xref: /openbmc/linux/drivers/nvme/host/rdma.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 };
101 
102 struct nvme_rdma_ctrl {
103 	/* read only in the hot path */
104 	struct nvme_rdma_queue	*queues;
105 
106 	/* other member variables */
107 	struct blk_mq_tag_set	tag_set;
108 	struct work_struct	err_work;
109 
110 	struct nvme_rdma_qe	async_event_sqe;
111 
112 	struct delayed_work	reconnect_work;
113 
114 	struct list_head	list;
115 
116 	struct blk_mq_tag_set	admin_tag_set;
117 	struct nvme_rdma_device	*device;
118 
119 	u32			max_fr_pages;
120 
121 	struct sockaddr_storage addr;
122 	struct sockaddr_storage src_addr;
123 
124 	struct nvme_ctrl	ctrl;
125 	struct mutex		teardown_lock;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 
318 	return 0;
319 }
320 
321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 		unsigned int hctx_idx)
323 {
324 	struct nvme_rdma_ctrl *ctrl = data;
325 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326 
327 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328 
329 	hctx->driver_data = queue;
330 	return 0;
331 }
332 
333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 		unsigned int hctx_idx)
335 {
336 	struct nvme_rdma_ctrl *ctrl = data;
337 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
338 
339 	BUG_ON(hctx_idx != 0);
340 
341 	hctx->driver_data = queue;
342 	return 0;
343 }
344 
345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 	struct nvme_rdma_device *ndev =
348 		container_of(ref, struct nvme_rdma_device, ref);
349 
350 	mutex_lock(&device_list_mutex);
351 	list_del(&ndev->entry);
352 	mutex_unlock(&device_list_mutex);
353 
354 	ib_dealloc_pd(ndev->pd);
355 	kfree(ndev);
356 }
357 
358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 	kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362 
363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 	return kref_get_unless_zero(&dev->ref);
366 }
367 
368 static struct nvme_rdma_device *
369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 	struct nvme_rdma_device *ndev;
372 
373 	mutex_lock(&device_list_mutex);
374 	list_for_each_entry(ndev, &device_list, entry) {
375 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 		    nvme_rdma_dev_get(ndev))
377 			goto out_unlock;
378 	}
379 
380 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 	if (!ndev)
382 		goto out_err;
383 
384 	ndev->dev = cm_id->device;
385 	kref_init(&ndev->ref);
386 
387 	ndev->pd = ib_alloc_pd(ndev->dev,
388 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 	if (IS_ERR(ndev->pd))
390 		goto out_free_dev;
391 
392 	if (!(ndev->dev->attrs.device_cap_flags &
393 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 		dev_err(&ndev->dev->dev,
395 			"Memory registrations not supported.\n");
396 		goto out_free_pd;
397 	}
398 
399 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 					ndev->dev->attrs.max_send_sge - 1);
401 	list_add(&ndev->entry, &device_list);
402 out_unlock:
403 	mutex_unlock(&device_list_mutex);
404 	return ndev;
405 
406 out_free_pd:
407 	ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 	kfree(ndev);
410 out_err:
411 	mutex_unlock(&device_list_mutex);
412 	return NULL;
413 }
414 
415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 	if (nvme_rdma_poll_queue(queue))
418 		ib_free_cq(queue->ib_cq);
419 	else
420 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422 
423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 	struct nvme_rdma_device *dev;
426 	struct ib_device *ibdev;
427 
428 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 		return;
430 
431 	dev = queue->device;
432 	ibdev = dev->dev;
433 
434 	if (queue->pi_support)
435 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437 
438 	/*
439 	 * The cm_id object might have been destroyed during RDMA connection
440 	 * establishment error flow to avoid getting other cma events, thus
441 	 * the destruction of the QP shouldn't use rdma_cm API.
442 	 */
443 	ib_destroy_qp(queue->qp);
444 	nvme_rdma_free_cq(queue);
445 
446 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448 
449 	nvme_rdma_dev_put(dev);
450 }
451 
452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 	u32 max_page_list_len;
455 
456 	if (pi_support)
457 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 	else
459 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460 
461 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463 
464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 		struct nvme_rdma_queue *queue)
466 {
467 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 	enum ib_poll_context poll_ctx;
469 
470 	/*
471 	 * Spread I/O queues completion vectors according their queue index.
472 	 * Admin queues can always go on completion vector 0.
473 	 */
474 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475 
476 	/* Polling queues need direct cq polling context */
477 	if (nvme_rdma_poll_queue(queue)) {
478 		poll_ctx = IB_POLL_DIRECT;
479 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 					   comp_vector, poll_ctx);
481 	} else {
482 		poll_ctx = IB_POLL_SOFTIRQ;
483 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 					      comp_vector, poll_ctx);
485 	}
486 
487 	if (IS_ERR(queue->ib_cq)) {
488 		ret = PTR_ERR(queue->ib_cq);
489 		return ret;
490 	}
491 
492 	return 0;
493 }
494 
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 	struct ib_device *ibdev;
498 	const int send_wr_factor = 3;			/* MR, SEND, INV */
499 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
500 	int ret, pages_per_mr;
501 
502 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 	if (!queue->device) {
504 		dev_err(queue->cm_id->device->dev.parent,
505 			"no client data found!\n");
506 		return -ECONNREFUSED;
507 	}
508 	ibdev = queue->device->dev;
509 
510 	/* +1 for ib_stop_cq */
511 	queue->cq_size = cq_factor * queue->queue_size + 1;
512 
513 	ret = nvme_rdma_create_cq(ibdev, queue);
514 	if (ret)
515 		goto out_put_dev;
516 
517 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 	if (ret)
519 		goto out_destroy_ib_cq;
520 
521 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 	if (!queue->rsp_ring) {
524 		ret = -ENOMEM;
525 		goto out_destroy_qp;
526 	}
527 
528 	/*
529 	 * Currently we don't use SG_GAPS MR's so if the first entry is
530 	 * misaligned we'll end up using two entries for a single data page,
531 	 * so one additional entry is required.
532 	 */
533 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 			      queue->queue_size,
536 			      IB_MR_TYPE_MEM_REG,
537 			      pages_per_mr, 0);
538 	if (ret) {
539 		dev_err(queue->ctrl->ctrl.device,
540 			"failed to initialize MR pool sized %d for QID %d\n",
541 			queue->queue_size, nvme_rdma_queue_idx(queue));
542 		goto out_destroy_ring;
543 	}
544 
545 	if (queue->pi_support) {
546 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 				      pages_per_mr, pages_per_mr);
549 		if (ret) {
550 			dev_err(queue->ctrl->ctrl.device,
551 				"failed to initialize PI MR pool sized %d for QID %d\n",
552 				queue->queue_size, nvme_rdma_queue_idx(queue));
553 			goto out_destroy_mr_pool;
554 		}
555 	}
556 
557 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558 
559 	return 0;
560 
561 out_destroy_mr_pool:
562 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 	rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 	nvme_rdma_free_cq(queue);
570 out_put_dev:
571 	nvme_rdma_dev_put(queue->device);
572 	return ret;
573 }
574 
575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 		int idx, size_t queue_size)
577 {
578 	struct nvme_rdma_queue *queue;
579 	struct sockaddr *src_addr = NULL;
580 	int ret;
581 
582 	queue = &ctrl->queues[idx];
583 	queue->ctrl = ctrl;
584 	if (idx && ctrl->ctrl.max_integrity_segments)
585 		queue->pi_support = true;
586 	else
587 		queue->pi_support = false;
588 	init_completion(&queue->cm_done);
589 
590 	if (idx > 0)
591 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
592 	else
593 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
594 
595 	queue->queue_size = queue_size;
596 
597 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
598 			RDMA_PS_TCP, IB_QPT_RC);
599 	if (IS_ERR(queue->cm_id)) {
600 		dev_info(ctrl->ctrl.device,
601 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
602 		return PTR_ERR(queue->cm_id);
603 	}
604 
605 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
606 		src_addr = (struct sockaddr *)&ctrl->src_addr;
607 
608 	queue->cm_error = -ETIMEDOUT;
609 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
610 			(struct sockaddr *)&ctrl->addr,
611 			NVME_RDMA_CONNECT_TIMEOUT_MS);
612 	if (ret) {
613 		dev_info(ctrl->ctrl.device,
614 			"rdma_resolve_addr failed (%d).\n", ret);
615 		goto out_destroy_cm_id;
616 	}
617 
618 	ret = nvme_rdma_wait_for_cm(queue);
619 	if (ret) {
620 		dev_info(ctrl->ctrl.device,
621 			"rdma connection establishment failed (%d)\n", ret);
622 		goto out_destroy_cm_id;
623 	}
624 
625 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
626 
627 	return 0;
628 
629 out_destroy_cm_id:
630 	rdma_destroy_id(queue->cm_id);
631 	nvme_rdma_destroy_queue_ib(queue);
632 	return ret;
633 }
634 
635 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
636 {
637 	rdma_disconnect(queue->cm_id);
638 	ib_drain_qp(queue->qp);
639 }
640 
641 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
642 {
643 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
644 		return;
645 	__nvme_rdma_stop_queue(queue);
646 }
647 
648 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
649 {
650 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
651 		return;
652 
653 	nvme_rdma_destroy_queue_ib(queue);
654 	rdma_destroy_id(queue->cm_id);
655 }
656 
657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658 {
659 	int i;
660 
661 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
662 		nvme_rdma_free_queue(&ctrl->queues[i]);
663 }
664 
665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 {
667 	int i;
668 
669 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
670 		nvme_rdma_stop_queue(&ctrl->queues[i]);
671 }
672 
673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
674 {
675 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 	bool poll = nvme_rdma_poll_queue(queue);
677 	int ret;
678 
679 	if (idx)
680 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
681 	else
682 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
683 
684 	if (!ret) {
685 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
686 	} else {
687 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
688 			__nvme_rdma_stop_queue(queue);
689 		dev_info(ctrl->ctrl.device,
690 			"failed to connect queue: %d ret=%d\n", idx, ret);
691 	}
692 	return ret;
693 }
694 
695 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
696 {
697 	int i, ret = 0;
698 
699 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
700 		ret = nvme_rdma_start_queue(ctrl, i);
701 		if (ret)
702 			goto out_stop_queues;
703 	}
704 
705 	return 0;
706 
707 out_stop_queues:
708 	for (i--; i >= 1; i--)
709 		nvme_rdma_stop_queue(&ctrl->queues[i]);
710 	return ret;
711 }
712 
713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714 {
715 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716 	struct ib_device *ibdev = ctrl->device->dev;
717 	unsigned int nr_io_queues, nr_default_queues;
718 	unsigned int nr_read_queues, nr_poll_queues;
719 	int i, ret;
720 
721 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
722 				min(opts->nr_io_queues, num_online_cpus()));
723 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
724 				min(opts->nr_write_queues, num_online_cpus()));
725 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
726 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
727 
728 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
729 	if (ret)
730 		return ret;
731 
732 	ctrl->ctrl.queue_count = nr_io_queues + 1;
733 	if (ctrl->ctrl.queue_count < 2)
734 		return 0;
735 
736 	dev_info(ctrl->ctrl.device,
737 		"creating %d I/O queues.\n", nr_io_queues);
738 
739 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
740 		/*
741 		 * separate read/write queues
742 		 * hand out dedicated default queues only after we have
743 		 * sufficient read queues.
744 		 */
745 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
746 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
747 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
748 			min(nr_default_queues, nr_io_queues);
749 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
750 	} else {
751 		/*
752 		 * shared read/write queues
753 		 * either no write queues were requested, or we don't have
754 		 * sufficient queue count to have dedicated default queues.
755 		 */
756 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 			min(nr_read_queues, nr_io_queues);
758 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759 	}
760 
761 	if (opts->nr_poll_queues && nr_io_queues) {
762 		/* map dedicated poll queues only if we have queues left */
763 		ctrl->io_queues[HCTX_TYPE_POLL] =
764 			min(nr_poll_queues, nr_io_queues);
765 	}
766 
767 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
768 		ret = nvme_rdma_alloc_queue(ctrl, i,
769 				ctrl->ctrl.sqsize + 1);
770 		if (ret)
771 			goto out_free_queues;
772 	}
773 
774 	return 0;
775 
776 out_free_queues:
777 	for (i--; i >= 1; i--)
778 		nvme_rdma_free_queue(&ctrl->queues[i]);
779 
780 	return ret;
781 }
782 
783 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
784 		bool admin)
785 {
786 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
787 	struct blk_mq_tag_set *set;
788 	int ret;
789 
790 	if (admin) {
791 		set = &ctrl->admin_tag_set;
792 		memset(set, 0, sizeof(*set));
793 		set->ops = &nvme_rdma_admin_mq_ops;
794 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
795 		set->reserved_tags = 2; /* connect + keep-alive */
796 		set->numa_node = nctrl->numa_node;
797 		set->cmd_size = sizeof(struct nvme_rdma_request) +
798 				NVME_RDMA_DATA_SGL_SIZE;
799 		set->driver_data = ctrl;
800 		set->nr_hw_queues = 1;
801 		set->timeout = ADMIN_TIMEOUT;
802 		set->flags = BLK_MQ_F_NO_SCHED;
803 	} else {
804 		set = &ctrl->tag_set;
805 		memset(set, 0, sizeof(*set));
806 		set->ops = &nvme_rdma_mq_ops;
807 		set->queue_depth = nctrl->sqsize + 1;
808 		set->reserved_tags = 1; /* fabric connect */
809 		set->numa_node = nctrl->numa_node;
810 		set->flags = BLK_MQ_F_SHOULD_MERGE;
811 		set->cmd_size = sizeof(struct nvme_rdma_request) +
812 				NVME_RDMA_DATA_SGL_SIZE;
813 		if (nctrl->max_integrity_segments)
814 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
815 					 NVME_RDMA_METADATA_SGL_SIZE;
816 		set->driver_data = ctrl;
817 		set->nr_hw_queues = nctrl->queue_count - 1;
818 		set->timeout = NVME_IO_TIMEOUT;
819 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
820 	}
821 
822 	ret = blk_mq_alloc_tag_set(set);
823 	if (ret)
824 		return ERR_PTR(ret);
825 
826 	return set;
827 }
828 
829 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
830 		bool remove)
831 {
832 	if (remove) {
833 		blk_cleanup_queue(ctrl->ctrl.admin_q);
834 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
835 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
836 	}
837 	if (ctrl->async_event_sqe.data) {
838 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
839 				sizeof(struct nvme_command), DMA_TO_DEVICE);
840 		ctrl->async_event_sqe.data = NULL;
841 	}
842 	nvme_rdma_free_queue(&ctrl->queues[0]);
843 }
844 
845 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
846 		bool new)
847 {
848 	bool pi_capable = false;
849 	int error;
850 
851 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
852 	if (error)
853 		return error;
854 
855 	ctrl->device = ctrl->queues[0].device;
856 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
857 
858 	/* T10-PI support */
859 	if (ctrl->device->dev->attrs.device_cap_flags &
860 	    IB_DEVICE_INTEGRITY_HANDOVER)
861 		pi_capable = true;
862 
863 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
864 							pi_capable);
865 
866 	/*
867 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
868 	 * It's safe, since any chage in the underlying RDMA device will issue
869 	 * error recovery and queue re-creation.
870 	 */
871 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
872 			sizeof(struct nvme_command), DMA_TO_DEVICE);
873 	if (error)
874 		goto out_free_queue;
875 
876 	if (new) {
877 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
878 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
879 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
880 			goto out_free_async_qe;
881 		}
882 
883 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
884 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
885 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
886 			goto out_free_tagset;
887 		}
888 
889 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
890 		if (IS_ERR(ctrl->ctrl.admin_q)) {
891 			error = PTR_ERR(ctrl->ctrl.admin_q);
892 			goto out_cleanup_fabrics_q;
893 		}
894 	}
895 
896 	error = nvme_rdma_start_queue(ctrl, 0);
897 	if (error)
898 		goto out_cleanup_queue;
899 
900 	error = nvme_enable_ctrl(&ctrl->ctrl);
901 	if (error)
902 		goto out_stop_queue;
903 
904 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
905 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
906 	if (pi_capable)
907 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
908 	else
909 		ctrl->ctrl.max_integrity_segments = 0;
910 
911 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
912 
913 	error = nvme_init_identify(&ctrl->ctrl);
914 	if (error)
915 		goto out_stop_queue;
916 
917 	return 0;
918 
919 out_stop_queue:
920 	nvme_rdma_stop_queue(&ctrl->queues[0]);
921 out_cleanup_queue:
922 	if (new)
923 		blk_cleanup_queue(ctrl->ctrl.admin_q);
924 out_cleanup_fabrics_q:
925 	if (new)
926 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
927 out_free_tagset:
928 	if (new)
929 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
930 out_free_async_qe:
931 	if (ctrl->async_event_sqe.data) {
932 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
933 			sizeof(struct nvme_command), DMA_TO_DEVICE);
934 		ctrl->async_event_sqe.data = NULL;
935 	}
936 out_free_queue:
937 	nvme_rdma_free_queue(&ctrl->queues[0]);
938 	return error;
939 }
940 
941 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
942 		bool remove)
943 {
944 	if (remove) {
945 		blk_cleanup_queue(ctrl->ctrl.connect_q);
946 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
947 	}
948 	nvme_rdma_free_io_queues(ctrl);
949 }
950 
951 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
952 {
953 	int ret;
954 
955 	ret = nvme_rdma_alloc_io_queues(ctrl);
956 	if (ret)
957 		return ret;
958 
959 	if (new) {
960 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
961 		if (IS_ERR(ctrl->ctrl.tagset)) {
962 			ret = PTR_ERR(ctrl->ctrl.tagset);
963 			goto out_free_io_queues;
964 		}
965 
966 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
967 		if (IS_ERR(ctrl->ctrl.connect_q)) {
968 			ret = PTR_ERR(ctrl->ctrl.connect_q);
969 			goto out_free_tag_set;
970 		}
971 	}
972 
973 	ret = nvme_rdma_start_io_queues(ctrl);
974 	if (ret)
975 		goto out_cleanup_connect_q;
976 
977 	if (!new) {
978 		nvme_start_queues(&ctrl->ctrl);
979 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
980 			/*
981 			 * If we timed out waiting for freeze we are likely to
982 			 * be stuck.  Fail the controller initialization just
983 			 * to be safe.
984 			 */
985 			ret = -ENODEV;
986 			goto out_wait_freeze_timed_out;
987 		}
988 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
989 			ctrl->ctrl.queue_count - 1);
990 		nvme_unfreeze(&ctrl->ctrl);
991 	}
992 
993 	return 0;
994 
995 out_wait_freeze_timed_out:
996 	nvme_stop_queues(&ctrl->ctrl);
997 	nvme_rdma_stop_io_queues(ctrl);
998 out_cleanup_connect_q:
999 	if (new)
1000 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1001 out_free_tag_set:
1002 	if (new)
1003 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1004 out_free_io_queues:
1005 	nvme_rdma_free_io_queues(ctrl);
1006 	return ret;
1007 }
1008 
1009 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1010 		bool remove)
1011 {
1012 	mutex_lock(&ctrl->teardown_lock);
1013 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1014 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1015 	if (ctrl->ctrl.admin_tagset) {
1016 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1017 			nvme_cancel_request, &ctrl->ctrl);
1018 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1019 	}
1020 	if (remove)
1021 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1022 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1023 	mutex_unlock(&ctrl->teardown_lock);
1024 }
1025 
1026 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1027 		bool remove)
1028 {
1029 	mutex_lock(&ctrl->teardown_lock);
1030 	if (ctrl->ctrl.queue_count > 1) {
1031 		nvme_start_freeze(&ctrl->ctrl);
1032 		nvme_stop_queues(&ctrl->ctrl);
1033 		nvme_rdma_stop_io_queues(ctrl);
1034 		if (ctrl->ctrl.tagset) {
1035 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1036 				nvme_cancel_request, &ctrl->ctrl);
1037 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1038 		}
1039 		if (remove)
1040 			nvme_start_queues(&ctrl->ctrl);
1041 		nvme_rdma_destroy_io_queues(ctrl, remove);
1042 	}
1043 	mutex_unlock(&ctrl->teardown_lock);
1044 }
1045 
1046 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1047 {
1048 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1049 
1050 	if (list_empty(&ctrl->list))
1051 		goto free_ctrl;
1052 
1053 	mutex_lock(&nvme_rdma_ctrl_mutex);
1054 	list_del(&ctrl->list);
1055 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1056 
1057 	nvmf_free_options(nctrl->opts);
1058 free_ctrl:
1059 	kfree(ctrl->queues);
1060 	kfree(ctrl);
1061 }
1062 
1063 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1064 {
1065 	/* If we are resetting/deleting then do nothing */
1066 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1067 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1068 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1069 		return;
1070 	}
1071 
1072 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1073 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1074 			ctrl->ctrl.opts->reconnect_delay);
1075 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1076 				ctrl->ctrl.opts->reconnect_delay * HZ);
1077 	} else {
1078 		nvme_delete_ctrl(&ctrl->ctrl);
1079 	}
1080 }
1081 
1082 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1083 {
1084 	int ret = -EINVAL;
1085 	bool changed;
1086 
1087 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1088 	if (ret)
1089 		return ret;
1090 
1091 	if (ctrl->ctrl.icdoff) {
1092 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1093 		goto destroy_admin;
1094 	}
1095 
1096 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1097 		dev_err(ctrl->ctrl.device,
1098 			"Mandatory keyed sgls are not supported!\n");
1099 		goto destroy_admin;
1100 	}
1101 
1102 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1103 		dev_warn(ctrl->ctrl.device,
1104 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1105 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1106 	}
1107 
1108 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1109 		dev_warn(ctrl->ctrl.device,
1110 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1111 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1112 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1113 	}
1114 
1115 	if (ctrl->ctrl.sgls & (1 << 20))
1116 		ctrl->use_inline_data = true;
1117 
1118 	if (ctrl->ctrl.queue_count > 1) {
1119 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1120 		if (ret)
1121 			goto destroy_admin;
1122 	}
1123 
1124 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1125 	if (!changed) {
1126 		/*
1127 		 * state change failure is ok if we started ctrl delete,
1128 		 * unless we're during creation of a new controller to
1129 		 * avoid races with teardown flow.
1130 		 */
1131 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1132 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1133 		WARN_ON_ONCE(new);
1134 		ret = -EINVAL;
1135 		goto destroy_io;
1136 	}
1137 
1138 	nvme_start_ctrl(&ctrl->ctrl);
1139 	return 0;
1140 
1141 destroy_io:
1142 	if (ctrl->ctrl.queue_count > 1)
1143 		nvme_rdma_destroy_io_queues(ctrl, new);
1144 destroy_admin:
1145 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1146 	nvme_rdma_destroy_admin_queue(ctrl, new);
1147 	return ret;
1148 }
1149 
1150 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1151 {
1152 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1153 			struct nvme_rdma_ctrl, reconnect_work);
1154 
1155 	++ctrl->ctrl.nr_reconnects;
1156 
1157 	if (nvme_rdma_setup_ctrl(ctrl, false))
1158 		goto requeue;
1159 
1160 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1161 			ctrl->ctrl.nr_reconnects);
1162 
1163 	ctrl->ctrl.nr_reconnects = 0;
1164 
1165 	return;
1166 
1167 requeue:
1168 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1169 			ctrl->ctrl.nr_reconnects);
1170 	nvme_rdma_reconnect_or_remove(ctrl);
1171 }
1172 
1173 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1174 {
1175 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1176 			struct nvme_rdma_ctrl, err_work);
1177 
1178 	nvme_stop_keep_alive(&ctrl->ctrl);
1179 	nvme_rdma_teardown_io_queues(ctrl, false);
1180 	nvme_start_queues(&ctrl->ctrl);
1181 	nvme_rdma_teardown_admin_queue(ctrl, false);
1182 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1183 
1184 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1185 		/* state change failure is ok if we started ctrl delete */
1186 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1187 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1188 		return;
1189 	}
1190 
1191 	nvme_rdma_reconnect_or_remove(ctrl);
1192 }
1193 
1194 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1195 {
1196 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1197 		return;
1198 
1199 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1200 	queue_work(nvme_reset_wq, &ctrl->err_work);
1201 }
1202 
1203 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1204 {
1205 	struct request *rq = blk_mq_rq_from_pdu(req);
1206 
1207 	if (!refcount_dec_and_test(&req->ref))
1208 		return;
1209 	if (!nvme_try_complete_req(rq, req->status, req->result))
1210 		nvme_rdma_complete_rq(rq);
1211 }
1212 
1213 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1214 		const char *op)
1215 {
1216 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1217 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1218 
1219 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1220 		dev_info(ctrl->ctrl.device,
1221 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1222 			     op, wc->wr_cqe,
1223 			     ib_wc_status_msg(wc->status), wc->status);
1224 	nvme_rdma_error_recovery(ctrl);
1225 }
1226 
1227 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1228 {
1229 	if (unlikely(wc->status != IB_WC_SUCCESS))
1230 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1231 }
1232 
1233 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1234 {
1235 	struct nvme_rdma_request *req =
1236 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1237 
1238 	if (unlikely(wc->status != IB_WC_SUCCESS))
1239 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1240 	else
1241 		nvme_rdma_end_request(req);
1242 }
1243 
1244 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1245 		struct nvme_rdma_request *req)
1246 {
1247 	struct ib_send_wr wr = {
1248 		.opcode		    = IB_WR_LOCAL_INV,
1249 		.next		    = NULL,
1250 		.num_sge	    = 0,
1251 		.send_flags	    = IB_SEND_SIGNALED,
1252 		.ex.invalidate_rkey = req->mr->rkey,
1253 	};
1254 
1255 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1256 	wr.wr_cqe = &req->reg_cqe;
1257 
1258 	return ib_post_send(queue->qp, &wr, NULL);
1259 }
1260 
1261 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1262 		struct request *rq)
1263 {
1264 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1265 	struct nvme_rdma_device *dev = queue->device;
1266 	struct ib_device *ibdev = dev->dev;
1267 	struct list_head *pool = &queue->qp->rdma_mrs;
1268 
1269 	if (!blk_rq_nr_phys_segments(rq))
1270 		return;
1271 
1272 	if (blk_integrity_rq(rq)) {
1273 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1274 				req->metadata_sgl->nents, rq_dma_dir(rq));
1275 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1276 				      NVME_INLINE_METADATA_SG_CNT);
1277 	}
1278 
1279 	if (req->use_sig_mr)
1280 		pool = &queue->qp->sig_mrs;
1281 
1282 	if (req->mr) {
1283 		ib_mr_pool_put(queue->qp, pool, req->mr);
1284 		req->mr = NULL;
1285 	}
1286 
1287 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1288 			rq_dma_dir(rq));
1289 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1290 }
1291 
1292 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1293 {
1294 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1295 
1296 	sg->addr = 0;
1297 	put_unaligned_le24(0, sg->length);
1298 	put_unaligned_le32(0, sg->key);
1299 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1300 	return 0;
1301 }
1302 
1303 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1304 		struct nvme_rdma_request *req, struct nvme_command *c,
1305 		int count)
1306 {
1307 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1308 	struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1309 	struct ib_sge *sge = &req->sge[1];
1310 	u32 len = 0;
1311 	int i;
1312 
1313 	for (i = 0; i < count; i++, sgl++, sge++) {
1314 		sge->addr = sg_dma_address(sgl);
1315 		sge->length = sg_dma_len(sgl);
1316 		sge->lkey = queue->device->pd->local_dma_lkey;
1317 		len += sge->length;
1318 	}
1319 
1320 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1321 	sg->length = cpu_to_le32(len);
1322 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1323 
1324 	req->num_sge += count;
1325 	return 0;
1326 }
1327 
1328 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1329 		struct nvme_rdma_request *req, struct nvme_command *c)
1330 {
1331 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1332 
1333 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1334 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1335 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1336 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1337 	return 0;
1338 }
1339 
1340 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1341 		struct nvme_rdma_request *req, struct nvme_command *c,
1342 		int count)
1343 {
1344 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1345 	int nr;
1346 
1347 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1348 	if (WARN_ON_ONCE(!req->mr))
1349 		return -EAGAIN;
1350 
1351 	/*
1352 	 * Align the MR to a 4K page size to match the ctrl page size and
1353 	 * the block virtual boundary.
1354 	 */
1355 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1356 			  SZ_4K);
1357 	if (unlikely(nr < count)) {
1358 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1359 		req->mr = NULL;
1360 		if (nr < 0)
1361 			return nr;
1362 		return -EINVAL;
1363 	}
1364 
1365 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1366 
1367 	req->reg_cqe.done = nvme_rdma_memreg_done;
1368 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1369 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1370 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1371 	req->reg_wr.wr.num_sge = 0;
1372 	req->reg_wr.mr = req->mr;
1373 	req->reg_wr.key = req->mr->rkey;
1374 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1375 			     IB_ACCESS_REMOTE_READ |
1376 			     IB_ACCESS_REMOTE_WRITE;
1377 
1378 	sg->addr = cpu_to_le64(req->mr->iova);
1379 	put_unaligned_le24(req->mr->length, sg->length);
1380 	put_unaligned_le32(req->mr->rkey, sg->key);
1381 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1382 			NVME_SGL_FMT_INVALIDATE;
1383 
1384 	return 0;
1385 }
1386 
1387 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1388 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1389 		u16 control, u8 pi_type)
1390 {
1391 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1392 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1393 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1394 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1395 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1396 		domain->sig.dif.ref_remap = true;
1397 
1398 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1399 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1400 	domain->sig.dif.app_escape = true;
1401 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1402 		domain->sig.dif.ref_escape = true;
1403 }
1404 
1405 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1406 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1407 		u8 pi_type)
1408 {
1409 	u16 control = le16_to_cpu(cmd->rw.control);
1410 
1411 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1412 	if (control & NVME_RW_PRINFO_PRACT) {
1413 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1414 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1415 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1416 					 pi_type);
1417 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1418 		control &= ~NVME_RW_PRINFO_PRACT;
1419 		cmd->rw.control = cpu_to_le16(control);
1420 	} else {
1421 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1422 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1423 					 pi_type);
1424 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1425 					 pi_type);
1426 	}
1427 }
1428 
1429 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1430 {
1431 	*mask = 0;
1432 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1433 		*mask |= IB_SIG_CHECK_REFTAG;
1434 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1435 		*mask |= IB_SIG_CHECK_GUARD;
1436 }
1437 
1438 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1439 {
1440 	if (unlikely(wc->status != IB_WC_SUCCESS))
1441 		nvme_rdma_wr_error(cq, wc, "SIG");
1442 }
1443 
1444 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1445 		struct nvme_rdma_request *req, struct nvme_command *c,
1446 		int count, int pi_count)
1447 {
1448 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1449 	struct ib_reg_wr *wr = &req->reg_wr;
1450 	struct request *rq = blk_mq_rq_from_pdu(req);
1451 	struct nvme_ns *ns = rq->q->queuedata;
1452 	struct bio *bio = rq->bio;
1453 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1454 	int nr;
1455 
1456 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1457 	if (WARN_ON_ONCE(!req->mr))
1458 		return -EAGAIN;
1459 
1460 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1461 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1462 			     SZ_4K);
1463 	if (unlikely(nr))
1464 		goto mr_put;
1465 
1466 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1467 				req->mr->sig_attrs, ns->pi_type);
1468 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1469 
1470 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1471 
1472 	req->reg_cqe.done = nvme_rdma_sig_done;
1473 	memset(wr, 0, sizeof(*wr));
1474 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1475 	wr->wr.wr_cqe = &req->reg_cqe;
1476 	wr->wr.num_sge = 0;
1477 	wr->wr.send_flags = 0;
1478 	wr->mr = req->mr;
1479 	wr->key = req->mr->rkey;
1480 	wr->access = IB_ACCESS_LOCAL_WRITE |
1481 		     IB_ACCESS_REMOTE_READ |
1482 		     IB_ACCESS_REMOTE_WRITE;
1483 
1484 	sg->addr = cpu_to_le64(req->mr->iova);
1485 	put_unaligned_le24(req->mr->length, sg->length);
1486 	put_unaligned_le32(req->mr->rkey, sg->key);
1487 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1488 
1489 	return 0;
1490 
1491 mr_put:
1492 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1493 	req->mr = NULL;
1494 	if (nr < 0)
1495 		return nr;
1496 	return -EINVAL;
1497 }
1498 
1499 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1500 		struct request *rq, struct nvme_command *c)
1501 {
1502 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1503 	struct nvme_rdma_device *dev = queue->device;
1504 	struct ib_device *ibdev = dev->dev;
1505 	int pi_count = 0;
1506 	int count, ret;
1507 
1508 	req->num_sge = 1;
1509 	refcount_set(&req->ref, 2); /* send and recv completions */
1510 
1511 	c->common.flags |= NVME_CMD_SGL_METABUF;
1512 
1513 	if (!blk_rq_nr_phys_segments(rq))
1514 		return nvme_rdma_set_sg_null(c);
1515 
1516 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1517 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1518 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1519 			NVME_INLINE_SG_CNT);
1520 	if (ret)
1521 		return -ENOMEM;
1522 
1523 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1524 					    req->data_sgl.sg_table.sgl);
1525 
1526 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1527 			      req->data_sgl.nents, rq_dma_dir(rq));
1528 	if (unlikely(count <= 0)) {
1529 		ret = -EIO;
1530 		goto out_free_table;
1531 	}
1532 
1533 	if (blk_integrity_rq(rq)) {
1534 		req->metadata_sgl->sg_table.sgl =
1535 			(struct scatterlist *)(req->metadata_sgl + 1);
1536 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1537 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1538 				req->metadata_sgl->sg_table.sgl,
1539 				NVME_INLINE_METADATA_SG_CNT);
1540 		if (unlikely(ret)) {
1541 			ret = -ENOMEM;
1542 			goto out_unmap_sg;
1543 		}
1544 
1545 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1546 				rq->bio, req->metadata_sgl->sg_table.sgl);
1547 		pi_count = ib_dma_map_sg(ibdev,
1548 					 req->metadata_sgl->sg_table.sgl,
1549 					 req->metadata_sgl->nents,
1550 					 rq_dma_dir(rq));
1551 		if (unlikely(pi_count <= 0)) {
1552 			ret = -EIO;
1553 			goto out_free_pi_table;
1554 		}
1555 	}
1556 
1557 	if (req->use_sig_mr) {
1558 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1559 		goto out;
1560 	}
1561 
1562 	if (count <= dev->num_inline_segments) {
1563 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1564 		    queue->ctrl->use_inline_data &&
1565 		    blk_rq_payload_bytes(rq) <=
1566 				nvme_rdma_inline_data_size(queue)) {
1567 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1568 			goto out;
1569 		}
1570 
1571 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1572 			ret = nvme_rdma_map_sg_single(queue, req, c);
1573 			goto out;
1574 		}
1575 	}
1576 
1577 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1578 out:
1579 	if (unlikely(ret))
1580 		goto out_unmap_pi_sg;
1581 
1582 	return 0;
1583 
1584 out_unmap_pi_sg:
1585 	if (blk_integrity_rq(rq))
1586 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1587 				req->metadata_sgl->nents, rq_dma_dir(rq));
1588 out_free_pi_table:
1589 	if (blk_integrity_rq(rq))
1590 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1591 				      NVME_INLINE_METADATA_SG_CNT);
1592 out_unmap_sg:
1593 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1594 			rq_dma_dir(rq));
1595 out_free_table:
1596 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1597 	return ret;
1598 }
1599 
1600 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1601 {
1602 	struct nvme_rdma_qe *qe =
1603 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1604 	struct nvme_rdma_request *req =
1605 		container_of(qe, struct nvme_rdma_request, sqe);
1606 
1607 	if (unlikely(wc->status != IB_WC_SUCCESS))
1608 		nvme_rdma_wr_error(cq, wc, "SEND");
1609 	else
1610 		nvme_rdma_end_request(req);
1611 }
1612 
1613 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1614 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1615 		struct ib_send_wr *first)
1616 {
1617 	struct ib_send_wr wr;
1618 	int ret;
1619 
1620 	sge->addr   = qe->dma;
1621 	sge->length = sizeof(struct nvme_command);
1622 	sge->lkey   = queue->device->pd->local_dma_lkey;
1623 
1624 	wr.next       = NULL;
1625 	wr.wr_cqe     = &qe->cqe;
1626 	wr.sg_list    = sge;
1627 	wr.num_sge    = num_sge;
1628 	wr.opcode     = IB_WR_SEND;
1629 	wr.send_flags = IB_SEND_SIGNALED;
1630 
1631 	if (first)
1632 		first->next = &wr;
1633 	else
1634 		first = &wr;
1635 
1636 	ret = ib_post_send(queue->qp, first, NULL);
1637 	if (unlikely(ret)) {
1638 		dev_err(queue->ctrl->ctrl.device,
1639 			     "%s failed with error code %d\n", __func__, ret);
1640 	}
1641 	return ret;
1642 }
1643 
1644 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1645 		struct nvme_rdma_qe *qe)
1646 {
1647 	struct ib_recv_wr wr;
1648 	struct ib_sge list;
1649 	int ret;
1650 
1651 	list.addr   = qe->dma;
1652 	list.length = sizeof(struct nvme_completion);
1653 	list.lkey   = queue->device->pd->local_dma_lkey;
1654 
1655 	qe->cqe.done = nvme_rdma_recv_done;
1656 
1657 	wr.next     = NULL;
1658 	wr.wr_cqe   = &qe->cqe;
1659 	wr.sg_list  = &list;
1660 	wr.num_sge  = 1;
1661 
1662 	ret = ib_post_recv(queue->qp, &wr, NULL);
1663 	if (unlikely(ret)) {
1664 		dev_err(queue->ctrl->ctrl.device,
1665 			"%s failed with error code %d\n", __func__, ret);
1666 	}
1667 	return ret;
1668 }
1669 
1670 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1671 {
1672 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1673 
1674 	if (queue_idx == 0)
1675 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1676 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1677 }
1678 
1679 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1680 {
1681 	if (unlikely(wc->status != IB_WC_SUCCESS))
1682 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1683 }
1684 
1685 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1686 {
1687 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1688 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1689 	struct ib_device *dev = queue->device->dev;
1690 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1691 	struct nvme_command *cmd = sqe->data;
1692 	struct ib_sge sge;
1693 	int ret;
1694 
1695 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1696 
1697 	memset(cmd, 0, sizeof(*cmd));
1698 	cmd->common.opcode = nvme_admin_async_event;
1699 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1700 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1701 	nvme_rdma_set_sg_null(cmd);
1702 
1703 	sqe->cqe.done = nvme_rdma_async_done;
1704 
1705 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1706 			DMA_TO_DEVICE);
1707 
1708 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1709 	WARN_ON_ONCE(ret);
1710 }
1711 
1712 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1713 		struct nvme_completion *cqe, struct ib_wc *wc)
1714 {
1715 	struct request *rq;
1716 	struct nvme_rdma_request *req;
1717 
1718 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1719 	if (!rq) {
1720 		dev_err(queue->ctrl->ctrl.device,
1721 			"tag 0x%x on QP %#x not found\n",
1722 			cqe->command_id, queue->qp->qp_num);
1723 		nvme_rdma_error_recovery(queue->ctrl);
1724 		return;
1725 	}
1726 	req = blk_mq_rq_to_pdu(rq);
1727 
1728 	req->status = cqe->status;
1729 	req->result = cqe->result;
1730 
1731 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1732 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1733 			dev_err(queue->ctrl->ctrl.device,
1734 				"Bogus remote invalidation for rkey %#x\n",
1735 				req->mr->rkey);
1736 			nvme_rdma_error_recovery(queue->ctrl);
1737 		}
1738 	} else if (req->mr) {
1739 		int ret;
1740 
1741 		ret = nvme_rdma_inv_rkey(queue, req);
1742 		if (unlikely(ret < 0)) {
1743 			dev_err(queue->ctrl->ctrl.device,
1744 				"Queueing INV WR for rkey %#x failed (%d)\n",
1745 				req->mr->rkey, ret);
1746 			nvme_rdma_error_recovery(queue->ctrl);
1747 		}
1748 		/* the local invalidation completion will end the request */
1749 		return;
1750 	}
1751 
1752 	nvme_rdma_end_request(req);
1753 }
1754 
1755 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1756 {
1757 	struct nvme_rdma_qe *qe =
1758 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1759 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1760 	struct ib_device *ibdev = queue->device->dev;
1761 	struct nvme_completion *cqe = qe->data;
1762 	const size_t len = sizeof(struct nvme_completion);
1763 
1764 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1765 		nvme_rdma_wr_error(cq, wc, "RECV");
1766 		return;
1767 	}
1768 
1769 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1770 	/*
1771 	 * AEN requests are special as they don't time out and can
1772 	 * survive any kind of queue freeze and often don't respond to
1773 	 * aborts.  We don't even bother to allocate a struct request
1774 	 * for them but rather special case them here.
1775 	 */
1776 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1777 				     cqe->command_id)))
1778 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1779 				&cqe->result);
1780 	else
1781 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1782 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1783 
1784 	nvme_rdma_post_recv(queue, qe);
1785 }
1786 
1787 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1788 {
1789 	int ret, i;
1790 
1791 	for (i = 0; i < queue->queue_size; i++) {
1792 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1793 		if (ret)
1794 			goto out_destroy_queue_ib;
1795 	}
1796 
1797 	return 0;
1798 
1799 out_destroy_queue_ib:
1800 	nvme_rdma_destroy_queue_ib(queue);
1801 	return ret;
1802 }
1803 
1804 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1805 		struct rdma_cm_event *ev)
1806 {
1807 	struct rdma_cm_id *cm_id = queue->cm_id;
1808 	int status = ev->status;
1809 	const char *rej_msg;
1810 	const struct nvme_rdma_cm_rej *rej_data;
1811 	u8 rej_data_len;
1812 
1813 	rej_msg = rdma_reject_msg(cm_id, status);
1814 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1815 
1816 	if (rej_data && rej_data_len >= sizeof(u16)) {
1817 		u16 sts = le16_to_cpu(rej_data->sts);
1818 
1819 		dev_err(queue->ctrl->ctrl.device,
1820 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1821 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1822 	} else {
1823 		dev_err(queue->ctrl->ctrl.device,
1824 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1825 	}
1826 
1827 	return -ECONNRESET;
1828 }
1829 
1830 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1831 {
1832 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1833 	int ret;
1834 
1835 	ret = nvme_rdma_create_queue_ib(queue);
1836 	if (ret)
1837 		return ret;
1838 
1839 	if (ctrl->opts->tos >= 0)
1840 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1841 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1842 	if (ret) {
1843 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1844 			queue->cm_error);
1845 		goto out_destroy_queue;
1846 	}
1847 
1848 	return 0;
1849 
1850 out_destroy_queue:
1851 	nvme_rdma_destroy_queue_ib(queue);
1852 	return ret;
1853 }
1854 
1855 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1856 {
1857 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1858 	struct rdma_conn_param param = { };
1859 	struct nvme_rdma_cm_req priv = { };
1860 	int ret;
1861 
1862 	param.qp_num = queue->qp->qp_num;
1863 	param.flow_control = 1;
1864 
1865 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1866 	/* maximum retry count */
1867 	param.retry_count = 7;
1868 	param.rnr_retry_count = 7;
1869 	param.private_data = &priv;
1870 	param.private_data_len = sizeof(priv);
1871 
1872 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1873 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1874 	/*
1875 	 * set the admin queue depth to the minimum size
1876 	 * specified by the Fabrics standard.
1877 	 */
1878 	if (priv.qid == 0) {
1879 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1880 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1881 	} else {
1882 		/*
1883 		 * current interpretation of the fabrics spec
1884 		 * is at minimum you make hrqsize sqsize+1, or a
1885 		 * 1's based representation of sqsize.
1886 		 */
1887 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1888 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1889 	}
1890 
1891 	ret = rdma_connect(queue->cm_id, &param);
1892 	if (ret) {
1893 		dev_err(ctrl->ctrl.device,
1894 			"rdma_connect failed (%d).\n", ret);
1895 		goto out_destroy_queue_ib;
1896 	}
1897 
1898 	return 0;
1899 
1900 out_destroy_queue_ib:
1901 	nvme_rdma_destroy_queue_ib(queue);
1902 	return ret;
1903 }
1904 
1905 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1906 		struct rdma_cm_event *ev)
1907 {
1908 	struct nvme_rdma_queue *queue = cm_id->context;
1909 	int cm_error = 0;
1910 
1911 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1912 		rdma_event_msg(ev->event), ev->event,
1913 		ev->status, cm_id);
1914 
1915 	switch (ev->event) {
1916 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1917 		cm_error = nvme_rdma_addr_resolved(queue);
1918 		break;
1919 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1920 		cm_error = nvme_rdma_route_resolved(queue);
1921 		break;
1922 	case RDMA_CM_EVENT_ESTABLISHED:
1923 		queue->cm_error = nvme_rdma_conn_established(queue);
1924 		/* complete cm_done regardless of success/failure */
1925 		complete(&queue->cm_done);
1926 		return 0;
1927 	case RDMA_CM_EVENT_REJECTED:
1928 		nvme_rdma_destroy_queue_ib(queue);
1929 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1930 		break;
1931 	case RDMA_CM_EVENT_ROUTE_ERROR:
1932 	case RDMA_CM_EVENT_CONNECT_ERROR:
1933 	case RDMA_CM_EVENT_UNREACHABLE:
1934 		nvme_rdma_destroy_queue_ib(queue);
1935 		fallthrough;
1936 	case RDMA_CM_EVENT_ADDR_ERROR:
1937 		dev_dbg(queue->ctrl->ctrl.device,
1938 			"CM error event %d\n", ev->event);
1939 		cm_error = -ECONNRESET;
1940 		break;
1941 	case RDMA_CM_EVENT_DISCONNECTED:
1942 	case RDMA_CM_EVENT_ADDR_CHANGE:
1943 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1944 		dev_dbg(queue->ctrl->ctrl.device,
1945 			"disconnect received - connection closed\n");
1946 		nvme_rdma_error_recovery(queue->ctrl);
1947 		break;
1948 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1949 		/* device removal is handled via the ib_client API */
1950 		break;
1951 	default:
1952 		dev_err(queue->ctrl->ctrl.device,
1953 			"Unexpected RDMA CM event (%d)\n", ev->event);
1954 		nvme_rdma_error_recovery(queue->ctrl);
1955 		break;
1956 	}
1957 
1958 	if (cm_error) {
1959 		queue->cm_error = cm_error;
1960 		complete(&queue->cm_done);
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static void nvme_rdma_complete_timed_out(struct request *rq)
1967 {
1968 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1969 	struct nvme_rdma_queue *queue = req->queue;
1970 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1971 
1972 	/* fence other contexts that may complete the command */
1973 	mutex_lock(&ctrl->teardown_lock);
1974 	nvme_rdma_stop_queue(queue);
1975 	if (!blk_mq_request_completed(rq)) {
1976 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1977 		blk_mq_complete_request(rq);
1978 	}
1979 	mutex_unlock(&ctrl->teardown_lock);
1980 }
1981 
1982 static enum blk_eh_timer_return
1983 nvme_rdma_timeout(struct request *rq, bool reserved)
1984 {
1985 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1986 	struct nvme_rdma_queue *queue = req->queue;
1987 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1988 
1989 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1990 		 rq->tag, nvme_rdma_queue_idx(queue));
1991 
1992 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1993 		/*
1994 		 * If we are resetting, connecting or deleting we should
1995 		 * complete immediately because we may block controller
1996 		 * teardown or setup sequence
1997 		 * - ctrl disable/shutdown fabrics requests
1998 		 * - connect requests
1999 		 * - initialization admin requests
2000 		 * - I/O requests that entered after unquiescing and
2001 		 *   the controller stopped responding
2002 		 *
2003 		 * All other requests should be cancelled by the error
2004 		 * recovery work, so it's fine that we fail it here.
2005 		 */
2006 		nvme_rdma_complete_timed_out(rq);
2007 		return BLK_EH_DONE;
2008 	}
2009 
2010 	/*
2011 	 * LIVE state should trigger the normal error recovery which will
2012 	 * handle completing this request.
2013 	 */
2014 	nvme_rdma_error_recovery(ctrl);
2015 	return BLK_EH_RESET_TIMER;
2016 }
2017 
2018 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2019 		const struct blk_mq_queue_data *bd)
2020 {
2021 	struct nvme_ns *ns = hctx->queue->queuedata;
2022 	struct nvme_rdma_queue *queue = hctx->driver_data;
2023 	struct request *rq = bd->rq;
2024 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2025 	struct nvme_rdma_qe *sqe = &req->sqe;
2026 	struct nvme_command *c = sqe->data;
2027 	struct ib_device *dev;
2028 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2029 	blk_status_t ret;
2030 	int err;
2031 
2032 	WARN_ON_ONCE(rq->tag < 0);
2033 
2034 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2035 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2036 
2037 	dev = queue->device->dev;
2038 
2039 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2040 					 sizeof(struct nvme_command),
2041 					 DMA_TO_DEVICE);
2042 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2043 	if (unlikely(err))
2044 		return BLK_STS_RESOURCE;
2045 
2046 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2047 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2048 
2049 	ret = nvme_setup_cmd(ns, rq, c);
2050 	if (ret)
2051 		goto unmap_qe;
2052 
2053 	blk_mq_start_request(rq);
2054 
2055 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2056 	    queue->pi_support &&
2057 	    (c->common.opcode == nvme_cmd_write ||
2058 	     c->common.opcode == nvme_cmd_read) &&
2059 	    nvme_ns_has_pi(ns))
2060 		req->use_sig_mr = true;
2061 	else
2062 		req->use_sig_mr = false;
2063 
2064 	err = nvme_rdma_map_data(queue, rq, c);
2065 	if (unlikely(err < 0)) {
2066 		dev_err(queue->ctrl->ctrl.device,
2067 			     "Failed to map data (%d)\n", err);
2068 		goto err;
2069 	}
2070 
2071 	sqe->cqe.done = nvme_rdma_send_done;
2072 
2073 	ib_dma_sync_single_for_device(dev, sqe->dma,
2074 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2075 
2076 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2077 			req->mr ? &req->reg_wr.wr : NULL);
2078 	if (unlikely(err))
2079 		goto err_unmap;
2080 
2081 	return BLK_STS_OK;
2082 
2083 err_unmap:
2084 	nvme_rdma_unmap_data(queue, rq);
2085 err:
2086 	if (err == -ENOMEM || err == -EAGAIN)
2087 		ret = BLK_STS_RESOURCE;
2088 	else
2089 		ret = BLK_STS_IOERR;
2090 	nvme_cleanup_cmd(rq);
2091 unmap_qe:
2092 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2093 			    DMA_TO_DEVICE);
2094 	return ret;
2095 }
2096 
2097 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2098 {
2099 	struct nvme_rdma_queue *queue = hctx->driver_data;
2100 
2101 	return ib_process_cq_direct(queue->ib_cq, -1);
2102 }
2103 
2104 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2105 {
2106 	struct request *rq = blk_mq_rq_from_pdu(req);
2107 	struct ib_mr_status mr_status;
2108 	int ret;
2109 
2110 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2111 	if (ret) {
2112 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2113 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2114 		return;
2115 	}
2116 
2117 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2118 		switch (mr_status.sig_err.err_type) {
2119 		case IB_SIG_BAD_GUARD:
2120 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2121 			break;
2122 		case IB_SIG_BAD_REFTAG:
2123 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2124 			break;
2125 		case IB_SIG_BAD_APPTAG:
2126 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2127 			break;
2128 		}
2129 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2130 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2131 		       mr_status.sig_err.actual);
2132 	}
2133 }
2134 
2135 static void nvme_rdma_complete_rq(struct request *rq)
2136 {
2137 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2138 	struct nvme_rdma_queue *queue = req->queue;
2139 	struct ib_device *ibdev = queue->device->dev;
2140 
2141 	if (req->use_sig_mr)
2142 		nvme_rdma_check_pi_status(req);
2143 
2144 	nvme_rdma_unmap_data(queue, rq);
2145 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2146 			    DMA_TO_DEVICE);
2147 	nvme_complete_rq(rq);
2148 }
2149 
2150 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2151 {
2152 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2153 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2154 
2155 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2156 		/* separate read/write queues */
2157 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2158 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2159 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2160 		set->map[HCTX_TYPE_READ].nr_queues =
2161 			ctrl->io_queues[HCTX_TYPE_READ];
2162 		set->map[HCTX_TYPE_READ].queue_offset =
2163 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2164 	} else {
2165 		/* shared read/write queues */
2166 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2167 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2168 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2169 		set->map[HCTX_TYPE_READ].nr_queues =
2170 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2171 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2172 	}
2173 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2174 			ctrl->device->dev, 0);
2175 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2176 			ctrl->device->dev, 0);
2177 
2178 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2179 		/* map dedicated poll queues only if we have queues left */
2180 		set->map[HCTX_TYPE_POLL].nr_queues =
2181 				ctrl->io_queues[HCTX_TYPE_POLL];
2182 		set->map[HCTX_TYPE_POLL].queue_offset =
2183 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2184 			ctrl->io_queues[HCTX_TYPE_READ];
2185 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2186 	}
2187 
2188 	dev_info(ctrl->ctrl.device,
2189 		"mapped %d/%d/%d default/read/poll queues.\n",
2190 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2191 		ctrl->io_queues[HCTX_TYPE_READ],
2192 		ctrl->io_queues[HCTX_TYPE_POLL]);
2193 
2194 	return 0;
2195 }
2196 
2197 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2198 	.queue_rq	= nvme_rdma_queue_rq,
2199 	.complete	= nvme_rdma_complete_rq,
2200 	.init_request	= nvme_rdma_init_request,
2201 	.exit_request	= nvme_rdma_exit_request,
2202 	.init_hctx	= nvme_rdma_init_hctx,
2203 	.timeout	= nvme_rdma_timeout,
2204 	.map_queues	= nvme_rdma_map_queues,
2205 	.poll		= nvme_rdma_poll,
2206 };
2207 
2208 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2209 	.queue_rq	= nvme_rdma_queue_rq,
2210 	.complete	= nvme_rdma_complete_rq,
2211 	.init_request	= nvme_rdma_init_request,
2212 	.exit_request	= nvme_rdma_exit_request,
2213 	.init_hctx	= nvme_rdma_init_admin_hctx,
2214 	.timeout	= nvme_rdma_timeout,
2215 };
2216 
2217 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2218 {
2219 	cancel_work_sync(&ctrl->err_work);
2220 	cancel_delayed_work_sync(&ctrl->reconnect_work);
2221 
2222 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2223 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2224 	if (shutdown)
2225 		nvme_shutdown_ctrl(&ctrl->ctrl);
2226 	else
2227 		nvme_disable_ctrl(&ctrl->ctrl);
2228 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2229 }
2230 
2231 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2232 {
2233 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2234 }
2235 
2236 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2237 {
2238 	struct nvme_rdma_ctrl *ctrl =
2239 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2240 
2241 	nvme_stop_ctrl(&ctrl->ctrl);
2242 	nvme_rdma_shutdown_ctrl(ctrl, false);
2243 
2244 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2245 		/* state change failure should never happen */
2246 		WARN_ON_ONCE(1);
2247 		return;
2248 	}
2249 
2250 	if (nvme_rdma_setup_ctrl(ctrl, false))
2251 		goto out_fail;
2252 
2253 	return;
2254 
2255 out_fail:
2256 	++ctrl->ctrl.nr_reconnects;
2257 	nvme_rdma_reconnect_or_remove(ctrl);
2258 }
2259 
2260 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2261 	.name			= "rdma",
2262 	.module			= THIS_MODULE,
2263 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2264 	.reg_read32		= nvmf_reg_read32,
2265 	.reg_read64		= nvmf_reg_read64,
2266 	.reg_write32		= nvmf_reg_write32,
2267 	.free_ctrl		= nvme_rdma_free_ctrl,
2268 	.submit_async_event	= nvme_rdma_submit_async_event,
2269 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2270 	.get_address		= nvmf_get_address,
2271 };
2272 
2273 /*
2274  * Fails a connection request if it matches an existing controller
2275  * (association) with the same tuple:
2276  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2277  *
2278  * if local address is not specified in the request, it will match an
2279  * existing controller with all the other parameters the same and no
2280  * local port address specified as well.
2281  *
2282  * The ports don't need to be compared as they are intrinsically
2283  * already matched by the port pointers supplied.
2284  */
2285 static bool
2286 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2287 {
2288 	struct nvme_rdma_ctrl *ctrl;
2289 	bool found = false;
2290 
2291 	mutex_lock(&nvme_rdma_ctrl_mutex);
2292 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2293 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2294 		if (found)
2295 			break;
2296 	}
2297 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2298 
2299 	return found;
2300 }
2301 
2302 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2303 		struct nvmf_ctrl_options *opts)
2304 {
2305 	struct nvme_rdma_ctrl *ctrl;
2306 	int ret;
2307 	bool changed;
2308 
2309 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2310 	if (!ctrl)
2311 		return ERR_PTR(-ENOMEM);
2312 	ctrl->ctrl.opts = opts;
2313 	INIT_LIST_HEAD(&ctrl->list);
2314 	mutex_init(&ctrl->teardown_lock);
2315 
2316 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2317 		opts->trsvcid =
2318 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2319 		if (!opts->trsvcid) {
2320 			ret = -ENOMEM;
2321 			goto out_free_ctrl;
2322 		}
2323 		opts->mask |= NVMF_OPT_TRSVCID;
2324 	}
2325 
2326 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2327 			opts->traddr, opts->trsvcid, &ctrl->addr);
2328 	if (ret) {
2329 		pr_err("malformed address passed: %s:%s\n",
2330 			opts->traddr, opts->trsvcid);
2331 		goto out_free_ctrl;
2332 	}
2333 
2334 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2335 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2336 			opts->host_traddr, NULL, &ctrl->src_addr);
2337 		if (ret) {
2338 			pr_err("malformed src address passed: %s\n",
2339 			       opts->host_traddr);
2340 			goto out_free_ctrl;
2341 		}
2342 	}
2343 
2344 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2345 		ret = -EALREADY;
2346 		goto out_free_ctrl;
2347 	}
2348 
2349 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2350 			nvme_rdma_reconnect_ctrl_work);
2351 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2352 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2353 
2354 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2355 				opts->nr_poll_queues + 1;
2356 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2357 	ctrl->ctrl.kato = opts->kato;
2358 
2359 	ret = -ENOMEM;
2360 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2361 				GFP_KERNEL);
2362 	if (!ctrl->queues)
2363 		goto out_free_ctrl;
2364 
2365 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2366 				0 /* no quirks, we're perfect! */);
2367 	if (ret)
2368 		goto out_kfree_queues;
2369 
2370 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2371 	WARN_ON_ONCE(!changed);
2372 
2373 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2374 	if (ret)
2375 		goto out_uninit_ctrl;
2376 
2377 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2378 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2379 
2380 	mutex_lock(&nvme_rdma_ctrl_mutex);
2381 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2382 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2383 
2384 	return &ctrl->ctrl;
2385 
2386 out_uninit_ctrl:
2387 	nvme_uninit_ctrl(&ctrl->ctrl);
2388 	nvme_put_ctrl(&ctrl->ctrl);
2389 	if (ret > 0)
2390 		ret = -EIO;
2391 	return ERR_PTR(ret);
2392 out_kfree_queues:
2393 	kfree(ctrl->queues);
2394 out_free_ctrl:
2395 	kfree(ctrl);
2396 	return ERR_PTR(ret);
2397 }
2398 
2399 static struct nvmf_transport_ops nvme_rdma_transport = {
2400 	.name		= "rdma",
2401 	.module		= THIS_MODULE,
2402 	.required_opts	= NVMF_OPT_TRADDR,
2403 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2404 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2405 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2406 			  NVMF_OPT_TOS,
2407 	.create_ctrl	= nvme_rdma_create_ctrl,
2408 };
2409 
2410 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2411 {
2412 	struct nvme_rdma_ctrl *ctrl;
2413 	struct nvme_rdma_device *ndev;
2414 	bool found = false;
2415 
2416 	mutex_lock(&device_list_mutex);
2417 	list_for_each_entry(ndev, &device_list, entry) {
2418 		if (ndev->dev == ib_device) {
2419 			found = true;
2420 			break;
2421 		}
2422 	}
2423 	mutex_unlock(&device_list_mutex);
2424 
2425 	if (!found)
2426 		return;
2427 
2428 	/* Delete all controllers using this device */
2429 	mutex_lock(&nvme_rdma_ctrl_mutex);
2430 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2431 		if (ctrl->device->dev != ib_device)
2432 			continue;
2433 		nvme_delete_ctrl(&ctrl->ctrl);
2434 	}
2435 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2436 
2437 	flush_workqueue(nvme_delete_wq);
2438 }
2439 
2440 static struct ib_client nvme_rdma_ib_client = {
2441 	.name   = "nvme_rdma",
2442 	.remove = nvme_rdma_remove_one
2443 };
2444 
2445 static int __init nvme_rdma_init_module(void)
2446 {
2447 	int ret;
2448 
2449 	ret = ib_register_client(&nvme_rdma_ib_client);
2450 	if (ret)
2451 		return ret;
2452 
2453 	ret = nvmf_register_transport(&nvme_rdma_transport);
2454 	if (ret)
2455 		goto err_unreg_client;
2456 
2457 	return 0;
2458 
2459 err_unreg_client:
2460 	ib_unregister_client(&nvme_rdma_ib_client);
2461 	return ret;
2462 }
2463 
2464 static void __exit nvme_rdma_cleanup_module(void)
2465 {
2466 	struct nvme_rdma_ctrl *ctrl;
2467 
2468 	nvmf_unregister_transport(&nvme_rdma_transport);
2469 	ib_unregister_client(&nvme_rdma_ib_client);
2470 
2471 	mutex_lock(&nvme_rdma_ctrl_mutex);
2472 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2473 		nvme_delete_ctrl(&ctrl->ctrl);
2474 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2475 	flush_workqueue(nvme_delete_wq);
2476 }
2477 
2478 module_init(nvme_rdma_init_module);
2479 module_exit(nvme_rdma_cleanup_module);
2480 
2481 MODULE_LICENSE("GPL v2");
2482