1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 }; 51 52 struct nvme_rdma_qe { 53 struct ib_cqe cqe; 54 void *data; 55 u64 dma; 56 }; 57 58 struct nvme_rdma_queue; 59 struct nvme_rdma_request { 60 struct nvme_request req; 61 struct ib_mr *mr; 62 struct nvme_rdma_qe sqe; 63 union nvme_result result; 64 __le16 status; 65 refcount_t ref; 66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 67 u32 num_sge; 68 int nents; 69 struct ib_reg_wr reg_wr; 70 struct ib_cqe reg_cqe; 71 struct nvme_rdma_queue *queue; 72 struct sg_table sg_table; 73 struct scatterlist first_sgl[]; 74 }; 75 76 enum nvme_rdma_queue_flags { 77 NVME_RDMA_Q_ALLOCATED = 0, 78 NVME_RDMA_Q_LIVE = 1, 79 NVME_RDMA_Q_TR_READY = 2, 80 }; 81 82 struct nvme_rdma_queue { 83 struct nvme_rdma_qe *rsp_ring; 84 int queue_size; 85 size_t cmnd_capsule_len; 86 struct nvme_rdma_ctrl *ctrl; 87 struct nvme_rdma_device *device; 88 struct ib_cq *ib_cq; 89 struct ib_qp *qp; 90 91 unsigned long flags; 92 struct rdma_cm_id *cm_id; 93 int cm_error; 94 struct completion cm_done; 95 }; 96 97 struct nvme_rdma_ctrl { 98 /* read only in the hot path */ 99 struct nvme_rdma_queue *queues; 100 101 /* other member variables */ 102 struct blk_mq_tag_set tag_set; 103 struct work_struct err_work; 104 105 struct nvme_rdma_qe async_event_sqe; 106 107 struct delayed_work reconnect_work; 108 109 struct list_head list; 110 111 struct blk_mq_tag_set admin_tag_set; 112 struct nvme_rdma_device *device; 113 114 u32 max_fr_pages; 115 116 struct sockaddr_storage addr; 117 struct sockaddr_storage src_addr; 118 119 struct nvme_ctrl ctrl; 120 }; 121 122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 123 { 124 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 125 } 126 127 static LIST_HEAD(device_list); 128 static DEFINE_MUTEX(device_list_mutex); 129 130 static LIST_HEAD(nvme_rdma_ctrl_list); 131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 132 133 /* 134 * Disabling this option makes small I/O goes faster, but is fundamentally 135 * unsafe. With it turned off we will have to register a global rkey that 136 * allows read and write access to all physical memory. 137 */ 138 static bool register_always = true; 139 module_param(register_always, bool, 0444); 140 MODULE_PARM_DESC(register_always, 141 "Use memory registration even for contiguous memory regions"); 142 143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 144 struct rdma_cm_event *event); 145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 146 147 static const struct blk_mq_ops nvme_rdma_mq_ops; 148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 149 150 /* XXX: really should move to a generic header sooner or later.. */ 151 static inline void put_unaligned_le24(u32 val, u8 *p) 152 { 153 *p++ = val; 154 *p++ = val >> 8; 155 *p++ = val >> 16; 156 } 157 158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 159 { 160 return queue - queue->ctrl->queues; 161 } 162 163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 164 { 165 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 166 } 167 168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 169 size_t capsule_size, enum dma_data_direction dir) 170 { 171 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 172 kfree(qe->data); 173 } 174 175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 176 size_t capsule_size, enum dma_data_direction dir) 177 { 178 qe->data = kzalloc(capsule_size, GFP_KERNEL); 179 if (!qe->data) 180 return -ENOMEM; 181 182 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 183 if (ib_dma_mapping_error(ibdev, qe->dma)) { 184 kfree(qe->data); 185 return -ENOMEM; 186 } 187 188 return 0; 189 } 190 191 static void nvme_rdma_free_ring(struct ib_device *ibdev, 192 struct nvme_rdma_qe *ring, size_t ib_queue_size, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 int i; 196 197 for (i = 0; i < ib_queue_size; i++) 198 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 199 kfree(ring); 200 } 201 202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 203 size_t ib_queue_size, size_t capsule_size, 204 enum dma_data_direction dir) 205 { 206 struct nvme_rdma_qe *ring; 207 int i; 208 209 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 210 if (!ring) 211 return NULL; 212 213 for (i = 0; i < ib_queue_size; i++) { 214 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 215 goto out_free_ring; 216 } 217 218 return ring; 219 220 out_free_ring: 221 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 222 return NULL; 223 } 224 225 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 226 { 227 pr_debug("QP event %s (%d)\n", 228 ib_event_msg(event->event), event->event); 229 230 } 231 232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 233 { 234 wait_for_completion_interruptible_timeout(&queue->cm_done, 235 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 236 return queue->cm_error; 237 } 238 239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 240 { 241 struct nvme_rdma_device *dev = queue->device; 242 struct ib_qp_init_attr init_attr; 243 int ret; 244 245 memset(&init_attr, 0, sizeof(init_attr)); 246 init_attr.event_handler = nvme_rdma_qp_event; 247 /* +1 for drain */ 248 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 249 /* +1 for drain */ 250 init_attr.cap.max_recv_wr = queue->queue_size + 1; 251 init_attr.cap.max_recv_sge = 1; 252 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 253 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 254 init_attr.qp_type = IB_QPT_RC; 255 init_attr.send_cq = queue->ib_cq; 256 init_attr.recv_cq = queue->ib_cq; 257 258 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 259 260 queue->qp = queue->cm_id->qp; 261 return ret; 262 } 263 264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 265 struct request *rq, unsigned int hctx_idx) 266 { 267 struct nvme_rdma_ctrl *ctrl = set->driver_data; 268 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 269 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 270 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 271 struct nvme_rdma_device *dev = queue->device; 272 273 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 274 DMA_TO_DEVICE); 275 } 276 277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 278 struct request *rq, unsigned int hctx_idx, 279 unsigned int numa_node) 280 { 281 struct nvme_rdma_ctrl *ctrl = set->driver_data; 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 284 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 285 struct nvme_rdma_device *dev = queue->device; 286 struct ib_device *ibdev = dev->dev; 287 int ret; 288 289 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 290 DMA_TO_DEVICE); 291 if (ret) 292 return ret; 293 294 req->queue = queue; 295 296 return 0; 297 } 298 299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 300 unsigned int hctx_idx) 301 { 302 struct nvme_rdma_ctrl *ctrl = data; 303 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 304 305 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 306 307 hctx->driver_data = queue; 308 return 0; 309 } 310 311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 312 unsigned int hctx_idx) 313 { 314 struct nvme_rdma_ctrl *ctrl = data; 315 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 316 317 BUG_ON(hctx_idx != 0); 318 319 hctx->driver_data = queue; 320 return 0; 321 } 322 323 static void nvme_rdma_free_dev(struct kref *ref) 324 { 325 struct nvme_rdma_device *ndev = 326 container_of(ref, struct nvme_rdma_device, ref); 327 328 mutex_lock(&device_list_mutex); 329 list_del(&ndev->entry); 330 mutex_unlock(&device_list_mutex); 331 332 ib_dealloc_pd(ndev->pd); 333 kfree(ndev); 334 } 335 336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 337 { 338 kref_put(&dev->ref, nvme_rdma_free_dev); 339 } 340 341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 342 { 343 return kref_get_unless_zero(&dev->ref); 344 } 345 346 static struct nvme_rdma_device * 347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 348 { 349 struct nvme_rdma_device *ndev; 350 351 mutex_lock(&device_list_mutex); 352 list_for_each_entry(ndev, &device_list, entry) { 353 if (ndev->dev->node_guid == cm_id->device->node_guid && 354 nvme_rdma_dev_get(ndev)) 355 goto out_unlock; 356 } 357 358 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 359 if (!ndev) 360 goto out_err; 361 362 ndev->dev = cm_id->device; 363 kref_init(&ndev->ref); 364 365 ndev->pd = ib_alloc_pd(ndev->dev, 366 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 367 if (IS_ERR(ndev->pd)) 368 goto out_free_dev; 369 370 if (!(ndev->dev->attrs.device_cap_flags & 371 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 372 dev_err(&ndev->dev->dev, 373 "Memory registrations not supported.\n"); 374 goto out_free_pd; 375 } 376 377 list_add(&ndev->entry, &device_list); 378 out_unlock: 379 mutex_unlock(&device_list_mutex); 380 return ndev; 381 382 out_free_pd: 383 ib_dealloc_pd(ndev->pd); 384 out_free_dev: 385 kfree(ndev); 386 out_err: 387 mutex_unlock(&device_list_mutex); 388 return NULL; 389 } 390 391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 392 { 393 struct nvme_rdma_device *dev; 394 struct ib_device *ibdev; 395 396 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 397 return; 398 399 dev = queue->device; 400 ibdev = dev->dev; 401 402 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 403 404 /* 405 * The cm_id object might have been destroyed during RDMA connection 406 * establishment error flow to avoid getting other cma events, thus 407 * the destruction of the QP shouldn't use rdma_cm API. 408 */ 409 ib_destroy_qp(queue->qp); 410 ib_free_cq(queue->ib_cq); 411 412 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 413 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 414 415 nvme_rdma_dev_put(dev); 416 } 417 418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 419 { 420 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 421 ibdev->attrs.max_fast_reg_page_list_len); 422 } 423 424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 425 { 426 struct ib_device *ibdev; 427 const int send_wr_factor = 3; /* MR, SEND, INV */ 428 const int cq_factor = send_wr_factor + 1; /* + RECV */ 429 int comp_vector, idx = nvme_rdma_queue_idx(queue); 430 int ret; 431 432 queue->device = nvme_rdma_find_get_device(queue->cm_id); 433 if (!queue->device) { 434 dev_err(queue->cm_id->device->dev.parent, 435 "no client data found!\n"); 436 return -ECONNREFUSED; 437 } 438 ibdev = queue->device->dev; 439 440 /* 441 * Spread I/O queues completion vectors according their queue index. 442 * Admin queues can always go on completion vector 0. 443 */ 444 comp_vector = idx == 0 ? idx : idx - 1; 445 446 /* +1 for ib_stop_cq */ 447 queue->ib_cq = ib_alloc_cq(ibdev, queue, 448 cq_factor * queue->queue_size + 1, 449 comp_vector, IB_POLL_SOFTIRQ); 450 if (IS_ERR(queue->ib_cq)) { 451 ret = PTR_ERR(queue->ib_cq); 452 goto out_put_dev; 453 } 454 455 ret = nvme_rdma_create_qp(queue, send_wr_factor); 456 if (ret) 457 goto out_destroy_ib_cq; 458 459 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 460 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 461 if (!queue->rsp_ring) { 462 ret = -ENOMEM; 463 goto out_destroy_qp; 464 } 465 466 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 467 queue->queue_size, 468 IB_MR_TYPE_MEM_REG, 469 nvme_rdma_get_max_fr_pages(ibdev)); 470 if (ret) { 471 dev_err(queue->ctrl->ctrl.device, 472 "failed to initialize MR pool sized %d for QID %d\n", 473 queue->queue_size, idx); 474 goto out_destroy_ring; 475 } 476 477 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 478 479 return 0; 480 481 out_destroy_ring: 482 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 483 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 484 out_destroy_qp: 485 rdma_destroy_qp(queue->cm_id); 486 out_destroy_ib_cq: 487 ib_free_cq(queue->ib_cq); 488 out_put_dev: 489 nvme_rdma_dev_put(queue->device); 490 return ret; 491 } 492 493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 494 int idx, size_t queue_size) 495 { 496 struct nvme_rdma_queue *queue; 497 struct sockaddr *src_addr = NULL; 498 int ret; 499 500 queue = &ctrl->queues[idx]; 501 queue->ctrl = ctrl; 502 init_completion(&queue->cm_done); 503 504 if (idx > 0) 505 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 506 else 507 queue->cmnd_capsule_len = sizeof(struct nvme_command); 508 509 queue->queue_size = queue_size; 510 511 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 512 RDMA_PS_TCP, IB_QPT_RC); 513 if (IS_ERR(queue->cm_id)) { 514 dev_info(ctrl->ctrl.device, 515 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 516 return PTR_ERR(queue->cm_id); 517 } 518 519 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 520 src_addr = (struct sockaddr *)&ctrl->src_addr; 521 522 queue->cm_error = -ETIMEDOUT; 523 ret = rdma_resolve_addr(queue->cm_id, src_addr, 524 (struct sockaddr *)&ctrl->addr, 525 NVME_RDMA_CONNECT_TIMEOUT_MS); 526 if (ret) { 527 dev_info(ctrl->ctrl.device, 528 "rdma_resolve_addr failed (%d).\n", ret); 529 goto out_destroy_cm_id; 530 } 531 532 ret = nvme_rdma_wait_for_cm(queue); 533 if (ret) { 534 dev_info(ctrl->ctrl.device, 535 "rdma connection establishment failed (%d)\n", ret); 536 goto out_destroy_cm_id; 537 } 538 539 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 540 541 return 0; 542 543 out_destroy_cm_id: 544 rdma_destroy_id(queue->cm_id); 545 nvme_rdma_destroy_queue_ib(queue); 546 return ret; 547 } 548 549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 550 { 551 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 552 return; 553 554 rdma_disconnect(queue->cm_id); 555 ib_drain_qp(queue->qp); 556 } 557 558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 559 { 560 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 561 return; 562 563 if (nvme_rdma_queue_idx(queue) == 0) { 564 nvme_rdma_free_qe(queue->device->dev, 565 &queue->ctrl->async_event_sqe, 566 sizeof(struct nvme_command), DMA_TO_DEVICE); 567 } 568 569 nvme_rdma_destroy_queue_ib(queue); 570 rdma_destroy_id(queue->cm_id); 571 } 572 573 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 574 { 575 int i; 576 577 for (i = 1; i < ctrl->ctrl.queue_count; i++) 578 nvme_rdma_free_queue(&ctrl->queues[i]); 579 } 580 581 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 582 { 583 int i; 584 585 for (i = 1; i < ctrl->ctrl.queue_count; i++) 586 nvme_rdma_stop_queue(&ctrl->queues[i]); 587 } 588 589 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 590 { 591 int ret; 592 593 if (idx) 594 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 595 else 596 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 597 598 if (!ret) 599 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 600 else 601 dev_info(ctrl->ctrl.device, 602 "failed to connect queue: %d ret=%d\n", idx, ret); 603 return ret; 604 } 605 606 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 607 { 608 int i, ret = 0; 609 610 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 611 ret = nvme_rdma_start_queue(ctrl, i); 612 if (ret) 613 goto out_stop_queues; 614 } 615 616 return 0; 617 618 out_stop_queues: 619 for (i--; i >= 1; i--) 620 nvme_rdma_stop_queue(&ctrl->queues[i]); 621 return ret; 622 } 623 624 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 627 struct ib_device *ibdev = ctrl->device->dev; 628 unsigned int nr_io_queues; 629 int i, ret; 630 631 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 632 633 /* 634 * we map queues according to the device irq vectors for 635 * optimal locality so we don't need more queues than 636 * completion vectors. 637 */ 638 nr_io_queues = min_t(unsigned int, nr_io_queues, 639 ibdev->num_comp_vectors); 640 641 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 642 if (ret) 643 return ret; 644 645 ctrl->ctrl.queue_count = nr_io_queues + 1; 646 if (ctrl->ctrl.queue_count < 2) 647 return 0; 648 649 dev_info(ctrl->ctrl.device, 650 "creating %d I/O queues.\n", nr_io_queues); 651 652 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 653 ret = nvme_rdma_alloc_queue(ctrl, i, 654 ctrl->ctrl.sqsize + 1); 655 if (ret) 656 goto out_free_queues; 657 } 658 659 return 0; 660 661 out_free_queues: 662 for (i--; i >= 1; i--) 663 nvme_rdma_free_queue(&ctrl->queues[i]); 664 665 return ret; 666 } 667 668 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 669 struct blk_mq_tag_set *set) 670 { 671 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 672 673 blk_mq_free_tag_set(set); 674 nvme_rdma_dev_put(ctrl->device); 675 } 676 677 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 678 bool admin) 679 { 680 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 681 struct blk_mq_tag_set *set; 682 int ret; 683 684 if (admin) { 685 set = &ctrl->admin_tag_set; 686 memset(set, 0, sizeof(*set)); 687 set->ops = &nvme_rdma_admin_mq_ops; 688 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 689 set->reserved_tags = 2; /* connect + keep-alive */ 690 set->numa_node = NUMA_NO_NODE; 691 set->cmd_size = sizeof(struct nvme_rdma_request) + 692 SG_CHUNK_SIZE * sizeof(struct scatterlist); 693 set->driver_data = ctrl; 694 set->nr_hw_queues = 1; 695 set->timeout = ADMIN_TIMEOUT; 696 set->flags = BLK_MQ_F_NO_SCHED; 697 } else { 698 set = &ctrl->tag_set; 699 memset(set, 0, sizeof(*set)); 700 set->ops = &nvme_rdma_mq_ops; 701 set->queue_depth = nctrl->opts->queue_size; 702 set->reserved_tags = 1; /* fabric connect */ 703 set->numa_node = NUMA_NO_NODE; 704 set->flags = BLK_MQ_F_SHOULD_MERGE; 705 set->cmd_size = sizeof(struct nvme_rdma_request) + 706 SG_CHUNK_SIZE * sizeof(struct scatterlist); 707 set->driver_data = ctrl; 708 set->nr_hw_queues = nctrl->queue_count - 1; 709 set->timeout = NVME_IO_TIMEOUT; 710 } 711 712 ret = blk_mq_alloc_tag_set(set); 713 if (ret) 714 goto out; 715 716 /* 717 * We need a reference on the device as long as the tag_set is alive, 718 * as the MRs in the request structures need a valid ib_device. 719 */ 720 ret = nvme_rdma_dev_get(ctrl->device); 721 if (!ret) { 722 ret = -EINVAL; 723 goto out_free_tagset; 724 } 725 726 return set; 727 728 out_free_tagset: 729 blk_mq_free_tag_set(set); 730 out: 731 return ERR_PTR(ret); 732 } 733 734 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 735 bool remove) 736 { 737 nvme_rdma_stop_queue(&ctrl->queues[0]); 738 if (remove) { 739 blk_cleanup_queue(ctrl->ctrl.admin_q); 740 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 741 } 742 nvme_rdma_free_queue(&ctrl->queues[0]); 743 } 744 745 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 746 bool new) 747 { 748 int error; 749 750 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 751 if (error) 752 return error; 753 754 ctrl->device = ctrl->queues[0].device; 755 756 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 757 758 if (new) { 759 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 760 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 761 error = PTR_ERR(ctrl->ctrl.admin_tagset); 762 goto out_free_queue; 763 } 764 765 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 766 if (IS_ERR(ctrl->ctrl.admin_q)) { 767 error = PTR_ERR(ctrl->ctrl.admin_q); 768 goto out_free_tagset; 769 } 770 } 771 772 error = nvme_rdma_start_queue(ctrl, 0); 773 if (error) 774 goto out_cleanup_queue; 775 776 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 777 &ctrl->ctrl.cap); 778 if (error) { 779 dev_err(ctrl->ctrl.device, 780 "prop_get NVME_REG_CAP failed\n"); 781 goto out_cleanup_queue; 782 } 783 784 ctrl->ctrl.sqsize = 785 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 786 787 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 788 if (error) 789 goto out_cleanup_queue; 790 791 ctrl->ctrl.max_hw_sectors = 792 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 793 794 error = nvme_init_identify(&ctrl->ctrl); 795 if (error) 796 goto out_cleanup_queue; 797 798 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 799 &ctrl->async_event_sqe, sizeof(struct nvme_command), 800 DMA_TO_DEVICE); 801 if (error) 802 goto out_cleanup_queue; 803 804 return 0; 805 806 out_cleanup_queue: 807 if (new) 808 blk_cleanup_queue(ctrl->ctrl.admin_q); 809 out_free_tagset: 810 if (new) 811 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 812 out_free_queue: 813 nvme_rdma_free_queue(&ctrl->queues[0]); 814 return error; 815 } 816 817 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 818 bool remove) 819 { 820 nvme_rdma_stop_io_queues(ctrl); 821 if (remove) { 822 blk_cleanup_queue(ctrl->ctrl.connect_q); 823 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 824 } 825 nvme_rdma_free_io_queues(ctrl); 826 } 827 828 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 829 { 830 int ret; 831 832 ret = nvme_rdma_alloc_io_queues(ctrl); 833 if (ret) 834 return ret; 835 836 if (new) { 837 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 838 if (IS_ERR(ctrl->ctrl.tagset)) { 839 ret = PTR_ERR(ctrl->ctrl.tagset); 840 goto out_free_io_queues; 841 } 842 843 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 844 if (IS_ERR(ctrl->ctrl.connect_q)) { 845 ret = PTR_ERR(ctrl->ctrl.connect_q); 846 goto out_free_tag_set; 847 } 848 } else { 849 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 850 ctrl->ctrl.queue_count - 1); 851 } 852 853 ret = nvme_rdma_start_io_queues(ctrl); 854 if (ret) 855 goto out_cleanup_connect_q; 856 857 return 0; 858 859 out_cleanup_connect_q: 860 if (new) 861 blk_cleanup_queue(ctrl->ctrl.connect_q); 862 out_free_tag_set: 863 if (new) 864 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 865 out_free_io_queues: 866 nvme_rdma_free_io_queues(ctrl); 867 return ret; 868 } 869 870 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 871 { 872 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 873 874 cancel_work_sync(&ctrl->err_work); 875 cancel_delayed_work_sync(&ctrl->reconnect_work); 876 } 877 878 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 879 { 880 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 881 882 if (list_empty(&ctrl->list)) 883 goto free_ctrl; 884 885 mutex_lock(&nvme_rdma_ctrl_mutex); 886 list_del(&ctrl->list); 887 mutex_unlock(&nvme_rdma_ctrl_mutex); 888 889 kfree(ctrl->queues); 890 nvmf_free_options(nctrl->opts); 891 free_ctrl: 892 kfree(ctrl); 893 } 894 895 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 896 { 897 /* If we are resetting/deleting then do nothing */ 898 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 899 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 900 ctrl->ctrl.state == NVME_CTRL_LIVE); 901 return; 902 } 903 904 if (nvmf_should_reconnect(&ctrl->ctrl)) { 905 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 906 ctrl->ctrl.opts->reconnect_delay); 907 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 908 ctrl->ctrl.opts->reconnect_delay * HZ); 909 } else { 910 nvme_delete_ctrl(&ctrl->ctrl); 911 } 912 } 913 914 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 915 { 916 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 917 struct nvme_rdma_ctrl, reconnect_work); 918 bool changed; 919 int ret; 920 921 ++ctrl->ctrl.nr_reconnects; 922 923 ret = nvme_rdma_configure_admin_queue(ctrl, false); 924 if (ret) 925 goto requeue; 926 927 if (ctrl->ctrl.queue_count > 1) { 928 ret = nvme_rdma_configure_io_queues(ctrl, false); 929 if (ret) 930 goto destroy_admin; 931 } 932 933 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 934 if (!changed) { 935 /* state change failure is ok if we're in DELETING state */ 936 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 937 return; 938 } 939 940 nvme_start_ctrl(&ctrl->ctrl); 941 942 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 943 ctrl->ctrl.nr_reconnects); 944 945 ctrl->ctrl.nr_reconnects = 0; 946 947 return; 948 949 destroy_admin: 950 nvme_rdma_destroy_admin_queue(ctrl, false); 951 requeue: 952 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 953 ctrl->ctrl.nr_reconnects); 954 nvme_rdma_reconnect_or_remove(ctrl); 955 } 956 957 static void nvme_rdma_error_recovery_work(struct work_struct *work) 958 { 959 struct nvme_rdma_ctrl *ctrl = container_of(work, 960 struct nvme_rdma_ctrl, err_work); 961 962 nvme_stop_keep_alive(&ctrl->ctrl); 963 964 if (ctrl->ctrl.queue_count > 1) { 965 nvme_stop_queues(&ctrl->ctrl); 966 blk_mq_tagset_busy_iter(&ctrl->tag_set, 967 nvme_cancel_request, &ctrl->ctrl); 968 nvme_rdma_destroy_io_queues(ctrl, false); 969 } 970 971 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 972 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 973 nvme_cancel_request, &ctrl->ctrl); 974 nvme_rdma_destroy_admin_queue(ctrl, false); 975 976 /* 977 * queues are not a live anymore, so restart the queues to fail fast 978 * new IO 979 */ 980 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 981 nvme_start_queues(&ctrl->ctrl); 982 983 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 984 /* state change failure is ok if we're in DELETING state */ 985 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 986 return; 987 } 988 989 nvme_rdma_reconnect_or_remove(ctrl); 990 } 991 992 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 993 { 994 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 995 return; 996 997 queue_work(nvme_wq, &ctrl->err_work); 998 } 999 1000 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1001 const char *op) 1002 { 1003 struct nvme_rdma_queue *queue = cq->cq_context; 1004 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1005 1006 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1007 dev_info(ctrl->ctrl.device, 1008 "%s for CQE 0x%p failed with status %s (%d)\n", 1009 op, wc->wr_cqe, 1010 ib_wc_status_msg(wc->status), wc->status); 1011 nvme_rdma_error_recovery(ctrl); 1012 } 1013 1014 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1015 { 1016 if (unlikely(wc->status != IB_WC_SUCCESS)) 1017 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1018 } 1019 1020 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1021 { 1022 struct nvme_rdma_request *req = 1023 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1024 struct request *rq = blk_mq_rq_from_pdu(req); 1025 1026 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1027 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1028 return; 1029 } 1030 1031 if (refcount_dec_and_test(&req->ref)) 1032 nvme_end_request(rq, req->status, req->result); 1033 1034 } 1035 1036 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1037 struct nvme_rdma_request *req) 1038 { 1039 struct ib_send_wr *bad_wr; 1040 struct ib_send_wr wr = { 1041 .opcode = IB_WR_LOCAL_INV, 1042 .next = NULL, 1043 .num_sge = 0, 1044 .send_flags = IB_SEND_SIGNALED, 1045 .ex.invalidate_rkey = req->mr->rkey, 1046 }; 1047 1048 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1049 wr.wr_cqe = &req->reg_cqe; 1050 1051 return ib_post_send(queue->qp, &wr, &bad_wr); 1052 } 1053 1054 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1055 struct request *rq) 1056 { 1057 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1058 struct nvme_rdma_device *dev = queue->device; 1059 struct ib_device *ibdev = dev->dev; 1060 1061 if (!blk_rq_payload_bytes(rq)) 1062 return; 1063 1064 if (req->mr) { 1065 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1066 req->mr = NULL; 1067 } 1068 1069 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1070 req->nents, rq_data_dir(rq) == 1071 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1072 1073 nvme_cleanup_cmd(rq); 1074 sg_free_table_chained(&req->sg_table, true); 1075 } 1076 1077 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1078 { 1079 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1080 1081 sg->addr = 0; 1082 put_unaligned_le24(0, sg->length); 1083 put_unaligned_le32(0, sg->key); 1084 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1085 return 0; 1086 } 1087 1088 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1089 struct nvme_rdma_request *req, struct nvme_command *c) 1090 { 1091 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1092 1093 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1094 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1095 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1096 1097 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1098 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1099 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1100 1101 req->num_sge++; 1102 return 0; 1103 } 1104 1105 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1106 struct nvme_rdma_request *req, struct nvme_command *c) 1107 { 1108 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1109 1110 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1111 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1112 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1113 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1114 return 0; 1115 } 1116 1117 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1118 struct nvme_rdma_request *req, struct nvme_command *c, 1119 int count) 1120 { 1121 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1122 int nr; 1123 1124 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1125 if (WARN_ON_ONCE(!req->mr)) 1126 return -EAGAIN; 1127 1128 /* 1129 * Align the MR to a 4K page size to match the ctrl page size and 1130 * the block virtual boundary. 1131 */ 1132 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1133 if (unlikely(nr < count)) { 1134 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1135 req->mr = NULL; 1136 if (nr < 0) 1137 return nr; 1138 return -EINVAL; 1139 } 1140 1141 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1142 1143 req->reg_cqe.done = nvme_rdma_memreg_done; 1144 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1145 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1146 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1147 req->reg_wr.wr.num_sge = 0; 1148 req->reg_wr.mr = req->mr; 1149 req->reg_wr.key = req->mr->rkey; 1150 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1151 IB_ACCESS_REMOTE_READ | 1152 IB_ACCESS_REMOTE_WRITE; 1153 1154 sg->addr = cpu_to_le64(req->mr->iova); 1155 put_unaligned_le24(req->mr->length, sg->length); 1156 put_unaligned_le32(req->mr->rkey, sg->key); 1157 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1158 NVME_SGL_FMT_INVALIDATE; 1159 1160 return 0; 1161 } 1162 1163 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1164 struct request *rq, struct nvme_command *c) 1165 { 1166 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1167 struct nvme_rdma_device *dev = queue->device; 1168 struct ib_device *ibdev = dev->dev; 1169 int count, ret; 1170 1171 req->num_sge = 1; 1172 refcount_set(&req->ref, 2); /* send and recv completions */ 1173 1174 c->common.flags |= NVME_CMD_SGL_METABUF; 1175 1176 if (!blk_rq_payload_bytes(rq)) 1177 return nvme_rdma_set_sg_null(c); 1178 1179 req->sg_table.sgl = req->first_sgl; 1180 ret = sg_alloc_table_chained(&req->sg_table, 1181 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1182 if (ret) 1183 return -ENOMEM; 1184 1185 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1186 1187 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1188 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1189 if (unlikely(count <= 0)) { 1190 sg_free_table_chained(&req->sg_table, true); 1191 return -EIO; 1192 } 1193 1194 if (count == 1) { 1195 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1196 blk_rq_payload_bytes(rq) <= 1197 nvme_rdma_inline_data_size(queue)) 1198 return nvme_rdma_map_sg_inline(queue, req, c); 1199 1200 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1201 return nvme_rdma_map_sg_single(queue, req, c); 1202 } 1203 1204 return nvme_rdma_map_sg_fr(queue, req, c, count); 1205 } 1206 1207 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1208 { 1209 struct nvme_rdma_qe *qe = 1210 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1211 struct nvme_rdma_request *req = 1212 container_of(qe, struct nvme_rdma_request, sqe); 1213 struct request *rq = blk_mq_rq_from_pdu(req); 1214 1215 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1216 nvme_rdma_wr_error(cq, wc, "SEND"); 1217 return; 1218 } 1219 1220 if (refcount_dec_and_test(&req->ref)) 1221 nvme_end_request(rq, req->status, req->result); 1222 } 1223 1224 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1225 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1226 struct ib_send_wr *first) 1227 { 1228 struct ib_send_wr wr, *bad_wr; 1229 int ret; 1230 1231 sge->addr = qe->dma; 1232 sge->length = sizeof(struct nvme_command), 1233 sge->lkey = queue->device->pd->local_dma_lkey; 1234 1235 wr.next = NULL; 1236 wr.wr_cqe = &qe->cqe; 1237 wr.sg_list = sge; 1238 wr.num_sge = num_sge; 1239 wr.opcode = IB_WR_SEND; 1240 wr.send_flags = IB_SEND_SIGNALED; 1241 1242 if (first) 1243 first->next = ≀ 1244 else 1245 first = ≀ 1246 1247 ret = ib_post_send(queue->qp, first, &bad_wr); 1248 if (unlikely(ret)) { 1249 dev_err(queue->ctrl->ctrl.device, 1250 "%s failed with error code %d\n", __func__, ret); 1251 } 1252 return ret; 1253 } 1254 1255 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1256 struct nvme_rdma_qe *qe) 1257 { 1258 struct ib_recv_wr wr, *bad_wr; 1259 struct ib_sge list; 1260 int ret; 1261 1262 list.addr = qe->dma; 1263 list.length = sizeof(struct nvme_completion); 1264 list.lkey = queue->device->pd->local_dma_lkey; 1265 1266 qe->cqe.done = nvme_rdma_recv_done; 1267 1268 wr.next = NULL; 1269 wr.wr_cqe = &qe->cqe; 1270 wr.sg_list = &list; 1271 wr.num_sge = 1; 1272 1273 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1274 if (unlikely(ret)) { 1275 dev_err(queue->ctrl->ctrl.device, 1276 "%s failed with error code %d\n", __func__, ret); 1277 } 1278 return ret; 1279 } 1280 1281 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1282 { 1283 u32 queue_idx = nvme_rdma_queue_idx(queue); 1284 1285 if (queue_idx == 0) 1286 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1287 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1288 } 1289 1290 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1291 { 1292 if (unlikely(wc->status != IB_WC_SUCCESS)) 1293 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1294 } 1295 1296 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1297 { 1298 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1299 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1300 struct ib_device *dev = queue->device->dev; 1301 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1302 struct nvme_command *cmd = sqe->data; 1303 struct ib_sge sge; 1304 int ret; 1305 1306 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1307 1308 memset(cmd, 0, sizeof(*cmd)); 1309 cmd->common.opcode = nvme_admin_async_event; 1310 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1311 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1312 nvme_rdma_set_sg_null(cmd); 1313 1314 sqe->cqe.done = nvme_rdma_async_done; 1315 1316 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1317 DMA_TO_DEVICE); 1318 1319 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1320 WARN_ON_ONCE(ret); 1321 } 1322 1323 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1324 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1325 { 1326 struct request *rq; 1327 struct nvme_rdma_request *req; 1328 int ret = 0; 1329 1330 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1331 if (!rq) { 1332 dev_err(queue->ctrl->ctrl.device, 1333 "tag 0x%x on QP %#x not found\n", 1334 cqe->command_id, queue->qp->qp_num); 1335 nvme_rdma_error_recovery(queue->ctrl); 1336 return ret; 1337 } 1338 req = blk_mq_rq_to_pdu(rq); 1339 1340 req->status = cqe->status; 1341 req->result = cqe->result; 1342 1343 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1344 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1345 dev_err(queue->ctrl->ctrl.device, 1346 "Bogus remote invalidation for rkey %#x\n", 1347 req->mr->rkey); 1348 nvme_rdma_error_recovery(queue->ctrl); 1349 } 1350 } else if (req->mr) { 1351 ret = nvme_rdma_inv_rkey(queue, req); 1352 if (unlikely(ret < 0)) { 1353 dev_err(queue->ctrl->ctrl.device, 1354 "Queueing INV WR for rkey %#x failed (%d)\n", 1355 req->mr->rkey, ret); 1356 nvme_rdma_error_recovery(queue->ctrl); 1357 } 1358 /* the local invalidation completion will end the request */ 1359 return 0; 1360 } 1361 1362 if (refcount_dec_and_test(&req->ref)) { 1363 if (rq->tag == tag) 1364 ret = 1; 1365 nvme_end_request(rq, req->status, req->result); 1366 } 1367 1368 return ret; 1369 } 1370 1371 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1372 { 1373 struct nvme_rdma_qe *qe = 1374 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1375 struct nvme_rdma_queue *queue = cq->cq_context; 1376 struct ib_device *ibdev = queue->device->dev; 1377 struct nvme_completion *cqe = qe->data; 1378 const size_t len = sizeof(struct nvme_completion); 1379 int ret = 0; 1380 1381 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1382 nvme_rdma_wr_error(cq, wc, "RECV"); 1383 return 0; 1384 } 1385 1386 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1387 /* 1388 * AEN requests are special as they don't time out and can 1389 * survive any kind of queue freeze and often don't respond to 1390 * aborts. We don't even bother to allocate a struct request 1391 * for them but rather special case them here. 1392 */ 1393 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1394 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1395 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1396 &cqe->result); 1397 else 1398 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1399 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1400 1401 nvme_rdma_post_recv(queue, qe); 1402 return ret; 1403 } 1404 1405 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1406 { 1407 __nvme_rdma_recv_done(cq, wc, -1); 1408 } 1409 1410 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1411 { 1412 int ret, i; 1413 1414 for (i = 0; i < queue->queue_size; i++) { 1415 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1416 if (ret) 1417 goto out_destroy_queue_ib; 1418 } 1419 1420 return 0; 1421 1422 out_destroy_queue_ib: 1423 nvme_rdma_destroy_queue_ib(queue); 1424 return ret; 1425 } 1426 1427 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1428 struct rdma_cm_event *ev) 1429 { 1430 struct rdma_cm_id *cm_id = queue->cm_id; 1431 int status = ev->status; 1432 const char *rej_msg; 1433 const struct nvme_rdma_cm_rej *rej_data; 1434 u8 rej_data_len; 1435 1436 rej_msg = rdma_reject_msg(cm_id, status); 1437 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1438 1439 if (rej_data && rej_data_len >= sizeof(u16)) { 1440 u16 sts = le16_to_cpu(rej_data->sts); 1441 1442 dev_err(queue->ctrl->ctrl.device, 1443 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1444 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1445 } else { 1446 dev_err(queue->ctrl->ctrl.device, 1447 "Connect rejected: status %d (%s).\n", status, rej_msg); 1448 } 1449 1450 return -ECONNRESET; 1451 } 1452 1453 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1454 { 1455 int ret; 1456 1457 ret = nvme_rdma_create_queue_ib(queue); 1458 if (ret) 1459 return ret; 1460 1461 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1462 if (ret) { 1463 dev_err(queue->ctrl->ctrl.device, 1464 "rdma_resolve_route failed (%d).\n", 1465 queue->cm_error); 1466 goto out_destroy_queue; 1467 } 1468 1469 return 0; 1470 1471 out_destroy_queue: 1472 nvme_rdma_destroy_queue_ib(queue); 1473 return ret; 1474 } 1475 1476 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1477 { 1478 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1479 struct rdma_conn_param param = { }; 1480 struct nvme_rdma_cm_req priv = { }; 1481 int ret; 1482 1483 param.qp_num = queue->qp->qp_num; 1484 param.flow_control = 1; 1485 1486 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1487 /* maximum retry count */ 1488 param.retry_count = 7; 1489 param.rnr_retry_count = 7; 1490 param.private_data = &priv; 1491 param.private_data_len = sizeof(priv); 1492 1493 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1494 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1495 /* 1496 * set the admin queue depth to the minimum size 1497 * specified by the Fabrics standard. 1498 */ 1499 if (priv.qid == 0) { 1500 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1501 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1502 } else { 1503 /* 1504 * current interpretation of the fabrics spec 1505 * is at minimum you make hrqsize sqsize+1, or a 1506 * 1's based representation of sqsize. 1507 */ 1508 priv.hrqsize = cpu_to_le16(queue->queue_size); 1509 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1510 } 1511 1512 ret = rdma_connect(queue->cm_id, ¶m); 1513 if (ret) { 1514 dev_err(ctrl->ctrl.device, 1515 "rdma_connect failed (%d).\n", ret); 1516 goto out_destroy_queue_ib; 1517 } 1518 1519 return 0; 1520 1521 out_destroy_queue_ib: 1522 nvme_rdma_destroy_queue_ib(queue); 1523 return ret; 1524 } 1525 1526 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1527 struct rdma_cm_event *ev) 1528 { 1529 struct nvme_rdma_queue *queue = cm_id->context; 1530 int cm_error = 0; 1531 1532 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1533 rdma_event_msg(ev->event), ev->event, 1534 ev->status, cm_id); 1535 1536 switch (ev->event) { 1537 case RDMA_CM_EVENT_ADDR_RESOLVED: 1538 cm_error = nvme_rdma_addr_resolved(queue); 1539 break; 1540 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1541 cm_error = nvme_rdma_route_resolved(queue); 1542 break; 1543 case RDMA_CM_EVENT_ESTABLISHED: 1544 queue->cm_error = nvme_rdma_conn_established(queue); 1545 /* complete cm_done regardless of success/failure */ 1546 complete(&queue->cm_done); 1547 return 0; 1548 case RDMA_CM_EVENT_REJECTED: 1549 nvme_rdma_destroy_queue_ib(queue); 1550 cm_error = nvme_rdma_conn_rejected(queue, ev); 1551 break; 1552 case RDMA_CM_EVENT_ROUTE_ERROR: 1553 case RDMA_CM_EVENT_CONNECT_ERROR: 1554 case RDMA_CM_EVENT_UNREACHABLE: 1555 nvme_rdma_destroy_queue_ib(queue); 1556 case RDMA_CM_EVENT_ADDR_ERROR: 1557 dev_dbg(queue->ctrl->ctrl.device, 1558 "CM error event %d\n", ev->event); 1559 cm_error = -ECONNRESET; 1560 break; 1561 case RDMA_CM_EVENT_DISCONNECTED: 1562 case RDMA_CM_EVENT_ADDR_CHANGE: 1563 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1564 dev_dbg(queue->ctrl->ctrl.device, 1565 "disconnect received - connection closed\n"); 1566 nvme_rdma_error_recovery(queue->ctrl); 1567 break; 1568 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1569 /* device removal is handled via the ib_client API */ 1570 break; 1571 default: 1572 dev_err(queue->ctrl->ctrl.device, 1573 "Unexpected RDMA CM event (%d)\n", ev->event); 1574 nvme_rdma_error_recovery(queue->ctrl); 1575 break; 1576 } 1577 1578 if (cm_error) { 1579 queue->cm_error = cm_error; 1580 complete(&queue->cm_done); 1581 } 1582 1583 return 0; 1584 } 1585 1586 static enum blk_eh_timer_return 1587 nvme_rdma_timeout(struct request *rq, bool reserved) 1588 { 1589 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1590 1591 dev_warn(req->queue->ctrl->ctrl.device, 1592 "I/O %d QID %d timeout, reset controller\n", 1593 rq->tag, nvme_rdma_queue_idx(req->queue)); 1594 1595 /* queue error recovery */ 1596 nvme_rdma_error_recovery(req->queue->ctrl); 1597 1598 /* fail with DNR on cmd timeout */ 1599 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1600 1601 return BLK_EH_HANDLED; 1602 } 1603 1604 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1605 const struct blk_mq_queue_data *bd) 1606 { 1607 struct nvme_ns *ns = hctx->queue->queuedata; 1608 struct nvme_rdma_queue *queue = hctx->driver_data; 1609 struct request *rq = bd->rq; 1610 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1611 struct nvme_rdma_qe *sqe = &req->sqe; 1612 struct nvme_command *c = sqe->data; 1613 struct ib_device *dev; 1614 blk_status_t ret; 1615 int err; 1616 1617 WARN_ON_ONCE(rq->tag < 0); 1618 1619 ret = nvmf_check_if_ready(&queue->ctrl->ctrl, rq, 1620 test_bit(NVME_RDMA_Q_LIVE, &queue->flags), true); 1621 if (unlikely(ret)) 1622 return ret; 1623 1624 dev = queue->device->dev; 1625 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1626 sizeof(struct nvme_command), DMA_TO_DEVICE); 1627 1628 ret = nvme_setup_cmd(ns, rq, c); 1629 if (ret) 1630 return ret; 1631 1632 blk_mq_start_request(rq); 1633 1634 err = nvme_rdma_map_data(queue, rq, c); 1635 if (unlikely(err < 0)) { 1636 dev_err(queue->ctrl->ctrl.device, 1637 "Failed to map data (%d)\n", err); 1638 nvme_cleanup_cmd(rq); 1639 goto err; 1640 } 1641 1642 sqe->cqe.done = nvme_rdma_send_done; 1643 1644 ib_dma_sync_single_for_device(dev, sqe->dma, 1645 sizeof(struct nvme_command), DMA_TO_DEVICE); 1646 1647 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1648 req->mr ? &req->reg_wr.wr : NULL); 1649 if (unlikely(err)) { 1650 nvme_rdma_unmap_data(queue, rq); 1651 goto err; 1652 } 1653 1654 return BLK_STS_OK; 1655 err: 1656 if (err == -ENOMEM || err == -EAGAIN) 1657 return BLK_STS_RESOURCE; 1658 return BLK_STS_IOERR; 1659 } 1660 1661 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1662 { 1663 struct nvme_rdma_queue *queue = hctx->driver_data; 1664 struct ib_cq *cq = queue->ib_cq; 1665 struct ib_wc wc; 1666 int found = 0; 1667 1668 while (ib_poll_cq(cq, 1, &wc) > 0) { 1669 struct ib_cqe *cqe = wc.wr_cqe; 1670 1671 if (cqe) { 1672 if (cqe->done == nvme_rdma_recv_done) 1673 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1674 else 1675 cqe->done(cq, &wc); 1676 } 1677 } 1678 1679 return found; 1680 } 1681 1682 static void nvme_rdma_complete_rq(struct request *rq) 1683 { 1684 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1685 1686 nvme_rdma_unmap_data(req->queue, rq); 1687 nvme_complete_rq(rq); 1688 } 1689 1690 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1691 { 1692 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1693 1694 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1695 } 1696 1697 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1698 .queue_rq = nvme_rdma_queue_rq, 1699 .complete = nvme_rdma_complete_rq, 1700 .init_request = nvme_rdma_init_request, 1701 .exit_request = nvme_rdma_exit_request, 1702 .init_hctx = nvme_rdma_init_hctx, 1703 .poll = nvme_rdma_poll, 1704 .timeout = nvme_rdma_timeout, 1705 .map_queues = nvme_rdma_map_queues, 1706 }; 1707 1708 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1709 .queue_rq = nvme_rdma_queue_rq, 1710 .complete = nvme_rdma_complete_rq, 1711 .init_request = nvme_rdma_init_request, 1712 .exit_request = nvme_rdma_exit_request, 1713 .init_hctx = nvme_rdma_init_admin_hctx, 1714 .timeout = nvme_rdma_timeout, 1715 }; 1716 1717 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1718 { 1719 if (ctrl->ctrl.queue_count > 1) { 1720 nvme_stop_queues(&ctrl->ctrl); 1721 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1722 nvme_cancel_request, &ctrl->ctrl); 1723 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1724 } 1725 1726 if (shutdown) 1727 nvme_shutdown_ctrl(&ctrl->ctrl); 1728 else 1729 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1730 1731 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1732 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1733 nvme_cancel_request, &ctrl->ctrl); 1734 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1735 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1736 } 1737 1738 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1739 { 1740 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1741 } 1742 1743 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1744 { 1745 struct nvme_rdma_ctrl *ctrl = 1746 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1747 int ret; 1748 bool changed; 1749 1750 nvme_stop_ctrl(&ctrl->ctrl); 1751 nvme_rdma_shutdown_ctrl(ctrl, false); 1752 1753 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1754 /* state change failure should never happen */ 1755 WARN_ON_ONCE(1); 1756 return; 1757 } 1758 1759 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1760 if (ret) 1761 goto out_fail; 1762 1763 if (ctrl->ctrl.queue_count > 1) { 1764 ret = nvme_rdma_configure_io_queues(ctrl, false); 1765 if (ret) 1766 goto out_fail; 1767 } 1768 1769 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1770 if (!changed) { 1771 /* state change failure is ok if we're in DELETING state */ 1772 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1773 return; 1774 } 1775 1776 nvme_start_ctrl(&ctrl->ctrl); 1777 1778 return; 1779 1780 out_fail: 1781 ++ctrl->ctrl.nr_reconnects; 1782 nvme_rdma_reconnect_or_remove(ctrl); 1783 } 1784 1785 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1786 .name = "rdma", 1787 .module = THIS_MODULE, 1788 .flags = NVME_F_FABRICS, 1789 .reg_read32 = nvmf_reg_read32, 1790 .reg_read64 = nvmf_reg_read64, 1791 .reg_write32 = nvmf_reg_write32, 1792 .free_ctrl = nvme_rdma_free_ctrl, 1793 .submit_async_event = nvme_rdma_submit_async_event, 1794 .delete_ctrl = nvme_rdma_delete_ctrl, 1795 .get_address = nvmf_get_address, 1796 .stop_ctrl = nvme_rdma_stop_ctrl, 1797 }; 1798 1799 static inline bool 1800 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1801 struct nvmf_ctrl_options *opts) 1802 { 1803 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1804 1805 1806 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1807 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1808 return false; 1809 1810 if (opts->mask & NVMF_OPT_TRSVCID && 1811 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1812 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1813 return false; 1814 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1815 if (strcmp(opts->trsvcid, stdport)) 1816 return false; 1817 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1818 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1819 return false; 1820 } 1821 /* else, it's a match as both have stdport. Fall to next checks */ 1822 1823 /* 1824 * checking the local address is rough. In most cases, one 1825 * is not specified and the host port is selected by the stack. 1826 * 1827 * Assume no match if: 1828 * local address is specified and address is not the same 1829 * local address is not specified but remote is, or vice versa 1830 * (admin using specific host_traddr when it matters). 1831 */ 1832 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1833 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1834 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1835 return false; 1836 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1837 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1838 return false; 1839 /* 1840 * if neither controller had an host port specified, assume it's 1841 * a match as everything else matched. 1842 */ 1843 1844 return true; 1845 } 1846 1847 /* 1848 * Fails a connection request if it matches an existing controller 1849 * (association) with the same tuple: 1850 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1851 * 1852 * if local address is not specified in the request, it will match an 1853 * existing controller with all the other parameters the same and no 1854 * local port address specified as well. 1855 * 1856 * The ports don't need to be compared as they are intrinsically 1857 * already matched by the port pointers supplied. 1858 */ 1859 static bool 1860 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1861 { 1862 struct nvme_rdma_ctrl *ctrl; 1863 bool found = false; 1864 1865 mutex_lock(&nvme_rdma_ctrl_mutex); 1866 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1867 found = __nvme_rdma_options_match(ctrl, opts); 1868 if (found) 1869 break; 1870 } 1871 mutex_unlock(&nvme_rdma_ctrl_mutex); 1872 1873 return found; 1874 } 1875 1876 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1877 struct nvmf_ctrl_options *opts) 1878 { 1879 struct nvme_rdma_ctrl *ctrl; 1880 int ret; 1881 bool changed; 1882 char *port; 1883 1884 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1885 if (!ctrl) 1886 return ERR_PTR(-ENOMEM); 1887 ctrl->ctrl.opts = opts; 1888 INIT_LIST_HEAD(&ctrl->list); 1889 1890 if (opts->mask & NVMF_OPT_TRSVCID) 1891 port = opts->trsvcid; 1892 else 1893 port = __stringify(NVME_RDMA_IP_PORT); 1894 1895 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1896 opts->traddr, port, &ctrl->addr); 1897 if (ret) { 1898 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1899 goto out_free_ctrl; 1900 } 1901 1902 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1903 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1904 opts->host_traddr, NULL, &ctrl->src_addr); 1905 if (ret) { 1906 pr_err("malformed src address passed: %s\n", 1907 opts->host_traddr); 1908 goto out_free_ctrl; 1909 } 1910 } 1911 1912 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1913 ret = -EALREADY; 1914 goto out_free_ctrl; 1915 } 1916 1917 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1918 0 /* no quirks, we're perfect! */); 1919 if (ret) 1920 goto out_free_ctrl; 1921 1922 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1923 nvme_rdma_reconnect_ctrl_work); 1924 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1925 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1926 1927 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1928 ctrl->ctrl.sqsize = opts->queue_size - 1; 1929 ctrl->ctrl.kato = opts->kato; 1930 1931 ret = -ENOMEM; 1932 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1933 GFP_KERNEL); 1934 if (!ctrl->queues) 1935 goto out_uninit_ctrl; 1936 1937 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1938 WARN_ON_ONCE(!changed); 1939 1940 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1941 if (ret) 1942 goto out_kfree_queues; 1943 1944 /* sanity check icdoff */ 1945 if (ctrl->ctrl.icdoff) { 1946 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1947 ret = -EINVAL; 1948 goto out_remove_admin_queue; 1949 } 1950 1951 /* sanity check keyed sgls */ 1952 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1953 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1954 ret = -EINVAL; 1955 goto out_remove_admin_queue; 1956 } 1957 1958 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1959 /* warn if maxcmd is lower than queue_size */ 1960 dev_warn(ctrl->ctrl.device, 1961 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1962 opts->queue_size, ctrl->ctrl.maxcmd); 1963 opts->queue_size = ctrl->ctrl.maxcmd; 1964 } 1965 1966 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1967 /* warn if sqsize is lower than queue_size */ 1968 dev_warn(ctrl->ctrl.device, 1969 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1970 opts->queue_size, ctrl->ctrl.sqsize + 1); 1971 opts->queue_size = ctrl->ctrl.sqsize + 1; 1972 } 1973 1974 if (opts->nr_io_queues) { 1975 ret = nvme_rdma_configure_io_queues(ctrl, true); 1976 if (ret) 1977 goto out_remove_admin_queue; 1978 } 1979 1980 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1981 WARN_ON_ONCE(!changed); 1982 1983 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1984 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1985 1986 nvme_get_ctrl(&ctrl->ctrl); 1987 1988 mutex_lock(&nvme_rdma_ctrl_mutex); 1989 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1990 mutex_unlock(&nvme_rdma_ctrl_mutex); 1991 1992 nvme_start_ctrl(&ctrl->ctrl); 1993 1994 return &ctrl->ctrl; 1995 1996 out_remove_admin_queue: 1997 nvme_rdma_destroy_admin_queue(ctrl, true); 1998 out_kfree_queues: 1999 kfree(ctrl->queues); 2000 out_uninit_ctrl: 2001 nvme_uninit_ctrl(&ctrl->ctrl); 2002 nvme_put_ctrl(&ctrl->ctrl); 2003 if (ret > 0) 2004 ret = -EIO; 2005 return ERR_PTR(ret); 2006 out_free_ctrl: 2007 kfree(ctrl); 2008 return ERR_PTR(ret); 2009 } 2010 2011 static struct nvmf_transport_ops nvme_rdma_transport = { 2012 .name = "rdma", 2013 .module = THIS_MODULE, 2014 .required_opts = NVMF_OPT_TRADDR, 2015 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2016 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2017 .create_ctrl = nvme_rdma_create_ctrl, 2018 }; 2019 2020 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2021 { 2022 struct nvme_rdma_ctrl *ctrl; 2023 struct nvme_rdma_device *ndev; 2024 bool found = false; 2025 2026 mutex_lock(&device_list_mutex); 2027 list_for_each_entry(ndev, &device_list, entry) { 2028 if (ndev->dev == ib_device) { 2029 found = true; 2030 break; 2031 } 2032 } 2033 mutex_unlock(&device_list_mutex); 2034 2035 if (!found) 2036 return; 2037 2038 /* Delete all controllers using this device */ 2039 mutex_lock(&nvme_rdma_ctrl_mutex); 2040 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2041 if (ctrl->device->dev != ib_device) 2042 continue; 2043 nvme_delete_ctrl(&ctrl->ctrl); 2044 } 2045 mutex_unlock(&nvme_rdma_ctrl_mutex); 2046 2047 flush_workqueue(nvme_delete_wq); 2048 } 2049 2050 static struct ib_client nvme_rdma_ib_client = { 2051 .name = "nvme_rdma", 2052 .remove = nvme_rdma_remove_one 2053 }; 2054 2055 static int __init nvme_rdma_init_module(void) 2056 { 2057 int ret; 2058 2059 ret = ib_register_client(&nvme_rdma_ib_client); 2060 if (ret) 2061 return ret; 2062 2063 ret = nvmf_register_transport(&nvme_rdma_transport); 2064 if (ret) 2065 goto err_unreg_client; 2066 2067 return 0; 2068 2069 err_unreg_client: 2070 ib_unregister_client(&nvme_rdma_ib_client); 2071 return ret; 2072 } 2073 2074 static void __exit nvme_rdma_cleanup_module(void) 2075 { 2076 nvmf_unregister_transport(&nvme_rdma_transport); 2077 ib_unregister_client(&nvme_rdma_ib_client); 2078 } 2079 2080 module_init(nvme_rdma_init_module); 2081 module_exit(nvme_rdma_cleanup_module); 2082 2083 MODULE_LICENSE("GPL v2"); 2084