1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 4096 45 #define NVME_MAX_SEGS 127 46 47 static int use_threaded_interrupts; 48 module_param(use_threaded_interrupts, int, 0444); 49 50 static bool use_cmb_sqes = true; 51 module_param(use_cmb_sqes, bool, 0444); 52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 53 54 static unsigned int max_host_mem_size_mb = 128; 55 module_param(max_host_mem_size_mb, uint, 0444); 56 MODULE_PARM_DESC(max_host_mem_size_mb, 57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 58 59 static unsigned int sgl_threshold = SZ_32K; 60 module_param(sgl_threshold, uint, 0644); 61 MODULE_PARM_DESC(sgl_threshold, 62 "Use SGLs when average request segment size is larger or equal to " 63 "this size. Use 0 to disable SGLs."); 64 65 #define NVME_PCI_MIN_QUEUE_SIZE 2 66 #define NVME_PCI_MAX_QUEUE_SIZE 4095 67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 68 static const struct kernel_param_ops io_queue_depth_ops = { 69 .set = io_queue_depth_set, 70 .get = param_get_uint, 71 }; 72 73 static unsigned int io_queue_depth = 1024; 74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 76 77 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 78 { 79 unsigned int n; 80 int ret; 81 82 ret = kstrtouint(val, 10, &n); 83 if (ret != 0 || n > num_possible_cpus()) 84 return -EINVAL; 85 return param_set_uint(val, kp); 86 } 87 88 static const struct kernel_param_ops io_queue_count_ops = { 89 .set = io_queue_count_set, 90 .get = param_get_uint, 91 }; 92 93 static unsigned int write_queues; 94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 95 MODULE_PARM_DESC(write_queues, 96 "Number of queues to use for writes. If not set, reads and writes " 97 "will share a queue set."); 98 99 static unsigned int poll_queues; 100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 102 103 static bool noacpi; 104 module_param(noacpi, bool, 0444); 105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 106 107 struct nvme_dev; 108 struct nvme_queue; 109 110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 112 113 /* 114 * Represents an NVM Express device. Each nvme_dev is a PCI function. 115 */ 116 struct nvme_dev { 117 struct nvme_queue *queues; 118 struct blk_mq_tag_set tagset; 119 struct blk_mq_tag_set admin_tagset; 120 u32 __iomem *dbs; 121 struct device *dev; 122 struct dma_pool *prp_page_pool; 123 struct dma_pool *prp_small_pool; 124 unsigned online_queues; 125 unsigned max_qid; 126 unsigned io_queues[HCTX_MAX_TYPES]; 127 unsigned int num_vecs; 128 u32 q_depth; 129 int io_sqes; 130 u32 db_stride; 131 void __iomem *bar; 132 unsigned long bar_mapped_size; 133 struct work_struct remove_work; 134 struct mutex shutdown_lock; 135 bool subsystem; 136 u64 cmb_size; 137 bool cmb_use_sqes; 138 u32 cmbsz; 139 u32 cmbloc; 140 struct nvme_ctrl ctrl; 141 u32 last_ps; 142 bool hmb; 143 144 mempool_t *iod_mempool; 145 146 /* shadow doorbell buffer support: */ 147 u32 *dbbuf_dbs; 148 dma_addr_t dbbuf_dbs_dma_addr; 149 u32 *dbbuf_eis; 150 dma_addr_t dbbuf_eis_dma_addr; 151 152 /* host memory buffer support: */ 153 u64 host_mem_size; 154 u32 nr_host_mem_descs; 155 dma_addr_t host_mem_descs_dma; 156 struct nvme_host_mem_buf_desc *host_mem_descs; 157 void **host_mem_desc_bufs; 158 unsigned int nr_allocated_queues; 159 unsigned int nr_write_queues; 160 unsigned int nr_poll_queues; 161 162 bool attrs_added; 163 }; 164 165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 166 { 167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 168 NVME_PCI_MAX_QUEUE_SIZE); 169 } 170 171 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 172 { 173 return qid * 2 * stride; 174 } 175 176 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 177 { 178 return (qid * 2 + 1) * stride; 179 } 180 181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 182 { 183 return container_of(ctrl, struct nvme_dev, ctrl); 184 } 185 186 /* 187 * An NVM Express queue. Each device has at least two (one for admin 188 * commands and one for I/O commands). 189 */ 190 struct nvme_queue { 191 struct nvme_dev *dev; 192 spinlock_t sq_lock; 193 void *sq_cmds; 194 /* only used for poll queues: */ 195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 196 struct nvme_completion *cqes; 197 dma_addr_t sq_dma_addr; 198 dma_addr_t cq_dma_addr; 199 u32 __iomem *q_db; 200 u32 q_depth; 201 u16 cq_vector; 202 u16 sq_tail; 203 u16 last_sq_tail; 204 u16 cq_head; 205 u16 qid; 206 u8 cq_phase; 207 u8 sqes; 208 unsigned long flags; 209 #define NVMEQ_ENABLED 0 210 #define NVMEQ_SQ_CMB 1 211 #define NVMEQ_DELETE_ERROR 2 212 #define NVMEQ_POLLED 3 213 u32 *dbbuf_sq_db; 214 u32 *dbbuf_cq_db; 215 u32 *dbbuf_sq_ei; 216 u32 *dbbuf_cq_ei; 217 struct completion delete_done; 218 }; 219 220 /* 221 * The nvme_iod describes the data in an I/O. 222 * 223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 224 * to the actual struct scatterlist. 225 */ 226 struct nvme_iod { 227 struct nvme_request req; 228 struct nvme_command cmd; 229 struct nvme_queue *nvmeq; 230 bool use_sgl; 231 int aborted; 232 int npages; /* In the PRP list. 0 means small pool in use */ 233 int nents; /* Used in scatterlist */ 234 dma_addr_t first_dma; 235 unsigned int dma_len; /* length of single DMA segment mapping */ 236 dma_addr_t meta_dma; 237 struct scatterlist *sg; 238 }; 239 240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 241 { 242 return dev->nr_allocated_queues * 8 * dev->db_stride; 243 } 244 245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 246 { 247 unsigned int mem_size = nvme_dbbuf_size(dev); 248 249 if (dev->dbbuf_dbs) { 250 /* 251 * Clear the dbbuf memory so the driver doesn't observe stale 252 * values from the previous instantiation. 253 */ 254 memset(dev->dbbuf_dbs, 0, mem_size); 255 memset(dev->dbbuf_eis, 0, mem_size); 256 return 0; 257 } 258 259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 260 &dev->dbbuf_dbs_dma_addr, 261 GFP_KERNEL); 262 if (!dev->dbbuf_dbs) 263 return -ENOMEM; 264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 265 &dev->dbbuf_eis_dma_addr, 266 GFP_KERNEL); 267 if (!dev->dbbuf_eis) { 268 dma_free_coherent(dev->dev, mem_size, 269 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 270 dev->dbbuf_dbs = NULL; 271 return -ENOMEM; 272 } 273 274 return 0; 275 } 276 277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 278 { 279 unsigned int mem_size = nvme_dbbuf_size(dev); 280 281 if (dev->dbbuf_dbs) { 282 dma_free_coherent(dev->dev, mem_size, 283 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 284 dev->dbbuf_dbs = NULL; 285 } 286 if (dev->dbbuf_eis) { 287 dma_free_coherent(dev->dev, mem_size, 288 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 289 dev->dbbuf_eis = NULL; 290 } 291 } 292 293 static void nvme_dbbuf_init(struct nvme_dev *dev, 294 struct nvme_queue *nvmeq, int qid) 295 { 296 if (!dev->dbbuf_dbs || !qid) 297 return; 298 299 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 300 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 301 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 302 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 303 } 304 305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 306 { 307 if (!nvmeq->qid) 308 return; 309 310 nvmeq->dbbuf_sq_db = NULL; 311 nvmeq->dbbuf_cq_db = NULL; 312 nvmeq->dbbuf_sq_ei = NULL; 313 nvmeq->dbbuf_cq_ei = NULL; 314 } 315 316 static void nvme_dbbuf_set(struct nvme_dev *dev) 317 { 318 struct nvme_command c = { }; 319 unsigned int i; 320 321 if (!dev->dbbuf_dbs) 322 return; 323 324 c.dbbuf.opcode = nvme_admin_dbbuf; 325 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 326 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 327 328 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 329 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 330 /* Free memory and continue on */ 331 nvme_dbbuf_dma_free(dev); 332 333 for (i = 1; i <= dev->online_queues; i++) 334 nvme_dbbuf_free(&dev->queues[i]); 335 } 336 } 337 338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 339 { 340 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 341 } 342 343 /* Update dbbuf and return true if an MMIO is required */ 344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 345 volatile u32 *dbbuf_ei) 346 { 347 if (dbbuf_db) { 348 u16 old_value; 349 350 /* 351 * Ensure that the queue is written before updating 352 * the doorbell in memory 353 */ 354 wmb(); 355 356 old_value = *dbbuf_db; 357 *dbbuf_db = value; 358 359 /* 360 * Ensure that the doorbell is updated before reading the event 361 * index from memory. The controller needs to provide similar 362 * ordering to ensure the envent index is updated before reading 363 * the doorbell. 364 */ 365 mb(); 366 367 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 368 return false; 369 } 370 371 return true; 372 } 373 374 /* 375 * Will slightly overestimate the number of pages needed. This is OK 376 * as it only leads to a small amount of wasted memory for the lifetime of 377 * the I/O. 378 */ 379 static int nvme_pci_npages_prp(void) 380 { 381 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 382 NVME_CTRL_PAGE_SIZE); 383 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 384 } 385 386 /* 387 * Calculates the number of pages needed for the SGL segments. For example a 4k 388 * page can accommodate 256 SGL descriptors. 389 */ 390 static int nvme_pci_npages_sgl(void) 391 { 392 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 393 PAGE_SIZE); 394 } 395 396 static size_t nvme_pci_iod_alloc_size(void) 397 { 398 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 399 400 return sizeof(__le64 *) * npages + 401 sizeof(struct scatterlist) * NVME_MAX_SEGS; 402 } 403 404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 405 unsigned int hctx_idx) 406 { 407 struct nvme_dev *dev = data; 408 struct nvme_queue *nvmeq = &dev->queues[0]; 409 410 WARN_ON(hctx_idx != 0); 411 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 412 413 hctx->driver_data = nvmeq; 414 return 0; 415 } 416 417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 418 unsigned int hctx_idx) 419 { 420 struct nvme_dev *dev = data; 421 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 422 423 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 424 hctx->driver_data = nvmeq; 425 return 0; 426 } 427 428 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 429 struct request *req, unsigned int hctx_idx, 430 unsigned int numa_node) 431 { 432 struct nvme_dev *dev = set->driver_data; 433 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 434 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 435 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 436 437 BUG_ON(!nvmeq); 438 iod->nvmeq = nvmeq; 439 440 nvme_req(req)->ctrl = &dev->ctrl; 441 nvme_req(req)->cmd = &iod->cmd; 442 return 0; 443 } 444 445 static int queue_irq_offset(struct nvme_dev *dev) 446 { 447 /* if we have more than 1 vec, admin queue offsets us by 1 */ 448 if (dev->num_vecs > 1) 449 return 1; 450 451 return 0; 452 } 453 454 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 455 { 456 struct nvme_dev *dev = set->driver_data; 457 int i, qoff, offset; 458 459 offset = queue_irq_offset(dev); 460 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 461 struct blk_mq_queue_map *map = &set->map[i]; 462 463 map->nr_queues = dev->io_queues[i]; 464 if (!map->nr_queues) { 465 BUG_ON(i == HCTX_TYPE_DEFAULT); 466 continue; 467 } 468 469 /* 470 * The poll queue(s) doesn't have an IRQ (and hence IRQ 471 * affinity), so use the regular blk-mq cpu mapping 472 */ 473 map->queue_offset = qoff; 474 if (i != HCTX_TYPE_POLL && offset) 475 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 476 else 477 blk_mq_map_queues(map); 478 qoff += map->nr_queues; 479 offset += map->nr_queues; 480 } 481 482 return 0; 483 } 484 485 /* 486 * Write sq tail if we are asked to, or if the next command would wrap. 487 */ 488 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 489 { 490 if (!write_sq) { 491 u16 next_tail = nvmeq->sq_tail + 1; 492 493 if (next_tail == nvmeq->q_depth) 494 next_tail = 0; 495 if (next_tail != nvmeq->last_sq_tail) 496 return; 497 } 498 499 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 500 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 501 writel(nvmeq->sq_tail, nvmeq->q_db); 502 nvmeq->last_sq_tail = nvmeq->sq_tail; 503 } 504 505 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 506 struct nvme_command *cmd) 507 { 508 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 509 absolute_pointer(cmd), sizeof(*cmd)); 510 if (++nvmeq->sq_tail == nvmeq->q_depth) 511 nvmeq->sq_tail = 0; 512 } 513 514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 515 { 516 struct nvme_queue *nvmeq = hctx->driver_data; 517 518 spin_lock(&nvmeq->sq_lock); 519 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 520 nvme_write_sq_db(nvmeq, true); 521 spin_unlock(&nvmeq->sq_lock); 522 } 523 524 static void **nvme_pci_iod_list(struct request *req) 525 { 526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 528 } 529 530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 531 { 532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 533 int nseg = blk_rq_nr_phys_segments(req); 534 unsigned int avg_seg_size; 535 536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 537 538 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 539 return false; 540 if (!iod->nvmeq->qid) 541 return false; 542 if (!sgl_threshold || avg_seg_size < sgl_threshold) 543 return false; 544 return true; 545 } 546 547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 548 { 549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 551 dma_addr_t dma_addr = iod->first_dma; 552 int i; 553 554 for (i = 0; i < iod->npages; i++) { 555 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 557 558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 559 dma_addr = next_dma_addr; 560 } 561 } 562 563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 564 { 565 const int last_sg = SGES_PER_PAGE - 1; 566 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 567 dma_addr_t dma_addr = iod->first_dma; 568 int i; 569 570 for (i = 0; i < iod->npages; i++) { 571 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 572 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 573 574 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 575 dma_addr = next_dma_addr; 576 } 577 } 578 579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 580 { 581 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 582 583 if (is_pci_p2pdma_page(sg_page(iod->sg))) 584 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 585 rq_dma_dir(req)); 586 else 587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 588 } 589 590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 591 { 592 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 593 594 if (iod->dma_len) { 595 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 596 rq_dma_dir(req)); 597 return; 598 } 599 600 WARN_ON_ONCE(!iod->nents); 601 602 nvme_unmap_sg(dev, req); 603 if (iod->npages == 0) 604 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 605 iod->first_dma); 606 else if (iod->use_sgl) 607 nvme_free_sgls(dev, req); 608 else 609 nvme_free_prps(dev, req); 610 mempool_free(iod->sg, dev->iod_mempool); 611 } 612 613 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 614 { 615 int i; 616 struct scatterlist *sg; 617 618 for_each_sg(sgl, sg, nents, i) { 619 dma_addr_t phys = sg_phys(sg); 620 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 621 "dma_address:%pad dma_length:%d\n", 622 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 623 sg_dma_len(sg)); 624 } 625 } 626 627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 628 struct request *req, struct nvme_rw_command *cmnd) 629 { 630 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 631 struct dma_pool *pool; 632 int length = blk_rq_payload_bytes(req); 633 struct scatterlist *sg = iod->sg; 634 int dma_len = sg_dma_len(sg); 635 u64 dma_addr = sg_dma_address(sg); 636 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 637 __le64 *prp_list; 638 void **list = nvme_pci_iod_list(req); 639 dma_addr_t prp_dma; 640 int nprps, i; 641 642 length -= (NVME_CTRL_PAGE_SIZE - offset); 643 if (length <= 0) { 644 iod->first_dma = 0; 645 goto done; 646 } 647 648 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 649 if (dma_len) { 650 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 651 } else { 652 sg = sg_next(sg); 653 dma_addr = sg_dma_address(sg); 654 dma_len = sg_dma_len(sg); 655 } 656 657 if (length <= NVME_CTRL_PAGE_SIZE) { 658 iod->first_dma = dma_addr; 659 goto done; 660 } 661 662 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 663 if (nprps <= (256 / 8)) { 664 pool = dev->prp_small_pool; 665 iod->npages = 0; 666 } else { 667 pool = dev->prp_page_pool; 668 iod->npages = 1; 669 } 670 671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 672 if (!prp_list) { 673 iod->first_dma = dma_addr; 674 iod->npages = -1; 675 return BLK_STS_RESOURCE; 676 } 677 list[0] = prp_list; 678 iod->first_dma = prp_dma; 679 i = 0; 680 for (;;) { 681 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 682 __le64 *old_prp_list = prp_list; 683 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 684 if (!prp_list) 685 goto free_prps; 686 list[iod->npages++] = prp_list; 687 prp_list[0] = old_prp_list[i - 1]; 688 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 689 i = 1; 690 } 691 prp_list[i++] = cpu_to_le64(dma_addr); 692 dma_len -= NVME_CTRL_PAGE_SIZE; 693 dma_addr += NVME_CTRL_PAGE_SIZE; 694 length -= NVME_CTRL_PAGE_SIZE; 695 if (length <= 0) 696 break; 697 if (dma_len > 0) 698 continue; 699 if (unlikely(dma_len < 0)) 700 goto bad_sgl; 701 sg = sg_next(sg); 702 dma_addr = sg_dma_address(sg); 703 dma_len = sg_dma_len(sg); 704 } 705 done: 706 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 707 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 708 return BLK_STS_OK; 709 free_prps: 710 nvme_free_prps(dev, req); 711 return BLK_STS_RESOURCE; 712 bad_sgl: 713 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 714 "Invalid SGL for payload:%d nents:%d\n", 715 blk_rq_payload_bytes(req), iod->nents); 716 return BLK_STS_IOERR; 717 } 718 719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 720 struct scatterlist *sg) 721 { 722 sge->addr = cpu_to_le64(sg_dma_address(sg)); 723 sge->length = cpu_to_le32(sg_dma_len(sg)); 724 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 725 } 726 727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 728 dma_addr_t dma_addr, int entries) 729 { 730 sge->addr = cpu_to_le64(dma_addr); 731 if (entries < SGES_PER_PAGE) { 732 sge->length = cpu_to_le32(entries * sizeof(*sge)); 733 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 734 } else { 735 sge->length = cpu_to_le32(PAGE_SIZE); 736 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 737 } 738 } 739 740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 741 struct request *req, struct nvme_rw_command *cmd, int entries) 742 { 743 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 744 struct dma_pool *pool; 745 struct nvme_sgl_desc *sg_list; 746 struct scatterlist *sg = iod->sg; 747 dma_addr_t sgl_dma; 748 int i = 0; 749 750 /* setting the transfer type as SGL */ 751 cmd->flags = NVME_CMD_SGL_METABUF; 752 753 if (entries == 1) { 754 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 755 return BLK_STS_OK; 756 } 757 758 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 759 pool = dev->prp_small_pool; 760 iod->npages = 0; 761 } else { 762 pool = dev->prp_page_pool; 763 iod->npages = 1; 764 } 765 766 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 767 if (!sg_list) { 768 iod->npages = -1; 769 return BLK_STS_RESOURCE; 770 } 771 772 nvme_pci_iod_list(req)[0] = sg_list; 773 iod->first_dma = sgl_dma; 774 775 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 776 777 do { 778 if (i == SGES_PER_PAGE) { 779 struct nvme_sgl_desc *old_sg_desc = sg_list; 780 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 781 782 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 783 if (!sg_list) 784 goto free_sgls; 785 786 i = 0; 787 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 788 sg_list[i++] = *link; 789 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 790 } 791 792 nvme_pci_sgl_set_data(&sg_list[i++], sg); 793 sg = sg_next(sg); 794 } while (--entries > 0); 795 796 return BLK_STS_OK; 797 free_sgls: 798 nvme_free_sgls(dev, req); 799 return BLK_STS_RESOURCE; 800 } 801 802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 803 struct request *req, struct nvme_rw_command *cmnd, 804 struct bio_vec *bv) 805 { 806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 807 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 808 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 809 810 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 811 if (dma_mapping_error(dev->dev, iod->first_dma)) 812 return BLK_STS_RESOURCE; 813 iod->dma_len = bv->bv_len; 814 815 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 816 if (bv->bv_len > first_prp_len) 817 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 818 return BLK_STS_OK; 819 } 820 821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 822 struct request *req, struct nvme_rw_command *cmnd, 823 struct bio_vec *bv) 824 { 825 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 826 827 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 828 if (dma_mapping_error(dev->dev, iod->first_dma)) 829 return BLK_STS_RESOURCE; 830 iod->dma_len = bv->bv_len; 831 832 cmnd->flags = NVME_CMD_SGL_METABUF; 833 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 834 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 835 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 836 return BLK_STS_OK; 837 } 838 839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 840 struct nvme_command *cmnd) 841 { 842 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 843 blk_status_t ret = BLK_STS_RESOURCE; 844 int nr_mapped; 845 846 if (blk_rq_nr_phys_segments(req) == 1) { 847 struct bio_vec bv = req_bvec(req); 848 849 if (!is_pci_p2pdma_page(bv.bv_page)) { 850 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 851 return nvme_setup_prp_simple(dev, req, 852 &cmnd->rw, &bv); 853 854 if (iod->nvmeq->qid && sgl_threshold && 855 nvme_ctrl_sgl_supported(&dev->ctrl)) 856 return nvme_setup_sgl_simple(dev, req, 857 &cmnd->rw, &bv); 858 } 859 } 860 861 iod->dma_len = 0; 862 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 863 if (!iod->sg) 864 return BLK_STS_RESOURCE; 865 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 866 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 867 if (!iod->nents) 868 goto out_free_sg; 869 870 if (is_pci_p2pdma_page(sg_page(iod->sg))) 871 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 872 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 873 else 874 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 875 rq_dma_dir(req), DMA_ATTR_NO_WARN); 876 if (!nr_mapped) 877 goto out_free_sg; 878 879 iod->use_sgl = nvme_pci_use_sgls(dev, req); 880 if (iod->use_sgl) 881 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 882 else 883 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 884 if (ret != BLK_STS_OK) 885 goto out_unmap_sg; 886 return BLK_STS_OK; 887 888 out_unmap_sg: 889 nvme_unmap_sg(dev, req); 890 out_free_sg: 891 mempool_free(iod->sg, dev->iod_mempool); 892 return ret; 893 } 894 895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 896 struct nvme_command *cmnd) 897 { 898 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 899 900 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 901 rq_dma_dir(req), 0); 902 if (dma_mapping_error(dev->dev, iod->meta_dma)) 903 return BLK_STS_IOERR; 904 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 905 return BLK_STS_OK; 906 } 907 908 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 909 { 910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 911 blk_status_t ret; 912 913 iod->aborted = 0; 914 iod->npages = -1; 915 iod->nents = 0; 916 917 ret = nvme_setup_cmd(req->q->queuedata, req); 918 if (ret) 919 return ret; 920 921 if (blk_rq_nr_phys_segments(req)) { 922 ret = nvme_map_data(dev, req, &iod->cmd); 923 if (ret) 924 goto out_free_cmd; 925 } 926 927 if (blk_integrity_rq(req)) { 928 ret = nvme_map_metadata(dev, req, &iod->cmd); 929 if (ret) 930 goto out_unmap_data; 931 } 932 933 blk_mq_start_request(req); 934 return BLK_STS_OK; 935 out_unmap_data: 936 nvme_unmap_data(dev, req); 937 out_free_cmd: 938 nvme_cleanup_cmd(req); 939 return ret; 940 } 941 942 /* 943 * NOTE: ns is NULL when called on the admin queue. 944 */ 945 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 946 const struct blk_mq_queue_data *bd) 947 { 948 struct nvme_queue *nvmeq = hctx->driver_data; 949 struct nvme_dev *dev = nvmeq->dev; 950 struct request *req = bd->rq; 951 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 952 blk_status_t ret; 953 954 /* 955 * We should not need to do this, but we're still using this to 956 * ensure we can drain requests on a dying queue. 957 */ 958 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 959 return BLK_STS_IOERR; 960 961 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 962 return nvme_fail_nonready_command(&dev->ctrl, req); 963 964 ret = nvme_prep_rq(dev, req); 965 if (unlikely(ret)) 966 return ret; 967 spin_lock(&nvmeq->sq_lock); 968 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 969 nvme_write_sq_db(nvmeq, bd->last); 970 spin_unlock(&nvmeq->sq_lock); 971 return BLK_STS_OK; 972 } 973 974 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 975 { 976 spin_lock(&nvmeq->sq_lock); 977 while (!rq_list_empty(*rqlist)) { 978 struct request *req = rq_list_pop(rqlist); 979 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 980 981 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 982 } 983 nvme_write_sq_db(nvmeq, true); 984 spin_unlock(&nvmeq->sq_lock); 985 } 986 987 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 988 { 989 /* 990 * We should not need to do this, but we're still using this to 991 * ensure we can drain requests on a dying queue. 992 */ 993 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 994 return false; 995 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 996 return false; 997 998 req->mq_hctx->tags->rqs[req->tag] = req; 999 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 1000 } 1001 1002 static void nvme_queue_rqs(struct request **rqlist) 1003 { 1004 struct request *req, *next, *prev = NULL; 1005 struct request *requeue_list = NULL; 1006 1007 rq_list_for_each_safe(rqlist, req, next) { 1008 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1009 1010 if (!nvme_prep_rq_batch(nvmeq, req)) { 1011 /* detach 'req' and add to remainder list */ 1012 rq_list_move(rqlist, &requeue_list, req, prev); 1013 1014 req = prev; 1015 if (!req) 1016 continue; 1017 } 1018 1019 if (!next || req->mq_hctx != next->mq_hctx) { 1020 /* detach rest of list, and submit */ 1021 req->rq_next = NULL; 1022 nvme_submit_cmds(nvmeq, rqlist); 1023 *rqlist = next; 1024 prev = NULL; 1025 } else 1026 prev = req; 1027 } 1028 1029 *rqlist = requeue_list; 1030 } 1031 1032 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1033 { 1034 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1035 struct nvme_dev *dev = iod->nvmeq->dev; 1036 1037 if (blk_integrity_rq(req)) 1038 dma_unmap_page(dev->dev, iod->meta_dma, 1039 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 1040 if (blk_rq_nr_phys_segments(req)) 1041 nvme_unmap_data(dev, req); 1042 } 1043 1044 static void nvme_pci_complete_rq(struct request *req) 1045 { 1046 nvme_pci_unmap_rq(req); 1047 nvme_complete_rq(req); 1048 } 1049 1050 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1051 { 1052 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1053 } 1054 1055 /* We read the CQE phase first to check if the rest of the entry is valid */ 1056 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1057 { 1058 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1059 1060 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1061 } 1062 1063 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1064 { 1065 u16 head = nvmeq->cq_head; 1066 1067 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1068 nvmeq->dbbuf_cq_ei)) 1069 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1070 } 1071 1072 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1073 { 1074 if (!nvmeq->qid) 1075 return nvmeq->dev->admin_tagset.tags[0]; 1076 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1077 } 1078 1079 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1080 struct io_comp_batch *iob, u16 idx) 1081 { 1082 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1083 __u16 command_id = READ_ONCE(cqe->command_id); 1084 struct request *req; 1085 1086 /* 1087 * AEN requests are special as they don't time out and can 1088 * survive any kind of queue freeze and often don't respond to 1089 * aborts. We don't even bother to allocate a struct request 1090 * for them but rather special case them here. 1091 */ 1092 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1093 nvme_complete_async_event(&nvmeq->dev->ctrl, 1094 cqe->status, &cqe->result); 1095 return; 1096 } 1097 1098 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1099 if (unlikely(!req)) { 1100 dev_warn(nvmeq->dev->ctrl.device, 1101 "invalid id %d completed on queue %d\n", 1102 command_id, le16_to_cpu(cqe->sq_id)); 1103 return; 1104 } 1105 1106 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1107 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1108 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1109 nvme_pci_complete_batch)) 1110 nvme_pci_complete_rq(req); 1111 } 1112 1113 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1114 { 1115 u32 tmp = nvmeq->cq_head + 1; 1116 1117 if (tmp == nvmeq->q_depth) { 1118 nvmeq->cq_head = 0; 1119 nvmeq->cq_phase ^= 1; 1120 } else { 1121 nvmeq->cq_head = tmp; 1122 } 1123 } 1124 1125 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1126 struct io_comp_batch *iob) 1127 { 1128 int found = 0; 1129 1130 while (nvme_cqe_pending(nvmeq)) { 1131 found++; 1132 /* 1133 * load-load control dependency between phase and the rest of 1134 * the cqe requires a full read memory barrier 1135 */ 1136 dma_rmb(); 1137 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1138 nvme_update_cq_head(nvmeq); 1139 } 1140 1141 if (found) 1142 nvme_ring_cq_doorbell(nvmeq); 1143 return found; 1144 } 1145 1146 static irqreturn_t nvme_irq(int irq, void *data) 1147 { 1148 struct nvme_queue *nvmeq = data; 1149 DEFINE_IO_COMP_BATCH(iob); 1150 1151 if (nvme_poll_cq(nvmeq, &iob)) { 1152 if (!rq_list_empty(iob.req_list)) 1153 nvme_pci_complete_batch(&iob); 1154 return IRQ_HANDLED; 1155 } 1156 return IRQ_NONE; 1157 } 1158 1159 static irqreturn_t nvme_irq_check(int irq, void *data) 1160 { 1161 struct nvme_queue *nvmeq = data; 1162 1163 if (nvme_cqe_pending(nvmeq)) 1164 return IRQ_WAKE_THREAD; 1165 return IRQ_NONE; 1166 } 1167 1168 /* 1169 * Poll for completions for any interrupt driven queue 1170 * Can be called from any context. 1171 */ 1172 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1173 { 1174 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1175 1176 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1177 1178 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1179 nvme_poll_cq(nvmeq, NULL); 1180 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1181 } 1182 1183 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1184 { 1185 struct nvme_queue *nvmeq = hctx->driver_data; 1186 bool found; 1187 1188 if (!nvme_cqe_pending(nvmeq)) 1189 return 0; 1190 1191 spin_lock(&nvmeq->cq_poll_lock); 1192 found = nvme_poll_cq(nvmeq, iob); 1193 spin_unlock(&nvmeq->cq_poll_lock); 1194 1195 return found; 1196 } 1197 1198 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1199 { 1200 struct nvme_dev *dev = to_nvme_dev(ctrl); 1201 struct nvme_queue *nvmeq = &dev->queues[0]; 1202 struct nvme_command c = { }; 1203 1204 c.common.opcode = nvme_admin_async_event; 1205 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1206 1207 spin_lock(&nvmeq->sq_lock); 1208 nvme_sq_copy_cmd(nvmeq, &c); 1209 nvme_write_sq_db(nvmeq, true); 1210 spin_unlock(&nvmeq->sq_lock); 1211 } 1212 1213 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1214 { 1215 struct nvme_command c = { }; 1216 1217 c.delete_queue.opcode = opcode; 1218 c.delete_queue.qid = cpu_to_le16(id); 1219 1220 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1221 } 1222 1223 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1224 struct nvme_queue *nvmeq, s16 vector) 1225 { 1226 struct nvme_command c = { }; 1227 int flags = NVME_QUEUE_PHYS_CONTIG; 1228 1229 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1230 flags |= NVME_CQ_IRQ_ENABLED; 1231 1232 /* 1233 * Note: we (ab)use the fact that the prp fields survive if no data 1234 * is attached to the request. 1235 */ 1236 c.create_cq.opcode = nvme_admin_create_cq; 1237 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1238 c.create_cq.cqid = cpu_to_le16(qid); 1239 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1240 c.create_cq.cq_flags = cpu_to_le16(flags); 1241 c.create_cq.irq_vector = cpu_to_le16(vector); 1242 1243 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1244 } 1245 1246 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1247 struct nvme_queue *nvmeq) 1248 { 1249 struct nvme_ctrl *ctrl = &dev->ctrl; 1250 struct nvme_command c = { }; 1251 int flags = NVME_QUEUE_PHYS_CONTIG; 1252 1253 /* 1254 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1255 * set. Since URGENT priority is zeroes, it makes all queues 1256 * URGENT. 1257 */ 1258 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1259 flags |= NVME_SQ_PRIO_MEDIUM; 1260 1261 /* 1262 * Note: we (ab)use the fact that the prp fields survive if no data 1263 * is attached to the request. 1264 */ 1265 c.create_sq.opcode = nvme_admin_create_sq; 1266 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1267 c.create_sq.sqid = cpu_to_le16(qid); 1268 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1269 c.create_sq.sq_flags = cpu_to_le16(flags); 1270 c.create_sq.cqid = cpu_to_le16(qid); 1271 1272 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1273 } 1274 1275 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1276 { 1277 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1278 } 1279 1280 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1281 { 1282 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1283 } 1284 1285 static void abort_endio(struct request *req, blk_status_t error) 1286 { 1287 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1288 struct nvme_queue *nvmeq = iod->nvmeq; 1289 1290 dev_warn(nvmeq->dev->ctrl.device, 1291 "Abort status: 0x%x", nvme_req(req)->status); 1292 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1293 blk_mq_free_request(req); 1294 } 1295 1296 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1297 { 1298 /* If true, indicates loss of adapter communication, possibly by a 1299 * NVMe Subsystem reset. 1300 */ 1301 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1302 1303 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1304 switch (dev->ctrl.state) { 1305 case NVME_CTRL_RESETTING: 1306 case NVME_CTRL_CONNECTING: 1307 return false; 1308 default: 1309 break; 1310 } 1311 1312 /* We shouldn't reset unless the controller is on fatal error state 1313 * _or_ if we lost the communication with it. 1314 */ 1315 if (!(csts & NVME_CSTS_CFS) && !nssro) 1316 return false; 1317 1318 return true; 1319 } 1320 1321 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1322 { 1323 /* Read a config register to help see what died. */ 1324 u16 pci_status; 1325 int result; 1326 1327 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1328 &pci_status); 1329 if (result == PCIBIOS_SUCCESSFUL) 1330 dev_warn(dev->ctrl.device, 1331 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1332 csts, pci_status); 1333 else 1334 dev_warn(dev->ctrl.device, 1335 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1336 csts, result); 1337 1338 if (csts != ~0) 1339 return; 1340 1341 dev_warn(dev->ctrl.device, 1342 "Does your device have a faulty power saving mode enabled?\n"); 1343 dev_warn(dev->ctrl.device, 1344 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1345 } 1346 1347 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1348 { 1349 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1350 struct nvme_queue *nvmeq = iod->nvmeq; 1351 struct nvme_dev *dev = nvmeq->dev; 1352 struct request *abort_req; 1353 struct nvme_command cmd = { }; 1354 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1355 1356 /* If PCI error recovery process is happening, we cannot reset or 1357 * the recovery mechanism will surely fail. 1358 */ 1359 mb(); 1360 if (pci_channel_offline(to_pci_dev(dev->dev))) 1361 return BLK_EH_RESET_TIMER; 1362 1363 /* 1364 * Reset immediately if the controller is failed 1365 */ 1366 if (nvme_should_reset(dev, csts)) { 1367 nvme_warn_reset(dev, csts); 1368 nvme_dev_disable(dev, false); 1369 nvme_reset_ctrl(&dev->ctrl); 1370 return BLK_EH_DONE; 1371 } 1372 1373 /* 1374 * Did we miss an interrupt? 1375 */ 1376 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1377 nvme_poll(req->mq_hctx, NULL); 1378 else 1379 nvme_poll_irqdisable(nvmeq); 1380 1381 if (blk_mq_request_completed(req)) { 1382 dev_warn(dev->ctrl.device, 1383 "I/O %d QID %d timeout, completion polled\n", 1384 req->tag, nvmeq->qid); 1385 return BLK_EH_DONE; 1386 } 1387 1388 /* 1389 * Shutdown immediately if controller times out while starting. The 1390 * reset work will see the pci device disabled when it gets the forced 1391 * cancellation error. All outstanding requests are completed on 1392 * shutdown, so we return BLK_EH_DONE. 1393 */ 1394 switch (dev->ctrl.state) { 1395 case NVME_CTRL_CONNECTING: 1396 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1397 fallthrough; 1398 case NVME_CTRL_DELETING: 1399 dev_warn_ratelimited(dev->ctrl.device, 1400 "I/O %d QID %d timeout, disable controller\n", 1401 req->tag, nvmeq->qid); 1402 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1403 nvme_dev_disable(dev, true); 1404 return BLK_EH_DONE; 1405 case NVME_CTRL_RESETTING: 1406 return BLK_EH_RESET_TIMER; 1407 default: 1408 break; 1409 } 1410 1411 /* 1412 * Shutdown the controller immediately and schedule a reset if the 1413 * command was already aborted once before and still hasn't been 1414 * returned to the driver, or if this is the admin queue. 1415 */ 1416 if (!nvmeq->qid || iod->aborted) { 1417 dev_warn(dev->ctrl.device, 1418 "I/O %d QID %d timeout, reset controller\n", 1419 req->tag, nvmeq->qid); 1420 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1421 nvme_dev_disable(dev, false); 1422 nvme_reset_ctrl(&dev->ctrl); 1423 1424 return BLK_EH_DONE; 1425 } 1426 1427 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1428 atomic_inc(&dev->ctrl.abort_limit); 1429 return BLK_EH_RESET_TIMER; 1430 } 1431 iod->aborted = 1; 1432 1433 cmd.abort.opcode = nvme_admin_abort_cmd; 1434 cmd.abort.cid = nvme_cid(req); 1435 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1436 1437 dev_warn(nvmeq->dev->ctrl.device, 1438 "I/O %d QID %d timeout, aborting\n", 1439 req->tag, nvmeq->qid); 1440 1441 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1442 BLK_MQ_REQ_NOWAIT); 1443 if (IS_ERR(abort_req)) { 1444 atomic_inc(&dev->ctrl.abort_limit); 1445 return BLK_EH_RESET_TIMER; 1446 } 1447 nvme_init_request(abort_req, &cmd); 1448 1449 abort_req->end_io = abort_endio; 1450 abort_req->end_io_data = NULL; 1451 abort_req->rq_flags |= RQF_QUIET; 1452 blk_execute_rq_nowait(abort_req, false); 1453 1454 /* 1455 * The aborted req will be completed on receiving the abort req. 1456 * We enable the timer again. If hit twice, it'll cause a device reset, 1457 * as the device then is in a faulty state. 1458 */ 1459 return BLK_EH_RESET_TIMER; 1460 } 1461 1462 static void nvme_free_queue(struct nvme_queue *nvmeq) 1463 { 1464 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1465 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1466 if (!nvmeq->sq_cmds) 1467 return; 1468 1469 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1470 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1471 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1472 } else { 1473 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1474 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1475 } 1476 } 1477 1478 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1479 { 1480 int i; 1481 1482 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1483 dev->ctrl.queue_count--; 1484 nvme_free_queue(&dev->queues[i]); 1485 } 1486 } 1487 1488 /** 1489 * nvme_suspend_queue - put queue into suspended state 1490 * @nvmeq: queue to suspend 1491 */ 1492 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1493 { 1494 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1495 return 1; 1496 1497 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1498 mb(); 1499 1500 nvmeq->dev->online_queues--; 1501 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1502 nvme_stop_admin_queue(&nvmeq->dev->ctrl); 1503 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1504 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1505 return 0; 1506 } 1507 1508 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1509 { 1510 int i; 1511 1512 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1513 nvme_suspend_queue(&dev->queues[i]); 1514 } 1515 1516 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1517 { 1518 struct nvme_queue *nvmeq = &dev->queues[0]; 1519 1520 if (shutdown) 1521 nvme_shutdown_ctrl(&dev->ctrl); 1522 else 1523 nvme_disable_ctrl(&dev->ctrl); 1524 1525 nvme_poll_irqdisable(nvmeq); 1526 } 1527 1528 /* 1529 * Called only on a device that has been disabled and after all other threads 1530 * that can check this device's completion queues have synced, except 1531 * nvme_poll(). This is the last chance for the driver to see a natural 1532 * completion before nvme_cancel_request() terminates all incomplete requests. 1533 */ 1534 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1535 { 1536 int i; 1537 1538 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1539 spin_lock(&dev->queues[i].cq_poll_lock); 1540 nvme_poll_cq(&dev->queues[i], NULL); 1541 spin_unlock(&dev->queues[i].cq_poll_lock); 1542 } 1543 } 1544 1545 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1546 int entry_size) 1547 { 1548 int q_depth = dev->q_depth; 1549 unsigned q_size_aligned = roundup(q_depth * entry_size, 1550 NVME_CTRL_PAGE_SIZE); 1551 1552 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1553 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1554 1555 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1556 q_depth = div_u64(mem_per_q, entry_size); 1557 1558 /* 1559 * Ensure the reduced q_depth is above some threshold where it 1560 * would be better to map queues in system memory with the 1561 * original depth 1562 */ 1563 if (q_depth < 64) 1564 return -ENOMEM; 1565 } 1566 1567 return q_depth; 1568 } 1569 1570 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1571 int qid) 1572 { 1573 struct pci_dev *pdev = to_pci_dev(dev->dev); 1574 1575 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1576 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1577 if (nvmeq->sq_cmds) { 1578 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1579 nvmeq->sq_cmds); 1580 if (nvmeq->sq_dma_addr) { 1581 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1582 return 0; 1583 } 1584 1585 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1586 } 1587 } 1588 1589 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1590 &nvmeq->sq_dma_addr, GFP_KERNEL); 1591 if (!nvmeq->sq_cmds) 1592 return -ENOMEM; 1593 return 0; 1594 } 1595 1596 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1597 { 1598 struct nvme_queue *nvmeq = &dev->queues[qid]; 1599 1600 if (dev->ctrl.queue_count > qid) 1601 return 0; 1602 1603 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1604 nvmeq->q_depth = depth; 1605 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1606 &nvmeq->cq_dma_addr, GFP_KERNEL); 1607 if (!nvmeq->cqes) 1608 goto free_nvmeq; 1609 1610 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1611 goto free_cqdma; 1612 1613 nvmeq->dev = dev; 1614 spin_lock_init(&nvmeq->sq_lock); 1615 spin_lock_init(&nvmeq->cq_poll_lock); 1616 nvmeq->cq_head = 0; 1617 nvmeq->cq_phase = 1; 1618 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1619 nvmeq->qid = qid; 1620 dev->ctrl.queue_count++; 1621 1622 return 0; 1623 1624 free_cqdma: 1625 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1626 nvmeq->cq_dma_addr); 1627 free_nvmeq: 1628 return -ENOMEM; 1629 } 1630 1631 static int queue_request_irq(struct nvme_queue *nvmeq) 1632 { 1633 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1634 int nr = nvmeq->dev->ctrl.instance; 1635 1636 if (use_threaded_interrupts) { 1637 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1638 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1639 } else { 1640 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1641 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1642 } 1643 } 1644 1645 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1646 { 1647 struct nvme_dev *dev = nvmeq->dev; 1648 1649 nvmeq->sq_tail = 0; 1650 nvmeq->last_sq_tail = 0; 1651 nvmeq->cq_head = 0; 1652 nvmeq->cq_phase = 1; 1653 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1654 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1655 nvme_dbbuf_init(dev, nvmeq, qid); 1656 dev->online_queues++; 1657 wmb(); /* ensure the first interrupt sees the initialization */ 1658 } 1659 1660 /* 1661 * Try getting shutdown_lock while setting up IO queues. 1662 */ 1663 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1664 { 1665 /* 1666 * Give up if the lock is being held by nvme_dev_disable. 1667 */ 1668 if (!mutex_trylock(&dev->shutdown_lock)) 1669 return -ENODEV; 1670 1671 /* 1672 * Controller is in wrong state, fail early. 1673 */ 1674 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1675 mutex_unlock(&dev->shutdown_lock); 1676 return -ENODEV; 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1683 { 1684 struct nvme_dev *dev = nvmeq->dev; 1685 int result; 1686 u16 vector = 0; 1687 1688 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1689 1690 /* 1691 * A queue's vector matches the queue identifier unless the controller 1692 * has only one vector available. 1693 */ 1694 if (!polled) 1695 vector = dev->num_vecs == 1 ? 0 : qid; 1696 else 1697 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1698 1699 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1700 if (result) 1701 return result; 1702 1703 result = adapter_alloc_sq(dev, qid, nvmeq); 1704 if (result < 0) 1705 return result; 1706 if (result) 1707 goto release_cq; 1708 1709 nvmeq->cq_vector = vector; 1710 1711 result = nvme_setup_io_queues_trylock(dev); 1712 if (result) 1713 return result; 1714 nvme_init_queue(nvmeq, qid); 1715 if (!polled) { 1716 result = queue_request_irq(nvmeq); 1717 if (result < 0) 1718 goto release_sq; 1719 } 1720 1721 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1722 mutex_unlock(&dev->shutdown_lock); 1723 return result; 1724 1725 release_sq: 1726 dev->online_queues--; 1727 mutex_unlock(&dev->shutdown_lock); 1728 adapter_delete_sq(dev, qid); 1729 release_cq: 1730 adapter_delete_cq(dev, qid); 1731 return result; 1732 } 1733 1734 static const struct blk_mq_ops nvme_mq_admin_ops = { 1735 .queue_rq = nvme_queue_rq, 1736 .complete = nvme_pci_complete_rq, 1737 .init_hctx = nvme_admin_init_hctx, 1738 .init_request = nvme_pci_init_request, 1739 .timeout = nvme_timeout, 1740 }; 1741 1742 static const struct blk_mq_ops nvme_mq_ops = { 1743 .queue_rq = nvme_queue_rq, 1744 .queue_rqs = nvme_queue_rqs, 1745 .complete = nvme_pci_complete_rq, 1746 .commit_rqs = nvme_commit_rqs, 1747 .init_hctx = nvme_init_hctx, 1748 .init_request = nvme_pci_init_request, 1749 .map_queues = nvme_pci_map_queues, 1750 .timeout = nvme_timeout, 1751 .poll = nvme_poll, 1752 }; 1753 1754 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1755 { 1756 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1757 /* 1758 * If the controller was reset during removal, it's possible 1759 * user requests may be waiting on a stopped queue. Start the 1760 * queue to flush these to completion. 1761 */ 1762 nvme_start_admin_queue(&dev->ctrl); 1763 blk_cleanup_queue(dev->ctrl.admin_q); 1764 blk_mq_free_tag_set(&dev->admin_tagset); 1765 } 1766 } 1767 1768 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1769 { 1770 if (!dev->ctrl.admin_q) { 1771 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1772 dev->admin_tagset.nr_hw_queues = 1; 1773 1774 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1775 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1776 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1777 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1778 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1779 dev->admin_tagset.driver_data = dev; 1780 1781 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1782 return -ENOMEM; 1783 dev->ctrl.admin_tagset = &dev->admin_tagset; 1784 1785 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1786 if (IS_ERR(dev->ctrl.admin_q)) { 1787 blk_mq_free_tag_set(&dev->admin_tagset); 1788 dev->ctrl.admin_q = NULL; 1789 return -ENOMEM; 1790 } 1791 if (!blk_get_queue(dev->ctrl.admin_q)) { 1792 nvme_dev_remove_admin(dev); 1793 dev->ctrl.admin_q = NULL; 1794 return -ENODEV; 1795 } 1796 } else 1797 nvme_start_admin_queue(&dev->ctrl); 1798 1799 return 0; 1800 } 1801 1802 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1803 { 1804 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1805 } 1806 1807 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1808 { 1809 struct pci_dev *pdev = to_pci_dev(dev->dev); 1810 1811 if (size <= dev->bar_mapped_size) 1812 return 0; 1813 if (size > pci_resource_len(pdev, 0)) 1814 return -ENOMEM; 1815 if (dev->bar) 1816 iounmap(dev->bar); 1817 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1818 if (!dev->bar) { 1819 dev->bar_mapped_size = 0; 1820 return -ENOMEM; 1821 } 1822 dev->bar_mapped_size = size; 1823 dev->dbs = dev->bar + NVME_REG_DBS; 1824 1825 return 0; 1826 } 1827 1828 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1829 { 1830 int result; 1831 u32 aqa; 1832 struct nvme_queue *nvmeq; 1833 1834 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1835 if (result < 0) 1836 return result; 1837 1838 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1839 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1840 1841 if (dev->subsystem && 1842 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1843 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1844 1845 result = nvme_disable_ctrl(&dev->ctrl); 1846 if (result < 0) 1847 return result; 1848 1849 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1850 if (result) 1851 return result; 1852 1853 dev->ctrl.numa_node = dev_to_node(dev->dev); 1854 1855 nvmeq = &dev->queues[0]; 1856 aqa = nvmeq->q_depth - 1; 1857 aqa |= aqa << 16; 1858 1859 writel(aqa, dev->bar + NVME_REG_AQA); 1860 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1861 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1862 1863 result = nvme_enable_ctrl(&dev->ctrl); 1864 if (result) 1865 return result; 1866 1867 nvmeq->cq_vector = 0; 1868 nvme_init_queue(nvmeq, 0); 1869 result = queue_request_irq(nvmeq); 1870 if (result) { 1871 dev->online_queues--; 1872 return result; 1873 } 1874 1875 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1876 return result; 1877 } 1878 1879 static int nvme_create_io_queues(struct nvme_dev *dev) 1880 { 1881 unsigned i, max, rw_queues; 1882 int ret = 0; 1883 1884 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1885 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1886 ret = -ENOMEM; 1887 break; 1888 } 1889 } 1890 1891 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1892 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1893 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1894 dev->io_queues[HCTX_TYPE_READ]; 1895 } else { 1896 rw_queues = max; 1897 } 1898 1899 for (i = dev->online_queues; i <= max; i++) { 1900 bool polled = i > rw_queues; 1901 1902 ret = nvme_create_queue(&dev->queues[i], i, polled); 1903 if (ret) 1904 break; 1905 } 1906 1907 /* 1908 * Ignore failing Create SQ/CQ commands, we can continue with less 1909 * than the desired amount of queues, and even a controller without 1910 * I/O queues can still be used to issue admin commands. This might 1911 * be useful to upgrade a buggy firmware for example. 1912 */ 1913 return ret >= 0 ? 0 : ret; 1914 } 1915 1916 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1917 { 1918 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1919 1920 return 1ULL << (12 + 4 * szu); 1921 } 1922 1923 static u32 nvme_cmb_size(struct nvme_dev *dev) 1924 { 1925 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1926 } 1927 1928 static void nvme_map_cmb(struct nvme_dev *dev) 1929 { 1930 u64 size, offset; 1931 resource_size_t bar_size; 1932 struct pci_dev *pdev = to_pci_dev(dev->dev); 1933 int bar; 1934 1935 if (dev->cmb_size) 1936 return; 1937 1938 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1939 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1940 1941 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1942 if (!dev->cmbsz) 1943 return; 1944 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1945 1946 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1947 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1948 bar = NVME_CMB_BIR(dev->cmbloc); 1949 bar_size = pci_resource_len(pdev, bar); 1950 1951 if (offset > bar_size) 1952 return; 1953 1954 /* 1955 * Tell the controller about the host side address mapping the CMB, 1956 * and enable CMB decoding for the NVMe 1.4+ scheme: 1957 */ 1958 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1959 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1960 (pci_bus_address(pdev, bar) + offset), 1961 dev->bar + NVME_REG_CMBMSC); 1962 } 1963 1964 /* 1965 * Controllers may support a CMB size larger than their BAR, 1966 * for example, due to being behind a bridge. Reduce the CMB to 1967 * the reported size of the BAR 1968 */ 1969 if (size > bar_size - offset) 1970 size = bar_size - offset; 1971 1972 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1973 dev_warn(dev->ctrl.device, 1974 "failed to register the CMB\n"); 1975 return; 1976 } 1977 1978 dev->cmb_size = size; 1979 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1980 1981 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1982 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1983 pci_p2pmem_publish(pdev, true); 1984 } 1985 1986 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1987 { 1988 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1989 u64 dma_addr = dev->host_mem_descs_dma; 1990 struct nvme_command c = { }; 1991 int ret; 1992 1993 c.features.opcode = nvme_admin_set_features; 1994 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1995 c.features.dword11 = cpu_to_le32(bits); 1996 c.features.dword12 = cpu_to_le32(host_mem_size); 1997 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1998 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1999 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2000 2001 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2002 if (ret) { 2003 dev_warn(dev->ctrl.device, 2004 "failed to set host mem (err %d, flags %#x).\n", 2005 ret, bits); 2006 } else 2007 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2008 2009 return ret; 2010 } 2011 2012 static void nvme_free_host_mem(struct nvme_dev *dev) 2013 { 2014 int i; 2015 2016 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2017 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2018 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2019 2020 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2021 le64_to_cpu(desc->addr), 2022 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2023 } 2024 2025 kfree(dev->host_mem_desc_bufs); 2026 dev->host_mem_desc_bufs = NULL; 2027 dma_free_coherent(dev->dev, 2028 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 2029 dev->host_mem_descs, dev->host_mem_descs_dma); 2030 dev->host_mem_descs = NULL; 2031 dev->nr_host_mem_descs = 0; 2032 } 2033 2034 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 2035 u32 chunk_size) 2036 { 2037 struct nvme_host_mem_buf_desc *descs; 2038 u32 max_entries, len; 2039 dma_addr_t descs_dma; 2040 int i = 0; 2041 void **bufs; 2042 u64 size, tmp; 2043 2044 tmp = (preferred + chunk_size - 1); 2045 do_div(tmp, chunk_size); 2046 max_entries = tmp; 2047 2048 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2049 max_entries = dev->ctrl.hmmaxd; 2050 2051 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 2052 &descs_dma, GFP_KERNEL); 2053 if (!descs) 2054 goto out; 2055 2056 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2057 if (!bufs) 2058 goto out_free_descs; 2059 2060 for (size = 0; size < preferred && i < max_entries; size += len) { 2061 dma_addr_t dma_addr; 2062 2063 len = min_t(u64, chunk_size, preferred - size); 2064 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2065 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2066 if (!bufs[i]) 2067 break; 2068 2069 descs[i].addr = cpu_to_le64(dma_addr); 2070 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2071 i++; 2072 } 2073 2074 if (!size) 2075 goto out_free_bufs; 2076 2077 dev->nr_host_mem_descs = i; 2078 dev->host_mem_size = size; 2079 dev->host_mem_descs = descs; 2080 dev->host_mem_descs_dma = descs_dma; 2081 dev->host_mem_desc_bufs = bufs; 2082 return 0; 2083 2084 out_free_bufs: 2085 while (--i >= 0) { 2086 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2087 2088 dma_free_attrs(dev->dev, size, bufs[i], 2089 le64_to_cpu(descs[i].addr), 2090 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2091 } 2092 2093 kfree(bufs); 2094 out_free_descs: 2095 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2096 descs_dma); 2097 out: 2098 dev->host_mem_descs = NULL; 2099 return -ENOMEM; 2100 } 2101 2102 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2103 { 2104 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2105 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2106 u64 chunk_size; 2107 2108 /* start big and work our way down */ 2109 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2110 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2111 if (!min || dev->host_mem_size >= min) 2112 return 0; 2113 nvme_free_host_mem(dev); 2114 } 2115 } 2116 2117 return -ENOMEM; 2118 } 2119 2120 static int nvme_setup_host_mem(struct nvme_dev *dev) 2121 { 2122 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2123 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2124 u64 min = (u64)dev->ctrl.hmmin * 4096; 2125 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2126 int ret; 2127 2128 preferred = min(preferred, max); 2129 if (min > max) { 2130 dev_warn(dev->ctrl.device, 2131 "min host memory (%lld MiB) above limit (%d MiB).\n", 2132 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2133 nvme_free_host_mem(dev); 2134 return 0; 2135 } 2136 2137 /* 2138 * If we already have a buffer allocated check if we can reuse it. 2139 */ 2140 if (dev->host_mem_descs) { 2141 if (dev->host_mem_size >= min) 2142 enable_bits |= NVME_HOST_MEM_RETURN; 2143 else 2144 nvme_free_host_mem(dev); 2145 } 2146 2147 if (!dev->host_mem_descs) { 2148 if (nvme_alloc_host_mem(dev, min, preferred)) { 2149 dev_warn(dev->ctrl.device, 2150 "failed to allocate host memory buffer.\n"); 2151 return 0; /* controller must work without HMB */ 2152 } 2153 2154 dev_info(dev->ctrl.device, 2155 "allocated %lld MiB host memory buffer.\n", 2156 dev->host_mem_size >> ilog2(SZ_1M)); 2157 } 2158 2159 ret = nvme_set_host_mem(dev, enable_bits); 2160 if (ret) 2161 nvme_free_host_mem(dev); 2162 return ret; 2163 } 2164 2165 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2166 char *buf) 2167 { 2168 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2169 2170 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2171 ndev->cmbloc, ndev->cmbsz); 2172 } 2173 static DEVICE_ATTR_RO(cmb); 2174 2175 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2176 char *buf) 2177 { 2178 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2179 2180 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2181 } 2182 static DEVICE_ATTR_RO(cmbloc); 2183 2184 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2185 char *buf) 2186 { 2187 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2188 2189 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2190 } 2191 static DEVICE_ATTR_RO(cmbsz); 2192 2193 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2194 char *buf) 2195 { 2196 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2197 2198 return sysfs_emit(buf, "%d\n", ndev->hmb); 2199 } 2200 2201 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2202 const char *buf, size_t count) 2203 { 2204 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2205 bool new; 2206 int ret; 2207 2208 if (strtobool(buf, &new) < 0) 2209 return -EINVAL; 2210 2211 if (new == ndev->hmb) 2212 return count; 2213 2214 if (new) { 2215 ret = nvme_setup_host_mem(ndev); 2216 } else { 2217 ret = nvme_set_host_mem(ndev, 0); 2218 if (!ret) 2219 nvme_free_host_mem(ndev); 2220 } 2221 2222 if (ret < 0) 2223 return ret; 2224 2225 return count; 2226 } 2227 static DEVICE_ATTR_RW(hmb); 2228 2229 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2230 struct attribute *a, int n) 2231 { 2232 struct nvme_ctrl *ctrl = 2233 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2234 struct nvme_dev *dev = to_nvme_dev(ctrl); 2235 2236 if (a == &dev_attr_cmb.attr || 2237 a == &dev_attr_cmbloc.attr || 2238 a == &dev_attr_cmbsz.attr) { 2239 if (!dev->cmbsz) 2240 return 0; 2241 } 2242 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2243 return 0; 2244 2245 return a->mode; 2246 } 2247 2248 static struct attribute *nvme_pci_attrs[] = { 2249 &dev_attr_cmb.attr, 2250 &dev_attr_cmbloc.attr, 2251 &dev_attr_cmbsz.attr, 2252 &dev_attr_hmb.attr, 2253 NULL, 2254 }; 2255 2256 static const struct attribute_group nvme_pci_attr_group = { 2257 .attrs = nvme_pci_attrs, 2258 .is_visible = nvme_pci_attrs_are_visible, 2259 }; 2260 2261 /* 2262 * nirqs is the number of interrupts available for write and read 2263 * queues. The core already reserved an interrupt for the admin queue. 2264 */ 2265 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2266 { 2267 struct nvme_dev *dev = affd->priv; 2268 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2269 2270 /* 2271 * If there is no interrupt available for queues, ensure that 2272 * the default queue is set to 1. The affinity set size is 2273 * also set to one, but the irq core ignores it for this case. 2274 * 2275 * If only one interrupt is available or 'write_queue' == 0, combine 2276 * write and read queues. 2277 * 2278 * If 'write_queues' > 0, ensure it leaves room for at least one read 2279 * queue. 2280 */ 2281 if (!nrirqs) { 2282 nrirqs = 1; 2283 nr_read_queues = 0; 2284 } else if (nrirqs == 1 || !nr_write_queues) { 2285 nr_read_queues = 0; 2286 } else if (nr_write_queues >= nrirqs) { 2287 nr_read_queues = 1; 2288 } else { 2289 nr_read_queues = nrirqs - nr_write_queues; 2290 } 2291 2292 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2293 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2294 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2295 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2296 affd->nr_sets = nr_read_queues ? 2 : 1; 2297 } 2298 2299 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2300 { 2301 struct pci_dev *pdev = to_pci_dev(dev->dev); 2302 struct irq_affinity affd = { 2303 .pre_vectors = 1, 2304 .calc_sets = nvme_calc_irq_sets, 2305 .priv = dev, 2306 }; 2307 unsigned int irq_queues, poll_queues; 2308 2309 /* 2310 * Poll queues don't need interrupts, but we need at least one I/O queue 2311 * left over for non-polled I/O. 2312 */ 2313 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2314 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2315 2316 /* 2317 * Initialize for the single interrupt case, will be updated in 2318 * nvme_calc_irq_sets(). 2319 */ 2320 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2321 dev->io_queues[HCTX_TYPE_READ] = 0; 2322 2323 /* 2324 * We need interrupts for the admin queue and each non-polled I/O queue, 2325 * but some Apple controllers require all queues to use the first 2326 * vector. 2327 */ 2328 irq_queues = 1; 2329 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2330 irq_queues += (nr_io_queues - poll_queues); 2331 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2332 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2333 } 2334 2335 static void nvme_disable_io_queues(struct nvme_dev *dev) 2336 { 2337 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2338 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2339 } 2340 2341 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2342 { 2343 /* 2344 * If tags are shared with admin queue (Apple bug), then 2345 * make sure we only use one IO queue. 2346 */ 2347 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2348 return 1; 2349 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2350 } 2351 2352 static int nvme_setup_io_queues(struct nvme_dev *dev) 2353 { 2354 struct nvme_queue *adminq = &dev->queues[0]; 2355 struct pci_dev *pdev = to_pci_dev(dev->dev); 2356 unsigned int nr_io_queues; 2357 unsigned long size; 2358 int result; 2359 2360 /* 2361 * Sample the module parameters once at reset time so that we have 2362 * stable values to work with. 2363 */ 2364 dev->nr_write_queues = write_queues; 2365 dev->nr_poll_queues = poll_queues; 2366 2367 nr_io_queues = dev->nr_allocated_queues - 1; 2368 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2369 if (result < 0) 2370 return result; 2371 2372 if (nr_io_queues == 0) 2373 return 0; 2374 2375 /* 2376 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2377 * from set to unset. If there is a window to it is truely freed, 2378 * pci_free_irq_vectors() jumping into this window will crash. 2379 * And take lock to avoid racing with pci_free_irq_vectors() in 2380 * nvme_dev_disable() path. 2381 */ 2382 result = nvme_setup_io_queues_trylock(dev); 2383 if (result) 2384 return result; 2385 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2386 pci_free_irq(pdev, 0, adminq); 2387 2388 if (dev->cmb_use_sqes) { 2389 result = nvme_cmb_qdepth(dev, nr_io_queues, 2390 sizeof(struct nvme_command)); 2391 if (result > 0) 2392 dev->q_depth = result; 2393 else 2394 dev->cmb_use_sqes = false; 2395 } 2396 2397 do { 2398 size = db_bar_size(dev, nr_io_queues); 2399 result = nvme_remap_bar(dev, size); 2400 if (!result) 2401 break; 2402 if (!--nr_io_queues) { 2403 result = -ENOMEM; 2404 goto out_unlock; 2405 } 2406 } while (1); 2407 adminq->q_db = dev->dbs; 2408 2409 retry: 2410 /* Deregister the admin queue's interrupt */ 2411 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2412 pci_free_irq(pdev, 0, adminq); 2413 2414 /* 2415 * If we enable msix early due to not intx, disable it again before 2416 * setting up the full range we need. 2417 */ 2418 pci_free_irq_vectors(pdev); 2419 2420 result = nvme_setup_irqs(dev, nr_io_queues); 2421 if (result <= 0) { 2422 result = -EIO; 2423 goto out_unlock; 2424 } 2425 2426 dev->num_vecs = result; 2427 result = max(result - 1, 1); 2428 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2429 2430 /* 2431 * Should investigate if there's a performance win from allocating 2432 * more queues than interrupt vectors; it might allow the submission 2433 * path to scale better, even if the receive path is limited by the 2434 * number of interrupts. 2435 */ 2436 result = queue_request_irq(adminq); 2437 if (result) 2438 goto out_unlock; 2439 set_bit(NVMEQ_ENABLED, &adminq->flags); 2440 mutex_unlock(&dev->shutdown_lock); 2441 2442 result = nvme_create_io_queues(dev); 2443 if (result || dev->online_queues < 2) 2444 return result; 2445 2446 if (dev->online_queues - 1 < dev->max_qid) { 2447 nr_io_queues = dev->online_queues - 1; 2448 nvme_disable_io_queues(dev); 2449 result = nvme_setup_io_queues_trylock(dev); 2450 if (result) 2451 return result; 2452 nvme_suspend_io_queues(dev); 2453 goto retry; 2454 } 2455 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2456 dev->io_queues[HCTX_TYPE_DEFAULT], 2457 dev->io_queues[HCTX_TYPE_READ], 2458 dev->io_queues[HCTX_TYPE_POLL]); 2459 return 0; 2460 out_unlock: 2461 mutex_unlock(&dev->shutdown_lock); 2462 return result; 2463 } 2464 2465 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2466 { 2467 struct nvme_queue *nvmeq = req->end_io_data; 2468 2469 blk_mq_free_request(req); 2470 complete(&nvmeq->delete_done); 2471 } 2472 2473 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2474 { 2475 struct nvme_queue *nvmeq = req->end_io_data; 2476 2477 if (error) 2478 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2479 2480 nvme_del_queue_end(req, error); 2481 } 2482 2483 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2484 { 2485 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2486 struct request *req; 2487 struct nvme_command cmd = { }; 2488 2489 cmd.delete_queue.opcode = opcode; 2490 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2491 2492 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2493 if (IS_ERR(req)) 2494 return PTR_ERR(req); 2495 nvme_init_request(req, &cmd); 2496 2497 if (opcode == nvme_admin_delete_cq) 2498 req->end_io = nvme_del_cq_end; 2499 else 2500 req->end_io = nvme_del_queue_end; 2501 req->end_io_data = nvmeq; 2502 2503 init_completion(&nvmeq->delete_done); 2504 req->rq_flags |= RQF_QUIET; 2505 blk_execute_rq_nowait(req, false); 2506 return 0; 2507 } 2508 2509 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2510 { 2511 int nr_queues = dev->online_queues - 1, sent = 0; 2512 unsigned long timeout; 2513 2514 retry: 2515 timeout = NVME_ADMIN_TIMEOUT; 2516 while (nr_queues > 0) { 2517 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2518 break; 2519 nr_queues--; 2520 sent++; 2521 } 2522 while (sent) { 2523 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2524 2525 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2526 timeout); 2527 if (timeout == 0) 2528 return false; 2529 2530 sent--; 2531 if (nr_queues) 2532 goto retry; 2533 } 2534 return true; 2535 } 2536 2537 static void nvme_dev_add(struct nvme_dev *dev) 2538 { 2539 int ret; 2540 2541 if (!dev->ctrl.tagset) { 2542 dev->tagset.ops = &nvme_mq_ops; 2543 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2544 dev->tagset.nr_maps = 2; /* default + read */ 2545 if (dev->io_queues[HCTX_TYPE_POLL]) 2546 dev->tagset.nr_maps++; 2547 dev->tagset.timeout = NVME_IO_TIMEOUT; 2548 dev->tagset.numa_node = dev->ctrl.numa_node; 2549 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2550 BLK_MQ_MAX_DEPTH) - 1; 2551 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2552 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2553 dev->tagset.driver_data = dev; 2554 2555 /* 2556 * Some Apple controllers requires tags to be unique 2557 * across admin and IO queue, so reserve the first 32 2558 * tags of the IO queue. 2559 */ 2560 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2561 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2562 2563 ret = blk_mq_alloc_tag_set(&dev->tagset); 2564 if (ret) { 2565 dev_warn(dev->ctrl.device, 2566 "IO queues tagset allocation failed %d\n", ret); 2567 return; 2568 } 2569 dev->ctrl.tagset = &dev->tagset; 2570 } else { 2571 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2572 2573 /* Free previously allocated queues that are no longer usable */ 2574 nvme_free_queues(dev, dev->online_queues); 2575 } 2576 2577 nvme_dbbuf_set(dev); 2578 } 2579 2580 static int nvme_pci_enable(struct nvme_dev *dev) 2581 { 2582 int result = -ENOMEM; 2583 struct pci_dev *pdev = to_pci_dev(dev->dev); 2584 int dma_address_bits = 64; 2585 2586 if (pci_enable_device_mem(pdev)) 2587 return result; 2588 2589 pci_set_master(pdev); 2590 2591 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2592 dma_address_bits = 48; 2593 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2594 goto disable; 2595 2596 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2597 result = -ENODEV; 2598 goto disable; 2599 } 2600 2601 /* 2602 * Some devices and/or platforms don't advertise or work with INTx 2603 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2604 * adjust this later. 2605 */ 2606 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2607 if (result < 0) 2608 return result; 2609 2610 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2611 2612 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2613 io_queue_depth); 2614 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2615 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2616 dev->dbs = dev->bar + 4096; 2617 2618 /* 2619 * Some Apple controllers require a non-standard SQE size. 2620 * Interestingly they also seem to ignore the CC:IOSQES register 2621 * so we don't bother updating it here. 2622 */ 2623 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2624 dev->io_sqes = 7; 2625 else 2626 dev->io_sqes = NVME_NVM_IOSQES; 2627 2628 /* 2629 * Temporary fix for the Apple controller found in the MacBook8,1 and 2630 * some MacBook7,1 to avoid controller resets and data loss. 2631 */ 2632 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2633 dev->q_depth = 2; 2634 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2635 "set queue depth=%u to work around controller resets\n", 2636 dev->q_depth); 2637 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2638 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2639 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2640 dev->q_depth = 64; 2641 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2642 "set queue depth=%u\n", dev->q_depth); 2643 } 2644 2645 /* 2646 * Controllers with the shared tags quirk need the IO queue to be 2647 * big enough so that we get 32 tags for the admin queue 2648 */ 2649 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2650 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2651 dev->q_depth = NVME_AQ_DEPTH + 2; 2652 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2653 dev->q_depth); 2654 } 2655 2656 2657 nvme_map_cmb(dev); 2658 2659 pci_enable_pcie_error_reporting(pdev); 2660 pci_save_state(pdev); 2661 return 0; 2662 2663 disable: 2664 pci_disable_device(pdev); 2665 return result; 2666 } 2667 2668 static void nvme_dev_unmap(struct nvme_dev *dev) 2669 { 2670 if (dev->bar) 2671 iounmap(dev->bar); 2672 pci_release_mem_regions(to_pci_dev(dev->dev)); 2673 } 2674 2675 static void nvme_pci_disable(struct nvme_dev *dev) 2676 { 2677 struct pci_dev *pdev = to_pci_dev(dev->dev); 2678 2679 pci_free_irq_vectors(pdev); 2680 2681 if (pci_is_enabled(pdev)) { 2682 pci_disable_pcie_error_reporting(pdev); 2683 pci_disable_device(pdev); 2684 } 2685 } 2686 2687 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2688 { 2689 bool dead = true, freeze = false; 2690 struct pci_dev *pdev = to_pci_dev(dev->dev); 2691 2692 mutex_lock(&dev->shutdown_lock); 2693 if (pci_is_enabled(pdev)) { 2694 u32 csts; 2695 2696 if (pci_device_is_present(pdev)) 2697 csts = readl(dev->bar + NVME_REG_CSTS); 2698 else 2699 csts = ~0; 2700 2701 if (dev->ctrl.state == NVME_CTRL_LIVE || 2702 dev->ctrl.state == NVME_CTRL_RESETTING) { 2703 freeze = true; 2704 nvme_start_freeze(&dev->ctrl); 2705 } 2706 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2707 pdev->error_state != pci_channel_io_normal); 2708 } 2709 2710 /* 2711 * Give the controller a chance to complete all entered requests if 2712 * doing a safe shutdown. 2713 */ 2714 if (!dead && shutdown && freeze) 2715 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2716 2717 nvme_stop_queues(&dev->ctrl); 2718 2719 if (!dead && dev->ctrl.queue_count > 0) { 2720 nvme_disable_io_queues(dev); 2721 nvme_disable_admin_queue(dev, shutdown); 2722 } 2723 nvme_suspend_io_queues(dev); 2724 nvme_suspend_queue(&dev->queues[0]); 2725 nvme_pci_disable(dev); 2726 nvme_reap_pending_cqes(dev); 2727 2728 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2729 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2730 blk_mq_tagset_wait_completed_request(&dev->tagset); 2731 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2732 2733 /* 2734 * The driver will not be starting up queues again if shutting down so 2735 * must flush all entered requests to their failed completion to avoid 2736 * deadlocking blk-mq hot-cpu notifier. 2737 */ 2738 if (shutdown) { 2739 nvme_start_queues(&dev->ctrl); 2740 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2741 nvme_start_admin_queue(&dev->ctrl); 2742 } 2743 mutex_unlock(&dev->shutdown_lock); 2744 } 2745 2746 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2747 { 2748 if (!nvme_wait_reset(&dev->ctrl)) 2749 return -EBUSY; 2750 nvme_dev_disable(dev, shutdown); 2751 return 0; 2752 } 2753 2754 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2755 { 2756 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2757 NVME_CTRL_PAGE_SIZE, 2758 NVME_CTRL_PAGE_SIZE, 0); 2759 if (!dev->prp_page_pool) 2760 return -ENOMEM; 2761 2762 /* Optimisation for I/Os between 4k and 128k */ 2763 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2764 256, 256, 0); 2765 if (!dev->prp_small_pool) { 2766 dma_pool_destroy(dev->prp_page_pool); 2767 return -ENOMEM; 2768 } 2769 return 0; 2770 } 2771 2772 static void nvme_release_prp_pools(struct nvme_dev *dev) 2773 { 2774 dma_pool_destroy(dev->prp_page_pool); 2775 dma_pool_destroy(dev->prp_small_pool); 2776 } 2777 2778 static void nvme_free_tagset(struct nvme_dev *dev) 2779 { 2780 if (dev->tagset.tags) 2781 blk_mq_free_tag_set(&dev->tagset); 2782 dev->ctrl.tagset = NULL; 2783 } 2784 2785 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2786 { 2787 struct nvme_dev *dev = to_nvme_dev(ctrl); 2788 2789 nvme_dbbuf_dma_free(dev); 2790 nvme_free_tagset(dev); 2791 if (dev->ctrl.admin_q) 2792 blk_put_queue(dev->ctrl.admin_q); 2793 free_opal_dev(dev->ctrl.opal_dev); 2794 mempool_destroy(dev->iod_mempool); 2795 put_device(dev->dev); 2796 kfree(dev->queues); 2797 kfree(dev); 2798 } 2799 2800 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2801 { 2802 /* 2803 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2804 * may be holding this pci_dev's device lock. 2805 */ 2806 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2807 nvme_get_ctrl(&dev->ctrl); 2808 nvme_dev_disable(dev, false); 2809 nvme_kill_queues(&dev->ctrl); 2810 if (!queue_work(nvme_wq, &dev->remove_work)) 2811 nvme_put_ctrl(&dev->ctrl); 2812 } 2813 2814 static void nvme_reset_work(struct work_struct *work) 2815 { 2816 struct nvme_dev *dev = 2817 container_of(work, struct nvme_dev, ctrl.reset_work); 2818 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2819 int result; 2820 2821 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2822 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2823 dev->ctrl.state); 2824 result = -ENODEV; 2825 goto out; 2826 } 2827 2828 /* 2829 * If we're called to reset a live controller first shut it down before 2830 * moving on. 2831 */ 2832 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2833 nvme_dev_disable(dev, false); 2834 nvme_sync_queues(&dev->ctrl); 2835 2836 mutex_lock(&dev->shutdown_lock); 2837 result = nvme_pci_enable(dev); 2838 if (result) 2839 goto out_unlock; 2840 2841 result = nvme_pci_configure_admin_queue(dev); 2842 if (result) 2843 goto out_unlock; 2844 2845 result = nvme_alloc_admin_tags(dev); 2846 if (result) 2847 goto out_unlock; 2848 2849 /* 2850 * Limit the max command size to prevent iod->sg allocations going 2851 * over a single page. 2852 */ 2853 dev->ctrl.max_hw_sectors = min_t(u32, 2854 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2855 dev->ctrl.max_segments = NVME_MAX_SEGS; 2856 2857 /* 2858 * Don't limit the IOMMU merged segment size. 2859 */ 2860 dma_set_max_seg_size(dev->dev, 0xffffffff); 2861 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2862 2863 mutex_unlock(&dev->shutdown_lock); 2864 2865 /* 2866 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2867 * initializing procedure here. 2868 */ 2869 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2870 dev_warn(dev->ctrl.device, 2871 "failed to mark controller CONNECTING\n"); 2872 result = -EBUSY; 2873 goto out; 2874 } 2875 2876 /* 2877 * We do not support an SGL for metadata (yet), so we are limited to a 2878 * single integrity segment for the separate metadata pointer. 2879 */ 2880 dev->ctrl.max_integrity_segments = 1; 2881 2882 result = nvme_init_ctrl_finish(&dev->ctrl); 2883 if (result) 2884 goto out; 2885 2886 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2887 if (!dev->ctrl.opal_dev) 2888 dev->ctrl.opal_dev = 2889 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2890 else if (was_suspend) 2891 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2892 } else { 2893 free_opal_dev(dev->ctrl.opal_dev); 2894 dev->ctrl.opal_dev = NULL; 2895 } 2896 2897 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2898 result = nvme_dbbuf_dma_alloc(dev); 2899 if (result) 2900 dev_warn(dev->dev, 2901 "unable to allocate dma for dbbuf\n"); 2902 } 2903 2904 if (dev->ctrl.hmpre) { 2905 result = nvme_setup_host_mem(dev); 2906 if (result < 0) 2907 goto out; 2908 } 2909 2910 result = nvme_setup_io_queues(dev); 2911 if (result) 2912 goto out; 2913 2914 /* 2915 * Keep the controller around but remove all namespaces if we don't have 2916 * any working I/O queue. 2917 */ 2918 if (dev->online_queues < 2) { 2919 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2920 nvme_kill_queues(&dev->ctrl); 2921 nvme_remove_namespaces(&dev->ctrl); 2922 nvme_free_tagset(dev); 2923 } else { 2924 nvme_start_queues(&dev->ctrl); 2925 nvme_wait_freeze(&dev->ctrl); 2926 nvme_dev_add(dev); 2927 nvme_unfreeze(&dev->ctrl); 2928 } 2929 2930 /* 2931 * If only admin queue live, keep it to do further investigation or 2932 * recovery. 2933 */ 2934 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2935 dev_warn(dev->ctrl.device, 2936 "failed to mark controller live state\n"); 2937 result = -ENODEV; 2938 goto out; 2939 } 2940 2941 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, 2942 &nvme_pci_attr_group)) 2943 dev->attrs_added = true; 2944 2945 nvme_start_ctrl(&dev->ctrl); 2946 return; 2947 2948 out_unlock: 2949 mutex_unlock(&dev->shutdown_lock); 2950 out: 2951 if (result) 2952 dev_warn(dev->ctrl.device, 2953 "Removing after probe failure status: %d\n", result); 2954 nvme_remove_dead_ctrl(dev); 2955 } 2956 2957 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2958 { 2959 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2960 struct pci_dev *pdev = to_pci_dev(dev->dev); 2961 2962 if (pci_get_drvdata(pdev)) 2963 device_release_driver(&pdev->dev); 2964 nvme_put_ctrl(&dev->ctrl); 2965 } 2966 2967 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2968 { 2969 *val = readl(to_nvme_dev(ctrl)->bar + off); 2970 return 0; 2971 } 2972 2973 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2974 { 2975 writel(val, to_nvme_dev(ctrl)->bar + off); 2976 return 0; 2977 } 2978 2979 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2980 { 2981 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2982 return 0; 2983 } 2984 2985 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2986 { 2987 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2988 2989 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2990 } 2991 2992 2993 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2994 { 2995 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2996 struct nvme_subsystem *subsys = ctrl->subsys; 2997 2998 dev_err(ctrl->device, 2999 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3000 pdev->vendor, pdev->device, 3001 nvme_strlen(subsys->model, sizeof(subsys->model)), 3002 subsys->model, nvme_strlen(subsys->firmware_rev, 3003 sizeof(subsys->firmware_rev)), 3004 subsys->firmware_rev); 3005 } 3006 3007 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3008 .name = "pcie", 3009 .module = THIS_MODULE, 3010 .flags = NVME_F_METADATA_SUPPORTED | 3011 NVME_F_PCI_P2PDMA, 3012 .reg_read32 = nvme_pci_reg_read32, 3013 .reg_write32 = nvme_pci_reg_write32, 3014 .reg_read64 = nvme_pci_reg_read64, 3015 .free_ctrl = nvme_pci_free_ctrl, 3016 .submit_async_event = nvme_pci_submit_async_event, 3017 .get_address = nvme_pci_get_address, 3018 .print_device_info = nvme_pci_print_device_info, 3019 }; 3020 3021 static int nvme_dev_map(struct nvme_dev *dev) 3022 { 3023 struct pci_dev *pdev = to_pci_dev(dev->dev); 3024 3025 if (pci_request_mem_regions(pdev, "nvme")) 3026 return -ENODEV; 3027 3028 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3029 goto release; 3030 3031 return 0; 3032 release: 3033 pci_release_mem_regions(pdev); 3034 return -ENODEV; 3035 } 3036 3037 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3038 { 3039 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3040 /* 3041 * Several Samsung devices seem to drop off the PCIe bus 3042 * randomly when APST is on and uses the deepest sleep state. 3043 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3044 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3045 * 950 PRO 256GB", but it seems to be restricted to two Dell 3046 * laptops. 3047 */ 3048 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3049 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3050 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3051 return NVME_QUIRK_NO_DEEPEST_PS; 3052 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3053 /* 3054 * Samsung SSD 960 EVO drops off the PCIe bus after system 3055 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3056 * within few minutes after bootup on a Coffee Lake board - 3057 * ASUS PRIME Z370-A 3058 */ 3059 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3060 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3061 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3062 return NVME_QUIRK_NO_APST; 3063 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3064 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3065 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3066 /* 3067 * Forcing to use host managed nvme power settings for 3068 * lowest idle power with quick resume latency on 3069 * Samsung and Toshiba SSDs based on suspend behavior 3070 * on Coffee Lake board for LENOVO C640 3071 */ 3072 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3073 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3074 return NVME_QUIRK_SIMPLE_SUSPEND; 3075 } 3076 3077 return 0; 3078 } 3079 3080 static void nvme_async_probe(void *data, async_cookie_t cookie) 3081 { 3082 struct nvme_dev *dev = data; 3083 3084 flush_work(&dev->ctrl.reset_work); 3085 flush_work(&dev->ctrl.scan_work); 3086 nvme_put_ctrl(&dev->ctrl); 3087 } 3088 3089 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3090 { 3091 int node, result = -ENOMEM; 3092 struct nvme_dev *dev; 3093 unsigned long quirks = id->driver_data; 3094 size_t alloc_size; 3095 3096 node = dev_to_node(&pdev->dev); 3097 if (node == NUMA_NO_NODE) 3098 set_dev_node(&pdev->dev, first_memory_node); 3099 3100 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3101 if (!dev) 3102 return -ENOMEM; 3103 3104 dev->nr_write_queues = write_queues; 3105 dev->nr_poll_queues = poll_queues; 3106 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3107 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3108 sizeof(struct nvme_queue), GFP_KERNEL, node); 3109 if (!dev->queues) 3110 goto free; 3111 3112 dev->dev = get_device(&pdev->dev); 3113 pci_set_drvdata(pdev, dev); 3114 3115 result = nvme_dev_map(dev); 3116 if (result) 3117 goto put_pci; 3118 3119 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3120 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 3121 mutex_init(&dev->shutdown_lock); 3122 3123 result = nvme_setup_prp_pools(dev); 3124 if (result) 3125 goto unmap; 3126 3127 quirks |= check_vendor_combination_bug(pdev); 3128 3129 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 3130 /* 3131 * Some systems use a bios work around to ask for D3 on 3132 * platforms that support kernel managed suspend. 3133 */ 3134 dev_info(&pdev->dev, 3135 "platform quirk: setting simple suspend\n"); 3136 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3137 } 3138 3139 /* 3140 * Double check that our mempool alloc size will cover the biggest 3141 * command we support. 3142 */ 3143 alloc_size = nvme_pci_iod_alloc_size(); 3144 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 3145 3146 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 3147 mempool_kfree, 3148 (void *) alloc_size, 3149 GFP_KERNEL, node); 3150 if (!dev->iod_mempool) { 3151 result = -ENOMEM; 3152 goto release_pools; 3153 } 3154 3155 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3156 quirks); 3157 if (result) 3158 goto release_mempool; 3159 3160 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3161 3162 nvme_reset_ctrl(&dev->ctrl); 3163 async_schedule(nvme_async_probe, dev); 3164 3165 return 0; 3166 3167 release_mempool: 3168 mempool_destroy(dev->iod_mempool); 3169 release_pools: 3170 nvme_release_prp_pools(dev); 3171 unmap: 3172 nvme_dev_unmap(dev); 3173 put_pci: 3174 put_device(dev->dev); 3175 free: 3176 kfree(dev->queues); 3177 kfree(dev); 3178 return result; 3179 } 3180 3181 static void nvme_reset_prepare(struct pci_dev *pdev) 3182 { 3183 struct nvme_dev *dev = pci_get_drvdata(pdev); 3184 3185 /* 3186 * We don't need to check the return value from waiting for the reset 3187 * state as pci_dev device lock is held, making it impossible to race 3188 * with ->remove(). 3189 */ 3190 nvme_disable_prepare_reset(dev, false); 3191 nvme_sync_queues(&dev->ctrl); 3192 } 3193 3194 static void nvme_reset_done(struct pci_dev *pdev) 3195 { 3196 struct nvme_dev *dev = pci_get_drvdata(pdev); 3197 3198 if (!nvme_try_sched_reset(&dev->ctrl)) 3199 flush_work(&dev->ctrl.reset_work); 3200 } 3201 3202 static void nvme_shutdown(struct pci_dev *pdev) 3203 { 3204 struct nvme_dev *dev = pci_get_drvdata(pdev); 3205 3206 nvme_disable_prepare_reset(dev, true); 3207 } 3208 3209 static void nvme_remove_attrs(struct nvme_dev *dev) 3210 { 3211 if (dev->attrs_added) 3212 sysfs_remove_group(&dev->ctrl.device->kobj, 3213 &nvme_pci_attr_group); 3214 } 3215 3216 /* 3217 * The driver's remove may be called on a device in a partially initialized 3218 * state. This function must not have any dependencies on the device state in 3219 * order to proceed. 3220 */ 3221 static void nvme_remove(struct pci_dev *pdev) 3222 { 3223 struct nvme_dev *dev = pci_get_drvdata(pdev); 3224 3225 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3226 pci_set_drvdata(pdev, NULL); 3227 3228 if (!pci_device_is_present(pdev)) { 3229 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3230 nvme_dev_disable(dev, true); 3231 } 3232 3233 flush_work(&dev->ctrl.reset_work); 3234 nvme_stop_ctrl(&dev->ctrl); 3235 nvme_remove_namespaces(&dev->ctrl); 3236 nvme_dev_disable(dev, true); 3237 nvme_remove_attrs(dev); 3238 nvme_free_host_mem(dev); 3239 nvme_dev_remove_admin(dev); 3240 nvme_free_queues(dev, 0); 3241 nvme_release_prp_pools(dev); 3242 nvme_dev_unmap(dev); 3243 nvme_uninit_ctrl(&dev->ctrl); 3244 } 3245 3246 #ifdef CONFIG_PM_SLEEP 3247 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3248 { 3249 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3250 } 3251 3252 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3253 { 3254 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3255 } 3256 3257 static int nvme_resume(struct device *dev) 3258 { 3259 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3260 struct nvme_ctrl *ctrl = &ndev->ctrl; 3261 3262 if (ndev->last_ps == U32_MAX || 3263 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3264 goto reset; 3265 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3266 goto reset; 3267 3268 return 0; 3269 reset: 3270 return nvme_try_sched_reset(ctrl); 3271 } 3272 3273 static int nvme_suspend(struct device *dev) 3274 { 3275 struct pci_dev *pdev = to_pci_dev(dev); 3276 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3277 struct nvme_ctrl *ctrl = &ndev->ctrl; 3278 int ret = -EBUSY; 3279 3280 ndev->last_ps = U32_MAX; 3281 3282 /* 3283 * The platform does not remove power for a kernel managed suspend so 3284 * use host managed nvme power settings for lowest idle power if 3285 * possible. This should have quicker resume latency than a full device 3286 * shutdown. But if the firmware is involved after the suspend or the 3287 * device does not support any non-default power states, shut down the 3288 * device fully. 3289 * 3290 * If ASPM is not enabled for the device, shut down the device and allow 3291 * the PCI bus layer to put it into D3 in order to take the PCIe link 3292 * down, so as to allow the platform to achieve its minimum low-power 3293 * state (which may not be possible if the link is up). 3294 */ 3295 if (pm_suspend_via_firmware() || !ctrl->npss || 3296 !pcie_aspm_enabled(pdev) || 3297 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3298 return nvme_disable_prepare_reset(ndev, true); 3299 3300 nvme_start_freeze(ctrl); 3301 nvme_wait_freeze(ctrl); 3302 nvme_sync_queues(ctrl); 3303 3304 if (ctrl->state != NVME_CTRL_LIVE) 3305 goto unfreeze; 3306 3307 /* 3308 * Host memory access may not be successful in a system suspend state, 3309 * but the specification allows the controller to access memory in a 3310 * non-operational power state. 3311 */ 3312 if (ndev->hmb) { 3313 ret = nvme_set_host_mem(ndev, 0); 3314 if (ret < 0) 3315 goto unfreeze; 3316 } 3317 3318 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3319 if (ret < 0) 3320 goto unfreeze; 3321 3322 /* 3323 * A saved state prevents pci pm from generically controlling the 3324 * device's power. If we're using protocol specific settings, we don't 3325 * want pci interfering. 3326 */ 3327 pci_save_state(pdev); 3328 3329 ret = nvme_set_power_state(ctrl, ctrl->npss); 3330 if (ret < 0) 3331 goto unfreeze; 3332 3333 if (ret) { 3334 /* discard the saved state */ 3335 pci_load_saved_state(pdev, NULL); 3336 3337 /* 3338 * Clearing npss forces a controller reset on resume. The 3339 * correct value will be rediscovered then. 3340 */ 3341 ret = nvme_disable_prepare_reset(ndev, true); 3342 ctrl->npss = 0; 3343 } 3344 unfreeze: 3345 nvme_unfreeze(ctrl); 3346 return ret; 3347 } 3348 3349 static int nvme_simple_suspend(struct device *dev) 3350 { 3351 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3352 3353 return nvme_disable_prepare_reset(ndev, true); 3354 } 3355 3356 static int nvme_simple_resume(struct device *dev) 3357 { 3358 struct pci_dev *pdev = to_pci_dev(dev); 3359 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3360 3361 return nvme_try_sched_reset(&ndev->ctrl); 3362 } 3363 3364 static const struct dev_pm_ops nvme_dev_pm_ops = { 3365 .suspend = nvme_suspend, 3366 .resume = nvme_resume, 3367 .freeze = nvme_simple_suspend, 3368 .thaw = nvme_simple_resume, 3369 .poweroff = nvme_simple_suspend, 3370 .restore = nvme_simple_resume, 3371 }; 3372 #endif /* CONFIG_PM_SLEEP */ 3373 3374 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3375 pci_channel_state_t state) 3376 { 3377 struct nvme_dev *dev = pci_get_drvdata(pdev); 3378 3379 /* 3380 * A frozen channel requires a reset. When detected, this method will 3381 * shutdown the controller to quiesce. The controller will be restarted 3382 * after the slot reset through driver's slot_reset callback. 3383 */ 3384 switch (state) { 3385 case pci_channel_io_normal: 3386 return PCI_ERS_RESULT_CAN_RECOVER; 3387 case pci_channel_io_frozen: 3388 dev_warn(dev->ctrl.device, 3389 "frozen state error detected, reset controller\n"); 3390 nvme_dev_disable(dev, false); 3391 return PCI_ERS_RESULT_NEED_RESET; 3392 case pci_channel_io_perm_failure: 3393 dev_warn(dev->ctrl.device, 3394 "failure state error detected, request disconnect\n"); 3395 return PCI_ERS_RESULT_DISCONNECT; 3396 } 3397 return PCI_ERS_RESULT_NEED_RESET; 3398 } 3399 3400 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3401 { 3402 struct nvme_dev *dev = pci_get_drvdata(pdev); 3403 3404 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3405 pci_restore_state(pdev); 3406 nvme_reset_ctrl(&dev->ctrl); 3407 return PCI_ERS_RESULT_RECOVERED; 3408 } 3409 3410 static void nvme_error_resume(struct pci_dev *pdev) 3411 { 3412 struct nvme_dev *dev = pci_get_drvdata(pdev); 3413 3414 flush_work(&dev->ctrl.reset_work); 3415 } 3416 3417 static const struct pci_error_handlers nvme_err_handler = { 3418 .error_detected = nvme_error_detected, 3419 .slot_reset = nvme_slot_reset, 3420 .resume = nvme_error_resume, 3421 .reset_prepare = nvme_reset_prepare, 3422 .reset_done = nvme_reset_done, 3423 }; 3424 3425 static const struct pci_device_id nvme_id_table[] = { 3426 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3427 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3428 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3429 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3430 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3431 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3432 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3433 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3434 NVME_QUIRK_DEALLOCATE_ZEROES | 3435 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3436 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3437 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3438 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3439 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3440 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3441 NVME_QUIRK_MEDIUM_PRIO_SQ | 3442 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3443 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3444 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3445 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3446 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3447 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3448 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3449 NVME_QUIRK_BOGUS_NID, }, 3450 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3451 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3452 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3453 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3454 NVME_QUIRK_BOGUS_NID, }, 3455 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3456 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3457 NVME_QUIRK_NO_NS_DESC_LIST, }, 3458 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3459 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3460 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3461 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3462 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3463 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3464 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3465 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3466 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3467 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3468 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3469 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3470 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3471 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3472 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3473 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3474 NVME_QUIRK_BOGUS_NID, }, 3475 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3476 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3477 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3478 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3479 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3480 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3481 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3482 NVME_QUIRK_BOGUS_NID, }, 3483 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3484 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3485 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3486 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3487 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3488 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3489 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3490 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3491 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3492 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3493 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3494 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3496 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3498 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3499 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3500 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3501 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3502 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3503 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3504 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3505 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3506 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3507 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3508 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3509 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3510 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3511 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3512 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3513 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3514 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3515 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3516 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3517 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3518 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3519 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3520 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3521 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3522 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3523 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3524 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3525 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3526 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3527 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3528 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3529 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3530 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3531 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3532 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3533 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3534 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3535 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3536 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3537 NVME_QUIRK_128_BYTES_SQES | 3538 NVME_QUIRK_SHARED_TAGS | 3539 NVME_QUIRK_SKIP_CID_GEN }, 3540 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3541 { 0, } 3542 }; 3543 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3544 3545 static struct pci_driver nvme_driver = { 3546 .name = "nvme", 3547 .id_table = nvme_id_table, 3548 .probe = nvme_probe, 3549 .remove = nvme_remove, 3550 .shutdown = nvme_shutdown, 3551 #ifdef CONFIG_PM_SLEEP 3552 .driver = { 3553 .pm = &nvme_dev_pm_ops, 3554 }, 3555 #endif 3556 .sriov_configure = pci_sriov_configure_simple, 3557 .err_handler = &nvme_err_handler, 3558 }; 3559 3560 static int __init nvme_init(void) 3561 { 3562 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3563 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3564 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3565 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3566 3567 return pci_register_driver(&nvme_driver); 3568 } 3569 3570 static void __exit nvme_exit(void) 3571 { 3572 pci_unregister_driver(&nvme_driver); 3573 flush_workqueue(nvme_wq); 3574 } 3575 3576 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3577 MODULE_LICENSE("GPL"); 3578 MODULE_VERSION("1.0"); 3579 module_init(nvme_init); 3580 module_exit(nvme_exit); 3581