1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54 };
55
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83 };
84
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128 };
129
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198 }
199
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203 {
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
209 }
210
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214 {
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
237 }
238
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244 }
245
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 int ret;
249
250 ret = wait_for_completion_interruptible(&queue->cm_done);
251 if (ret)
252 return ret;
253 WARN_ON_ONCE(queue->cm_error > 0);
254 return queue->cm_error;
255 }
256
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 struct nvme_rdma_device *dev = queue->device;
260 struct ib_qp_init_attr init_attr;
261 int ret;
262
263 memset(&init_attr, 0, sizeof(init_attr));
264 init_attr.event_handler = nvme_rdma_qp_event;
265 /* +1 for drain */
266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 /* +1 for drain */
268 init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 init_attr.cap.max_recv_sge = 1;
270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 init_attr.qp_type = IB_QPT_RC;
273 init_attr.send_cq = queue->ib_cq;
274 init_attr.recv_cq = queue->ib_cq;
275 if (queue->pi_support)
276 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 init_attr.qp_context = queue;
278
279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280
281 queue->qp = queue->cm_id->qp;
282 return ret;
283 }
284
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 struct request *rq, unsigned int hctx_idx)
287 {
288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289
290 kfree(req->sqe.data);
291 }
292
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 struct request *rq, unsigned int hctx_idx,
295 unsigned int numa_node)
296 {
297 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301
302 nvme_req(rq)->ctrl = &ctrl->ctrl;
303 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 if (!req->sqe.data)
305 return -ENOMEM;
306
307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 if (queue->pi_support)
309 req->metadata_sgl = (void *)nvme_req(rq) +
310 sizeof(struct nvme_rdma_request) +
311 NVME_RDMA_DATA_SGL_SIZE;
312
313 req->queue = queue;
314 nvme_req(rq)->cmd = req->sqe.data;
315
316 return 0;
317 }
318
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 unsigned int hctx_idx)
321 {
322 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324
325 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326
327 hctx->driver_data = queue;
328 return 0;
329 }
330
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
333 {
334 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 struct nvme_rdma_queue *queue = &ctrl->queues[0];
336
337 BUG_ON(hctx_idx != 0);
338
339 hctx->driver_data = queue;
340 return 0;
341 }
342
nvme_rdma_free_dev(struct kref * ref)343 static void nvme_rdma_free_dev(struct kref *ref)
344 {
345 struct nvme_rdma_device *ndev =
346 container_of(ref, struct nvme_rdma_device, ref);
347
348 mutex_lock(&device_list_mutex);
349 list_del(&ndev->entry);
350 mutex_unlock(&device_list_mutex);
351
352 ib_dealloc_pd(ndev->pd);
353 kfree(ndev);
354 }
355
nvme_rdma_dev_put(struct nvme_rdma_device * dev)356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357 {
358 kref_put(&dev->ref, nvme_rdma_free_dev);
359 }
360
nvme_rdma_dev_get(struct nvme_rdma_device * dev)361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362 {
363 return kref_get_unless_zero(&dev->ref);
364 }
365
366 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368 {
369 struct nvme_rdma_device *ndev;
370
371 mutex_lock(&device_list_mutex);
372 list_for_each_entry(ndev, &device_list, entry) {
373 if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 nvme_rdma_dev_get(ndev))
375 goto out_unlock;
376 }
377
378 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 if (!ndev)
380 goto out_err;
381
382 ndev->dev = cm_id->device;
383 kref_init(&ndev->ref);
384
385 ndev->pd = ib_alloc_pd(ndev->dev,
386 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 if (IS_ERR(ndev->pd))
388 goto out_free_dev;
389
390 if (!(ndev->dev->attrs.device_cap_flags &
391 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 dev_err(&ndev->dev->dev,
393 "Memory registrations not supported.\n");
394 goto out_free_pd;
395 }
396
397 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 ndev->dev->attrs.max_send_sge - 1);
399 list_add(&ndev->entry, &device_list);
400 out_unlock:
401 mutex_unlock(&device_list_mutex);
402 return ndev;
403
404 out_free_pd:
405 ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407 kfree(ndev);
408 out_err:
409 mutex_unlock(&device_list_mutex);
410 return NULL;
411 }
412
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414 {
415 if (nvme_rdma_poll_queue(queue))
416 ib_free_cq(queue->ib_cq);
417 else
418 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419 }
420
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422 {
423 struct nvme_rdma_device *dev;
424 struct ib_device *ibdev;
425
426 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427 return;
428
429 dev = queue->device;
430 ibdev = dev->dev;
431
432 if (queue->pi_support)
433 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435
436 /*
437 * The cm_id object might have been destroyed during RDMA connection
438 * establishment error flow to avoid getting other cma events, thus
439 * the destruction of the QP shouldn't use rdma_cm API.
440 */
441 ib_destroy_qp(queue->qp);
442 nvme_rdma_free_cq(queue);
443
444 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446
447 nvme_rdma_dev_put(dev);
448 }
449
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451 {
452 u32 max_page_list_len;
453
454 if (pi_support)
455 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 else
457 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458
459 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460 }
461
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 struct nvme_rdma_queue *queue)
464 {
465 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466
467 /*
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
470 */
471 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472
473 /* Polling queues need direct cq polling context */
474 if (nvme_rdma_poll_queue(queue))
475 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 comp_vector, IB_POLL_DIRECT);
477 else
478 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 comp_vector, IB_POLL_SOFTIRQ);
480
481 if (IS_ERR(queue->ib_cq)) {
482 ret = PTR_ERR(queue->ib_cq);
483 return ret;
484 }
485
486 return 0;
487 }
488
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490 {
491 struct ib_device *ibdev;
492 const int send_wr_factor = 3; /* MR, SEND, INV */
493 const int cq_factor = send_wr_factor + 1; /* + RECV */
494 int ret, pages_per_mr;
495
496 queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 if (!queue->device) {
498 dev_err(queue->cm_id->device->dev.parent,
499 "no client data found!\n");
500 return -ECONNREFUSED;
501 }
502 ibdev = queue->device->dev;
503
504 /* +1 for ib_drain_qp */
505 queue->cq_size = cq_factor * queue->queue_size + 1;
506
507 ret = nvme_rdma_create_cq(ibdev, queue);
508 if (ret)
509 goto out_put_dev;
510
511 ret = nvme_rdma_create_qp(queue, send_wr_factor);
512 if (ret)
513 goto out_destroy_ib_cq;
514
515 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 if (!queue->rsp_ring) {
518 ret = -ENOMEM;
519 goto out_destroy_qp;
520 }
521
522 /*
523 * Currently we don't use SG_GAPS MR's so if the first entry is
524 * misaligned we'll end up using two entries for a single data page,
525 * so one additional entry is required.
526 */
527 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529 queue->queue_size,
530 IB_MR_TYPE_MEM_REG,
531 pages_per_mr, 0);
532 if (ret) {
533 dev_err(queue->ctrl->ctrl.device,
534 "failed to initialize MR pool sized %d for QID %d\n",
535 queue->queue_size, nvme_rdma_queue_idx(queue));
536 goto out_destroy_ring;
537 }
538
539 if (queue->pi_support) {
540 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 pages_per_mr, pages_per_mr);
543 if (ret) {
544 dev_err(queue->ctrl->ctrl.device,
545 "failed to initialize PI MR pool sized %d for QID %d\n",
546 queue->queue_size, nvme_rdma_queue_idx(queue));
547 goto out_destroy_mr_pool;
548 }
549 }
550
551 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552
553 return 0;
554
555 out_destroy_mr_pool:
556 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561 rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563 nvme_rdma_free_cq(queue);
564 out_put_dev:
565 nvme_rdma_dev_put(queue->device);
566 return ret;
567 }
568
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 int idx, size_t queue_size)
571 {
572 struct nvme_rdma_queue *queue;
573 struct sockaddr *src_addr = NULL;
574 int ret;
575
576 queue = &ctrl->queues[idx];
577 mutex_init(&queue->queue_lock);
578 queue->ctrl = ctrl;
579 if (idx && ctrl->ctrl.max_integrity_segments)
580 queue->pi_support = true;
581 else
582 queue->pi_support = false;
583 init_completion(&queue->cm_done);
584
585 if (idx > 0)
586 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 else
588 queue->cmnd_capsule_len = sizeof(struct nvme_command);
589
590 queue->queue_size = queue_size;
591
592 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 RDMA_PS_TCP, IB_QPT_RC);
594 if (IS_ERR(queue->cm_id)) {
595 dev_info(ctrl->ctrl.device,
596 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 ret = PTR_ERR(queue->cm_id);
598 goto out_destroy_mutex;
599 }
600
601 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 src_addr = (struct sockaddr *)&ctrl->src_addr;
603
604 queue->cm_error = -ETIMEDOUT;
605 ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 (struct sockaddr *)&ctrl->addr,
607 NVME_RDMA_CM_TIMEOUT_MS);
608 if (ret) {
609 dev_info(ctrl->ctrl.device,
610 "rdma_resolve_addr failed (%d).\n", ret);
611 goto out_destroy_cm_id;
612 }
613
614 ret = nvme_rdma_wait_for_cm(queue);
615 if (ret) {
616 dev_info(ctrl->ctrl.device,
617 "rdma connection establishment failed (%d)\n", ret);
618 goto out_destroy_cm_id;
619 }
620
621 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622
623 return 0;
624
625 out_destroy_cm_id:
626 rdma_destroy_id(queue->cm_id);
627 nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629 mutex_destroy(&queue->queue_lock);
630 return ret;
631 }
632
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634 {
635 rdma_disconnect(queue->cm_id);
636 ib_drain_qp(queue->qp);
637 }
638
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642 return;
643
644 mutex_lock(&queue->queue_lock);
645 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646 __nvme_rdma_stop_queue(queue);
647 mutex_unlock(&queue->queue_lock);
648 }
649
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)650 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
651 {
652 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653 return;
654
655 rdma_destroy_id(queue->cm_id);
656 nvme_rdma_destroy_queue_ib(queue);
657 mutex_destroy(&queue->queue_lock);
658 }
659
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)660 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661 {
662 int i;
663
664 for (i = 1; i < ctrl->ctrl.queue_count; i++)
665 nvme_rdma_free_queue(&ctrl->queues[i]);
666 }
667
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)668 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669 {
670 int i;
671
672 for (i = 1; i < ctrl->ctrl.queue_count; i++)
673 nvme_rdma_stop_queue(&ctrl->queues[i]);
674 }
675
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)676 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
677 {
678 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679 int ret;
680
681 if (idx)
682 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
683 else
684 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
685
686 if (!ret) {
687 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
688 } else {
689 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690 __nvme_rdma_stop_queue(queue);
691 dev_info(ctrl->ctrl.device,
692 "failed to connect queue: %d ret=%d\n", idx, ret);
693 }
694 return ret;
695 }
696
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl,int first,int last)697 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698 int first, int last)
699 {
700 int i, ret = 0;
701
702 for (i = first; i < last; i++) {
703 ret = nvme_rdma_start_queue(ctrl, i);
704 if (ret)
705 goto out_stop_queues;
706 }
707
708 return 0;
709
710 out_stop_queues:
711 for (i--; i >= first; i--)
712 nvme_rdma_stop_queue(&ctrl->queues[i]);
713 return ret;
714 }
715
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)716 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
717 {
718 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719 unsigned int nr_io_queues;
720 int i, ret;
721
722 nr_io_queues = nvmf_nr_io_queues(opts);
723 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
724 if (ret)
725 return ret;
726
727 if (nr_io_queues == 0) {
728 dev_err(ctrl->ctrl.device,
729 "unable to set any I/O queues\n");
730 return -ENOMEM;
731 }
732
733 ctrl->ctrl.queue_count = nr_io_queues + 1;
734 dev_info(ctrl->ctrl.device,
735 "creating %d I/O queues.\n", nr_io_queues);
736
737 nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739 ret = nvme_rdma_alloc_queue(ctrl, i,
740 ctrl->ctrl.sqsize + 1);
741 if (ret)
742 goto out_free_queues;
743 }
744
745 return 0;
746
747 out_free_queues:
748 for (i--; i >= 1; i--)
749 nvme_rdma_free_queue(&ctrl->queues[i]);
750
751 return ret;
752 }
753
nvme_rdma_alloc_tag_set(struct nvme_ctrl * ctrl)754 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
755 {
756 unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757 NVME_RDMA_DATA_SGL_SIZE;
758
759 if (ctrl->max_integrity_segments)
760 cmd_size += sizeof(struct nvme_rdma_sgl) +
761 NVME_RDMA_METADATA_SGL_SIZE;
762
763 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
764 &nvme_rdma_mq_ops,
765 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766 cmd_size);
767 }
768
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl)769 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
770 {
771 if (ctrl->async_event_sqe.data) {
772 cancel_work_sync(&ctrl->ctrl.async_event_work);
773 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774 sizeof(struct nvme_command), DMA_TO_DEVICE);
775 ctrl->async_event_sqe.data = NULL;
776 }
777 nvme_rdma_free_queue(&ctrl->queues[0]);
778 }
779
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)780 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781 bool new)
782 {
783 bool pi_capable = false;
784 int error;
785
786 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
787 if (error)
788 return error;
789
790 ctrl->device = ctrl->queues[0].device;
791 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
792
793 /* T10-PI support */
794 if (ctrl->device->dev->attrs.kernel_cap_flags &
795 IBK_INTEGRITY_HANDOVER)
796 pi_capable = true;
797
798 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
799 pi_capable);
800
801 /*
802 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803 * It's safe, since any chage in the underlying RDMA device will issue
804 * error recovery and queue re-creation.
805 */
806 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807 sizeof(struct nvme_command), DMA_TO_DEVICE);
808 if (error)
809 goto out_free_queue;
810
811 if (new) {
812 error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814 sizeof(struct nvme_rdma_request) +
815 NVME_RDMA_DATA_SGL_SIZE);
816 if (error)
817 goto out_free_async_qe;
818
819 }
820
821 error = nvme_rdma_start_queue(ctrl, 0);
822 if (error)
823 goto out_remove_admin_tag_set;
824
825 error = nvme_enable_ctrl(&ctrl->ctrl);
826 if (error)
827 goto out_stop_queue;
828
829 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831 if (pi_capable)
832 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833 else
834 ctrl->ctrl.max_integrity_segments = 0;
835
836 nvme_unquiesce_admin_queue(&ctrl->ctrl);
837
838 error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
839 if (error)
840 goto out_quiesce_queue;
841
842 return 0;
843
844 out_quiesce_queue:
845 nvme_quiesce_admin_queue(&ctrl->ctrl);
846 blk_sync_queue(ctrl->ctrl.admin_q);
847 out_stop_queue:
848 nvme_rdma_stop_queue(&ctrl->queues[0]);
849 nvme_cancel_admin_tagset(&ctrl->ctrl);
850 out_remove_admin_tag_set:
851 if (new)
852 nvme_remove_admin_tag_set(&ctrl->ctrl);
853 out_free_async_qe:
854 if (ctrl->async_event_sqe.data) {
855 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856 sizeof(struct nvme_command), DMA_TO_DEVICE);
857 ctrl->async_event_sqe.data = NULL;
858 }
859 out_free_queue:
860 nvme_rdma_free_queue(&ctrl->queues[0]);
861 return error;
862 }
863
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
865 {
866 int ret, nr_queues;
867
868 ret = nvme_rdma_alloc_io_queues(ctrl);
869 if (ret)
870 return ret;
871
872 if (new) {
873 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
874 if (ret)
875 goto out_free_io_queues;
876 }
877
878 /*
879 * Only start IO queues for which we have allocated the tagset
880 * and limitted it to the available queues. On reconnects, the
881 * queue number might have changed.
882 */
883 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
885 if (ret)
886 goto out_cleanup_tagset;
887
888 if (!new) {
889 nvme_start_freeze(&ctrl->ctrl);
890 nvme_unquiesce_io_queues(&ctrl->ctrl);
891 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
892 /*
893 * If we timed out waiting for freeze we are likely to
894 * be stuck. Fail the controller initialization just
895 * to be safe.
896 */
897 ret = -ENODEV;
898 nvme_unfreeze(&ctrl->ctrl);
899 goto out_wait_freeze_timed_out;
900 }
901 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902 ctrl->ctrl.queue_count - 1);
903 nvme_unfreeze(&ctrl->ctrl);
904 }
905
906 /*
907 * If the number of queues has increased (reconnect case)
908 * start all new queues now.
909 */
910 ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911 ctrl->tag_set.nr_hw_queues + 1);
912 if (ret)
913 goto out_wait_freeze_timed_out;
914
915 return 0;
916
917 out_wait_freeze_timed_out:
918 nvme_quiesce_io_queues(&ctrl->ctrl);
919 nvme_sync_io_queues(&ctrl->ctrl);
920 nvme_rdma_stop_io_queues(ctrl);
921 out_cleanup_tagset:
922 nvme_cancel_tagset(&ctrl->ctrl);
923 if (new)
924 nvme_remove_io_tag_set(&ctrl->ctrl);
925 out_free_io_queues:
926 nvme_rdma_free_io_queues(ctrl);
927 return ret;
928 }
929
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)930 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931 bool remove)
932 {
933 nvme_quiesce_admin_queue(&ctrl->ctrl);
934 blk_sync_queue(ctrl->ctrl.admin_q);
935 nvme_rdma_stop_queue(&ctrl->queues[0]);
936 nvme_cancel_admin_tagset(&ctrl->ctrl);
937 if (remove) {
938 nvme_unquiesce_admin_queue(&ctrl->ctrl);
939 nvme_remove_admin_tag_set(&ctrl->ctrl);
940 }
941 nvme_rdma_destroy_admin_queue(ctrl);
942 }
943
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)944 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945 bool remove)
946 {
947 if (ctrl->ctrl.queue_count > 1) {
948 nvme_quiesce_io_queues(&ctrl->ctrl);
949 nvme_sync_io_queues(&ctrl->ctrl);
950 nvme_rdma_stop_io_queues(ctrl);
951 nvme_cancel_tagset(&ctrl->ctrl);
952 if (remove) {
953 nvme_unquiesce_io_queues(&ctrl->ctrl);
954 nvme_remove_io_tag_set(&ctrl->ctrl);
955 }
956 nvme_rdma_free_io_queues(ctrl);
957 }
958 }
959
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)960 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
961 {
962 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
963
964 flush_work(&ctrl->err_work);
965 cancel_delayed_work_sync(&ctrl->reconnect_work);
966 }
967
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)968 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
969 {
970 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
971
972 if (list_empty(&ctrl->list))
973 goto free_ctrl;
974
975 mutex_lock(&nvme_rdma_ctrl_mutex);
976 list_del(&ctrl->list);
977 mutex_unlock(&nvme_rdma_ctrl_mutex);
978
979 nvmf_free_options(nctrl->opts);
980 free_ctrl:
981 kfree(ctrl->queues);
982 kfree(ctrl);
983 }
984
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)985 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
986 {
987 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
988
989 /* If we are resetting/deleting then do nothing */
990 if (state != NVME_CTRL_CONNECTING) {
991 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
992 return;
993 }
994
995 if (nvmf_should_reconnect(&ctrl->ctrl)) {
996 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
997 ctrl->ctrl.opts->reconnect_delay);
998 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
999 ctrl->ctrl.opts->reconnect_delay * HZ);
1000 } else {
1001 nvme_delete_ctrl(&ctrl->ctrl);
1002 }
1003 }
1004
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1005 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1006 {
1007 int ret;
1008 bool changed;
1009
1010 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1011 if (ret)
1012 return ret;
1013
1014 if (ctrl->ctrl.icdoff) {
1015 ret = -EOPNOTSUPP;
1016 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1017 goto destroy_admin;
1018 }
1019
1020 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1021 ret = -EOPNOTSUPP;
1022 dev_err(ctrl->ctrl.device,
1023 "Mandatory keyed sgls are not supported!\n");
1024 goto destroy_admin;
1025 }
1026
1027 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1028 dev_warn(ctrl->ctrl.device,
1029 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1030 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1031 }
1032
1033 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1034 dev_warn(ctrl->ctrl.device,
1035 "ctrl sqsize %u > max queue size %u, clamping down\n",
1036 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1037 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1038 }
1039
1040 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1041 dev_warn(ctrl->ctrl.device,
1042 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1043 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1044 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1045 }
1046
1047 if (ctrl->ctrl.sgls & (1 << 20))
1048 ctrl->use_inline_data = true;
1049
1050 if (ctrl->ctrl.queue_count > 1) {
1051 ret = nvme_rdma_configure_io_queues(ctrl, new);
1052 if (ret)
1053 goto destroy_admin;
1054 }
1055
1056 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1057 if (!changed) {
1058 /*
1059 * state change failure is ok if we started ctrl delete,
1060 * unless we're during creation of a new controller to
1061 * avoid races with teardown flow.
1062 */
1063 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1064
1065 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1066 state != NVME_CTRL_DELETING_NOIO);
1067 WARN_ON_ONCE(new);
1068 ret = -EINVAL;
1069 goto destroy_io;
1070 }
1071
1072 nvme_start_ctrl(&ctrl->ctrl);
1073 return 0;
1074
1075 destroy_io:
1076 if (ctrl->ctrl.queue_count > 1) {
1077 nvme_quiesce_io_queues(&ctrl->ctrl);
1078 nvme_sync_io_queues(&ctrl->ctrl);
1079 nvme_rdma_stop_io_queues(ctrl);
1080 nvme_cancel_tagset(&ctrl->ctrl);
1081 if (new)
1082 nvme_remove_io_tag_set(&ctrl->ctrl);
1083 nvme_rdma_free_io_queues(ctrl);
1084 }
1085 destroy_admin:
1086 nvme_quiesce_admin_queue(&ctrl->ctrl);
1087 blk_sync_queue(ctrl->ctrl.admin_q);
1088 nvme_rdma_stop_queue(&ctrl->queues[0]);
1089 nvme_cancel_admin_tagset(&ctrl->ctrl);
1090 if (new)
1091 nvme_remove_admin_tag_set(&ctrl->ctrl);
1092 nvme_rdma_destroy_admin_queue(ctrl);
1093 return ret;
1094 }
1095
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1096 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1097 {
1098 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1099 struct nvme_rdma_ctrl, reconnect_work);
1100
1101 ++ctrl->ctrl.nr_reconnects;
1102
1103 if (nvme_rdma_setup_ctrl(ctrl, false))
1104 goto requeue;
1105
1106 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1107 ctrl->ctrl.nr_reconnects);
1108
1109 ctrl->ctrl.nr_reconnects = 0;
1110
1111 return;
1112
1113 requeue:
1114 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1115 ctrl->ctrl.nr_reconnects);
1116 nvme_rdma_reconnect_or_remove(ctrl);
1117 }
1118
nvme_rdma_error_recovery_work(struct work_struct * work)1119 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1120 {
1121 struct nvme_rdma_ctrl *ctrl = container_of(work,
1122 struct nvme_rdma_ctrl, err_work);
1123
1124 nvme_stop_keep_alive(&ctrl->ctrl);
1125 flush_work(&ctrl->ctrl.async_event_work);
1126 nvme_rdma_teardown_io_queues(ctrl, false);
1127 nvme_unquiesce_io_queues(&ctrl->ctrl);
1128 nvme_rdma_teardown_admin_queue(ctrl, false);
1129 nvme_unquiesce_admin_queue(&ctrl->ctrl);
1130 nvme_auth_stop(&ctrl->ctrl);
1131
1132 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1133 /* state change failure is ok if we started ctrl delete */
1134 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1135
1136 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1137 state != NVME_CTRL_DELETING_NOIO);
1138 return;
1139 }
1140
1141 nvme_rdma_reconnect_or_remove(ctrl);
1142 }
1143
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1144 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1145 {
1146 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1147 return;
1148
1149 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1150 queue_work(nvme_reset_wq, &ctrl->err_work);
1151 }
1152
nvme_rdma_end_request(struct nvme_rdma_request * req)1153 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1154 {
1155 struct request *rq = blk_mq_rq_from_pdu(req);
1156
1157 if (!refcount_dec_and_test(&req->ref))
1158 return;
1159 if (!nvme_try_complete_req(rq, req->status, req->result))
1160 nvme_rdma_complete_rq(rq);
1161 }
1162
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1163 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1164 const char *op)
1165 {
1166 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1167 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1168
1169 if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
1170 dev_info(ctrl->ctrl.device,
1171 "%s for CQE 0x%p failed with status %s (%d)\n",
1172 op, wc->wr_cqe,
1173 ib_wc_status_msg(wc->status), wc->status);
1174 nvme_rdma_error_recovery(ctrl);
1175 }
1176
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1177 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1178 {
1179 if (unlikely(wc->status != IB_WC_SUCCESS))
1180 nvme_rdma_wr_error(cq, wc, "MEMREG");
1181 }
1182
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1183 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1184 {
1185 struct nvme_rdma_request *req =
1186 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1187
1188 if (unlikely(wc->status != IB_WC_SUCCESS))
1189 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1190 else
1191 nvme_rdma_end_request(req);
1192 }
1193
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1194 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1195 struct nvme_rdma_request *req)
1196 {
1197 struct ib_send_wr wr = {
1198 .opcode = IB_WR_LOCAL_INV,
1199 .next = NULL,
1200 .num_sge = 0,
1201 .send_flags = IB_SEND_SIGNALED,
1202 .ex.invalidate_rkey = req->mr->rkey,
1203 };
1204
1205 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1206 wr.wr_cqe = &req->reg_cqe;
1207
1208 return ib_post_send(queue->qp, &wr, NULL);
1209 }
1210
nvme_rdma_dma_unmap_req(struct ib_device * ibdev,struct request * rq)1211 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1212 {
1213 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1214
1215 if (blk_integrity_rq(rq)) {
1216 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1217 req->metadata_sgl->nents, rq_dma_dir(rq));
1218 sg_free_table_chained(&req->metadata_sgl->sg_table,
1219 NVME_INLINE_METADATA_SG_CNT);
1220 }
1221
1222 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1223 rq_dma_dir(rq));
1224 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1225 }
1226
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1227 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1228 struct request *rq)
1229 {
1230 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1231 struct nvme_rdma_device *dev = queue->device;
1232 struct ib_device *ibdev = dev->dev;
1233 struct list_head *pool = &queue->qp->rdma_mrs;
1234
1235 if (!blk_rq_nr_phys_segments(rq))
1236 return;
1237
1238 if (req->use_sig_mr)
1239 pool = &queue->qp->sig_mrs;
1240
1241 if (req->mr) {
1242 ib_mr_pool_put(queue->qp, pool, req->mr);
1243 req->mr = NULL;
1244 }
1245
1246 nvme_rdma_dma_unmap_req(ibdev, rq);
1247 }
1248
nvme_rdma_set_sg_null(struct nvme_command * c)1249 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1250 {
1251 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1252
1253 sg->addr = 0;
1254 put_unaligned_le24(0, sg->length);
1255 put_unaligned_le32(0, sg->key);
1256 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1257 return 0;
1258 }
1259
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1260 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1261 struct nvme_rdma_request *req, struct nvme_command *c,
1262 int count)
1263 {
1264 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1265 struct ib_sge *sge = &req->sge[1];
1266 struct scatterlist *sgl;
1267 u32 len = 0;
1268 int i;
1269
1270 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1271 sge->addr = sg_dma_address(sgl);
1272 sge->length = sg_dma_len(sgl);
1273 sge->lkey = queue->device->pd->local_dma_lkey;
1274 len += sge->length;
1275 sge++;
1276 }
1277
1278 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1279 sg->length = cpu_to_le32(len);
1280 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1281
1282 req->num_sge += count;
1283 return 0;
1284 }
1285
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1286 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1287 struct nvme_rdma_request *req, struct nvme_command *c)
1288 {
1289 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1290
1291 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1292 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1293 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1294 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1295 return 0;
1296 }
1297
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1298 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1299 struct nvme_rdma_request *req, struct nvme_command *c,
1300 int count)
1301 {
1302 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1303 int nr;
1304
1305 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1306 if (WARN_ON_ONCE(!req->mr))
1307 return -EAGAIN;
1308
1309 /*
1310 * Align the MR to a 4K page size to match the ctrl page size and
1311 * the block virtual boundary.
1312 */
1313 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1314 SZ_4K);
1315 if (unlikely(nr < count)) {
1316 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1317 req->mr = NULL;
1318 if (nr < 0)
1319 return nr;
1320 return -EINVAL;
1321 }
1322
1323 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1324
1325 req->reg_cqe.done = nvme_rdma_memreg_done;
1326 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1327 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1328 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1329 req->reg_wr.wr.num_sge = 0;
1330 req->reg_wr.mr = req->mr;
1331 req->reg_wr.key = req->mr->rkey;
1332 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1333 IB_ACCESS_REMOTE_READ |
1334 IB_ACCESS_REMOTE_WRITE;
1335
1336 sg->addr = cpu_to_le64(req->mr->iova);
1337 put_unaligned_le24(req->mr->length, sg->length);
1338 put_unaligned_le32(req->mr->rkey, sg->key);
1339 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1340 NVME_SGL_FMT_INVALIDATE;
1341
1342 return 0;
1343 }
1344
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1345 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1346 struct nvme_command *cmd, struct ib_sig_domain *domain,
1347 u16 control, u8 pi_type)
1348 {
1349 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1350 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1351 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1352 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1353 if (control & NVME_RW_PRINFO_PRCHK_REF)
1354 domain->sig.dif.ref_remap = true;
1355
1356 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1357 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1358 domain->sig.dif.app_escape = true;
1359 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1360 domain->sig.dif.ref_escape = true;
1361 }
1362
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1363 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1364 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1365 u8 pi_type)
1366 {
1367 u16 control = le16_to_cpu(cmd->rw.control);
1368
1369 memset(sig_attrs, 0, sizeof(*sig_attrs));
1370 if (control & NVME_RW_PRINFO_PRACT) {
1371 /* for WRITE_INSERT/READ_STRIP no memory domain */
1372 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1373 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1374 pi_type);
1375 /* Clear the PRACT bit since HCA will generate/verify the PI */
1376 control &= ~NVME_RW_PRINFO_PRACT;
1377 cmd->rw.control = cpu_to_le16(control);
1378 } else {
1379 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1380 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1381 pi_type);
1382 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1383 pi_type);
1384 }
1385 }
1386
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1387 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1388 {
1389 *mask = 0;
1390 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1391 *mask |= IB_SIG_CHECK_REFTAG;
1392 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1393 *mask |= IB_SIG_CHECK_GUARD;
1394 }
1395
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1396 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1397 {
1398 if (unlikely(wc->status != IB_WC_SUCCESS))
1399 nvme_rdma_wr_error(cq, wc, "SIG");
1400 }
1401
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1402 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1403 struct nvme_rdma_request *req, struct nvme_command *c,
1404 int count, int pi_count)
1405 {
1406 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1407 struct ib_reg_wr *wr = &req->reg_wr;
1408 struct request *rq = blk_mq_rq_from_pdu(req);
1409 struct nvme_ns *ns = rq->q->queuedata;
1410 struct bio *bio = rq->bio;
1411 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1412 int nr;
1413
1414 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1415 if (WARN_ON_ONCE(!req->mr))
1416 return -EAGAIN;
1417
1418 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1419 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1420 SZ_4K);
1421 if (unlikely(nr))
1422 goto mr_put;
1423
1424 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1425 req->mr->sig_attrs, ns->pi_type);
1426 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1427
1428 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1429
1430 req->reg_cqe.done = nvme_rdma_sig_done;
1431 memset(wr, 0, sizeof(*wr));
1432 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1433 wr->wr.wr_cqe = &req->reg_cqe;
1434 wr->wr.num_sge = 0;
1435 wr->wr.send_flags = 0;
1436 wr->mr = req->mr;
1437 wr->key = req->mr->rkey;
1438 wr->access = IB_ACCESS_LOCAL_WRITE |
1439 IB_ACCESS_REMOTE_READ |
1440 IB_ACCESS_REMOTE_WRITE;
1441
1442 sg->addr = cpu_to_le64(req->mr->iova);
1443 put_unaligned_le24(req->mr->length, sg->length);
1444 put_unaligned_le32(req->mr->rkey, sg->key);
1445 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1446
1447 return 0;
1448
1449 mr_put:
1450 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1451 req->mr = NULL;
1452 if (nr < 0)
1453 return nr;
1454 return -EINVAL;
1455 }
1456
nvme_rdma_dma_map_req(struct ib_device * ibdev,struct request * rq,int * count,int * pi_count)1457 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1458 int *count, int *pi_count)
1459 {
1460 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1461 int ret;
1462
1463 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1464 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1465 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1466 NVME_INLINE_SG_CNT);
1467 if (ret)
1468 return -ENOMEM;
1469
1470 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1471 req->data_sgl.sg_table.sgl);
1472
1473 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1474 req->data_sgl.nents, rq_dma_dir(rq));
1475 if (unlikely(*count <= 0)) {
1476 ret = -EIO;
1477 goto out_free_table;
1478 }
1479
1480 if (blk_integrity_rq(rq)) {
1481 req->metadata_sgl->sg_table.sgl =
1482 (struct scatterlist *)(req->metadata_sgl + 1);
1483 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1484 blk_rq_count_integrity_sg(rq->q, rq->bio),
1485 req->metadata_sgl->sg_table.sgl,
1486 NVME_INLINE_METADATA_SG_CNT);
1487 if (unlikely(ret)) {
1488 ret = -ENOMEM;
1489 goto out_unmap_sg;
1490 }
1491
1492 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1493 rq->bio, req->metadata_sgl->sg_table.sgl);
1494 *pi_count = ib_dma_map_sg(ibdev,
1495 req->metadata_sgl->sg_table.sgl,
1496 req->metadata_sgl->nents,
1497 rq_dma_dir(rq));
1498 if (unlikely(*pi_count <= 0)) {
1499 ret = -EIO;
1500 goto out_free_pi_table;
1501 }
1502 }
1503
1504 return 0;
1505
1506 out_free_pi_table:
1507 sg_free_table_chained(&req->metadata_sgl->sg_table,
1508 NVME_INLINE_METADATA_SG_CNT);
1509 out_unmap_sg:
1510 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1511 rq_dma_dir(rq));
1512 out_free_table:
1513 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1514 return ret;
1515 }
1516
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1517 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1518 struct request *rq, struct nvme_command *c)
1519 {
1520 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1521 struct nvme_rdma_device *dev = queue->device;
1522 struct ib_device *ibdev = dev->dev;
1523 int pi_count = 0;
1524 int count, ret;
1525
1526 req->num_sge = 1;
1527 refcount_set(&req->ref, 2); /* send and recv completions */
1528
1529 c->common.flags |= NVME_CMD_SGL_METABUF;
1530
1531 if (!blk_rq_nr_phys_segments(rq))
1532 return nvme_rdma_set_sg_null(c);
1533
1534 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1535 if (unlikely(ret))
1536 return ret;
1537
1538 if (req->use_sig_mr) {
1539 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1540 goto out;
1541 }
1542
1543 if (count <= dev->num_inline_segments) {
1544 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1545 queue->ctrl->use_inline_data &&
1546 blk_rq_payload_bytes(rq) <=
1547 nvme_rdma_inline_data_size(queue)) {
1548 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1549 goto out;
1550 }
1551
1552 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1553 ret = nvme_rdma_map_sg_single(queue, req, c);
1554 goto out;
1555 }
1556 }
1557
1558 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1559 out:
1560 if (unlikely(ret))
1561 goto out_dma_unmap_req;
1562
1563 return 0;
1564
1565 out_dma_unmap_req:
1566 nvme_rdma_dma_unmap_req(ibdev, rq);
1567 return ret;
1568 }
1569
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1570 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1571 {
1572 struct nvme_rdma_qe *qe =
1573 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1574 struct nvme_rdma_request *req =
1575 container_of(qe, struct nvme_rdma_request, sqe);
1576
1577 if (unlikely(wc->status != IB_WC_SUCCESS))
1578 nvme_rdma_wr_error(cq, wc, "SEND");
1579 else
1580 nvme_rdma_end_request(req);
1581 }
1582
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1583 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1584 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1585 struct ib_send_wr *first)
1586 {
1587 struct ib_send_wr wr;
1588 int ret;
1589
1590 sge->addr = qe->dma;
1591 sge->length = sizeof(struct nvme_command);
1592 sge->lkey = queue->device->pd->local_dma_lkey;
1593
1594 wr.next = NULL;
1595 wr.wr_cqe = &qe->cqe;
1596 wr.sg_list = sge;
1597 wr.num_sge = num_sge;
1598 wr.opcode = IB_WR_SEND;
1599 wr.send_flags = IB_SEND_SIGNALED;
1600
1601 if (first)
1602 first->next = ≀
1603 else
1604 first = ≀
1605
1606 ret = ib_post_send(queue->qp, first, NULL);
1607 if (unlikely(ret)) {
1608 dev_err(queue->ctrl->ctrl.device,
1609 "%s failed with error code %d\n", __func__, ret);
1610 }
1611 return ret;
1612 }
1613
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1614 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1615 struct nvme_rdma_qe *qe)
1616 {
1617 struct ib_recv_wr wr;
1618 struct ib_sge list;
1619 int ret;
1620
1621 list.addr = qe->dma;
1622 list.length = sizeof(struct nvme_completion);
1623 list.lkey = queue->device->pd->local_dma_lkey;
1624
1625 qe->cqe.done = nvme_rdma_recv_done;
1626
1627 wr.next = NULL;
1628 wr.wr_cqe = &qe->cqe;
1629 wr.sg_list = &list;
1630 wr.num_sge = 1;
1631
1632 ret = ib_post_recv(queue->qp, &wr, NULL);
1633 if (unlikely(ret)) {
1634 dev_err(queue->ctrl->ctrl.device,
1635 "%s failed with error code %d\n", __func__, ret);
1636 }
1637 return ret;
1638 }
1639
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1640 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1641 {
1642 u32 queue_idx = nvme_rdma_queue_idx(queue);
1643
1644 if (queue_idx == 0)
1645 return queue->ctrl->admin_tag_set.tags[queue_idx];
1646 return queue->ctrl->tag_set.tags[queue_idx - 1];
1647 }
1648
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1649 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1650 {
1651 if (unlikely(wc->status != IB_WC_SUCCESS))
1652 nvme_rdma_wr_error(cq, wc, "ASYNC");
1653 }
1654
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1655 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1656 {
1657 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1658 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1659 struct ib_device *dev = queue->device->dev;
1660 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1661 struct nvme_command *cmd = sqe->data;
1662 struct ib_sge sge;
1663 int ret;
1664
1665 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1666
1667 memset(cmd, 0, sizeof(*cmd));
1668 cmd->common.opcode = nvme_admin_async_event;
1669 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1670 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1671 nvme_rdma_set_sg_null(cmd);
1672
1673 sqe->cqe.done = nvme_rdma_async_done;
1674
1675 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1676 DMA_TO_DEVICE);
1677
1678 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1679 WARN_ON_ONCE(ret);
1680 }
1681
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1682 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1683 struct nvme_completion *cqe, struct ib_wc *wc)
1684 {
1685 struct request *rq;
1686 struct nvme_rdma_request *req;
1687
1688 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1689 if (!rq) {
1690 dev_err(queue->ctrl->ctrl.device,
1691 "got bad command_id %#x on QP %#x\n",
1692 cqe->command_id, queue->qp->qp_num);
1693 nvme_rdma_error_recovery(queue->ctrl);
1694 return;
1695 }
1696 req = blk_mq_rq_to_pdu(rq);
1697
1698 req->status = cqe->status;
1699 req->result = cqe->result;
1700
1701 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1702 if (unlikely(!req->mr ||
1703 wc->ex.invalidate_rkey != req->mr->rkey)) {
1704 dev_err(queue->ctrl->ctrl.device,
1705 "Bogus remote invalidation for rkey %#x\n",
1706 req->mr ? req->mr->rkey : 0);
1707 nvme_rdma_error_recovery(queue->ctrl);
1708 }
1709 } else if (req->mr) {
1710 int ret;
1711
1712 ret = nvme_rdma_inv_rkey(queue, req);
1713 if (unlikely(ret < 0)) {
1714 dev_err(queue->ctrl->ctrl.device,
1715 "Queueing INV WR for rkey %#x failed (%d)\n",
1716 req->mr->rkey, ret);
1717 nvme_rdma_error_recovery(queue->ctrl);
1718 }
1719 /* the local invalidation completion will end the request */
1720 return;
1721 }
1722
1723 nvme_rdma_end_request(req);
1724 }
1725
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1726 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1727 {
1728 struct nvme_rdma_qe *qe =
1729 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1730 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1731 struct ib_device *ibdev = queue->device->dev;
1732 struct nvme_completion *cqe = qe->data;
1733 const size_t len = sizeof(struct nvme_completion);
1734
1735 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1736 nvme_rdma_wr_error(cq, wc, "RECV");
1737 return;
1738 }
1739
1740 /* sanity checking for received data length */
1741 if (unlikely(wc->byte_len < len)) {
1742 dev_err(queue->ctrl->ctrl.device,
1743 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1744 nvme_rdma_error_recovery(queue->ctrl);
1745 return;
1746 }
1747
1748 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1749 /*
1750 * AEN requests are special as they don't time out and can
1751 * survive any kind of queue freeze and often don't respond to
1752 * aborts. We don't even bother to allocate a struct request
1753 * for them but rather special case them here.
1754 */
1755 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1756 cqe->command_id)))
1757 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1758 &cqe->result);
1759 else
1760 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1761 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1762
1763 nvme_rdma_post_recv(queue, qe);
1764 }
1765
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1766 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1767 {
1768 int ret, i;
1769
1770 for (i = 0; i < queue->queue_size; i++) {
1771 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1772 if (ret)
1773 return ret;
1774 }
1775
1776 return 0;
1777 }
1778
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1779 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1780 struct rdma_cm_event *ev)
1781 {
1782 struct rdma_cm_id *cm_id = queue->cm_id;
1783 int status = ev->status;
1784 const char *rej_msg;
1785 const struct nvme_rdma_cm_rej *rej_data;
1786 u8 rej_data_len;
1787
1788 rej_msg = rdma_reject_msg(cm_id, status);
1789 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1790
1791 if (rej_data && rej_data_len >= sizeof(u16)) {
1792 u16 sts = le16_to_cpu(rej_data->sts);
1793
1794 dev_err(queue->ctrl->ctrl.device,
1795 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1796 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1797 } else {
1798 dev_err(queue->ctrl->ctrl.device,
1799 "Connect rejected: status %d (%s).\n", status, rej_msg);
1800 }
1801
1802 return -ECONNRESET;
1803 }
1804
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1805 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1806 {
1807 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1808 int ret;
1809
1810 ret = nvme_rdma_create_queue_ib(queue);
1811 if (ret)
1812 return ret;
1813
1814 if (ctrl->opts->tos >= 0)
1815 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1816 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1817 if (ret) {
1818 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1819 queue->cm_error);
1820 goto out_destroy_queue;
1821 }
1822
1823 return 0;
1824
1825 out_destroy_queue:
1826 nvme_rdma_destroy_queue_ib(queue);
1827 return ret;
1828 }
1829
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1830 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1831 {
1832 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1833 struct rdma_conn_param param = { };
1834 struct nvme_rdma_cm_req priv = { };
1835 int ret;
1836
1837 param.qp_num = queue->qp->qp_num;
1838 param.flow_control = 1;
1839
1840 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1841 /* maximum retry count */
1842 param.retry_count = 7;
1843 param.rnr_retry_count = 7;
1844 param.private_data = &priv;
1845 param.private_data_len = sizeof(priv);
1846
1847 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1848 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1849 /*
1850 * set the admin queue depth to the minimum size
1851 * specified by the Fabrics standard.
1852 */
1853 if (priv.qid == 0) {
1854 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1855 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1856 } else {
1857 /*
1858 * current interpretation of the fabrics spec
1859 * is at minimum you make hrqsize sqsize+1, or a
1860 * 1's based representation of sqsize.
1861 */
1862 priv.hrqsize = cpu_to_le16(queue->queue_size);
1863 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1864 }
1865
1866 ret = rdma_connect_locked(queue->cm_id, ¶m);
1867 if (ret) {
1868 dev_err(ctrl->ctrl.device,
1869 "rdma_connect_locked failed (%d).\n", ret);
1870 return ret;
1871 }
1872
1873 return 0;
1874 }
1875
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1876 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1877 struct rdma_cm_event *ev)
1878 {
1879 struct nvme_rdma_queue *queue = cm_id->context;
1880 int cm_error = 0;
1881
1882 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1883 rdma_event_msg(ev->event), ev->event,
1884 ev->status, cm_id);
1885
1886 switch (ev->event) {
1887 case RDMA_CM_EVENT_ADDR_RESOLVED:
1888 cm_error = nvme_rdma_addr_resolved(queue);
1889 break;
1890 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1891 cm_error = nvme_rdma_route_resolved(queue);
1892 break;
1893 case RDMA_CM_EVENT_ESTABLISHED:
1894 queue->cm_error = nvme_rdma_conn_established(queue);
1895 /* complete cm_done regardless of success/failure */
1896 complete(&queue->cm_done);
1897 return 0;
1898 case RDMA_CM_EVENT_REJECTED:
1899 cm_error = nvme_rdma_conn_rejected(queue, ev);
1900 break;
1901 case RDMA_CM_EVENT_ROUTE_ERROR:
1902 case RDMA_CM_EVENT_CONNECT_ERROR:
1903 case RDMA_CM_EVENT_UNREACHABLE:
1904 case RDMA_CM_EVENT_ADDR_ERROR:
1905 dev_dbg(queue->ctrl->ctrl.device,
1906 "CM error event %d\n", ev->event);
1907 cm_error = -ECONNRESET;
1908 break;
1909 case RDMA_CM_EVENT_DISCONNECTED:
1910 case RDMA_CM_EVENT_ADDR_CHANGE:
1911 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1912 dev_dbg(queue->ctrl->ctrl.device,
1913 "disconnect received - connection closed\n");
1914 nvme_rdma_error_recovery(queue->ctrl);
1915 break;
1916 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1917 /* device removal is handled via the ib_client API */
1918 break;
1919 default:
1920 dev_err(queue->ctrl->ctrl.device,
1921 "Unexpected RDMA CM event (%d)\n", ev->event);
1922 nvme_rdma_error_recovery(queue->ctrl);
1923 break;
1924 }
1925
1926 if (cm_error) {
1927 queue->cm_error = cm_error;
1928 complete(&queue->cm_done);
1929 }
1930
1931 return 0;
1932 }
1933
nvme_rdma_complete_timed_out(struct request * rq)1934 static void nvme_rdma_complete_timed_out(struct request *rq)
1935 {
1936 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1937 struct nvme_rdma_queue *queue = req->queue;
1938
1939 nvme_rdma_stop_queue(queue);
1940 nvmf_complete_timed_out_request(rq);
1941 }
1942
nvme_rdma_timeout(struct request * rq)1943 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1944 {
1945 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1946 struct nvme_rdma_queue *queue = req->queue;
1947 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1948
1949 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1950 rq->tag, nvme_rdma_queue_idx(queue));
1951
1952 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
1953 /*
1954 * If we are resetting, connecting or deleting we should
1955 * complete immediately because we may block controller
1956 * teardown or setup sequence
1957 * - ctrl disable/shutdown fabrics requests
1958 * - connect requests
1959 * - initialization admin requests
1960 * - I/O requests that entered after unquiescing and
1961 * the controller stopped responding
1962 *
1963 * All other requests should be cancelled by the error
1964 * recovery work, so it's fine that we fail it here.
1965 */
1966 nvme_rdma_complete_timed_out(rq);
1967 return BLK_EH_DONE;
1968 }
1969
1970 /*
1971 * LIVE state should trigger the normal error recovery which will
1972 * handle completing this request.
1973 */
1974 nvme_rdma_error_recovery(ctrl);
1975 return BLK_EH_RESET_TIMER;
1976 }
1977
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1978 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1979 const struct blk_mq_queue_data *bd)
1980 {
1981 struct nvme_ns *ns = hctx->queue->queuedata;
1982 struct nvme_rdma_queue *queue = hctx->driver_data;
1983 struct request *rq = bd->rq;
1984 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1985 struct nvme_rdma_qe *sqe = &req->sqe;
1986 struct nvme_command *c = nvme_req(rq)->cmd;
1987 struct ib_device *dev;
1988 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1989 blk_status_t ret;
1990 int err;
1991
1992 WARN_ON_ONCE(rq->tag < 0);
1993
1994 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1995 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1996
1997 dev = queue->device->dev;
1998
1999 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2000 sizeof(struct nvme_command),
2001 DMA_TO_DEVICE);
2002 err = ib_dma_mapping_error(dev, req->sqe.dma);
2003 if (unlikely(err))
2004 return BLK_STS_RESOURCE;
2005
2006 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2007 sizeof(struct nvme_command), DMA_TO_DEVICE);
2008
2009 ret = nvme_setup_cmd(ns, rq);
2010 if (ret)
2011 goto unmap_qe;
2012
2013 nvme_start_request(rq);
2014
2015 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2016 queue->pi_support &&
2017 (c->common.opcode == nvme_cmd_write ||
2018 c->common.opcode == nvme_cmd_read) &&
2019 nvme_ns_has_pi(ns))
2020 req->use_sig_mr = true;
2021 else
2022 req->use_sig_mr = false;
2023
2024 err = nvme_rdma_map_data(queue, rq, c);
2025 if (unlikely(err < 0)) {
2026 dev_err(queue->ctrl->ctrl.device,
2027 "Failed to map data (%d)\n", err);
2028 goto err;
2029 }
2030
2031 sqe->cqe.done = nvme_rdma_send_done;
2032
2033 ib_dma_sync_single_for_device(dev, sqe->dma,
2034 sizeof(struct nvme_command), DMA_TO_DEVICE);
2035
2036 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2037 req->mr ? &req->reg_wr.wr : NULL);
2038 if (unlikely(err))
2039 goto err_unmap;
2040
2041 return BLK_STS_OK;
2042
2043 err_unmap:
2044 nvme_rdma_unmap_data(queue, rq);
2045 err:
2046 if (err == -EIO)
2047 ret = nvme_host_path_error(rq);
2048 else if (err == -ENOMEM || err == -EAGAIN)
2049 ret = BLK_STS_RESOURCE;
2050 else
2051 ret = BLK_STS_IOERR;
2052 nvme_cleanup_cmd(rq);
2053 unmap_qe:
2054 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2055 DMA_TO_DEVICE);
2056 return ret;
2057 }
2058
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2059 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2060 {
2061 struct nvme_rdma_queue *queue = hctx->driver_data;
2062
2063 return ib_process_cq_direct(queue->ib_cq, -1);
2064 }
2065
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2066 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2067 {
2068 struct request *rq = blk_mq_rq_from_pdu(req);
2069 struct ib_mr_status mr_status;
2070 int ret;
2071
2072 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2073 if (ret) {
2074 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2075 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2076 return;
2077 }
2078
2079 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2080 switch (mr_status.sig_err.err_type) {
2081 case IB_SIG_BAD_GUARD:
2082 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2083 break;
2084 case IB_SIG_BAD_REFTAG:
2085 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2086 break;
2087 case IB_SIG_BAD_APPTAG:
2088 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2089 break;
2090 }
2091 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2092 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2093 mr_status.sig_err.actual);
2094 }
2095 }
2096
nvme_rdma_complete_rq(struct request * rq)2097 static void nvme_rdma_complete_rq(struct request *rq)
2098 {
2099 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2100 struct nvme_rdma_queue *queue = req->queue;
2101 struct ib_device *ibdev = queue->device->dev;
2102
2103 if (req->use_sig_mr)
2104 nvme_rdma_check_pi_status(req);
2105
2106 nvme_rdma_unmap_data(queue, rq);
2107 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2108 DMA_TO_DEVICE);
2109 nvme_complete_rq(rq);
2110 }
2111
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2112 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2113 {
2114 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2115
2116 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2117 }
2118
2119 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2120 .queue_rq = nvme_rdma_queue_rq,
2121 .complete = nvme_rdma_complete_rq,
2122 .init_request = nvme_rdma_init_request,
2123 .exit_request = nvme_rdma_exit_request,
2124 .init_hctx = nvme_rdma_init_hctx,
2125 .timeout = nvme_rdma_timeout,
2126 .map_queues = nvme_rdma_map_queues,
2127 .poll = nvme_rdma_poll,
2128 };
2129
2130 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2131 .queue_rq = nvme_rdma_queue_rq,
2132 .complete = nvme_rdma_complete_rq,
2133 .init_request = nvme_rdma_init_request,
2134 .exit_request = nvme_rdma_exit_request,
2135 .init_hctx = nvme_rdma_init_admin_hctx,
2136 .timeout = nvme_rdma_timeout,
2137 };
2138
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2139 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2140 {
2141 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2142 nvme_quiesce_admin_queue(&ctrl->ctrl);
2143 nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2144 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2145 }
2146
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2147 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2148 {
2149 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2150 }
2151
nvme_rdma_reset_ctrl_work(struct work_struct * work)2152 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2153 {
2154 struct nvme_rdma_ctrl *ctrl =
2155 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2156
2157 nvme_stop_ctrl(&ctrl->ctrl);
2158 nvme_rdma_shutdown_ctrl(ctrl, false);
2159
2160 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2161 /* state change failure should never happen */
2162 WARN_ON_ONCE(1);
2163 return;
2164 }
2165
2166 if (nvme_rdma_setup_ctrl(ctrl, false))
2167 goto out_fail;
2168
2169 return;
2170
2171 out_fail:
2172 ++ctrl->ctrl.nr_reconnects;
2173 nvme_rdma_reconnect_or_remove(ctrl);
2174 }
2175
2176 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2177 .name = "rdma",
2178 .module = THIS_MODULE,
2179 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2180 .reg_read32 = nvmf_reg_read32,
2181 .reg_read64 = nvmf_reg_read64,
2182 .reg_write32 = nvmf_reg_write32,
2183 .free_ctrl = nvme_rdma_free_ctrl,
2184 .submit_async_event = nvme_rdma_submit_async_event,
2185 .delete_ctrl = nvme_rdma_delete_ctrl,
2186 .get_address = nvmf_get_address,
2187 .stop_ctrl = nvme_rdma_stop_ctrl,
2188 };
2189
2190 /*
2191 * Fails a connection request if it matches an existing controller
2192 * (association) with the same tuple:
2193 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2194 *
2195 * if local address is not specified in the request, it will match an
2196 * existing controller with all the other parameters the same and no
2197 * local port address specified as well.
2198 *
2199 * The ports don't need to be compared as they are intrinsically
2200 * already matched by the port pointers supplied.
2201 */
2202 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2203 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2204 {
2205 struct nvme_rdma_ctrl *ctrl;
2206 bool found = false;
2207
2208 mutex_lock(&nvme_rdma_ctrl_mutex);
2209 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2210 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2211 if (found)
2212 break;
2213 }
2214 mutex_unlock(&nvme_rdma_ctrl_mutex);
2215
2216 return found;
2217 }
2218
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2219 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2220 struct nvmf_ctrl_options *opts)
2221 {
2222 struct nvme_rdma_ctrl *ctrl;
2223 int ret;
2224 bool changed;
2225
2226 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2227 if (!ctrl)
2228 return ERR_PTR(-ENOMEM);
2229 ctrl->ctrl.opts = opts;
2230 INIT_LIST_HEAD(&ctrl->list);
2231
2232 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2233 opts->trsvcid =
2234 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2235 if (!opts->trsvcid) {
2236 ret = -ENOMEM;
2237 goto out_free_ctrl;
2238 }
2239 opts->mask |= NVMF_OPT_TRSVCID;
2240 }
2241
2242 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2243 opts->traddr, opts->trsvcid, &ctrl->addr);
2244 if (ret) {
2245 pr_err("malformed address passed: %s:%s\n",
2246 opts->traddr, opts->trsvcid);
2247 goto out_free_ctrl;
2248 }
2249
2250 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2251 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2252 opts->host_traddr, NULL, &ctrl->src_addr);
2253 if (ret) {
2254 pr_err("malformed src address passed: %s\n",
2255 opts->host_traddr);
2256 goto out_free_ctrl;
2257 }
2258 }
2259
2260 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2261 ret = -EALREADY;
2262 goto out_free_ctrl;
2263 }
2264
2265 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2266 nvme_rdma_reconnect_ctrl_work);
2267 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2268 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2269
2270 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2271 opts->nr_poll_queues + 1;
2272 ctrl->ctrl.sqsize = opts->queue_size - 1;
2273 ctrl->ctrl.kato = opts->kato;
2274
2275 ret = -ENOMEM;
2276 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2277 GFP_KERNEL);
2278 if (!ctrl->queues)
2279 goto out_free_ctrl;
2280
2281 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2282 0 /* no quirks, we're perfect! */);
2283 if (ret)
2284 goto out_kfree_queues;
2285
2286 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2287 WARN_ON_ONCE(!changed);
2288
2289 ret = nvme_rdma_setup_ctrl(ctrl, true);
2290 if (ret)
2291 goto out_uninit_ctrl;
2292
2293 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2294 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2295
2296 mutex_lock(&nvme_rdma_ctrl_mutex);
2297 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2298 mutex_unlock(&nvme_rdma_ctrl_mutex);
2299
2300 return &ctrl->ctrl;
2301
2302 out_uninit_ctrl:
2303 nvme_uninit_ctrl(&ctrl->ctrl);
2304 nvme_put_ctrl(&ctrl->ctrl);
2305 if (ret > 0)
2306 ret = -EIO;
2307 return ERR_PTR(ret);
2308 out_kfree_queues:
2309 kfree(ctrl->queues);
2310 out_free_ctrl:
2311 kfree(ctrl);
2312 return ERR_PTR(ret);
2313 }
2314
2315 static struct nvmf_transport_ops nvme_rdma_transport = {
2316 .name = "rdma",
2317 .module = THIS_MODULE,
2318 .required_opts = NVMF_OPT_TRADDR,
2319 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2320 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2321 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2322 NVMF_OPT_TOS,
2323 .create_ctrl = nvme_rdma_create_ctrl,
2324 };
2325
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2326 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2327 {
2328 struct nvme_rdma_ctrl *ctrl;
2329 struct nvme_rdma_device *ndev;
2330 bool found = false;
2331
2332 mutex_lock(&device_list_mutex);
2333 list_for_each_entry(ndev, &device_list, entry) {
2334 if (ndev->dev == ib_device) {
2335 found = true;
2336 break;
2337 }
2338 }
2339 mutex_unlock(&device_list_mutex);
2340
2341 if (!found)
2342 return;
2343
2344 /* Delete all controllers using this device */
2345 mutex_lock(&nvme_rdma_ctrl_mutex);
2346 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2347 if (ctrl->device->dev != ib_device)
2348 continue;
2349 nvme_delete_ctrl(&ctrl->ctrl);
2350 }
2351 mutex_unlock(&nvme_rdma_ctrl_mutex);
2352
2353 flush_workqueue(nvme_delete_wq);
2354 }
2355
2356 static struct ib_client nvme_rdma_ib_client = {
2357 .name = "nvme_rdma",
2358 .remove = nvme_rdma_remove_one
2359 };
2360
nvme_rdma_init_module(void)2361 static int __init nvme_rdma_init_module(void)
2362 {
2363 int ret;
2364
2365 ret = ib_register_client(&nvme_rdma_ib_client);
2366 if (ret)
2367 return ret;
2368
2369 ret = nvmf_register_transport(&nvme_rdma_transport);
2370 if (ret)
2371 goto err_unreg_client;
2372
2373 return 0;
2374
2375 err_unreg_client:
2376 ib_unregister_client(&nvme_rdma_ib_client);
2377 return ret;
2378 }
2379
nvme_rdma_cleanup_module(void)2380 static void __exit nvme_rdma_cleanup_module(void)
2381 {
2382 struct nvme_rdma_ctrl *ctrl;
2383
2384 nvmf_unregister_transport(&nvme_rdma_transport);
2385 ib_unregister_client(&nvme_rdma_ib_client);
2386
2387 mutex_lock(&nvme_rdma_ctrl_mutex);
2388 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2389 nvme_delete_ctrl(&ctrl->ctrl);
2390 mutex_unlock(&nvme_rdma_ctrl_mutex);
2391 flush_workqueue(nvme_delete_wq);
2392 }
2393
2394 module_init(nvme_rdma_init_module);
2395 module_exit(nvme_rdma_cleanup_module);
2396
2397 MODULE_LICENSE("GPL v2");
2398