_ib_cq:
487 	ib_free_cq(queue->ib_cq);
488 out_put_dev:
489 	nvme_rdma_dev_put(queue->device);
490 	return ret;
491 }
492 
493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494 		int idx, size_t queue_size)
495 {
496 	struct nvme_rdma_queue *queue;
497 	struct sockaddr *src_addr = NULL;
498 	int ret;
499 
500 	queue = &ctrl->queues[idx];
501 	queue->ctrl = ctrl;
502 	init_completion(&queue->cm_done);
503 
504 	if (idx > 0)
505 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
506 	else
507 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
508 
509 	queue->queue_size = queue_size;
510 
511 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
512 			RDMA_PS_TCP, IB_QPT_RC);
513 	if (IS_ERR(queue->cm_id)) {
514 		dev_info(ctrl->ctrl.device,
515 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
516 		return PTR_ERR(queue->cm_id);
517 	}
518 
519 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520 		src_addr = (struct sockaddr *)&ctrl->src_addr;
521 
522 	queue->cm_error = -ETIMEDOUT;
523 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
524 			(struct sockaddr *)&ctrl->addr,
525 			NVME_RDMA_CONNECT_TIMEOUT_MS);
526 	if (ret) {
527 		dev_info(ctrl->ctrl.device,
528 			"rdma_resolve_addr failed (%d).\n", ret);
529 		goto out_destroy_cm_id;
530 	}
531 
532 	ret = nvme_rdma_wait_for_cm(queue);
533 	if (ret) {
534 		dev_info(ctrl->ctrl.device,
535 			"rdma connection establishment failed (%d)\n", ret);
536 		goto out_destroy_cm_id;
537 	}
538 
539 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540 
541 	return 0;
542 
543 out_destroy_cm_id:
544 	rdma_destroy_id(queue->cm_id);
545 	nvme_rdma_destroy_queue_ib(queue);
546 	return ret;
547 }
548 
549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
550 {
551 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
552 		return;
553 
554 	rdma_disconnect(queue->cm_id);
555 	ib_drain_qp(queue->qp);
556 }
557 
558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
559 {
560 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561 		return;
562 
563 	if (nvme_rdma_queue_idx(queue) == 0) {
564 		nvme_rdma_free_qe(queue->device->dev,
565 			&queue->ctrl->async_event_sqe,
566 			sizeof(struct nvme_command), DMA_TO_DEVICE);
567 	}
568 
569 	nvme_rdma_destroy_queue_ib(queue);
570 	rdma_destroy_id(queue->cm_id);
571 }
572 
573 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
574 {
575 	int i;
576 
577 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
578 		nvme_rdma_free_queue(&ctrl->queues[i]);
579 }
580 
581 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
582 {
583 	int i;
584 
585 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
586 		nvme_rdma_stop_queue(&ctrl->queues[i]);
587 }
588 
589 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
590 {
591 	int ret;
592 
593 	if (idx)
594 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
595 	else
596 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
597 
598 	if (!ret)
599 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
600 	else
601 		dev_info(ctrl->ctrl.device,
602 			"failed to connect queue: %d ret=%d\n", idx, ret);
603 	return ret;
604 }
605 
606 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
607 {
608 	int i, ret = 0;
609 
610 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
611 		ret = nvme_rdma_start_queue(ctrl, i);
612 		if (ret)
613 			goto out_stop_queues;
614 	}
615 
616 	return 0;
617 
618 out_stop_queues:
619 	for (i--; i >= 1; i--)
620 		nvme_rdma_stop_queue(&ctrl->queues[i]);
621 	return ret;
622 }
623 
624 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
625 {
626 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
627 	struct ib_device *ibdev = ctrl->device->dev;
628 	unsigned int nr_io_queues;
629 	int i, ret;
630 
631 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
632 
633 	/*
634 	 * we map queues according to the device irq vectors for
635 	 * optimal locality so we don't need more queues than
636 	 * completion vectors.
637 	 */
638 	nr_io_queues = min_t(unsigned int, nr_io_queues,
639 				ibdev->num_comp_vectors);
640 
641 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
642 	if (ret)
643 		return ret;
644 
645 	ctrl->ctrl.queue_count = nr_io_queues + 1;
646 	if (ctrl->ctrl.queue_count < 2)
647 		return 0;
648 
649 	dev_info(ctrl->ctrl.device,
650 		"creating %d I/O queues.\n", nr_io_queues);
651 
652 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
653 		ret = nvme_rdma_alloc_queue(ctrl, i,
654 				ctrl->ctrl.sqsize + 1);
655 		if (ret)
656 			goto out_free_queues;
657 	}
658 
659 	return 0;
660 
661 out_free_queues:
662 	for (i--; i >= 1; i--)
663 		nvme_rdma_free_queue(&ctrl->queues[i]);
664 
665 	return ret;
666 }
667 
668 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
669 		struct blk_mq_tag_set *set)
670 {
671 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
672 
673 	blk_mq_free_tag_set(set);
674 	nvme_rdma_dev_put(ctrl->device);
675 }
676 
677 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
678 		bool admin)
679 {
680 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
681 	struct blk_mq_tag_set *set;
682 	int ret;
683 
684 	if (admin) {
685 		set = &ctrl->admin_tag_set;
686 		memset(set, 0, sizeof(*set));
687 		set->ops = &nvme_rdma_admin_mq_ops;
688 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
689 		set->reserved_tags = 2; /* connect + keep-alive */
690 		set->numa_node = NUMA_NO_NODE;
691 		set->cmd_size = sizeof(struct nvme_rdma_request) +
692 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
693 		set->driver_data = ctrl;
694 		set->nr_hw_queues = 1;
695 		set->timeout = ADMIN_TIMEOUT;
696 		set->flags = BLK_MQ_F_NO_SCHED;
697 	} else {
698 		set = &ctrl->tag_set;
699 		memset(set, 0, sizeof(*set));
700 		set->ops = &nvme_rdma_mq_ops;
701 		set->queue_depth = nctrl->opts->queue_size;
702 		set->reserved_tags = 1; /* fabric connect */
703 		set->numa_node = NUMA_NO_NODE;
704 		set->flags = BLK_MQ_F_SHOULD_MERGE;
705 		set->cmd_size = sizeof(struct nvme_rdma_request) +
706 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
707 		set->driver_data = ctrl;
708 		set->nr_hw_queues = nctrl->queue_count - 1;
709 		set->timeout = NVME_IO_TIMEOUT;
710 	}
711 
712 	ret = blk_mq_alloc_tag_set(set);
713 	if (ret)
714 		goto out;
715 
716 	/*
717 	 * We need a reference on the device as long as the tag_set is alive,
718 	 * as the MRs in the request structures need a valid ib_device.
719 	 */
720 	ret = nvme_rdma_dev_get(ctrl->device);
721 	if (!ret) {
722 		ret = -EINVAL;
723 		goto out_free_tagset;
724 	}
725 
726 	return set;
727 
728 out_free_tagset:
729 	blk_mq_free_tag_set(set);
730 out:
731 	return ERR_PTR(ret);
732 }
733 
734 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
735 		bool remove)
736 {
737 	nvme_rdma_stop_queue(&ctrl->queues[0]);
738 	if (remove) {
739 		blk_cleanup_queue(ctrl->ctrl.admin_q);
740 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
741 	}
742 	nvme_rdma_free_queue(&ctrl->queues[0]);
743 }
744 
745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
746 		bool new)
747 {
748 	int error;
749 
750 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
751 	if (error)
752 		return error;
753 
754 	ctrl->device = ctrl->queues[0].device;
755 
756 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
757 
758 	if (new) {
759 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
760 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
761 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
762 			goto out_free_queue;
763 		}
764 
765 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
766 		if (IS_ERR(ctrl->ctrl.admin_q)) {
767 			error = PTR_ERR(ctrl->ctrl.admin_q);
768 			goto out_free_tagset;
769 		}
770 	}
771 
772 	error = nvme_rdma_start_queue(ctrl, 0);
773 	if (error)
774 		goto out_cleanup_queue;
775 
776 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
777 			&ctrl->ctrl.cap);
778 	if (error) {
779 		dev_err(ctrl->ctrl.device,
780 			"prop_get NVME_REG_CAP failed\n");
781 		goto out_cleanup_queue;
782 	}
783 
784 	ctrl->ctrl.sqsize =
785 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
786 
787 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
788 	if (error)
789 		goto out_cleanup_queue;
790 
791 	ctrl->ctrl.max_hw_sectors =
792 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
793 
794 	error = nvme_init_identify(&ctrl->ctrl);
795 	if (error)
796 		goto out_cleanup_queue;
797 
798 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
799 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
800 			DMA_TO_DEVICE);
801 	if (error)
802 		goto out_cleanup_queue;
803 
804 	return 0;
805 
806 out_cleanup_queue:
807 	if (new)
808 		blk_cleanup_queue(ctrl->ctrl.admin_q);
809 out_free_tagset:
810 	if (new)
811 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
812 out_free_queue:
813 	nvme_rdma_free_queue(&ctrl->queues[0]);
814 	return error;
815 }
816 
817 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
818 		bool remove)
819 {
820 	nvme_rdma_stop_io_queues(ctrl);
821 	if (remove) {
822 		blk_cleanup_queue(ctrl->ctrl.connect_q);
823 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
824 	}
825 	nvme_rdma_free_io_queues(ctrl);
826 }
827 
828 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
829 {
830 	int ret;
831 
832 	ret = nvme_rdma_alloc_io_queues(ctrl);
833 	if (ret)
834 		return ret;
835 
836 	if (new) {
837 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
838 		if (IS_ERR(ctrl->ctrl.tagset)) {
839 			ret = PTR_ERR(ctrl->ctrl.tagset);
840 			goto out_free_io_queues;
841 		}
842 
843 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
844 		if (IS_ERR(ctrl->ctrl.connect_q)) {
845 			ret = PTR_ERR(ctrl->ctrl.connect_q);
846 			goto out_free_tag_set;
847 		}
848 	} else {
849 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
850 			ctrl->ctrl.queue_count - 1);
851 	}
852 
853 	ret = nvme_rdma_start_io_queues(ctrl);
854 	if (ret)
855 		goto out_cleanup_connect_q;
856 
857 	return 0;
858 
859 out_cleanup_connect_q:
860 	if (new)
861 		blk_cleanup_queue(ctrl->ctrl.connect_q);
862 out_free_tag_set:
863 	if (new)
864 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
865 out_free_io_queues:
866 	nvme_rdma_free_io_queues(ctrl);
867 	return ret;
868 }
869 
870 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
871 {
872 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
873 
874 	cancel_work_sync(&ctrl->err_work);
875 	cancel_delayed_work_sync(&ctrl->reconnect_work);
876 }
877 
878 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
879 {
880 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
881 
882 	if (list_empty(&ctrl->list))
883 		goto free_ctrl;
884 
885 	mutex_lock(&nvme_rdma_ctrl_mutex);
886 	list_del(&ctrl->list);
887 	mutex_unlock(&nvme_rdma_ctrl_mutex);
888 
889 	kfree(ctrl->queues);
890 	nvmf_free_options(nctrl->opts);
891 free_ctrl:
892 	kfree(ctrl);
893 }
894 
895 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
896 {
897 	/* If we are resetting/deleting then do nothing */
898 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
899 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
900 			ctrl->ctrl.state == NVME_CTRL_LIVE);
901 		return;
902 	}
903 
904 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
905 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
906 			ctrl->ctrl.opts->reconnect_delay);
907 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
908 				ctrl->ctrl.opts->reconnect_delay * HZ);
909 	} else {
910 		nvme_delete_ctrl(&ctrl->ctrl);
911 	}
912 }
913 
914 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
915 {
916 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
917 			struct nvme_rdma_ctrl, reconnect_work);
918 	bool changed;
919 	int ret;
920 
921 	++ctrl->ctrl.nr_reconnects;
922 
923 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
924 	if (ret)
925 		goto requeue;
926 
927 	if (ctrl->ctrl.queue_count > 1) {
928 		ret = nvme_rdma_configure_io_queues(ctrl, false);
929 		if (ret)
930 			goto destroy_admin;
931 	}
932 
933 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
934 	if (!changed) {
935 		/* state change failure is ok if we're in DELETING state */
936 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
937 		return;
938 	}
939 
940 	nvme_start_ctrl(&ctrl->ctrl);
941 
942 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
943 			ctrl->ctrl.nr_reconnects);
944 
945 	ctrl->ctrl.nr_reconnects = 0;
946 
947 	return;
948 
949 destroy_admin:
950 	nvme_rdma_destroy_admin_queue(ctrl, false);
951 requeue:
952 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
953 			ctrl->ctrl.nr_reconnects);
954 	nvme_rdma_reconnect_or_remove(ctrl);
955 }
956 
957 static void nvme_rdma_error_recovery_work(struct work_struct *work)
958 {
959 	struct nvme_rdma_ctrl *ctrl = container_of(work,
960 			struct nvme_rdma_ctrl, err_work);
961 
962 	nvme_stop_keep_alive(&ctrl->ctrl);
963 
964 	if (ctrl->ctrl.queue_count > 1) {
965 		nvme_stop_queues(&ctrl->ctrl);
966 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
967 					nvme_cancel_request, &ctrl->ctrl);
968 		nvme_rdma_destroy_io_queues(ctrl, false);
969 	}
970 
971 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
972 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
973 				nvme_cancel_request, &ctrl->ctrl);
974 	nvme_rdma_destroy_admin_queue(ctrl, false);
975 
976 	/*
977 	 * queues are not a live anymore, so restart the queues to fail fast
978 	 * new IO
979 	 */
980 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
981 	nvme_start_queues(&ctrl->ctrl);
982 
983 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
984 		/* state change failure is ok if we're in DELETING state */
985 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
986 		return;
987 	}
988 
989 	nvme_rdma_reconnect_or_remove(ctrl);
990 }
991 
992 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
993 {
994 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
995 		return;
996 
997 	queue_work(nvme_wq, &ctrl->err_work);
998 }
999 
1000 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1001 		const char *op)
1002 {
1003 	struct nvme_rdma_queue *queue = cq->cq_context;
1004 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1005 
1006 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1007 		dev_info(ctrl->ctrl.device,
1008 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1009 			     op, wc->wr_cqe,
1010 			     ib_wc_status_msg(wc->status), wc->status);
1011 	nvme_rdma_error_recovery(ctrl);
1012 }
1013 
1014 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1015 {
1016 	if (unlikely(wc->status != IB_WC_SUCCESS))
1017 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1018 }
1019 
1020 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1021 {
1022 	struct nvme_rdma_request *req =
1023 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1024 	struct request *rq = blk_mq_rq_from_pdu(req);
1025 
1026 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1027 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1028 		return;
1029 	}
1030 
1031 	if (refcount_dec_and_test(&req->ref))
1032 		nvme_end_request(rq, req->status, req->result);
1033 
1034 }
1035 
1036 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1037 		struct nvme_rdma_request *req)
1038 {
1039 	struct ib_send_wr *bad_wr;
1040 	struct ib_send_wr wr = {
1041 		.opcode		    = IB_WR_LOCAL_INV,
1042 		.next		    = NULL,
1043 		.num_sge	    = 0,
1044 		.send_flags	    = IB_SEND_SIGNALED,
1045 		.ex.invalidate_rkey = req->mr->rkey,
1046 	};
1047 
1048 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1049 	wr.wr_cqe = &req->reg_cqe;
1050 
1051 	return ib_post_send(queue->qp, &wr, &bad_wr);
1052 }
1053 
1054 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1055 		struct request *rq)
1056 {
1057 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1058 	struct nvme_rdma_device *dev = queue->device;
1059 	struct ib_device *ibdev = dev->dev;
1060 
1061 	if (!blk_rq_payload_bytes(rq))
1062 		return;
1063 
1064 	if (req->mr) {
1065 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1066 		req->mr = NULL;
1067 	}
1068 
1069 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1070 			req->nents, rq_data_dir(rq) ==
1071 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1072 
1073 	nvme_cleanup_cmd(rq);
1074 	sg_free_table_chained(&req->sg_table, true);
1075 }
1076 
1077 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1078 {
1079 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1080 
1081 	sg->addr = 0;
1082 	put_unaligned_le24(0, sg->length);
1083 	put_unaligned_le32(0, sg->key);
1084 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1085 	return 0;
1086 }
1087 
1088 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1089 		struct nvme_rdma_request *req, struct nvme_command *c)
1090 {
1091 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1092 
1093 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1094 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1095 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1096 
1097 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1098 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1099 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1100 
1101 	req->num_sge++;
1102 	return 0;
1103 }
1104 
1105 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1106 		struct nvme_rdma_request *req, struct nvme_command *c)
1107 {
1108 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1109 
1110 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1111 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1112 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1113 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1114 	return 0;
1115 }
1116 
1117 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1118 		struct nvme_rdma_request *req, struct nvme_command *c,
1119 		int count)
1120 {
1121 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1122 	int nr;
1123 
1124 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1125 	if (WARN_ON_ONCE(!req->mr))
1126 		return -EAGAIN;
1127 
1128 	/*
1129 	 * Align the MR to a 4K page size to match the ctrl page size and
1130 	 * the block virtual boundary.
1131 	 */
1132 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1133 	if (unlikely(nr < count)) {
1134 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1135 		req->mr = NULL;
1136 		if (nr < 0)
1137 			return nr;
1138 		return -EINVAL;
1139 	}
1140 
1141 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1142 
1143 	req->reg_cqe.done = nvme_rdma_memreg_done;
1144 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1145 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1146 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1147 	req->reg_wr.wr.num_sge = 0;
1148 	req->reg_wr.mr = req->mr;
1149 	req->reg_wr.key = req->mr->rkey;
1150 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1151 			     IB_ACCESS_REMOTE_READ |
1152 			     IB_ACCESS_REMOTE_WRITE;
1153 
1154 	sg->addr = cpu_to_le64(req->mr->iova);
1155 	put_unaligned_le24(req->mr->length, sg->length);
1156 	put_unaligned_le32(req->mr->rkey, sg->key);
1157 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1158 			NVME_SGL_FMT_INVALIDATE;
1159 
1160 	return 0;
1161 }
1162 
1163 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1164 		struct request *rq, struct nvme_command *c)
1165 {
1166 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1167 	struct nvme_rdma_device *dev = queue->device;
1168 	struct ib_device *ibdev = dev->dev;
1169 	int count, ret;
1170 
1171 	req->num_sge = 1;
1172 	refcount_set(&req->ref, 2); /* send and recv completions */
1173 
1174 	c->common.flags |= NVME_CMD_SGL_METABUF;
1175 
1176 	if (!blk_rq_payload_bytes(rq))
1177 		return nvme_rdma_set_sg_null(c);
1178 
1179 	req->sg_table.sgl = req->first_sgl;
1180 	ret = sg_alloc_table_chained(&req->sg_table,
1181 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1182 	if (ret)
1183 		return -ENOMEM;
1184 
1185 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1186 
1187 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1188 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1189 	if (unlikely(count <= 0)) {
1190 		sg_free_table_chained(&req->sg_table, true);
1191 		return -EIO;
1192 	}
1193 
1194 	if (count == 1) {
1195 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1196 		    blk_rq_payload_bytes(rq) <=
1197 				nvme_rdma_inline_data_size(queue))
1198 			return nvme_rdma_map_sg_inline(queue, req, c);
1199 
1200 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1201 			return nvme_rdma_map_sg_single(queue, req, c);
1202 	}
1203 
1204 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1205 }
1206 
1207 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1208 {
1209 	struct nvme_rdma_qe *qe =
1210 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1211 	struct nvme_rdma_request *req =
1212 		container_of(qe, struct nvme_rdma_request, sqe);
1213 	struct request *rq = blk_mq_rq_from_pdu(req);
1214 
1215 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1216 		nvme_rdma_wr_error(cq, wc, "SEND");
1217 		return;
1218 	}
1219 
1220 	if (refcount_dec_and_test(&req->ref))
1221 		nvme_end_request(rq, req->status, req->result);
1222 }
1223 
1224 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1225 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1226 		struct ib_send_wr *first)
1227 {
1228 	struct ib_send_wr wr, *bad_wr;
1229 	int ret;
1230 
1231 	sge->addr   = qe->dma;
1232 	sge->length = sizeof(struct nvme_command),
1233 	sge->lkey   = queue->device->pd->local_dma_lkey;
1234 
1235 	wr.next       = NULL;
1236 	wr.wr_cqe     = &qe->cqe;
1237 	wr.sg_list    = sge;
1238 	wr.num_sge    = num_sge;
1239 	wr.opcode     = IB_WR_SEND;
1240 	wr.send_flags = IB_SEND_SIGNALED;
1241 
1242 	if (first)
1243 		first->next = &wr;
1244 	else
1245 		first = &wr;
1246 
1247 	ret = ib_post_send(queue->qp, first, &bad_wr);
1248 	if (unlikely(ret)) {
1249 		dev_err(queue->ctrl->ctrl.device,
1250 			     "%s failed with error code %d\n", __func__, ret);
1251 	}
1252 	return ret;
1253 }
1254 
1255 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1256 		struct nvme_rdma_qe *qe)
1257 {
1258 	struct ib_recv_wr wr, *bad_wr;
1259 	struct ib_sge list;
1260 	int ret;
1261 
1262 	list.addr   = qe->dma;
1263 	list.length = sizeof(struct nvme_completion);
1264 	list.lkey   = queue->device->pd->local_dma_lkey;
1265 
1266 	qe->cqe.done = nvme_rdma_recv_done;
1267 
1268 	wr.next     = NULL;
1269 	wr.wr_cqe   = &qe->cqe;
1270 	wr.sg_list  = &list;
1271 	wr.num_sge  = 1;
1272 
1273 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1274 	if (unlikely(ret)) {
1275 		dev_err(queue->ctrl->ctrl.device,
1276 			"%s failed with error code %d\n", __func__, ret);
1277 	}
1278 	return ret;
1279 }
1280 
1281 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1282 {
1283 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1284 
1285 	if (queue_idx == 0)
1286 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1287 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1288 }
1289 
1290 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1291 {
1292 	if (unlikely(wc->status != IB_WC_SUCCESS))
1293 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1294 }
1295 
1296 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1297 {
1298 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1299 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1300 	struct ib_device *dev = queue->device->dev;
1301 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1302 	struct nvme_command *cmd = sqe->data;
1303 	struct ib_sge sge;
1304 	int ret;
1305 
1306 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1307 
1308 	memset(cmd, 0, sizeof(*cmd));
1309 	cmd->common.opcode = nvme_admin_async_event;
1310 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1311 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1312 	nvme_rdma_set_sg_null(cmd);
1313 
1314 	sqe->cqe.done = nvme_rdma_async_done;
1315 
1316 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1317 			DMA_TO_DEVICE);
1318 
1319 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1320 	WARN_ON_ONCE(ret);
1321 }
1322 
1323 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1324 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1325 {
1326 	struct request *rq;
1327 	struct nvme_rdma_request *req;
1328 	int ret = 0;
1329 
1330 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1331 	if (!rq) {
1332 		dev_err(queue->ctrl->ctrl.device,
1333 			"tag 0x%x on QP %#x not found\n",
1334 			cqe->command_id, queue->qp->qp_num);
1335 		nvme_rdma_error_recovery(queue->ctrl);
1336 		return ret;
1337 	}
1338 	req = blk_mq_rq_to_pdu(rq);
1339 
1340 	req->status = cqe->status;
1341 	req->result = cqe->result;
1342 
1343 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1344 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1345 			dev_err(queue->ctrl->ctrl.device,
1346 				"Bogus remote invalidation for rkey %#x\n",
1347 				req->mr->rkey);
1348 			nvme_rdma_error_recovery(queue->ctrl);
1349 		}
1350 	} else if (req->mr) {
1351 		ret = nvme_rdma_inv_rkey(queue, req);
1352 		if (unlikely(ret < 0)) {
1353 			dev_err(queue->ctrl->ctrl.device,
1354 				"Queueing INV WR for rkey %#x failed (%d)\n",
1355 				req->mr->rkey, ret);
1356 			nvme_rdma_error_recovery(queue->ctrl);
1357 		}
1358 		/* the local invalidation completion will end the request */
1359 		return 0;
1360 	}
1361 
1362 	if (refcount_dec_and_test(&req->ref)) {
1363 		if (rq->tag == tag)
1364 			ret = 1;
1365 		nvme_end_request(rq, req->status, req->result);
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1372 {
1373 	struct nvme_rdma_qe *qe =
1374 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1375 	struct nvme_rdma_queue *queue = cq->cq_context;
1376 	struct ib_device *ibdev = queue->device->dev;
1377 	struct nvme_completion *cqe = qe->data;
1378 	const size_t len = sizeof(struct nvme_completion);
1379 	int ret = 0;
1380 
1381 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1382 		nvme_rdma_wr_error(cq, wc, "RECV");
1383 		return 0;
1384 	}
1385 
1386 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1387 	/*
1388 	 * AEN requests are special as they don't time out and can
1389 	 * survive any kind of queue freeze and often don't respond to
1390 	 * aborts.  We don't even bother to allocate a struct request
1391 	 * for them but rather special case them here.
1392 	 */
1393 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1394 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1395 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1396 				&cqe->result);
1397 	else
1398 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1399 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1400 
1401 	nvme_rdma_post_recv(queue, qe);
1402 	return ret;
1403 }
1404 
1405 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1406 {
1407 	__nvme_rdma_recv_done(cq, wc, -1);
1408 }
1409 
1410 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1411 {
1412 	int ret, i;
1413 
1414 	for (i = 0; i < queue->queue_size; i++) {
1415 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1416 		if (ret)
1417 			goto out_destroy_queue_ib;
1418 	}
1419 
1420 	return 0;
1421 
1422 out_destroy_queue_ib:
1423 	nvme_rdma_destroy_queue_ib(queue);
1424 	return ret;
1425 }
1426 
1427 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1428 		struct rdma_cm_event *ev)
1429 {
1430 	struct rdma_cm_id *cm_id = queue->cm_id;
1431 	int status = ev->status;
1432 	const char *rej_msg;
1433 	const struct nvme_rdma_cm_rej *rej_data;
1434 	u8 rej_data_len;
1435 
1436 	rej_msg = rdma_reject_msg(cm_id, status);
1437 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1438 
1439 	if (rej_data && rej_data_len >= sizeof(u16)) {
1440 		u16 sts = le16_to_cpu(rej_data->sts);
1441 
1442 		dev_err(queue->ctrl->ctrl.device,
1443 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1444 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1445 	} else {
1446 		dev_err(queue->ctrl->ctrl.device,
1447 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1448 	}
1449 
1450 	return -ECONNRESET;
1451 }
1452 
1453 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1454 {
1455 	int ret;
1456 
1457 	ret = nvme_rdma_create_queue_ib(queue);
1458 	if (ret)
1459 		return ret;
1460 
1461 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1462 	if (ret) {
1463 		dev_err(queue->ctrl->ctrl.device,
1464 			"rdma_resolve_route failed (%d).\n",
1465 			queue->cm_error);
1466 		goto out_destroy_queue;
1467 	}
1468 
1469 	return 0;
1470 
1471 out_destroy_queue:
1472 	nvme_rdma_destroy_queue_ib(queue);
1473 	return ret;
1474 }
1475 
1476 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1477 {
1478 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1479 	struct rdma_conn_param param = { };
1480 	struct nvme_rdma_cm_req priv = { };
1481 	int ret;
1482 
1483 	param.qp_num = queue->qp->qp_num;
1484 	param.flow_control = 1;
1485 
1486 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1487 	/* maximum retry count */
1488 	param.retry_count = 7;
1489 	param.rnr_retry_count = 7;
1490 	param.private_data = &priv;
1491 	param.private_data_len = sizeof(priv);
1492 
1493 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1494 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1495 	/*
1496 	 * set the admin queue depth to the minimum size
1497 	 * specified by the Fabrics standard.
1498 	 */
1499 	if (priv.qid == 0) {
1500 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1501 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1502 	} else {
1503 		/*
1504 		 * current interpretation of the fabrics spec
1505 		 * is at minimum you make hrqsize sqsize+1, or a
1506 		 * 1's based representation of sqsize.
1507 		 */
1508 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1509 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1510 	}
1511 
1512 	ret = rdma_connect(queue->cm_id, &param);
1513 	if (ret) {
1514 		dev_err(ctrl->ctrl.device,
1515 			"rdma_connect failed (%d).\n", ret);
1516 		goto out_destroy_queue_ib;
1517 	}
1518 
1519 	return 0;
1520 
1521 out_destroy_queue_ib:
1522 	nvme_rdma_destroy_queue_ib(queue);
1523 	return ret;
1524 }
1525 
1526 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1527 		struct rdma_cm_event *ev)
1528 {
1529 	struct nvme_rdma_queue *queue = cm_id->context;
1530 	int cm_error = 0;
1531 
1532 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1533 		rdma_event_msg(ev->event), ev->event,
1534 		ev->status, cm_id);
1535 
1536 	switch (ev->event) {
1537 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1538 		cm_error = nvme_rdma_addr_resolved(queue);
1539 		break;
1540 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1541 		cm_error = nvme_rdma_route_resolved(queue);
1542 		break;
1543 	case RDMA_CM_EVENT_ESTABLISHED:
1544 		queue->cm_error = nvme_rdma_conn_established(queue);
1545 		/* complete cm_done regardless of success/failure */
1546 		complete(&queue->cm_done);
1547 		return 0;
1548 	case RDMA_CM_EVENT_REJECTED:
1549 		nvme_rdma_destroy_queue_ib(queue);
1550 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1551 		break;
1552 	case RDMA_CM_EVENT_ROUTE_ERROR:
1553 	case RDMA_CM_EVENT_CONNECT_ERROR:
1554 	case RDMA_CM_EVENT_UNREACHABLE:
1555 		nvme_rdma_destroy_queue_ib(queue);
1556 	case RDMA_CM_EVENT_ADDR_ERROR:
1557 		dev_dbg(queue->ctrl->ctrl.device,
1558 			"CM error event %d\n", ev->event);
1559 		cm_error = -ECONNRESET;
1560 		break;
1561 	case RDMA_CM_EVENT_DISCONNECTED:
1562 	case RDMA_CM_EVENT_ADDR_CHANGE:
1563 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1564 		dev_dbg(queue->ctrl->ctrl.device,
1565 			"disconnect received - connection closed\n");
1566 		nvme_rdma_error_recovery(queue->ctrl);
1567 		break;
1568 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1569 		/* device removal is handled via the ib_client API */
1570 		break;
1571 	default:
1572 		dev_err(queue->ctrl->ctrl.device,
1573 			"Unexpected RDMA CM event (%d)\n", ev->event);
1574 		nvme_rdma_error_recovery(queue->ctrl);
1575 		break;
1576 	}
1577 
1578 	if (cm_error) {
1579 		queue->cm_error = cm_error;
1580 		complete(&queue->cm_done);
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 static enum blk_eh_timer_return
1587 nvme_rdma_timeout(struct request *rq, bool reserved)
1588 {
1589 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1590 
1591 	dev_warn(req->queue->ctrl->ctrl.device,
1592 		 "I/O %d QID %d timeout, reset controller\n",
1593 		 rq->tag, nvme_rdma_queue_idx(req->queue));
1594 
1595 	/* queue error recovery */
1596 	nvme_rdma_error_recovery(req->queue->ctrl);
1597 
1598 	/* fail with DNR on cmd timeout */
1599 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1600 
1601 	return BLK_EH_HANDLED;
1602 }
1603 
1604 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1605 		const struct blk_mq_queue_data *bd)
1606 {
1607 	struct nvme_ns *ns = hctx->queue->queuedata;
1608 	struct nvme_rdma_queue *queue = hctx->driver_data;
1609 	struct request *rq = bd->rq;
1610 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1611 	struct nvme_rdma_qe *sqe = &req->sqe;
1612 	struct nvme_command *c = sqe->data;
1613 	struct ib_device *dev;
1614 	blk_status_t ret;
1615 	int err;
1616 
1617 	WARN_ON_ONCE(rq->tag < 0);
1618 
1619 	ret = nvmf_check_if_ready(&queue->ctrl->ctrl, rq,
1620 		test_bit(NVME_RDMA_Q_LIVE, &queue->flags), true);
1621 	if (unlikely(ret))
1622 		return ret;
1623 
1624 	dev = queue->device->dev;
1625 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1626 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1627 
1628 	ret = nvme_setup_cmd(ns, rq, c);
1629 	if (ret)
1630 		return ret;
1631 
1632 	blk_mq_start_request(rq);
1633 
1634 	err = nvme_rdma_map_data(queue, rq, c);
1635 	if (unlikely(err < 0)) {
1636 		dev_err(queue->ctrl->ctrl.device,
1637 			     "Failed to map data (%d)\n", err);
1638 		nvme_cleanup_cmd(rq);
1639 		goto err;
1640 	}
1641 
1642 	sqe->cqe.done = nvme_rdma_send_done;
1643 
1644 	ib_dma_sync_single_for_device(dev, sqe->dma,
1645 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1646 
1647 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1648 			req->mr ? &req->reg_wr.wr : NULL);
1649 	if (unlikely(err)) {
1650 		nvme_rdma_unmap_data(queue, rq);
1651 		goto err;
1652 	}
1653 
1654 	return BLK_STS_OK;
1655 err:
1656 	if (err == -ENOMEM || err == -EAGAIN)
1657 		return BLK_STS_RESOURCE;
1658 	return BLK_STS_IOERR;
1659 }
1660 
1661 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1662 {
1663 	struct nvme_rdma_queue *queue = hctx->driver_data;
1664 	struct ib_cq *cq = queue->ib_cq;
1665 	struct ib_wc wc;
1666 	int found = 0;
1667 
1668 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1669 		struct ib_cqe *cqe = wc.wr_cqe;
1670 
1671 		if (cqe) {
1672 			if (cqe->done == nvme_rdma_recv_done)
1673 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1674 			else
1675 				cqe->done(cq, &wc);
1676 		}
1677 	}
1678 
1679 	return found;
1680 }
1681 
1682 static void nvme_rdma_complete_rq(struct request *rq)
1683 {
1684 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1685 
1686 	nvme_rdma_unmap_data(req->queue, rq);
1687 	nvme_complete_rq(rq);
1688 }
1689 
1690 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1691 {
1692 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1693 
1694 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1695 }
1696 
1697 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1698 	.queue_rq	= nvme_rdma_queue_rq,
1699 	.complete	= nvme_rdma_complete_rq,
1700 	.init_request	= nvme_rdma_init_request,
1701 	.exit_request	= nvme_rdma_exit_request,
1702 	.init_hctx	= nvme_rdma_init_hctx,
1703 	.poll		= nvme_rdma_poll,
1704 	.timeout	= nvme_rdma_timeout,
1705 	.map_queues	= nvme_rdma_map_queues,
1706 };
1707 
1708 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1709 	.queue_rq	= nvme_rdma_queue_rq,
1710 	.complete	= nvme_rdma_complete_rq,
1711 	.init_request	= nvme_rdma_init_request,
1712 	.exit_request	= nvme_rdma_exit_request,
1713 	.init_hctx	= nvme_rdma_init_admin_hctx,
1714 	.timeout	= nvme_rdma_timeout,
1715 };
1716 
1717 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1718 {
1719 	if (ctrl->ctrl.queue_count > 1) {
1720 		nvme_stop_queues(&ctrl->ctrl);
1721 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1722 					nvme_cancel_request, &ctrl->ctrl);
1723 		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1724 	}
1725 
1726 	if (shutdown)
1727 		nvme_shutdown_ctrl(&ctrl->ctrl);
1728 	else
1729 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1730 
1731 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1732 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1733 				nvme_cancel_request, &ctrl->ctrl);
1734 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1735 	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1736 }
1737 
1738 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1739 {
1740 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1741 }
1742 
1743 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1744 {
1745 	struct nvme_rdma_ctrl *ctrl =
1746 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1747 	int ret;
1748 	bool changed;
1749 
1750 	nvme_stop_ctrl(&ctrl->ctrl);
1751 	nvme_rdma_shutdown_ctrl(ctrl, false);
1752 
1753 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1754 		/* state change failure should never happen */
1755 		WARN_ON_ONCE(1);
1756 		return;
1757 	}
1758 
1759 	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1760 	if (ret)
1761 		goto out_fail;
1762 
1763 	if (ctrl->ctrl.queue_count > 1) {
1764 		ret = nvme_rdma_configure_io_queues(ctrl, false);
1765 		if (ret)
1766 			goto out_fail;
1767 	}
1768 
1769 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1770 	if (!changed) {
1771 		/* state change failure is ok if we're in DELETING state */
1772 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1773 		return;
1774 	}
1775 
1776 	nvme_start_ctrl(&ctrl->ctrl);
1777 
1778 	return;
1779 
1780 out_fail:
1781 	++ctrl->ctrl.nr_reconnects;
1782 	nvme_rdma_reconnect_or_remove(ctrl);
1783 }
1784 
1785 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1786 	.name			= "rdma",
1787 	.module			= THIS_MODULE,
1788 	.flags			= NVME_F_FABRICS,
1789 	.reg_read32		= nvmf_reg_read32,
1790 	.reg_read64		= nvmf_reg_read64,
1791 	.reg_write32		= nvmf_reg_write32,
1792 	.free_ctrl		= nvme_rdma_free_ctrl,
1793 	.submit_async_event	= nvme_rdma_submit_async_event,
1794 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1795 	.get_address		= nvmf_get_address,
1796 	.stop_ctrl		= nvme_rdma_stop_ctrl,
1797 };
1798 
1799 static inline bool
1800 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1801 	struct nvmf_ctrl_options *opts)
1802 {
1803 	char *stdport = __stringify(NVME_RDMA_IP_PORT);
1804 
1805 
1806 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1807 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1808 		return false;
1809 
1810 	if (opts->mask & NVMF_OPT_TRSVCID &&
1811 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1812 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1813 			return false;
1814 	} else if (opts->mask & NVMF_OPT_TRSVCID) {
1815 		if (strcmp(opts->trsvcid, stdport))
1816 			return false;
1817 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1818 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1819 			return false;
1820 	}
1821 	/* else, it's a match as both have stdport. Fall to next checks */
1822 
1823 	/*
1824 	 * checking the local address is rough. In most cases, one
1825 	 * is not specified and the host port is selected by the stack.
1826 	 *
1827 	 * Assume no match if:
1828 	 *  local address is specified and address is not the same
1829 	 *  local address is not specified but remote is, or vice versa
1830 	 *    (admin using specific host_traddr when it matters).
1831 	 */
1832 	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1833 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1834 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1835 			return false;
1836 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1837 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1838 		return false;
1839 	/*
1840 	 * if neither controller had an host port specified, assume it's
1841 	 * a match as everything else matched.
1842 	 */
1843 
1844 	return true;
1845 }
1846 
1847 /*
1848  * Fails a connection request if it matches an existing controller
1849  * (association) with the same tuple:
1850  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1851  *
1852  * if local address is not specified in the request, it will match an
1853  * existing controller with all the other parameters the same and no
1854  * local port address specified as well.
1855  *
1856  * The ports don't need to be compared as they are intrinsically
1857  * already matched by the port pointers supplied.
1858  */
1859 static bool
1860 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1861 {
1862 	struct nvme_rdma_ctrl *ctrl;
1863 	bool found = false;
1864 
1865 	mutex_lock(&nvme_rdma_ctrl_mutex);
1866 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1867 		found = __nvme_rdma_options_match(ctrl, opts);
1868 		if (found)
1869 			break;
1870 	}
1871 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1872 
1873 	return found;
1874 }
1875 
1876 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1877 		struct nvmf_ctrl_options *opts)
1878 {
1879 	struct nvme_rdma_ctrl *ctrl;
1880 	int ret;
1881 	bool changed;
1882 	char *port;
1883 
1884 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1885 	if (!ctrl)
1886 		return ERR_PTR(-ENOMEM);
1887 	ctrl->ctrl.opts = opts;
1888 	INIT_LIST_HEAD(&ctrl->list);
1889 
1890 	if (opts->mask & NVMF_OPT_TRSVCID)
1891 		port = opts->trsvcid;
1892 	else
1893 		port = __stringify(NVME_RDMA_IP_PORT);
1894 
1895 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1896 			opts->traddr, port, &ctrl->addr);
1897 	if (ret) {
1898 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1899 		goto out_free_ctrl;
1900 	}
1901 
1902 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1903 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1904 			opts->host_traddr, NULL, &ctrl->src_addr);
1905 		if (ret) {
1906 			pr_err("malformed src address passed: %s\n",
1907 			       opts->host_traddr);
1908 			goto out_free_ctrl;
1909 		}
1910 	}
1911 
1912 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1913 		ret = -EALREADY;
1914 		goto out_free_ctrl;
1915 	}
1916 
1917 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1918 				0 /* no quirks, we're perfect! */);
1919 	if (ret)
1920 		goto out_free_ctrl;
1921 
1922 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1923 			nvme_rdma_reconnect_ctrl_work);
1924 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1925 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1926 
1927 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1928 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1929 	ctrl->ctrl.kato = opts->kato;
1930 
1931 	ret = -ENOMEM;
1932 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1933 				GFP_KERNEL);
1934 	if (!ctrl->queues)
1935 		goto out_uninit_ctrl;
1936 
1937 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1938 	WARN_ON_ONCE(!changed);
1939 
1940 	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1941 	if (ret)
1942 		goto out_kfree_queues;
1943 
1944 	/* sanity check icdoff */
1945 	if (ctrl->ctrl.icdoff) {
1946 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1947 		ret = -EINVAL;
1948 		goto out_remove_admin_queue;
1949 	}
1950 
1951 	/* sanity check keyed sgls */
1952 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1953 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1954 		ret = -EINVAL;
1955 		goto out_remove_admin_queue;
1956 	}
1957 
1958 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1959 		/* warn if maxcmd is lower than queue_size */
1960 		dev_warn(ctrl->ctrl.device,
1961 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1962 			opts->queue_size, ctrl->ctrl.maxcmd);
1963 		opts->queue_size = ctrl->ctrl.maxcmd;
1964 	}
1965 
1966 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1967 		/* warn if sqsize is lower than queue_size */
1968 		dev_warn(ctrl->ctrl.device,
1969 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1970 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1971 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1972 	}
1973 
1974 	if (opts->nr_io_queues) {
1975 		ret = nvme_rdma_configure_io_queues(ctrl, true);
1976 		if (ret)
1977 			goto out_remove_admin_queue;
1978 	}
1979 
1980 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1981 	WARN_ON_ONCE(!changed);
1982 
1983 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1984 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1985 
1986 	nvme_get_ctrl(&ctrl->ctrl);
1987 
1988 	mutex_lock(&nvme_rdma_ctrl_mutex);
1989 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1990 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1991 
1992 	nvme_start_ctrl(&ctrl->ctrl);
1993 
1994 	return &ctrl->ctrl;
1995 
1996 out_remove_admin_queue:
1997 	nvme_rdma_destroy_admin_queue(ctrl, true);
1998 out_kfree_queues:
1999 	kfree(ctrl->queues);
2000 out_uninit_ctrl:
2001 	nvme_uninit_ctrl(&ctrl->ctrl);
2002 	nvme_put_ctrl(&ctrl->ctrl);
2003 	if (ret > 0)
2004 		ret = -EIO;
2005 	return ERR_PTR(ret);
2006 out_free_ctrl:
2007 	kfree(ctrl);
2008 	return ERR_PTR(ret);
2009 }
2010 
2011 static struct nvmf_transport_ops nvme_rdma_transport = {
2012 	.name		= "rdma",
2013 	.module		= THIS_MODULE,
2014 	.required_opts	= NVMF_OPT_TRADDR,
2015 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2016 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2017 	.create_ctrl	= nvme_rdma_create_ctrl,
2018 };
2019 
2020 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2021 {
2022 	struct nvme_rdma_ctrl *ctrl;
2023 	struct nvme_rdma_device *ndev;
2024 	bool found = false;
2025 
2026 	mutex_lock(&device_list_mutex);
2027 	list_for_each_entry(ndev, &device_list, entry) {
2028 		if (ndev->dev == ib_device) {
2029 			found = true;
2030 			break;
2031 		}
2032 	}
2033 	mutex_unlock(&device_list_mutex);
2034 
2035 	if (!found)
2036 		return;
2037 
2038 	/* Delete all controllers using this device */
2039 	mutex_lock(&nvme_rdma_ctrl_mutex);
2040 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2041 		if (ctrl->device->dev != ib_device)
2042 			continue;
2043 		nvme_delete_ctrl(&ctrl->ctrl);
2044 	}
2045 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2046 
2047 	flush_workqueue(nvme_delete_wq);
2048 }
2049 
2050 static struct ib_client nvme_rdma_ib_client = {
2051 	.name   = "nvme_rdma",
2052 	.remove = nvme_rdma_remove_one
2053 };
2054 
2055 static int __init nvme_rdma_init_module(void)
2056 {
2057 	int ret;
2058 
2059 	ret = ib_register_client(&nvme_rdma_ib_client);
2060 	if (ret)
2061 		return ret;
2062 
2063 	ret = nvmf_register_transport(&nvme_rdma_transport);
2064 	if (ret)
2065 		goto err_unreg_client;
2066 
2067 	return 0;
2068 
2069 err_unreg_client:
2070 	ib_unregister_client(&nvme_rdma_ib_client);
2071 	return ret;
2072 }
2073 
2074 static void __exit nvme_rdma_cleanup_module(void)
2075 {
2076 	nvmf_unregister_transport(&nvme_rdma_transport);
2077 	ib_unregister_client(&nvme_rdma_ib_client);
2078 }
2079 
2080 module_init(nvme_rdma_init_module);
2081 module_exit(nvme_rdma_cleanup_module);
2082 
2083 MODULE_LICENSE("GPL v2");
2084