1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 unsigned int num_inline_segments; 51 }; 52 53 struct nvme_rdma_qe { 54 struct ib_cqe cqe; 55 void *data; 56 u64 dma; 57 }; 58 59 struct nvme_rdma_queue; 60 struct nvme_rdma_request { 61 struct nvme_request req; 62 struct ib_mr *mr; 63 struct nvme_rdma_qe sqe; 64 union nvme_result result; 65 __le16 status; 66 refcount_t ref; 67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 68 u32 num_sge; 69 int nents; 70 struct ib_reg_wr reg_wr; 71 struct ib_cqe reg_cqe; 72 struct nvme_rdma_queue *queue; 73 struct sg_table sg_table; 74 struct scatterlist first_sgl[]; 75 }; 76 77 enum nvme_rdma_queue_flags { 78 NVME_RDMA_Q_ALLOCATED = 0, 79 NVME_RDMA_Q_LIVE = 1, 80 NVME_RDMA_Q_TR_READY = 2, 81 }; 82 83 struct nvme_rdma_queue { 84 struct nvme_rdma_qe *rsp_ring; 85 int queue_size; 86 size_t cmnd_capsule_len; 87 struct nvme_rdma_ctrl *ctrl; 88 struct nvme_rdma_device *device; 89 struct ib_cq *ib_cq; 90 struct ib_qp *qp; 91 92 unsigned long flags; 93 struct rdma_cm_id *cm_id; 94 int cm_error; 95 struct completion cm_done; 96 }; 97 98 struct nvme_rdma_ctrl { 99 /* read only in the hot path */ 100 struct nvme_rdma_queue *queues; 101 102 /* other member variables */ 103 struct blk_mq_tag_set tag_set; 104 struct work_struct err_work; 105 106 struct nvme_rdma_qe async_event_sqe; 107 108 struct delayed_work reconnect_work; 109 110 struct list_head list; 111 112 struct blk_mq_tag_set admin_tag_set; 113 struct nvme_rdma_device *device; 114 115 u32 max_fr_pages; 116 117 struct sockaddr_storage addr; 118 struct sockaddr_storage src_addr; 119 120 struct nvme_ctrl ctrl; 121 bool use_inline_data; 122 }; 123 124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 125 { 126 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 127 } 128 129 static LIST_HEAD(device_list); 130 static DEFINE_MUTEX(device_list_mutex); 131 132 static LIST_HEAD(nvme_rdma_ctrl_list); 133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 134 135 /* 136 * Disabling this option makes small I/O goes faster, but is fundamentally 137 * unsafe. With it turned off we will have to register a global rkey that 138 * allows read and write access to all physical memory. 139 */ 140 static bool register_always = true; 141 module_param(register_always, bool, 0444); 142 MODULE_PARM_DESC(register_always, 143 "Use memory registration even for contiguous memory regions"); 144 145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 146 struct rdma_cm_event *event); 147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 148 149 static const struct blk_mq_ops nvme_rdma_mq_ops; 150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 151 152 /* XXX: really should move to a generic header sooner or later.. */ 153 static inline void put_unaligned_le24(u32 val, u8 *p) 154 { 155 *p++ = val; 156 *p++ = val >> 8; 157 *p++ = val >> 16; 158 } 159 160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 161 { 162 return queue - queue->ctrl->queues; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 return -ENOMEM; 188 } 189 190 return 0; 191 } 192 193 static void nvme_rdma_free_ring(struct ib_device *ibdev, 194 struct nvme_rdma_qe *ring, size_t ib_queue_size, 195 size_t capsule_size, enum dma_data_direction dir) 196 { 197 int i; 198 199 for (i = 0; i < ib_queue_size; i++) 200 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 201 kfree(ring); 202 } 203 204 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 205 size_t ib_queue_size, size_t capsule_size, 206 enum dma_data_direction dir) 207 { 208 struct nvme_rdma_qe *ring; 209 int i; 210 211 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 212 if (!ring) 213 return NULL; 214 215 for (i = 0; i < ib_queue_size; i++) { 216 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 217 goto out_free_ring; 218 } 219 220 return ring; 221 222 out_free_ring: 223 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 224 return NULL; 225 } 226 227 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 228 { 229 pr_debug("QP event %s (%d)\n", 230 ib_event_msg(event->event), event->event); 231 232 } 233 234 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 235 { 236 int ret; 237 238 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 239 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 240 if (ret < 0) 241 return ret; 242 if (ret == 0) 243 return -ETIMEDOUT; 244 WARN_ON_ONCE(queue->cm_error > 0); 245 return queue->cm_error; 246 } 247 248 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 249 { 250 struct nvme_rdma_device *dev = queue->device; 251 struct ib_qp_init_attr init_attr; 252 int ret; 253 254 memset(&init_attr, 0, sizeof(init_attr)); 255 init_attr.event_handler = nvme_rdma_qp_event; 256 /* +1 for drain */ 257 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 258 /* +1 for drain */ 259 init_attr.cap.max_recv_wr = queue->queue_size + 1; 260 init_attr.cap.max_recv_sge = 1; 261 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 262 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 263 init_attr.qp_type = IB_QPT_RC; 264 init_attr.send_cq = queue->ib_cq; 265 init_attr.recv_cq = queue->ib_cq; 266 267 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 268 269 queue->qp = queue->cm_id->qp; 270 return ret; 271 } 272 273 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 274 struct request *rq, unsigned int hctx_idx) 275 { 276 struct nvme_rdma_ctrl *ctrl = set->driver_data; 277 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 278 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 279 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 280 struct nvme_rdma_device *dev = queue->device; 281 282 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 283 DMA_TO_DEVICE); 284 } 285 286 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 287 struct request *rq, unsigned int hctx_idx, 288 unsigned int numa_node) 289 { 290 struct nvme_rdma_ctrl *ctrl = set->driver_data; 291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 292 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 293 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 294 struct nvme_rdma_device *dev = queue->device; 295 struct ib_device *ibdev = dev->dev; 296 int ret; 297 298 nvme_req(rq)->ctrl = &ctrl->ctrl; 299 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 300 DMA_TO_DEVICE); 301 if (ret) 302 return ret; 303 304 req->queue = queue; 305 306 return 0; 307 } 308 309 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 310 unsigned int hctx_idx) 311 { 312 struct nvme_rdma_ctrl *ctrl = data; 313 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 314 315 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 316 317 hctx->driver_data = queue; 318 return 0; 319 } 320 321 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 322 unsigned int hctx_idx) 323 { 324 struct nvme_rdma_ctrl *ctrl = data; 325 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 326 327 BUG_ON(hctx_idx != 0); 328 329 hctx->driver_data = queue; 330 return 0; 331 } 332 333 static void nvme_rdma_free_dev(struct kref *ref) 334 { 335 struct nvme_rdma_device *ndev = 336 container_of(ref, struct nvme_rdma_device, ref); 337 338 mutex_lock(&device_list_mutex); 339 list_del(&ndev->entry); 340 mutex_unlock(&device_list_mutex); 341 342 ib_dealloc_pd(ndev->pd); 343 kfree(ndev); 344 } 345 346 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 347 { 348 kref_put(&dev->ref, nvme_rdma_free_dev); 349 } 350 351 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 352 { 353 return kref_get_unless_zero(&dev->ref); 354 } 355 356 static struct nvme_rdma_device * 357 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 358 { 359 struct nvme_rdma_device *ndev; 360 361 mutex_lock(&device_list_mutex); 362 list_for_each_entry(ndev, &device_list, entry) { 363 if (ndev->dev->node_guid == cm_id->device->node_guid && 364 nvme_rdma_dev_get(ndev)) 365 goto out_unlock; 366 } 367 368 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 369 if (!ndev) 370 goto out_err; 371 372 ndev->dev = cm_id->device; 373 kref_init(&ndev->ref); 374 375 ndev->pd = ib_alloc_pd(ndev->dev, 376 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 377 if (IS_ERR(ndev->pd)) 378 goto out_free_dev; 379 380 if (!(ndev->dev->attrs.device_cap_flags & 381 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 382 dev_err(&ndev->dev->dev, 383 "Memory registrations not supported.\n"); 384 goto out_free_pd; 385 } 386 387 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 388 ndev->dev->attrs.max_send_sge - 1); 389 list_add(&ndev->entry, &device_list); 390 out_unlock: 391 mutex_unlock(&device_list_mutex); 392 return ndev; 393 394 out_free_pd: 395 ib_dealloc_pd(ndev->pd); 396 out_free_dev: 397 kfree(ndev); 398 out_err: 399 mutex_unlock(&device_list_mutex); 400 return NULL; 401 } 402 403 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 404 { 405 struct nvme_rdma_device *dev; 406 struct ib_device *ibdev; 407 408 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 409 return; 410 411 dev = queue->device; 412 ibdev = dev->dev; 413 414 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 415 416 /* 417 * The cm_id object might have been destroyed during RDMA connection 418 * establishment error flow to avoid getting other cma events, thus 419 * the destruction of the QP shouldn't use rdma_cm API. 420 */ 421 ib_destroy_qp(queue->qp); 422 ib_free_cq(queue->ib_cq); 423 424 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 425 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 426 427 nvme_rdma_dev_put(dev); 428 } 429 430 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 431 { 432 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 433 ibdev->attrs.max_fast_reg_page_list_len); 434 } 435 436 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 437 { 438 struct ib_device *ibdev; 439 const int send_wr_factor = 3; /* MR, SEND, INV */ 440 const int cq_factor = send_wr_factor + 1; /* + RECV */ 441 int comp_vector, idx = nvme_rdma_queue_idx(queue); 442 int ret; 443 444 queue->device = nvme_rdma_find_get_device(queue->cm_id); 445 if (!queue->device) { 446 dev_err(queue->cm_id->device->dev.parent, 447 "no client data found!\n"); 448 return -ECONNREFUSED; 449 } 450 ibdev = queue->device->dev; 451 452 /* 453 * Spread I/O queues completion vectors according their queue index. 454 * Admin queues can always go on completion vector 0. 455 */ 456 comp_vector = idx == 0 ? idx : idx - 1; 457 458 /* +1 for ib_stop_cq */ 459 queue->ib_cq = ib_alloc_cq(ibdev, queue, 460 cq_factor * queue->queue_size + 1, 461 comp_vector, IB_POLL_SOFTIRQ); 462 if (IS_ERR(queue->ib_cq)) { 463 ret = PTR_ERR(queue->ib_cq); 464 goto out_put_dev; 465 } 466 467 ret = nvme_rdma_create_qp(queue, send_wr_factor); 468 if (ret) 469 goto out_destroy_ib_cq; 470 471 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 472 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 473 if (!queue->rsp_ring) { 474 ret = -ENOMEM; 475 goto out_destroy_qp; 476 } 477 478 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 479 queue->queue_size, 480 IB_MR_TYPE_MEM_REG, 481 nvme_rdma_get_max_fr_pages(ibdev)); 482 if (ret) { 483 dev_err(queue->ctrl->ctrl.device, 484 "failed to initialize MR pool sized %d for QID %d\n", 485 queue->queue_size, idx); 486 goto out_destroy_ring; 487 } 488 489 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 490 491 return 0; 492 493 out_destroy_ring: 494 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 495 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 496 out_destroy_qp: 497 rdma_destroy_qp(queue->cm_id); 498 out_destroy_ib_cq: 499 ib_free_cq(queue->ib_cq); 500 out_put_dev: 501 nvme_rdma_dev_put(queue->device); 502 return ret; 503 } 504 505 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 506 int idx, size_t queue_size) 507 { 508 struct nvme_rdma_queue *queue; 509 struct sockaddr *src_addr = NULL; 510 int ret; 511 512 queue = &ctrl->queues[idx]; 513 queue->ctrl = ctrl; 514 init_completion(&queue->cm_done); 515 516 if (idx > 0) 517 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 518 else 519 queue->cmnd_capsule_len = sizeof(struct nvme_command); 520 521 queue->queue_size = queue_size; 522 523 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 524 RDMA_PS_TCP, IB_QPT_RC); 525 if (IS_ERR(queue->cm_id)) { 526 dev_info(ctrl->ctrl.device, 527 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 528 return PTR_ERR(queue->cm_id); 529 } 530 531 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 532 src_addr = (struct sockaddr *)&ctrl->src_addr; 533 534 queue->cm_error = -ETIMEDOUT; 535 ret = rdma_resolve_addr(queue->cm_id, src_addr, 536 (struct sockaddr *)&ctrl->addr, 537 NVME_RDMA_CONNECT_TIMEOUT_MS); 538 if (ret) { 539 dev_info(ctrl->ctrl.device, 540 "rdma_resolve_addr failed (%d).\n", ret); 541 goto out_destroy_cm_id; 542 } 543 544 ret = nvme_rdma_wait_for_cm(queue); 545 if (ret) { 546 dev_info(ctrl->ctrl.device, 547 "rdma connection establishment failed (%d)\n", ret); 548 goto out_destroy_cm_id; 549 } 550 551 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 552 553 return 0; 554 555 out_destroy_cm_id: 556 rdma_destroy_id(queue->cm_id); 557 nvme_rdma_destroy_queue_ib(queue); 558 return ret; 559 } 560 561 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 562 { 563 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 564 return; 565 566 rdma_disconnect(queue->cm_id); 567 ib_drain_qp(queue->qp); 568 } 569 570 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 571 { 572 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 573 return; 574 575 nvme_rdma_destroy_queue_ib(queue); 576 rdma_destroy_id(queue->cm_id); 577 } 578 579 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 580 { 581 int i; 582 583 for (i = 1; i < ctrl->ctrl.queue_count; i++) 584 nvme_rdma_free_queue(&ctrl->queues[i]); 585 } 586 587 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 588 { 589 int i; 590 591 for (i = 1; i < ctrl->ctrl.queue_count; i++) 592 nvme_rdma_stop_queue(&ctrl->queues[i]); 593 } 594 595 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 596 { 597 int ret; 598 599 if (idx) 600 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 601 else 602 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 603 604 if (!ret) 605 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 606 else 607 dev_info(ctrl->ctrl.device, 608 "failed to connect queue: %d ret=%d\n", idx, ret); 609 return ret; 610 } 611 612 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 613 { 614 int i, ret = 0; 615 616 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 617 ret = nvme_rdma_start_queue(ctrl, i); 618 if (ret) 619 goto out_stop_queues; 620 } 621 622 return 0; 623 624 out_stop_queues: 625 for (i--; i >= 1; i--) 626 nvme_rdma_stop_queue(&ctrl->queues[i]); 627 return ret; 628 } 629 630 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 631 { 632 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 633 struct ib_device *ibdev = ctrl->device->dev; 634 unsigned int nr_io_queues; 635 int i, ret; 636 637 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 638 639 /* 640 * we map queues according to the device irq vectors for 641 * optimal locality so we don't need more queues than 642 * completion vectors. 643 */ 644 nr_io_queues = min_t(unsigned int, nr_io_queues, 645 ibdev->num_comp_vectors); 646 647 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 648 if (ret) 649 return ret; 650 651 ctrl->ctrl.queue_count = nr_io_queues + 1; 652 if (ctrl->ctrl.queue_count < 2) 653 return 0; 654 655 dev_info(ctrl->ctrl.device, 656 "creating %d I/O queues.\n", nr_io_queues); 657 658 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 659 ret = nvme_rdma_alloc_queue(ctrl, i, 660 ctrl->ctrl.sqsize + 1); 661 if (ret) 662 goto out_free_queues; 663 } 664 665 return 0; 666 667 out_free_queues: 668 for (i--; i >= 1; i--) 669 nvme_rdma_free_queue(&ctrl->queues[i]); 670 671 return ret; 672 } 673 674 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 675 struct blk_mq_tag_set *set) 676 { 677 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 678 679 blk_mq_free_tag_set(set); 680 nvme_rdma_dev_put(ctrl->device); 681 } 682 683 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 684 bool admin) 685 { 686 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 687 struct blk_mq_tag_set *set; 688 int ret; 689 690 if (admin) { 691 set = &ctrl->admin_tag_set; 692 memset(set, 0, sizeof(*set)); 693 set->ops = &nvme_rdma_admin_mq_ops; 694 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 695 set->reserved_tags = 2; /* connect + keep-alive */ 696 set->numa_node = NUMA_NO_NODE; 697 set->cmd_size = sizeof(struct nvme_rdma_request) + 698 SG_CHUNK_SIZE * sizeof(struct scatterlist); 699 set->driver_data = ctrl; 700 set->nr_hw_queues = 1; 701 set->timeout = ADMIN_TIMEOUT; 702 set->flags = BLK_MQ_F_NO_SCHED; 703 } else { 704 set = &ctrl->tag_set; 705 memset(set, 0, sizeof(*set)); 706 set->ops = &nvme_rdma_mq_ops; 707 set->queue_depth = nctrl->sqsize + 1; 708 set->reserved_tags = 1; /* fabric connect */ 709 set->numa_node = NUMA_NO_NODE; 710 set->flags = BLK_MQ_F_SHOULD_MERGE; 711 set->cmd_size = sizeof(struct nvme_rdma_request) + 712 SG_CHUNK_SIZE * sizeof(struct scatterlist); 713 set->driver_data = ctrl; 714 set->nr_hw_queues = nctrl->queue_count - 1; 715 set->timeout = NVME_IO_TIMEOUT; 716 } 717 718 ret = blk_mq_alloc_tag_set(set); 719 if (ret) 720 goto out; 721 722 /* 723 * We need a reference on the device as long as the tag_set is alive, 724 * as the MRs in the request structures need a valid ib_device. 725 */ 726 ret = nvme_rdma_dev_get(ctrl->device); 727 if (!ret) { 728 ret = -EINVAL; 729 goto out_free_tagset; 730 } 731 732 return set; 733 734 out_free_tagset: 735 blk_mq_free_tag_set(set); 736 out: 737 return ERR_PTR(ret); 738 } 739 740 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 741 bool remove) 742 { 743 if (remove) { 744 blk_cleanup_queue(ctrl->ctrl.admin_q); 745 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 746 } 747 if (ctrl->async_event_sqe.data) { 748 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 749 sizeof(struct nvme_command), DMA_TO_DEVICE); 750 ctrl->async_event_sqe.data = NULL; 751 } 752 nvme_rdma_free_queue(&ctrl->queues[0]); 753 } 754 755 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 756 bool new) 757 { 758 int error; 759 760 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 761 if (error) 762 return error; 763 764 ctrl->device = ctrl->queues[0].device; 765 766 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 767 768 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 769 sizeof(struct nvme_command), DMA_TO_DEVICE); 770 if (error) 771 goto out_free_queue; 772 773 if (new) { 774 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 775 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 776 error = PTR_ERR(ctrl->ctrl.admin_tagset); 777 goto out_free_async_qe; 778 } 779 780 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 781 if (IS_ERR(ctrl->ctrl.admin_q)) { 782 error = PTR_ERR(ctrl->ctrl.admin_q); 783 goto out_free_tagset; 784 } 785 } 786 787 error = nvme_rdma_start_queue(ctrl, 0); 788 if (error) 789 goto out_cleanup_queue; 790 791 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 792 &ctrl->ctrl.cap); 793 if (error) { 794 dev_err(ctrl->ctrl.device, 795 "prop_get NVME_REG_CAP failed\n"); 796 goto out_stop_queue; 797 } 798 799 ctrl->ctrl.sqsize = 800 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 801 802 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 803 if (error) 804 goto out_stop_queue; 805 806 ctrl->ctrl.max_hw_sectors = 807 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 808 809 error = nvme_init_identify(&ctrl->ctrl); 810 if (error) 811 goto out_stop_queue; 812 813 return 0; 814 815 out_stop_queue: 816 nvme_rdma_stop_queue(&ctrl->queues[0]); 817 out_cleanup_queue: 818 if (new) 819 blk_cleanup_queue(ctrl->ctrl.admin_q); 820 out_free_tagset: 821 if (new) 822 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 823 out_free_async_qe: 824 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 825 sizeof(struct nvme_command), DMA_TO_DEVICE); 826 out_free_queue: 827 nvme_rdma_free_queue(&ctrl->queues[0]); 828 return error; 829 } 830 831 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 832 bool remove) 833 { 834 if (remove) { 835 blk_cleanup_queue(ctrl->ctrl.connect_q); 836 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 837 } 838 nvme_rdma_free_io_queues(ctrl); 839 } 840 841 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 842 { 843 int ret; 844 845 ret = nvme_rdma_alloc_io_queues(ctrl); 846 if (ret) 847 return ret; 848 849 if (new) { 850 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 851 if (IS_ERR(ctrl->ctrl.tagset)) { 852 ret = PTR_ERR(ctrl->ctrl.tagset); 853 goto out_free_io_queues; 854 } 855 856 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 857 if (IS_ERR(ctrl->ctrl.connect_q)) { 858 ret = PTR_ERR(ctrl->ctrl.connect_q); 859 goto out_free_tag_set; 860 } 861 } else { 862 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 863 ctrl->ctrl.queue_count - 1); 864 } 865 866 ret = nvme_rdma_start_io_queues(ctrl); 867 if (ret) 868 goto out_cleanup_connect_q; 869 870 return 0; 871 872 out_cleanup_connect_q: 873 if (new) 874 blk_cleanup_queue(ctrl->ctrl.connect_q); 875 out_free_tag_set: 876 if (new) 877 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 878 out_free_io_queues: 879 nvme_rdma_free_io_queues(ctrl); 880 return ret; 881 } 882 883 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 884 bool remove) 885 { 886 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 887 nvme_rdma_stop_queue(&ctrl->queues[0]); 888 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, 889 &ctrl->ctrl); 890 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 891 nvme_rdma_destroy_admin_queue(ctrl, remove); 892 } 893 894 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 895 bool remove) 896 { 897 if (ctrl->ctrl.queue_count > 1) { 898 nvme_stop_queues(&ctrl->ctrl); 899 nvme_rdma_stop_io_queues(ctrl); 900 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, 901 &ctrl->ctrl); 902 if (remove) 903 nvme_start_queues(&ctrl->ctrl); 904 nvme_rdma_destroy_io_queues(ctrl, remove); 905 } 906 } 907 908 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 909 { 910 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 911 912 cancel_work_sync(&ctrl->err_work); 913 cancel_delayed_work_sync(&ctrl->reconnect_work); 914 } 915 916 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 917 { 918 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 919 920 if (list_empty(&ctrl->list)) 921 goto free_ctrl; 922 923 mutex_lock(&nvme_rdma_ctrl_mutex); 924 list_del(&ctrl->list); 925 mutex_unlock(&nvme_rdma_ctrl_mutex); 926 927 nvmf_free_options(nctrl->opts); 928 free_ctrl: 929 kfree(ctrl->queues); 930 kfree(ctrl); 931 } 932 933 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 934 { 935 /* If we are resetting/deleting then do nothing */ 936 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 937 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 938 ctrl->ctrl.state == NVME_CTRL_LIVE); 939 return; 940 } 941 942 if (nvmf_should_reconnect(&ctrl->ctrl)) { 943 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 944 ctrl->ctrl.opts->reconnect_delay); 945 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 946 ctrl->ctrl.opts->reconnect_delay * HZ); 947 } else { 948 nvme_delete_ctrl(&ctrl->ctrl); 949 } 950 } 951 952 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 953 { 954 int ret = -EINVAL; 955 bool changed; 956 957 ret = nvme_rdma_configure_admin_queue(ctrl, new); 958 if (ret) 959 return ret; 960 961 if (ctrl->ctrl.icdoff) { 962 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 963 goto destroy_admin; 964 } 965 966 if (!(ctrl->ctrl.sgls & (1 << 2))) { 967 dev_err(ctrl->ctrl.device, 968 "Mandatory keyed sgls are not supported!\n"); 969 goto destroy_admin; 970 } 971 972 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 973 dev_warn(ctrl->ctrl.device, 974 "queue_size %zu > ctrl sqsize %u, clamping down\n", 975 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 976 } 977 978 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 979 dev_warn(ctrl->ctrl.device, 980 "sqsize %u > ctrl maxcmd %u, clamping down\n", 981 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 982 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 983 } 984 985 if (ctrl->ctrl.sgls & (1 << 20)) 986 ctrl->use_inline_data = true; 987 988 if (ctrl->ctrl.queue_count > 1) { 989 ret = nvme_rdma_configure_io_queues(ctrl, new); 990 if (ret) 991 goto destroy_admin; 992 } 993 994 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 995 if (!changed) { 996 /* state change failure is ok if we're in DELETING state */ 997 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 998 ret = -EINVAL; 999 goto destroy_io; 1000 } 1001 1002 nvme_start_ctrl(&ctrl->ctrl); 1003 return 0; 1004 1005 destroy_io: 1006 if (ctrl->ctrl.queue_count > 1) 1007 nvme_rdma_destroy_io_queues(ctrl, new); 1008 destroy_admin: 1009 nvme_rdma_stop_queue(&ctrl->queues[0]); 1010 nvme_rdma_destroy_admin_queue(ctrl, new); 1011 return ret; 1012 } 1013 1014 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1015 { 1016 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1017 struct nvme_rdma_ctrl, reconnect_work); 1018 1019 ++ctrl->ctrl.nr_reconnects; 1020 1021 if (nvme_rdma_setup_ctrl(ctrl, false)) 1022 goto requeue; 1023 1024 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1025 ctrl->ctrl.nr_reconnects); 1026 1027 ctrl->ctrl.nr_reconnects = 0; 1028 1029 return; 1030 1031 requeue: 1032 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1033 ctrl->ctrl.nr_reconnects); 1034 nvme_rdma_reconnect_or_remove(ctrl); 1035 } 1036 1037 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1038 { 1039 struct nvme_rdma_ctrl *ctrl = container_of(work, 1040 struct nvme_rdma_ctrl, err_work); 1041 1042 nvme_stop_keep_alive(&ctrl->ctrl); 1043 nvme_rdma_teardown_io_queues(ctrl, false); 1044 nvme_start_queues(&ctrl->ctrl); 1045 nvme_rdma_teardown_admin_queue(ctrl, false); 1046 1047 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1048 /* state change failure is ok if we're in DELETING state */ 1049 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1050 return; 1051 } 1052 1053 nvme_rdma_reconnect_or_remove(ctrl); 1054 } 1055 1056 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1057 { 1058 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1059 return; 1060 1061 queue_work(nvme_wq, &ctrl->err_work); 1062 } 1063 1064 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1065 const char *op) 1066 { 1067 struct nvme_rdma_queue *queue = cq->cq_context; 1068 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1069 1070 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1071 dev_info(ctrl->ctrl.device, 1072 "%s for CQE 0x%p failed with status %s (%d)\n", 1073 op, wc->wr_cqe, 1074 ib_wc_status_msg(wc->status), wc->status); 1075 nvme_rdma_error_recovery(ctrl); 1076 } 1077 1078 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1079 { 1080 if (unlikely(wc->status != IB_WC_SUCCESS)) 1081 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1082 } 1083 1084 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1085 { 1086 struct nvme_rdma_request *req = 1087 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1088 struct request *rq = blk_mq_rq_from_pdu(req); 1089 1090 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1091 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1092 return; 1093 } 1094 1095 if (refcount_dec_and_test(&req->ref)) 1096 nvme_end_request(rq, req->status, req->result); 1097 1098 } 1099 1100 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1101 struct nvme_rdma_request *req) 1102 { 1103 struct ib_send_wr wr = { 1104 .opcode = IB_WR_LOCAL_INV, 1105 .next = NULL, 1106 .num_sge = 0, 1107 .send_flags = IB_SEND_SIGNALED, 1108 .ex.invalidate_rkey = req->mr->rkey, 1109 }; 1110 1111 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1112 wr.wr_cqe = &req->reg_cqe; 1113 1114 return ib_post_send(queue->qp, &wr, NULL); 1115 } 1116 1117 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1118 struct request *rq) 1119 { 1120 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1121 struct nvme_rdma_device *dev = queue->device; 1122 struct ib_device *ibdev = dev->dev; 1123 1124 if (!blk_rq_payload_bytes(rq)) 1125 return; 1126 1127 if (req->mr) { 1128 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1129 req->mr = NULL; 1130 } 1131 1132 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1133 req->nents, rq_data_dir(rq) == 1134 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1135 1136 nvme_cleanup_cmd(rq); 1137 sg_free_table_chained(&req->sg_table, true); 1138 } 1139 1140 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1141 { 1142 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1143 1144 sg->addr = 0; 1145 put_unaligned_le24(0, sg->length); 1146 put_unaligned_le32(0, sg->key); 1147 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1148 return 0; 1149 } 1150 1151 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1152 struct nvme_rdma_request *req, struct nvme_command *c, 1153 int count) 1154 { 1155 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1156 struct scatterlist *sgl = req->sg_table.sgl; 1157 struct ib_sge *sge = &req->sge[1]; 1158 u32 len = 0; 1159 int i; 1160 1161 for (i = 0; i < count; i++, sgl++, sge++) { 1162 sge->addr = sg_dma_address(sgl); 1163 sge->length = sg_dma_len(sgl); 1164 sge->lkey = queue->device->pd->local_dma_lkey; 1165 len += sge->length; 1166 } 1167 1168 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1169 sg->length = cpu_to_le32(len); 1170 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1171 1172 req->num_sge += count; 1173 return 0; 1174 } 1175 1176 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1177 struct nvme_rdma_request *req, struct nvme_command *c) 1178 { 1179 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1180 1181 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1182 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1183 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1184 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1185 return 0; 1186 } 1187 1188 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1189 struct nvme_rdma_request *req, struct nvme_command *c, 1190 int count) 1191 { 1192 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1193 int nr; 1194 1195 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1196 if (WARN_ON_ONCE(!req->mr)) 1197 return -EAGAIN; 1198 1199 /* 1200 * Align the MR to a 4K page size to match the ctrl page size and 1201 * the block virtual boundary. 1202 */ 1203 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1204 if (unlikely(nr < count)) { 1205 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1206 req->mr = NULL; 1207 if (nr < 0) 1208 return nr; 1209 return -EINVAL; 1210 } 1211 1212 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1213 1214 req->reg_cqe.done = nvme_rdma_memreg_done; 1215 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1216 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1217 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1218 req->reg_wr.wr.num_sge = 0; 1219 req->reg_wr.mr = req->mr; 1220 req->reg_wr.key = req->mr->rkey; 1221 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1222 IB_ACCESS_REMOTE_READ | 1223 IB_ACCESS_REMOTE_WRITE; 1224 1225 sg->addr = cpu_to_le64(req->mr->iova); 1226 put_unaligned_le24(req->mr->length, sg->length); 1227 put_unaligned_le32(req->mr->rkey, sg->key); 1228 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1229 NVME_SGL_FMT_INVALIDATE; 1230 1231 return 0; 1232 } 1233 1234 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1235 struct request *rq, struct nvme_command *c) 1236 { 1237 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1238 struct nvme_rdma_device *dev = queue->device; 1239 struct ib_device *ibdev = dev->dev; 1240 int count, ret; 1241 1242 req->num_sge = 1; 1243 refcount_set(&req->ref, 2); /* send and recv completions */ 1244 1245 c->common.flags |= NVME_CMD_SGL_METABUF; 1246 1247 if (!blk_rq_payload_bytes(rq)) 1248 return nvme_rdma_set_sg_null(c); 1249 1250 req->sg_table.sgl = req->first_sgl; 1251 ret = sg_alloc_table_chained(&req->sg_table, 1252 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1253 if (ret) 1254 return -ENOMEM; 1255 1256 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1257 1258 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1259 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1260 if (unlikely(count <= 0)) { 1261 ret = -EIO; 1262 goto out_free_table; 1263 } 1264 1265 if (count <= dev->num_inline_segments) { 1266 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1267 queue->ctrl->use_inline_data && 1268 blk_rq_payload_bytes(rq) <= 1269 nvme_rdma_inline_data_size(queue)) { 1270 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1271 goto out; 1272 } 1273 1274 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1275 ret = nvme_rdma_map_sg_single(queue, req, c); 1276 goto out; 1277 } 1278 } 1279 1280 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1281 out: 1282 if (unlikely(ret)) 1283 goto out_unmap_sg; 1284 1285 return 0; 1286 1287 out_unmap_sg: 1288 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1289 req->nents, rq_data_dir(rq) == 1290 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1291 out_free_table: 1292 sg_free_table_chained(&req->sg_table, true); 1293 return ret; 1294 } 1295 1296 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1297 { 1298 struct nvme_rdma_qe *qe = 1299 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1300 struct nvme_rdma_request *req = 1301 container_of(qe, struct nvme_rdma_request, sqe); 1302 struct request *rq = blk_mq_rq_from_pdu(req); 1303 1304 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1305 nvme_rdma_wr_error(cq, wc, "SEND"); 1306 return; 1307 } 1308 1309 if (refcount_dec_and_test(&req->ref)) 1310 nvme_end_request(rq, req->status, req->result); 1311 } 1312 1313 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1314 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1315 struct ib_send_wr *first) 1316 { 1317 struct ib_send_wr wr; 1318 int ret; 1319 1320 sge->addr = qe->dma; 1321 sge->length = sizeof(struct nvme_command), 1322 sge->lkey = queue->device->pd->local_dma_lkey; 1323 1324 wr.next = NULL; 1325 wr.wr_cqe = &qe->cqe; 1326 wr.sg_list = sge; 1327 wr.num_sge = num_sge; 1328 wr.opcode = IB_WR_SEND; 1329 wr.send_flags = IB_SEND_SIGNALED; 1330 1331 if (first) 1332 first->next = ≀ 1333 else 1334 first = ≀ 1335 1336 ret = ib_post_send(queue->qp, first, NULL); 1337 if (unlikely(ret)) { 1338 dev_err(queue->ctrl->ctrl.device, 1339 "%s failed with error code %d\n", __func__, ret); 1340 } 1341 return ret; 1342 } 1343 1344 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1345 struct nvme_rdma_qe *qe) 1346 { 1347 struct ib_recv_wr wr; 1348 struct ib_sge list; 1349 int ret; 1350 1351 list.addr = qe->dma; 1352 list.length = sizeof(struct nvme_completion); 1353 list.lkey = queue->device->pd->local_dma_lkey; 1354 1355 qe->cqe.done = nvme_rdma_recv_done; 1356 1357 wr.next = NULL; 1358 wr.wr_cqe = &qe->cqe; 1359 wr.sg_list = &list; 1360 wr.num_sge = 1; 1361 1362 ret = ib_post_recv(queue->qp, &wr, NULL); 1363 if (unlikely(ret)) { 1364 dev_err(queue->ctrl->ctrl.device, 1365 "%s failed with error code %d\n", __func__, ret); 1366 } 1367 return ret; 1368 } 1369 1370 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1371 { 1372 u32 queue_idx = nvme_rdma_queue_idx(queue); 1373 1374 if (queue_idx == 0) 1375 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1376 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1377 } 1378 1379 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1380 { 1381 if (unlikely(wc->status != IB_WC_SUCCESS)) 1382 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1383 } 1384 1385 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1386 { 1387 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1388 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1389 struct ib_device *dev = queue->device->dev; 1390 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1391 struct nvme_command *cmd = sqe->data; 1392 struct ib_sge sge; 1393 int ret; 1394 1395 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1396 1397 memset(cmd, 0, sizeof(*cmd)); 1398 cmd->common.opcode = nvme_admin_async_event; 1399 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1400 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1401 nvme_rdma_set_sg_null(cmd); 1402 1403 sqe->cqe.done = nvme_rdma_async_done; 1404 1405 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1406 DMA_TO_DEVICE); 1407 1408 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1409 WARN_ON_ONCE(ret); 1410 } 1411 1412 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1413 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1414 { 1415 struct request *rq; 1416 struct nvme_rdma_request *req; 1417 int ret = 0; 1418 1419 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1420 if (!rq) { 1421 dev_err(queue->ctrl->ctrl.device, 1422 "tag 0x%x on QP %#x not found\n", 1423 cqe->command_id, queue->qp->qp_num); 1424 nvme_rdma_error_recovery(queue->ctrl); 1425 return ret; 1426 } 1427 req = blk_mq_rq_to_pdu(rq); 1428 1429 req->status = cqe->status; 1430 req->result = cqe->result; 1431 1432 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1433 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1434 dev_err(queue->ctrl->ctrl.device, 1435 "Bogus remote invalidation for rkey %#x\n", 1436 req->mr->rkey); 1437 nvme_rdma_error_recovery(queue->ctrl); 1438 } 1439 } else if (req->mr) { 1440 ret = nvme_rdma_inv_rkey(queue, req); 1441 if (unlikely(ret < 0)) { 1442 dev_err(queue->ctrl->ctrl.device, 1443 "Queueing INV WR for rkey %#x failed (%d)\n", 1444 req->mr->rkey, ret); 1445 nvme_rdma_error_recovery(queue->ctrl); 1446 } 1447 /* the local invalidation completion will end the request */ 1448 return 0; 1449 } 1450 1451 if (refcount_dec_and_test(&req->ref)) { 1452 if (rq->tag == tag) 1453 ret = 1; 1454 nvme_end_request(rq, req->status, req->result); 1455 } 1456 1457 return ret; 1458 } 1459 1460 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1461 { 1462 struct nvme_rdma_qe *qe = 1463 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1464 struct nvme_rdma_queue *queue = cq->cq_context; 1465 struct ib_device *ibdev = queue->device->dev; 1466 struct nvme_completion *cqe = qe->data; 1467 const size_t len = sizeof(struct nvme_completion); 1468 int ret = 0; 1469 1470 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1471 nvme_rdma_wr_error(cq, wc, "RECV"); 1472 return 0; 1473 } 1474 1475 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1476 /* 1477 * AEN requests are special as they don't time out and can 1478 * survive any kind of queue freeze and often don't respond to 1479 * aborts. We don't even bother to allocate a struct request 1480 * for them but rather special case them here. 1481 */ 1482 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1483 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1484 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1485 &cqe->result); 1486 else 1487 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1488 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1489 1490 nvme_rdma_post_recv(queue, qe); 1491 return ret; 1492 } 1493 1494 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1495 { 1496 __nvme_rdma_recv_done(cq, wc, -1); 1497 } 1498 1499 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1500 { 1501 int ret, i; 1502 1503 for (i = 0; i < queue->queue_size; i++) { 1504 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1505 if (ret) 1506 goto out_destroy_queue_ib; 1507 } 1508 1509 return 0; 1510 1511 out_destroy_queue_ib: 1512 nvme_rdma_destroy_queue_ib(queue); 1513 return ret; 1514 } 1515 1516 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1517 struct rdma_cm_event *ev) 1518 { 1519 struct rdma_cm_id *cm_id = queue->cm_id; 1520 int status = ev->status; 1521 const char *rej_msg; 1522 const struct nvme_rdma_cm_rej *rej_data; 1523 u8 rej_data_len; 1524 1525 rej_msg = rdma_reject_msg(cm_id, status); 1526 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1527 1528 if (rej_data && rej_data_len >= sizeof(u16)) { 1529 u16 sts = le16_to_cpu(rej_data->sts); 1530 1531 dev_err(queue->ctrl->ctrl.device, 1532 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1533 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1534 } else { 1535 dev_err(queue->ctrl->ctrl.device, 1536 "Connect rejected: status %d (%s).\n", status, rej_msg); 1537 } 1538 1539 return -ECONNRESET; 1540 } 1541 1542 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1543 { 1544 int ret; 1545 1546 ret = nvme_rdma_create_queue_ib(queue); 1547 if (ret) 1548 return ret; 1549 1550 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1551 if (ret) { 1552 dev_err(queue->ctrl->ctrl.device, 1553 "rdma_resolve_route failed (%d).\n", 1554 queue->cm_error); 1555 goto out_destroy_queue; 1556 } 1557 1558 return 0; 1559 1560 out_destroy_queue: 1561 nvme_rdma_destroy_queue_ib(queue); 1562 return ret; 1563 } 1564 1565 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1566 { 1567 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1568 struct rdma_conn_param param = { }; 1569 struct nvme_rdma_cm_req priv = { }; 1570 int ret; 1571 1572 param.qp_num = queue->qp->qp_num; 1573 param.flow_control = 1; 1574 1575 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1576 /* maximum retry count */ 1577 param.retry_count = 7; 1578 param.rnr_retry_count = 7; 1579 param.private_data = &priv; 1580 param.private_data_len = sizeof(priv); 1581 1582 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1583 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1584 /* 1585 * set the admin queue depth to the minimum size 1586 * specified by the Fabrics standard. 1587 */ 1588 if (priv.qid == 0) { 1589 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1590 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1591 } else { 1592 /* 1593 * current interpretation of the fabrics spec 1594 * is at minimum you make hrqsize sqsize+1, or a 1595 * 1's based representation of sqsize. 1596 */ 1597 priv.hrqsize = cpu_to_le16(queue->queue_size); 1598 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1599 } 1600 1601 ret = rdma_connect(queue->cm_id, ¶m); 1602 if (ret) { 1603 dev_err(ctrl->ctrl.device, 1604 "rdma_connect failed (%d).\n", ret); 1605 goto out_destroy_queue_ib; 1606 } 1607 1608 return 0; 1609 1610 out_destroy_queue_ib: 1611 nvme_rdma_destroy_queue_ib(queue); 1612 return ret; 1613 } 1614 1615 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1616 struct rdma_cm_event *ev) 1617 { 1618 struct nvme_rdma_queue *queue = cm_id->context; 1619 int cm_error = 0; 1620 1621 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1622 rdma_event_msg(ev->event), ev->event, 1623 ev->status, cm_id); 1624 1625 switch (ev->event) { 1626 case RDMA_CM_EVENT_ADDR_RESOLVED: 1627 cm_error = nvme_rdma_addr_resolved(queue); 1628 break; 1629 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1630 cm_error = nvme_rdma_route_resolved(queue); 1631 break; 1632 case RDMA_CM_EVENT_ESTABLISHED: 1633 queue->cm_error = nvme_rdma_conn_established(queue); 1634 /* complete cm_done regardless of success/failure */ 1635 complete(&queue->cm_done); 1636 return 0; 1637 case RDMA_CM_EVENT_REJECTED: 1638 nvme_rdma_destroy_queue_ib(queue); 1639 cm_error = nvme_rdma_conn_rejected(queue, ev); 1640 break; 1641 case RDMA_CM_EVENT_ROUTE_ERROR: 1642 case RDMA_CM_EVENT_CONNECT_ERROR: 1643 case RDMA_CM_EVENT_UNREACHABLE: 1644 nvme_rdma_destroy_queue_ib(queue); 1645 /* fall through */ 1646 case RDMA_CM_EVENT_ADDR_ERROR: 1647 dev_dbg(queue->ctrl->ctrl.device, 1648 "CM error event %d\n", ev->event); 1649 cm_error = -ECONNRESET; 1650 break; 1651 case RDMA_CM_EVENT_DISCONNECTED: 1652 case RDMA_CM_EVENT_ADDR_CHANGE: 1653 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1654 dev_dbg(queue->ctrl->ctrl.device, 1655 "disconnect received - connection closed\n"); 1656 nvme_rdma_error_recovery(queue->ctrl); 1657 break; 1658 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1659 /* device removal is handled via the ib_client API */ 1660 break; 1661 default: 1662 dev_err(queue->ctrl->ctrl.device, 1663 "Unexpected RDMA CM event (%d)\n", ev->event); 1664 nvme_rdma_error_recovery(queue->ctrl); 1665 break; 1666 } 1667 1668 if (cm_error) { 1669 queue->cm_error = cm_error; 1670 complete(&queue->cm_done); 1671 } 1672 1673 return 0; 1674 } 1675 1676 static enum blk_eh_timer_return 1677 nvme_rdma_timeout(struct request *rq, bool reserved) 1678 { 1679 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1680 1681 dev_warn(req->queue->ctrl->ctrl.device, 1682 "I/O %d QID %d timeout, reset controller\n", 1683 rq->tag, nvme_rdma_queue_idx(req->queue)); 1684 1685 /* queue error recovery */ 1686 nvme_rdma_error_recovery(req->queue->ctrl); 1687 1688 /* fail with DNR on cmd timeout */ 1689 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1690 1691 return BLK_EH_DONE; 1692 } 1693 1694 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1695 const struct blk_mq_queue_data *bd) 1696 { 1697 struct nvme_ns *ns = hctx->queue->queuedata; 1698 struct nvme_rdma_queue *queue = hctx->driver_data; 1699 struct request *rq = bd->rq; 1700 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1701 struct nvme_rdma_qe *sqe = &req->sqe; 1702 struct nvme_command *c = sqe->data; 1703 struct ib_device *dev; 1704 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1705 blk_status_t ret; 1706 int err; 1707 1708 WARN_ON_ONCE(rq->tag < 0); 1709 1710 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1711 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1712 1713 dev = queue->device->dev; 1714 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1715 sizeof(struct nvme_command), DMA_TO_DEVICE); 1716 1717 ret = nvme_setup_cmd(ns, rq, c); 1718 if (ret) 1719 return ret; 1720 1721 blk_mq_start_request(rq); 1722 1723 err = nvme_rdma_map_data(queue, rq, c); 1724 if (unlikely(err < 0)) { 1725 dev_err(queue->ctrl->ctrl.device, 1726 "Failed to map data (%d)\n", err); 1727 nvme_cleanup_cmd(rq); 1728 goto err; 1729 } 1730 1731 sqe->cqe.done = nvme_rdma_send_done; 1732 1733 ib_dma_sync_single_for_device(dev, sqe->dma, 1734 sizeof(struct nvme_command), DMA_TO_DEVICE); 1735 1736 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1737 req->mr ? &req->reg_wr.wr : NULL); 1738 if (unlikely(err)) { 1739 nvme_rdma_unmap_data(queue, rq); 1740 goto err; 1741 } 1742 1743 return BLK_STS_OK; 1744 err: 1745 if (err == -ENOMEM || err == -EAGAIN) 1746 return BLK_STS_RESOURCE; 1747 return BLK_STS_IOERR; 1748 } 1749 1750 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1751 { 1752 struct nvme_rdma_queue *queue = hctx->driver_data; 1753 struct ib_cq *cq = queue->ib_cq; 1754 struct ib_wc wc; 1755 int found = 0; 1756 1757 while (ib_poll_cq(cq, 1, &wc) > 0) { 1758 struct ib_cqe *cqe = wc.wr_cqe; 1759 1760 if (cqe) { 1761 if (cqe->done == nvme_rdma_recv_done) 1762 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1763 else 1764 cqe->done(cq, &wc); 1765 } 1766 } 1767 1768 return found; 1769 } 1770 1771 static void nvme_rdma_complete_rq(struct request *rq) 1772 { 1773 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1774 1775 nvme_rdma_unmap_data(req->queue, rq); 1776 nvme_complete_rq(rq); 1777 } 1778 1779 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1780 { 1781 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1782 1783 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1784 } 1785 1786 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1787 .queue_rq = nvme_rdma_queue_rq, 1788 .complete = nvme_rdma_complete_rq, 1789 .init_request = nvme_rdma_init_request, 1790 .exit_request = nvme_rdma_exit_request, 1791 .init_hctx = nvme_rdma_init_hctx, 1792 .poll = nvme_rdma_poll, 1793 .timeout = nvme_rdma_timeout, 1794 .map_queues = nvme_rdma_map_queues, 1795 }; 1796 1797 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1798 .queue_rq = nvme_rdma_queue_rq, 1799 .complete = nvme_rdma_complete_rq, 1800 .init_request = nvme_rdma_init_request, 1801 .exit_request = nvme_rdma_exit_request, 1802 .init_hctx = nvme_rdma_init_admin_hctx, 1803 .timeout = nvme_rdma_timeout, 1804 }; 1805 1806 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1807 { 1808 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1809 if (shutdown) 1810 nvme_shutdown_ctrl(&ctrl->ctrl); 1811 else 1812 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1813 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1814 } 1815 1816 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1817 { 1818 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1819 } 1820 1821 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1822 { 1823 struct nvme_rdma_ctrl *ctrl = 1824 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1825 1826 nvme_stop_ctrl(&ctrl->ctrl); 1827 nvme_rdma_shutdown_ctrl(ctrl, false); 1828 1829 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1830 /* state change failure should never happen */ 1831 WARN_ON_ONCE(1); 1832 return; 1833 } 1834 1835 if (nvme_rdma_setup_ctrl(ctrl, false)) 1836 goto out_fail; 1837 1838 return; 1839 1840 out_fail: 1841 ++ctrl->ctrl.nr_reconnects; 1842 nvme_rdma_reconnect_or_remove(ctrl); 1843 } 1844 1845 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1846 .name = "rdma", 1847 .module = THIS_MODULE, 1848 .flags = NVME_F_FABRICS, 1849 .reg_read32 = nvmf_reg_read32, 1850 .reg_read64 = nvmf_reg_read64, 1851 .reg_write32 = nvmf_reg_write32, 1852 .free_ctrl = nvme_rdma_free_ctrl, 1853 .submit_async_event = nvme_rdma_submit_async_event, 1854 .delete_ctrl = nvme_rdma_delete_ctrl, 1855 .get_address = nvmf_get_address, 1856 .stop_ctrl = nvme_rdma_stop_ctrl, 1857 }; 1858 1859 /* 1860 * Fails a connection request if it matches an existing controller 1861 * (association) with the same tuple: 1862 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1863 * 1864 * if local address is not specified in the request, it will match an 1865 * existing controller with all the other parameters the same and no 1866 * local port address specified as well. 1867 * 1868 * The ports don't need to be compared as they are intrinsically 1869 * already matched by the port pointers supplied. 1870 */ 1871 static bool 1872 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1873 { 1874 struct nvme_rdma_ctrl *ctrl; 1875 bool found = false; 1876 1877 mutex_lock(&nvme_rdma_ctrl_mutex); 1878 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1879 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1880 if (found) 1881 break; 1882 } 1883 mutex_unlock(&nvme_rdma_ctrl_mutex); 1884 1885 return found; 1886 } 1887 1888 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1889 struct nvmf_ctrl_options *opts) 1890 { 1891 struct nvme_rdma_ctrl *ctrl; 1892 int ret; 1893 bool changed; 1894 1895 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1896 if (!ctrl) 1897 return ERR_PTR(-ENOMEM); 1898 ctrl->ctrl.opts = opts; 1899 INIT_LIST_HEAD(&ctrl->list); 1900 1901 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1902 opts->trsvcid = 1903 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1904 if (!opts->trsvcid) { 1905 ret = -ENOMEM; 1906 goto out_free_ctrl; 1907 } 1908 opts->mask |= NVMF_OPT_TRSVCID; 1909 } 1910 1911 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1912 opts->traddr, opts->trsvcid, &ctrl->addr); 1913 if (ret) { 1914 pr_err("malformed address passed: %s:%s\n", 1915 opts->traddr, opts->trsvcid); 1916 goto out_free_ctrl; 1917 } 1918 1919 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1920 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1921 opts->host_traddr, NULL, &ctrl->src_addr); 1922 if (ret) { 1923 pr_err("malformed src address passed: %s\n", 1924 opts->host_traddr); 1925 goto out_free_ctrl; 1926 } 1927 } 1928 1929 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1930 ret = -EALREADY; 1931 goto out_free_ctrl; 1932 } 1933 1934 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1935 nvme_rdma_reconnect_ctrl_work); 1936 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1937 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1938 1939 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1940 ctrl->ctrl.sqsize = opts->queue_size - 1; 1941 ctrl->ctrl.kato = opts->kato; 1942 1943 ret = -ENOMEM; 1944 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1945 GFP_KERNEL); 1946 if (!ctrl->queues) 1947 goto out_free_ctrl; 1948 1949 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1950 0 /* no quirks, we're perfect! */); 1951 if (ret) 1952 goto out_kfree_queues; 1953 1954 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 1955 WARN_ON_ONCE(!changed); 1956 1957 ret = nvme_rdma_setup_ctrl(ctrl, true); 1958 if (ret) 1959 goto out_uninit_ctrl; 1960 1961 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1962 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1963 1964 nvme_get_ctrl(&ctrl->ctrl); 1965 1966 mutex_lock(&nvme_rdma_ctrl_mutex); 1967 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1968 mutex_unlock(&nvme_rdma_ctrl_mutex); 1969 1970 return &ctrl->ctrl; 1971 1972 out_uninit_ctrl: 1973 nvme_uninit_ctrl(&ctrl->ctrl); 1974 nvme_put_ctrl(&ctrl->ctrl); 1975 if (ret > 0) 1976 ret = -EIO; 1977 return ERR_PTR(ret); 1978 out_kfree_queues: 1979 kfree(ctrl->queues); 1980 out_free_ctrl: 1981 kfree(ctrl); 1982 return ERR_PTR(ret); 1983 } 1984 1985 static struct nvmf_transport_ops nvme_rdma_transport = { 1986 .name = "rdma", 1987 .module = THIS_MODULE, 1988 .required_opts = NVMF_OPT_TRADDR, 1989 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 1990 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 1991 .create_ctrl = nvme_rdma_create_ctrl, 1992 }; 1993 1994 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1995 { 1996 struct nvme_rdma_ctrl *ctrl; 1997 struct nvme_rdma_device *ndev; 1998 bool found = false; 1999 2000 mutex_lock(&device_list_mutex); 2001 list_for_each_entry(ndev, &device_list, entry) { 2002 if (ndev->dev == ib_device) { 2003 found = true; 2004 break; 2005 } 2006 } 2007 mutex_unlock(&device_list_mutex); 2008 2009 if (!found) 2010 return; 2011 2012 /* Delete all controllers using this device */ 2013 mutex_lock(&nvme_rdma_ctrl_mutex); 2014 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2015 if (ctrl->device->dev != ib_device) 2016 continue; 2017 nvme_delete_ctrl(&ctrl->ctrl); 2018 } 2019 mutex_unlock(&nvme_rdma_ctrl_mutex); 2020 2021 flush_workqueue(nvme_delete_wq); 2022 } 2023 2024 static struct ib_client nvme_rdma_ib_client = { 2025 .name = "nvme_rdma", 2026 .remove = nvme_rdma_remove_one 2027 }; 2028 2029 static int __init nvme_rdma_init_module(void) 2030 { 2031 int ret; 2032 2033 ret = ib_register_client(&nvme_rdma_ib_client); 2034 if (ret) 2035 return ret; 2036 2037 ret = nvmf_register_transport(&nvme_rdma_transport); 2038 if (ret) 2039 goto err_unreg_client; 2040 2041 return 0; 2042 2043 err_unreg_client: 2044 ib_unregister_client(&nvme_rdma_ib_client); 2045 return ret; 2046 } 2047 2048 static void __exit nvme_rdma_cleanup_module(void) 2049 { 2050 nvmf_unregister_transport(&nvme_rdma_transport); 2051 ib_unregister_client(&nvme_rdma_ib_client); 2052 } 2053 2054 module_init(nvme_rdma_init_module); 2055 module_exit(nvme_rdma_cleanup_module); 2056 2057 MODULE_LICENSE("GPL v2"); 2058