xref: /openbmc/linux/drivers/nvme/host/pci.c (revision fd634f41)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44 
45 #include "nvme.h"
46 
47 #define NVME_Q_DEPTH		1024
48 #define NVME_AQ_DEPTH		256
49 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
51 
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55 
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63 
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66 
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70 
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75 
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79 
80 static int nvme_reset(struct nvme_dev *dev);
81 static void nvme_process_cq(struct nvme_queue *nvmeq);
82 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
83 static void nvme_dead_ctrl(struct nvme_dev *dev);
84 static void nvme_dev_shutdown(struct nvme_dev *dev);
85 
86 struct async_cmd_info {
87 	struct kthread_work work;
88 	struct kthread_worker *worker;
89 	struct request *req;
90 	u32 result;
91 	int status;
92 	void *ctx;
93 };
94 
95 /*
96  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
97  */
98 struct nvme_dev {
99 	struct list_head node;
100 	struct nvme_queue **queues;
101 	struct blk_mq_tag_set tagset;
102 	struct blk_mq_tag_set admin_tagset;
103 	u32 __iomem *dbs;
104 	struct device *dev;
105 	struct dma_pool *prp_page_pool;
106 	struct dma_pool *prp_small_pool;
107 	unsigned queue_count;
108 	unsigned online_queues;
109 	unsigned max_qid;
110 	int q_depth;
111 	u32 db_stride;
112 	struct msix_entry *entry;
113 	void __iomem *bar;
114 	struct work_struct reset_work;
115 	struct work_struct scan_work;
116 	struct mutex shutdown_lock;
117 	bool subsystem;
118 	void __iomem *cmb;
119 	dma_addr_t cmb_dma_addr;
120 	u64 cmb_size;
121 	u32 cmbsz;
122 	unsigned long flags;
123 #define NVME_CTRL_RESETTING    0
124 
125 	struct nvme_ctrl ctrl;
126 };
127 
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130 	return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132 
133 /*
134  * An NVM Express queue.  Each device has at least two (one for admin
135  * commands and one for I/O commands).
136  */
137 struct nvme_queue {
138 	struct device *q_dmadev;
139 	struct nvme_dev *dev;
140 	char irqname[24];	/* nvme4294967295-65535\0 */
141 	spinlock_t q_lock;
142 	struct nvme_command *sq_cmds;
143 	struct nvme_command __iomem *sq_cmds_io;
144 	volatile struct nvme_completion *cqes;
145 	struct blk_mq_tags **tags;
146 	dma_addr_t sq_dma_addr;
147 	dma_addr_t cq_dma_addr;
148 	u32 __iomem *q_db;
149 	u16 q_depth;
150 	s16 cq_vector;
151 	u16 sq_head;
152 	u16 sq_tail;
153 	u16 cq_head;
154 	u16 qid;
155 	u8 cq_phase;
156 	u8 cqe_seen;
157 	struct async_cmd_info cmdinfo;
158 };
159 
160 /*
161  * The nvme_iod describes the data in an I/O, including the list of PRP
162  * entries.  You can't see it in this data structure because C doesn't let
163  * me express that.  Use nvme_alloc_iod to ensure there's enough space
164  * allocated to store the PRP list.
165  */
166 struct nvme_iod {
167 	unsigned long private;	/* For the use of the submitter of the I/O */
168 	int npages;		/* In the PRP list. 0 means small pool in use */
169 	int offset;		/* Of PRP list */
170 	int nents;		/* Used in scatterlist */
171 	int length;		/* Of data, in bytes */
172 	dma_addr_t first_dma;
173 	struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
174 	struct scatterlist sg[0];
175 };
176 
177 /*
178  * Check we didin't inadvertently grow the command struct
179  */
180 static inline void _nvme_check_size(void)
181 {
182 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195 
196 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
197 						struct nvme_completion *);
198 
199 struct nvme_cmd_info {
200 	nvme_completion_fn fn;
201 	void *ctx;
202 	int aborted;
203 	struct nvme_queue *nvmeq;
204 	struct nvme_iod iod[0];
205 };
206 
207 /*
208  * Max size of iod being embedded in the request payload
209  */
210 #define NVME_INT_PAGES		2
211 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
212 #define NVME_INT_MASK		0x01
213 
214 /*
215  * Will slightly overestimate the number of pages needed.  This is OK
216  * as it only leads to a small amount of wasted memory for the lifetime of
217  * the I/O.
218  */
219 static int nvme_npages(unsigned size, struct nvme_dev *dev)
220 {
221 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
222 				      dev->ctrl.page_size);
223 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
224 }
225 
226 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
227 {
228 	unsigned int ret = sizeof(struct nvme_cmd_info);
229 
230 	ret += sizeof(struct nvme_iod);
231 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
232 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
233 
234 	return ret;
235 }
236 
237 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
238 				unsigned int hctx_idx)
239 {
240 	struct nvme_dev *dev = data;
241 	struct nvme_queue *nvmeq = dev->queues[0];
242 
243 	WARN_ON(hctx_idx != 0);
244 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
245 	WARN_ON(nvmeq->tags);
246 
247 	hctx->driver_data = nvmeq;
248 	nvmeq->tags = &dev->admin_tagset.tags[0];
249 	return 0;
250 }
251 
252 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
253 {
254 	struct nvme_queue *nvmeq = hctx->driver_data;
255 
256 	nvmeq->tags = NULL;
257 }
258 
259 static int nvme_admin_init_request(void *data, struct request *req,
260 				unsigned int hctx_idx, unsigned int rq_idx,
261 				unsigned int numa_node)
262 {
263 	struct nvme_dev *dev = data;
264 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
265 	struct nvme_queue *nvmeq = dev->queues[0];
266 
267 	BUG_ON(!nvmeq);
268 	cmd->nvmeq = nvmeq;
269 	return 0;
270 }
271 
272 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
273 			  unsigned int hctx_idx)
274 {
275 	struct nvme_dev *dev = data;
276 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
277 
278 	if (!nvmeq->tags)
279 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
280 
281 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
282 	hctx->driver_data = nvmeq;
283 	return 0;
284 }
285 
286 static int nvme_init_request(void *data, struct request *req,
287 				unsigned int hctx_idx, unsigned int rq_idx,
288 				unsigned int numa_node)
289 {
290 	struct nvme_dev *dev = data;
291 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
292 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
293 
294 	BUG_ON(!nvmeq);
295 	cmd->nvmeq = nvmeq;
296 	return 0;
297 }
298 
299 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
300 				nvme_completion_fn handler)
301 {
302 	cmd->fn = handler;
303 	cmd->ctx = ctx;
304 	cmd->aborted = 0;
305 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
306 }
307 
308 static void *iod_get_private(struct nvme_iod *iod)
309 {
310 	return (void *) (iod->private & ~0x1UL);
311 }
312 
313 /*
314  * If bit 0 is set, the iod is embedded in the request payload.
315  */
316 static bool iod_should_kfree(struct nvme_iod *iod)
317 {
318 	return (iod->private & NVME_INT_MASK) == 0;
319 }
320 
321 /* Special values must be less than 0x1000 */
322 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
323 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
324 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
325 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
326 
327 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
328 						struct nvme_completion *cqe)
329 {
330 	if (ctx == CMD_CTX_CANCELLED)
331 		return;
332 	if (ctx == CMD_CTX_COMPLETED) {
333 		dev_warn(nvmeq->q_dmadev,
334 				"completed id %d twice on queue %d\n",
335 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
336 		return;
337 	}
338 	if (ctx == CMD_CTX_INVALID) {
339 		dev_warn(nvmeq->q_dmadev,
340 				"invalid id %d completed on queue %d\n",
341 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
342 		return;
343 	}
344 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
345 }
346 
347 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
348 {
349 	void *ctx;
350 
351 	if (fn)
352 		*fn = cmd->fn;
353 	ctx = cmd->ctx;
354 	cmd->fn = special_completion;
355 	cmd->ctx = CMD_CTX_CANCELLED;
356 	return ctx;
357 }
358 
359 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
360 						struct nvme_completion *cqe)
361 {
362 	u32 result = le32_to_cpup(&cqe->result);
363 	u16 status = le16_to_cpup(&cqe->status) >> 1;
364 
365 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
366 		++nvmeq->dev->ctrl.event_limit;
367 	if (status != NVME_SC_SUCCESS)
368 		return;
369 
370 	switch (result & 0xff07) {
371 	case NVME_AER_NOTICE_NS_CHANGED:
372 		dev_info(nvmeq->q_dmadev, "rescanning\n");
373 		schedule_work(&nvmeq->dev->scan_work);
374 	default:
375 		dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
376 	}
377 }
378 
379 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
380 						struct nvme_completion *cqe)
381 {
382 	struct request *req = ctx;
383 
384 	u16 status = le16_to_cpup(&cqe->status) >> 1;
385 	u32 result = le32_to_cpup(&cqe->result);
386 
387 	blk_mq_free_request(req);
388 
389 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
390 	++nvmeq->dev->ctrl.abort_limit;
391 }
392 
393 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
394 						struct nvme_completion *cqe)
395 {
396 	struct async_cmd_info *cmdinfo = ctx;
397 	cmdinfo->result = le32_to_cpup(&cqe->result);
398 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
399 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
400 	blk_mq_free_request(cmdinfo->req);
401 }
402 
403 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
404 				  unsigned int tag)
405 {
406 	struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
407 
408 	return blk_mq_rq_to_pdu(req);
409 }
410 
411 /*
412  * Called with local interrupts disabled and the q_lock held.  May not sleep.
413  */
414 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
415 						nvme_completion_fn *fn)
416 {
417 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
418 	void *ctx;
419 	if (tag >= nvmeq->q_depth) {
420 		*fn = special_completion;
421 		return CMD_CTX_INVALID;
422 	}
423 	if (fn)
424 		*fn = cmd->fn;
425 	ctx = cmd->ctx;
426 	cmd->fn = special_completion;
427 	cmd->ctx = CMD_CTX_COMPLETED;
428 	return ctx;
429 }
430 
431 /**
432  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
433  * @nvmeq: The queue to use
434  * @cmd: The command to send
435  *
436  * Safe to use from interrupt context
437  */
438 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
439 						struct nvme_command *cmd)
440 {
441 	u16 tail = nvmeq->sq_tail;
442 
443 	if (nvmeq->sq_cmds_io)
444 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
445 	else
446 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
447 
448 	if (++tail == nvmeq->q_depth)
449 		tail = 0;
450 	writel(tail, nvmeq->q_db);
451 	nvmeq->sq_tail = tail;
452 }
453 
454 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
455 {
456 	unsigned long flags;
457 	spin_lock_irqsave(&nvmeq->q_lock, flags);
458 	__nvme_submit_cmd(nvmeq, cmd);
459 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
460 }
461 
462 static __le64 **iod_list(struct nvme_iod *iod)
463 {
464 	return ((void *)iod) + iod->offset;
465 }
466 
467 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
468 			    unsigned nseg, unsigned long private)
469 {
470 	iod->private = private;
471 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
472 	iod->npages = -1;
473 	iod->length = nbytes;
474 	iod->nents = 0;
475 }
476 
477 static struct nvme_iod *
478 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
479 		 unsigned long priv, gfp_t gfp)
480 {
481 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
482 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
483 				sizeof(struct scatterlist) * nseg, gfp);
484 
485 	if (iod)
486 		iod_init(iod, bytes, nseg, priv);
487 
488 	return iod;
489 }
490 
491 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
492 			               gfp_t gfp)
493 {
494 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
495                                                 sizeof(struct nvme_dsm_range);
496 	struct nvme_iod *iod;
497 
498 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
499 	    size <= NVME_INT_BYTES(dev)) {
500 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
501 
502 		iod = cmd->iod;
503 		iod_init(iod, size, rq->nr_phys_segments,
504 				(unsigned long) rq | NVME_INT_MASK);
505 		return iod;
506 	}
507 
508 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
509 				(unsigned long) rq, gfp);
510 }
511 
512 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
513 {
514 	const int last_prp = dev->ctrl.page_size / 8 - 1;
515 	int i;
516 	__le64 **list = iod_list(iod);
517 	dma_addr_t prp_dma = iod->first_dma;
518 
519 	if (iod->npages == 0)
520 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
521 	for (i = 0; i < iod->npages; i++) {
522 		__le64 *prp_list = list[i];
523 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
524 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
525 		prp_dma = next_prp_dma;
526 	}
527 
528 	if (iod_should_kfree(iod))
529 		kfree(iod);
530 }
531 
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
534 {
535 	if (be32_to_cpu(pi->ref_tag) == v)
536 		pi->ref_tag = cpu_to_be32(p);
537 }
538 
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 	if (be32_to_cpu(pi->ref_tag) == p)
542 		pi->ref_tag = cpu_to_be32(v);
543 }
544 
545 /**
546  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
547  *
548  * The virtual start sector is the one that was originally submitted by the
549  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
550  * start sector may be different. Remap protection information to match the
551  * physical LBA on writes, and back to the original seed on reads.
552  *
553  * Type 0 and 3 do not have a ref tag, so no remapping required.
554  */
555 static void nvme_dif_remap(struct request *req,
556 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
557 {
558 	struct nvme_ns *ns = req->rq_disk->private_data;
559 	struct bio_integrity_payload *bip;
560 	struct t10_pi_tuple *pi;
561 	void *p, *pmap;
562 	u32 i, nlb, ts, phys, virt;
563 
564 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
565 		return;
566 
567 	bip = bio_integrity(req->bio);
568 	if (!bip)
569 		return;
570 
571 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
572 
573 	p = pmap;
574 	virt = bip_get_seed(bip);
575 	phys = nvme_block_nr(ns, blk_rq_pos(req));
576 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
577 	ts = ns->disk->queue->integrity.tuple_size;
578 
579 	for (i = 0; i < nlb; i++, virt++, phys++) {
580 		pi = (struct t10_pi_tuple *)p;
581 		dif_swap(phys, virt, pi);
582 		p += ts;
583 	}
584 	kunmap_atomic(pmap);
585 }
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request *req,
588 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
589 {
590 }
591 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
592 {
593 }
594 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
595 {
596 }
597 #endif
598 
599 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
600 						struct nvme_completion *cqe)
601 {
602 	struct nvme_iod *iod = ctx;
603 	struct request *req = iod_get_private(iod);
604 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
605 	u16 status = le16_to_cpup(&cqe->status) >> 1;
606 	int error = 0;
607 
608 	if (unlikely(status)) {
609 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
610 		    && (jiffies - req->start_time) < req->timeout) {
611 			unsigned long flags;
612 
613 			nvme_unmap_data(nvmeq->dev, iod);
614 
615 			blk_mq_requeue_request(req);
616 			spin_lock_irqsave(req->q->queue_lock, flags);
617 			if (!blk_queue_stopped(req->q))
618 				blk_mq_kick_requeue_list(req->q);
619 			spin_unlock_irqrestore(req->q->queue_lock, flags);
620 			return;
621 		}
622 
623 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
624 			if (cmd_rq->ctx == CMD_CTX_CANCELLED)
625 				error = NVME_SC_CANCELLED;
626 			else
627 				error = status;
628 		} else {
629 			error = nvme_error_status(status);
630 		}
631 	}
632 
633 	if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
634 		u32 result = le32_to_cpup(&cqe->result);
635 		req->special = (void *)(uintptr_t)result;
636 	}
637 
638 	if (cmd_rq->aborted)
639 		dev_warn(nvmeq->dev->dev,
640 			"completing aborted command with status:%04x\n",
641 			error);
642 
643 	nvme_unmap_data(nvmeq->dev, iod);
644 	blk_mq_complete_request(req, error);
645 }
646 
647 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
648 		int total_len)
649 {
650 	struct dma_pool *pool;
651 	int length = total_len;
652 	struct scatterlist *sg = iod->sg;
653 	int dma_len = sg_dma_len(sg);
654 	u64 dma_addr = sg_dma_address(sg);
655 	u32 page_size = dev->ctrl.page_size;
656 	int offset = dma_addr & (page_size - 1);
657 	__le64 *prp_list;
658 	__le64 **list = iod_list(iod);
659 	dma_addr_t prp_dma;
660 	int nprps, i;
661 
662 	length -= (page_size - offset);
663 	if (length <= 0)
664 		return true;
665 
666 	dma_len -= (page_size - offset);
667 	if (dma_len) {
668 		dma_addr += (page_size - offset);
669 	} else {
670 		sg = sg_next(sg);
671 		dma_addr = sg_dma_address(sg);
672 		dma_len = sg_dma_len(sg);
673 	}
674 
675 	if (length <= page_size) {
676 		iod->first_dma = dma_addr;
677 		return true;
678 	}
679 
680 	nprps = DIV_ROUND_UP(length, page_size);
681 	if (nprps <= (256 / 8)) {
682 		pool = dev->prp_small_pool;
683 		iod->npages = 0;
684 	} else {
685 		pool = dev->prp_page_pool;
686 		iod->npages = 1;
687 	}
688 
689 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
690 	if (!prp_list) {
691 		iod->first_dma = dma_addr;
692 		iod->npages = -1;
693 		return false;
694 	}
695 	list[0] = prp_list;
696 	iod->first_dma = prp_dma;
697 	i = 0;
698 	for (;;) {
699 		if (i == page_size >> 3) {
700 			__le64 *old_prp_list = prp_list;
701 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
702 			if (!prp_list)
703 				return false;
704 			list[iod->npages++] = prp_list;
705 			prp_list[0] = old_prp_list[i - 1];
706 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
707 			i = 1;
708 		}
709 		prp_list[i++] = cpu_to_le64(dma_addr);
710 		dma_len -= page_size;
711 		dma_addr += page_size;
712 		length -= page_size;
713 		if (length <= 0)
714 			break;
715 		if (dma_len > 0)
716 			continue;
717 		BUG_ON(dma_len < 0);
718 		sg = sg_next(sg);
719 		dma_addr = sg_dma_address(sg);
720 		dma_len = sg_dma_len(sg);
721 	}
722 
723 	return true;
724 }
725 
726 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
727 		struct nvme_command *cmnd)
728 {
729 	struct request *req = iod_get_private(iod);
730 	struct request_queue *q = req->q;
731 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
732 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
733 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
734 
735 	sg_init_table(iod->sg, req->nr_phys_segments);
736 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
737 	if (!iod->nents)
738 		goto out;
739 
740 	ret = BLK_MQ_RQ_QUEUE_BUSY;
741 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
742 		goto out;
743 
744 	if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
745 		goto out_unmap;
746 
747 	ret = BLK_MQ_RQ_QUEUE_ERROR;
748 	if (blk_integrity_rq(req)) {
749 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
750 			goto out_unmap;
751 
752 		sg_init_table(iod->meta_sg, 1);
753 		if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
754 			goto out_unmap;
755 
756 		if (rq_data_dir(req))
757 			nvme_dif_remap(req, nvme_dif_prep);
758 
759 		if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
760 			goto out_unmap;
761 	}
762 
763 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
764 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
765 	if (blk_integrity_rq(req))
766 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
767 	return BLK_MQ_RQ_QUEUE_OK;
768 
769 out_unmap:
770 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
771 out:
772 	return ret;
773 }
774 
775 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
776 {
777 	struct request *req = iod_get_private(iod);
778 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
779 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
780 
781 	if (iod->nents) {
782 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783 		if (blk_integrity_rq(req)) {
784 			if (!rq_data_dir(req))
785 				nvme_dif_remap(req, nvme_dif_complete);
786 			dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
787 		}
788 	}
789 
790 	nvme_free_iod(dev, iod);
791 }
792 
793 /*
794  * We reuse the small pool to allocate the 16-byte range here as it is not
795  * worth having a special pool for these or additional cases to handle freeing
796  * the iod.
797  */
798 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
799 		struct nvme_iod *iod, struct nvme_command *cmnd)
800 {
801 	struct request *req = iod_get_private(iod);
802 	struct nvme_dsm_range *range;
803 
804 	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
805 						&iod->first_dma);
806 	if (!range)
807 		return BLK_MQ_RQ_QUEUE_BUSY;
808 	iod_list(iod)[0] = (__le64 *)range;
809 	iod->npages = 0;
810 
811 	range->cattr = cpu_to_le32(0);
812 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
813 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
814 
815 	memset(cmnd, 0, sizeof(*cmnd));
816 	cmnd->dsm.opcode = nvme_cmd_dsm;
817 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
818 	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
819 	cmnd->dsm.nr = 0;
820 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
821 	return BLK_MQ_RQ_QUEUE_OK;
822 }
823 
824 /*
825  * NOTE: ns is NULL when called on the admin queue.
826  */
827 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
828 			 const struct blk_mq_queue_data *bd)
829 {
830 	struct nvme_ns *ns = hctx->queue->queuedata;
831 	struct nvme_queue *nvmeq = hctx->driver_data;
832 	struct nvme_dev *dev = nvmeq->dev;
833 	struct request *req = bd->rq;
834 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
835 	struct nvme_iod *iod;
836 	struct nvme_command cmnd;
837 	int ret = BLK_MQ_RQ_QUEUE_OK;
838 
839 	/*
840 	 * If formated with metadata, require the block layer provide a buffer
841 	 * unless this namespace is formated such that the metadata can be
842 	 * stripped/generated by the controller with PRACT=1.
843 	 */
844 	if (ns && ns->ms && !blk_integrity_rq(req)) {
845 		if (!(ns->pi_type && ns->ms == 8) &&
846 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
847 			blk_mq_complete_request(req, -EFAULT);
848 			return BLK_MQ_RQ_QUEUE_OK;
849 		}
850 	}
851 
852 	iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
853 	if (!iod)
854 		return BLK_MQ_RQ_QUEUE_BUSY;
855 
856 	if (req->cmd_flags & REQ_DISCARD) {
857 		ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
858 	} else {
859 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
860 			memcpy(&cmnd, req->cmd, sizeof(cmnd));
861 		else if (req->cmd_flags & REQ_FLUSH)
862 			nvme_setup_flush(ns, &cmnd);
863 		else
864 			nvme_setup_rw(ns, req, &cmnd);
865 
866 		if (req->nr_phys_segments)
867 			ret = nvme_map_data(dev, iod, &cmnd);
868 	}
869 
870 	if (ret)
871 		goto out;
872 
873 	cmnd.common.command_id = req->tag;
874 	nvme_set_info(cmd, iod, req_completion);
875 
876 	spin_lock_irq(&nvmeq->q_lock);
877 	__nvme_submit_cmd(nvmeq, &cmnd);
878 	nvme_process_cq(nvmeq);
879 	spin_unlock_irq(&nvmeq->q_lock);
880 	return BLK_MQ_RQ_QUEUE_OK;
881 out:
882 	nvme_free_iod(dev, iod);
883 	return ret;
884 }
885 
886 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
887 {
888 	u16 head, phase;
889 
890 	head = nvmeq->cq_head;
891 	phase = nvmeq->cq_phase;
892 
893 	for (;;) {
894 		void *ctx;
895 		nvme_completion_fn fn;
896 		struct nvme_completion cqe = nvmeq->cqes[head];
897 		if ((le16_to_cpu(cqe.status) & 1) != phase)
898 			break;
899 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
900 		if (++head == nvmeq->q_depth) {
901 			head = 0;
902 			phase = !phase;
903 		}
904 		if (tag && *tag == cqe.command_id)
905 			*tag = -1;
906 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
907 		fn(nvmeq, ctx, &cqe);
908 	}
909 
910 	/* If the controller ignores the cq head doorbell and continuously
911 	 * writes to the queue, it is theoretically possible to wrap around
912 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
913 	 * requires that 0.1% of your interrupts are handled, so this isn't
914 	 * a big problem.
915 	 */
916 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
917 		return;
918 
919 	if (likely(nvmeq->cq_vector >= 0))
920 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
921 	nvmeq->cq_head = head;
922 	nvmeq->cq_phase = phase;
923 
924 	nvmeq->cqe_seen = 1;
925 }
926 
927 static void nvme_process_cq(struct nvme_queue *nvmeq)
928 {
929 	__nvme_process_cq(nvmeq, NULL);
930 }
931 
932 static irqreturn_t nvme_irq(int irq, void *data)
933 {
934 	irqreturn_t result;
935 	struct nvme_queue *nvmeq = data;
936 	spin_lock(&nvmeq->q_lock);
937 	nvme_process_cq(nvmeq);
938 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
939 	nvmeq->cqe_seen = 0;
940 	spin_unlock(&nvmeq->q_lock);
941 	return result;
942 }
943 
944 static irqreturn_t nvme_irq_check(int irq, void *data)
945 {
946 	struct nvme_queue *nvmeq = data;
947 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
948 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
949 		return IRQ_NONE;
950 	return IRQ_WAKE_THREAD;
951 }
952 
953 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
954 {
955 	struct nvme_queue *nvmeq = hctx->driver_data;
956 
957 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
958 	    nvmeq->cq_phase) {
959 		spin_lock_irq(&nvmeq->q_lock);
960 		__nvme_process_cq(nvmeq, &tag);
961 		spin_unlock_irq(&nvmeq->q_lock);
962 
963 		if (tag == -1)
964 			return 1;
965 	}
966 
967 	return 0;
968 }
969 
970 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
971 {
972 	struct nvme_queue *nvmeq = dev->queues[0];
973 	struct nvme_command c;
974 	struct nvme_cmd_info *cmd_info;
975 	struct request *req;
976 
977 	req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
978 			BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
979 	if (IS_ERR(req))
980 		return PTR_ERR(req);
981 
982 	req->cmd_flags |= REQ_NO_TIMEOUT;
983 	cmd_info = blk_mq_rq_to_pdu(req);
984 	nvme_set_info(cmd_info, NULL, async_req_completion);
985 
986 	memset(&c, 0, sizeof(c));
987 	c.common.opcode = nvme_admin_async_event;
988 	c.common.command_id = req->tag;
989 
990 	blk_mq_free_request(req);
991 	__nvme_submit_cmd(nvmeq, &c);
992 	return 0;
993 }
994 
995 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
996 			struct nvme_command *cmd,
997 			struct async_cmd_info *cmdinfo, unsigned timeout)
998 {
999 	struct nvme_queue *nvmeq = dev->queues[0];
1000 	struct request *req;
1001 	struct nvme_cmd_info *cmd_rq;
1002 
1003 	req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1004 	if (IS_ERR(req))
1005 		return PTR_ERR(req);
1006 
1007 	req->timeout = timeout;
1008 	cmd_rq = blk_mq_rq_to_pdu(req);
1009 	cmdinfo->req = req;
1010 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1011 	cmdinfo->status = -EINTR;
1012 
1013 	cmd->common.command_id = req->tag;
1014 
1015 	nvme_submit_cmd(nvmeq, cmd);
1016 	return 0;
1017 }
1018 
1019 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1020 {
1021 	struct nvme_command c;
1022 
1023 	memset(&c, 0, sizeof(c));
1024 	c.delete_queue.opcode = opcode;
1025 	c.delete_queue.qid = cpu_to_le16(id);
1026 
1027 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1028 }
1029 
1030 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1031 						struct nvme_queue *nvmeq)
1032 {
1033 	struct nvme_command c;
1034 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1035 
1036 	/*
1037 	 * Note: we (ab)use the fact the the prp fields survive if no data
1038 	 * is attached to the request.
1039 	 */
1040 	memset(&c, 0, sizeof(c));
1041 	c.create_cq.opcode = nvme_admin_create_cq;
1042 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1043 	c.create_cq.cqid = cpu_to_le16(qid);
1044 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1045 	c.create_cq.cq_flags = cpu_to_le16(flags);
1046 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1047 
1048 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1049 }
1050 
1051 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1052 						struct nvme_queue *nvmeq)
1053 {
1054 	struct nvme_command c;
1055 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1056 
1057 	/*
1058 	 * Note: we (ab)use the fact the the prp fields survive if no data
1059 	 * is attached to the request.
1060 	 */
1061 	memset(&c, 0, sizeof(c));
1062 	c.create_sq.opcode = nvme_admin_create_sq;
1063 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1064 	c.create_sq.sqid = cpu_to_le16(qid);
1065 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1066 	c.create_sq.sq_flags = cpu_to_le16(flags);
1067 	c.create_sq.cqid = cpu_to_le16(qid);
1068 
1069 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1070 }
1071 
1072 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1073 {
1074 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1075 }
1076 
1077 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1078 {
1079 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1080 }
1081 
1082 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1083 {
1084 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1085 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1086 	struct nvme_dev *dev = nvmeq->dev;
1087 	struct request *abort_req;
1088 	struct nvme_cmd_info *abort_cmd;
1089 	struct nvme_command cmd;
1090 
1091 	/*
1092 	 * Shutdown immediately if controller times out while starting. The
1093 	 * reset work will see the pci device disabled when it gets the forced
1094 	 * cancellation error. All outstanding requests are completed on
1095 	 * shutdown, so we return BLK_EH_HANDLED.
1096 	 */
1097 	if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1098 		dev_warn(dev->dev,
1099 			 "I/O %d QID %d timeout, disable controller\n",
1100 			 req->tag, nvmeq->qid);
1101 		nvme_dev_shutdown(dev);
1102 		req->errors = NVME_SC_CANCELLED;
1103 		return BLK_EH_HANDLED;
1104 	}
1105 
1106 	/*
1107  	 * Shutdown the controller immediately and schedule a reset if the
1108  	 * command was already aborted once before and still hasn't been
1109  	 * returned to the driver, or if this is the admin queue.
1110 	 */
1111 	if (!nvmeq->qid || cmd_rq->aborted) {
1112 		dev_warn(dev->dev,
1113 			 "I/O %d QID %d timeout, reset controller\n",
1114 			 req->tag, nvmeq->qid);
1115 		nvme_dev_shutdown(dev);
1116 		queue_work(nvme_workq, &dev->reset_work);
1117 
1118 		/*
1119 		 * Mark the request as handled, since the inline shutdown
1120 		 * forces all outstanding requests to complete.
1121 		 */
1122 		req->errors = NVME_SC_CANCELLED;
1123 		return BLK_EH_HANDLED;
1124 	}
1125 
1126 	if (!dev->ctrl.abort_limit)
1127 		return BLK_EH_RESET_TIMER;
1128 
1129 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1130 			BLK_MQ_REQ_NOWAIT);
1131 	if (IS_ERR(abort_req))
1132 		return BLK_EH_RESET_TIMER;
1133 
1134 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1135 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1136 
1137 	memset(&cmd, 0, sizeof(cmd));
1138 	cmd.abort.opcode = nvme_admin_abort_cmd;
1139 	cmd.abort.cid = req->tag;
1140 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1141 	cmd.abort.command_id = abort_req->tag;
1142 
1143 	--dev->ctrl.abort_limit;
1144 	cmd_rq->aborted = 1;
1145 
1146 	dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1147 				 req->tag, nvmeq->qid);
1148 	nvme_submit_cmd(dev->queues[0], &cmd);
1149 
1150 	/*
1151 	 * The aborted req will be completed on receiving the abort req.
1152 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1153 	 * as the device then is in a faulty state.
1154 	 */
1155 	return BLK_EH_RESET_TIMER;
1156 }
1157 
1158 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1159 {
1160 	struct nvme_queue *nvmeq = data;
1161 	void *ctx;
1162 	nvme_completion_fn fn;
1163 	struct nvme_cmd_info *cmd;
1164 	struct nvme_completion cqe;
1165 
1166 	if (!blk_mq_request_started(req))
1167 		return;
1168 
1169 	cmd = blk_mq_rq_to_pdu(req);
1170 
1171 	if (cmd->ctx == CMD_CTX_CANCELLED)
1172 		return;
1173 
1174 	if (blk_queue_dying(req->q))
1175 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1176 	else
1177 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1178 
1179 
1180 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1181 						req->tag, nvmeq->qid);
1182 	ctx = cancel_cmd_info(cmd, &fn);
1183 	fn(nvmeq, ctx, &cqe);
1184 }
1185 
1186 static void nvme_free_queue(struct nvme_queue *nvmeq)
1187 {
1188 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1189 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1190 	if (nvmeq->sq_cmds)
1191 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1192 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1193 	kfree(nvmeq);
1194 }
1195 
1196 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1197 {
1198 	int i;
1199 
1200 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1201 		struct nvme_queue *nvmeq = dev->queues[i];
1202 		dev->queue_count--;
1203 		dev->queues[i] = NULL;
1204 		nvme_free_queue(nvmeq);
1205 	}
1206 }
1207 
1208 /**
1209  * nvme_suspend_queue - put queue into suspended state
1210  * @nvmeq - queue to suspend
1211  */
1212 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1213 {
1214 	int vector;
1215 
1216 	spin_lock_irq(&nvmeq->q_lock);
1217 	if (nvmeq->cq_vector == -1) {
1218 		spin_unlock_irq(&nvmeq->q_lock);
1219 		return 1;
1220 	}
1221 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1222 	nvmeq->dev->online_queues--;
1223 	nvmeq->cq_vector = -1;
1224 	spin_unlock_irq(&nvmeq->q_lock);
1225 
1226 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1227 		blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1228 
1229 	irq_set_affinity_hint(vector, NULL);
1230 	free_irq(vector, nvmeq);
1231 
1232 	return 0;
1233 }
1234 
1235 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1236 {
1237 	spin_lock_irq(&nvmeq->q_lock);
1238 	if (nvmeq->tags && *nvmeq->tags)
1239 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1240 	spin_unlock_irq(&nvmeq->q_lock);
1241 }
1242 
1243 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1244 {
1245 	struct nvme_queue *nvmeq = dev->queues[qid];
1246 
1247 	if (!nvmeq)
1248 		return;
1249 	if (nvme_suspend_queue(nvmeq))
1250 		return;
1251 
1252 	/* Don't tell the adapter to delete the admin queue.
1253 	 * Don't tell a removed adapter to delete IO queues. */
1254 	if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1255 		adapter_delete_sq(dev, qid);
1256 		adapter_delete_cq(dev, qid);
1257 	}
1258 
1259 	spin_lock_irq(&nvmeq->q_lock);
1260 	nvme_process_cq(nvmeq);
1261 	spin_unlock_irq(&nvmeq->q_lock);
1262 }
1263 
1264 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1265 				int entry_size)
1266 {
1267 	int q_depth = dev->q_depth;
1268 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1269 					  dev->ctrl.page_size);
1270 
1271 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1272 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1273 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1274 		q_depth = div_u64(mem_per_q, entry_size);
1275 
1276 		/*
1277 		 * Ensure the reduced q_depth is above some threshold where it
1278 		 * would be better to map queues in system memory with the
1279 		 * original depth
1280 		 */
1281 		if (q_depth < 64)
1282 			return -ENOMEM;
1283 	}
1284 
1285 	return q_depth;
1286 }
1287 
1288 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1289 				int qid, int depth)
1290 {
1291 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1292 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1293 						      dev->ctrl.page_size);
1294 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1295 		nvmeq->sq_cmds_io = dev->cmb + offset;
1296 	} else {
1297 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1298 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1299 		if (!nvmeq->sq_cmds)
1300 			return -ENOMEM;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1307 							int depth)
1308 {
1309 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1310 	if (!nvmeq)
1311 		return NULL;
1312 
1313 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1314 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1315 	if (!nvmeq->cqes)
1316 		goto free_nvmeq;
1317 
1318 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1319 		goto free_cqdma;
1320 
1321 	nvmeq->q_dmadev = dev->dev;
1322 	nvmeq->dev = dev;
1323 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1324 			dev->ctrl.instance, qid);
1325 	spin_lock_init(&nvmeq->q_lock);
1326 	nvmeq->cq_head = 0;
1327 	nvmeq->cq_phase = 1;
1328 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1329 	nvmeq->q_depth = depth;
1330 	nvmeq->qid = qid;
1331 	nvmeq->cq_vector = -1;
1332 	dev->queues[qid] = nvmeq;
1333 
1334 	/* make sure queue descriptor is set before queue count, for kthread */
1335 	mb();
1336 	dev->queue_count++;
1337 
1338 	return nvmeq;
1339 
1340  free_cqdma:
1341 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1342 							nvmeq->cq_dma_addr);
1343  free_nvmeq:
1344 	kfree(nvmeq);
1345 	return NULL;
1346 }
1347 
1348 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1349 							const char *name)
1350 {
1351 	if (use_threaded_interrupts)
1352 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1353 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1354 					name, nvmeq);
1355 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1356 				IRQF_SHARED, name, nvmeq);
1357 }
1358 
1359 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1360 {
1361 	struct nvme_dev *dev = nvmeq->dev;
1362 
1363 	spin_lock_irq(&nvmeq->q_lock);
1364 	nvmeq->sq_tail = 0;
1365 	nvmeq->cq_head = 0;
1366 	nvmeq->cq_phase = 1;
1367 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1368 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1369 	dev->online_queues++;
1370 	spin_unlock_irq(&nvmeq->q_lock);
1371 }
1372 
1373 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1374 {
1375 	struct nvme_dev *dev = nvmeq->dev;
1376 	int result;
1377 
1378 	nvmeq->cq_vector = qid - 1;
1379 	result = adapter_alloc_cq(dev, qid, nvmeq);
1380 	if (result < 0)
1381 		return result;
1382 
1383 	result = adapter_alloc_sq(dev, qid, nvmeq);
1384 	if (result < 0)
1385 		goto release_cq;
1386 
1387 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1388 	if (result < 0)
1389 		goto release_sq;
1390 
1391 	nvme_init_queue(nvmeq, qid);
1392 	return result;
1393 
1394  release_sq:
1395 	adapter_delete_sq(dev, qid);
1396  release_cq:
1397 	adapter_delete_cq(dev, qid);
1398 	return result;
1399 }
1400 
1401 static struct blk_mq_ops nvme_mq_admin_ops = {
1402 	.queue_rq	= nvme_queue_rq,
1403 	.map_queue	= blk_mq_map_queue,
1404 	.init_hctx	= nvme_admin_init_hctx,
1405 	.exit_hctx      = nvme_admin_exit_hctx,
1406 	.init_request	= nvme_admin_init_request,
1407 	.timeout	= nvme_timeout,
1408 };
1409 
1410 static struct blk_mq_ops nvme_mq_ops = {
1411 	.queue_rq	= nvme_queue_rq,
1412 	.map_queue	= blk_mq_map_queue,
1413 	.init_hctx	= nvme_init_hctx,
1414 	.init_request	= nvme_init_request,
1415 	.timeout	= nvme_timeout,
1416 	.poll		= nvme_poll,
1417 };
1418 
1419 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1420 {
1421 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1422 		blk_cleanup_queue(dev->ctrl.admin_q);
1423 		blk_mq_free_tag_set(&dev->admin_tagset);
1424 	}
1425 }
1426 
1427 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1428 {
1429 	if (!dev->ctrl.admin_q) {
1430 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1431 		dev->admin_tagset.nr_hw_queues = 1;
1432 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1433 		dev->admin_tagset.reserved_tags = 1;
1434 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1435 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1436 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1437 		dev->admin_tagset.driver_data = dev;
1438 
1439 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1440 			return -ENOMEM;
1441 
1442 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1443 		if (IS_ERR(dev->ctrl.admin_q)) {
1444 			blk_mq_free_tag_set(&dev->admin_tagset);
1445 			return -ENOMEM;
1446 		}
1447 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1448 			nvme_dev_remove_admin(dev);
1449 			dev->ctrl.admin_q = NULL;
1450 			return -ENODEV;
1451 		}
1452 	} else
1453 		blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1454 
1455 	return 0;
1456 }
1457 
1458 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1459 {
1460 	int result;
1461 	u32 aqa;
1462 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1463 	struct nvme_queue *nvmeq;
1464 
1465 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1466 						NVME_CAP_NSSRC(cap) : 0;
1467 
1468 	if (dev->subsystem &&
1469 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1470 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1471 
1472 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1473 	if (result < 0)
1474 		return result;
1475 
1476 	nvmeq = dev->queues[0];
1477 	if (!nvmeq) {
1478 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1479 		if (!nvmeq)
1480 			return -ENOMEM;
1481 	}
1482 
1483 	aqa = nvmeq->q_depth - 1;
1484 	aqa |= aqa << 16;
1485 
1486 	writel(aqa, dev->bar + NVME_REG_AQA);
1487 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1488 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1489 
1490 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1491 	if (result)
1492 		goto free_nvmeq;
1493 
1494 	nvmeq->cq_vector = 0;
1495 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1496 	if (result) {
1497 		nvmeq->cq_vector = -1;
1498 		goto free_nvmeq;
1499 	}
1500 
1501 	return result;
1502 
1503  free_nvmeq:
1504 	nvme_free_queues(dev, 0);
1505 	return result;
1506 }
1507 
1508 static int nvme_kthread(void *data)
1509 {
1510 	struct nvme_dev *dev, *next;
1511 
1512 	while (!kthread_should_stop()) {
1513 		set_current_state(TASK_INTERRUPTIBLE);
1514 		spin_lock(&dev_list_lock);
1515 		list_for_each_entry_safe(dev, next, &dev_list, node) {
1516 			int i;
1517 			u32 csts = readl(dev->bar + NVME_REG_CSTS);
1518 
1519 			/*
1520 			 * Skip controllers currently under reset.
1521 			 */
1522 			if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1523 				continue;
1524 
1525 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1526 							csts & NVME_CSTS_CFS) {
1527 				if (queue_work(nvme_workq, &dev->reset_work)) {
1528 					dev_warn(dev->dev,
1529 						"Failed status: %x, reset controller\n",
1530 						readl(dev->bar + NVME_REG_CSTS));
1531 				}
1532 				continue;
1533 			}
1534 			for (i = 0; i < dev->queue_count; i++) {
1535 				struct nvme_queue *nvmeq = dev->queues[i];
1536 				if (!nvmeq)
1537 					continue;
1538 				spin_lock_irq(&nvmeq->q_lock);
1539 				nvme_process_cq(nvmeq);
1540 
1541 				while (i == 0 && dev->ctrl.event_limit > 0) {
1542 					if (nvme_submit_async_admin_req(dev))
1543 						break;
1544 					dev->ctrl.event_limit--;
1545 				}
1546 				spin_unlock_irq(&nvmeq->q_lock);
1547 			}
1548 		}
1549 		spin_unlock(&dev_list_lock);
1550 		schedule_timeout(round_jiffies_relative(HZ));
1551 	}
1552 	return 0;
1553 }
1554 
1555 static int nvme_create_io_queues(struct nvme_dev *dev)
1556 {
1557 	unsigned i;
1558 	int ret = 0;
1559 
1560 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1561 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1562 			ret = -ENOMEM;
1563 			break;
1564 		}
1565 	}
1566 
1567 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1568 		ret = nvme_create_queue(dev->queues[i], i);
1569 		if (ret) {
1570 			nvme_free_queues(dev, i);
1571 			break;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1577 	 * than the desired aount of queues, and even a controller without
1578 	 * I/O queues an still be used to issue admin commands.  This might
1579 	 * be useful to upgrade a buggy firmware for example.
1580 	 */
1581 	return ret >= 0 ? 0 : ret;
1582 }
1583 
1584 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1585 {
1586 	u64 szu, size, offset;
1587 	u32 cmbloc;
1588 	resource_size_t bar_size;
1589 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1590 	void __iomem *cmb;
1591 	dma_addr_t dma_addr;
1592 
1593 	if (!use_cmb_sqes)
1594 		return NULL;
1595 
1596 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1597 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1598 		return NULL;
1599 
1600 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1601 
1602 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1603 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1604 	offset = szu * NVME_CMB_OFST(cmbloc);
1605 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1606 
1607 	if (offset > bar_size)
1608 		return NULL;
1609 
1610 	/*
1611 	 * Controllers may support a CMB size larger than their BAR,
1612 	 * for example, due to being behind a bridge. Reduce the CMB to
1613 	 * the reported size of the BAR
1614 	 */
1615 	if (size > bar_size - offset)
1616 		size = bar_size - offset;
1617 
1618 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1619 	cmb = ioremap_wc(dma_addr, size);
1620 	if (!cmb)
1621 		return NULL;
1622 
1623 	dev->cmb_dma_addr = dma_addr;
1624 	dev->cmb_size = size;
1625 	return cmb;
1626 }
1627 
1628 static inline void nvme_release_cmb(struct nvme_dev *dev)
1629 {
1630 	if (dev->cmb) {
1631 		iounmap(dev->cmb);
1632 		dev->cmb = NULL;
1633 	}
1634 }
1635 
1636 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1637 {
1638 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1639 }
1640 
1641 static int nvme_setup_io_queues(struct nvme_dev *dev)
1642 {
1643 	struct nvme_queue *adminq = dev->queues[0];
1644 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1645 	int result, i, vecs, nr_io_queues, size;
1646 
1647 	nr_io_queues = num_possible_cpus();
1648 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1649 	if (result < 0)
1650 		return result;
1651 
1652 	/*
1653 	 * Degraded controllers might return an error when setting the queue
1654 	 * count.  We still want to be able to bring them online and offer
1655 	 * access to the admin queue, as that might be only way to fix them up.
1656 	 */
1657 	if (result > 0) {
1658 		dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1659 		nr_io_queues = 0;
1660 		result = 0;
1661 	}
1662 
1663 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1664 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1665 				sizeof(struct nvme_command));
1666 		if (result > 0)
1667 			dev->q_depth = result;
1668 		else
1669 			nvme_release_cmb(dev);
1670 	}
1671 
1672 	size = db_bar_size(dev, nr_io_queues);
1673 	if (size > 8192) {
1674 		iounmap(dev->bar);
1675 		do {
1676 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1677 			if (dev->bar)
1678 				break;
1679 			if (!--nr_io_queues)
1680 				return -ENOMEM;
1681 			size = db_bar_size(dev, nr_io_queues);
1682 		} while (1);
1683 		dev->dbs = dev->bar + 4096;
1684 		adminq->q_db = dev->dbs;
1685 	}
1686 
1687 	/* Deregister the admin queue's interrupt */
1688 	free_irq(dev->entry[0].vector, adminq);
1689 
1690 	/*
1691 	 * If we enable msix early due to not intx, disable it again before
1692 	 * setting up the full range we need.
1693 	 */
1694 	if (!pdev->irq)
1695 		pci_disable_msix(pdev);
1696 
1697 	for (i = 0; i < nr_io_queues; i++)
1698 		dev->entry[i].entry = i;
1699 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1700 	if (vecs < 0) {
1701 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1702 		if (vecs < 0) {
1703 			vecs = 1;
1704 		} else {
1705 			for (i = 0; i < vecs; i++)
1706 				dev->entry[i].vector = i + pdev->irq;
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * Should investigate if there's a performance win from allocating
1712 	 * more queues than interrupt vectors; it might allow the submission
1713 	 * path to scale better, even if the receive path is limited by the
1714 	 * number of interrupts.
1715 	 */
1716 	nr_io_queues = vecs;
1717 	dev->max_qid = nr_io_queues;
1718 
1719 	result = queue_request_irq(dev, adminq, adminq->irqname);
1720 	if (result) {
1721 		adminq->cq_vector = -1;
1722 		goto free_queues;
1723 	}
1724 
1725 	/* Free previously allocated queues that are no longer usable */
1726 	nvme_free_queues(dev, nr_io_queues + 1);
1727 	return nvme_create_io_queues(dev);
1728 
1729  free_queues:
1730 	nvme_free_queues(dev, 1);
1731 	return result;
1732 }
1733 
1734 static void nvme_set_irq_hints(struct nvme_dev *dev)
1735 {
1736 	struct nvme_queue *nvmeq;
1737 	int i;
1738 
1739 	for (i = 0; i < dev->online_queues; i++) {
1740 		nvmeq = dev->queues[i];
1741 
1742 		if (!nvmeq->tags || !(*nvmeq->tags))
1743 			continue;
1744 
1745 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1746 					blk_mq_tags_cpumask(*nvmeq->tags));
1747 	}
1748 }
1749 
1750 static void nvme_dev_scan(struct work_struct *work)
1751 {
1752 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1753 
1754 	if (!dev->tagset.tags)
1755 		return;
1756 	nvme_scan_namespaces(&dev->ctrl);
1757 	nvme_set_irq_hints(dev);
1758 }
1759 
1760 /*
1761  * Return: error value if an error occurred setting up the queues or calling
1762  * Identify Device.  0 if these succeeded, even if adding some of the
1763  * namespaces failed.  At the moment, these failures are silent.  TBD which
1764  * failures should be reported.
1765  */
1766 static int nvme_dev_add(struct nvme_dev *dev)
1767 {
1768 	if (!dev->ctrl.tagset) {
1769 		dev->tagset.ops = &nvme_mq_ops;
1770 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1771 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1772 		dev->tagset.numa_node = dev_to_node(dev->dev);
1773 		dev->tagset.queue_depth =
1774 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1775 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1776 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1777 		dev->tagset.driver_data = dev;
1778 
1779 		if (blk_mq_alloc_tag_set(&dev->tagset))
1780 			return 0;
1781 		dev->ctrl.tagset = &dev->tagset;
1782 	}
1783 	schedule_work(&dev->scan_work);
1784 	return 0;
1785 }
1786 
1787 static int nvme_dev_map(struct nvme_dev *dev)
1788 {
1789 	u64 cap;
1790 	int bars, result = -ENOMEM;
1791 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1792 
1793 	if (pci_enable_device_mem(pdev))
1794 		return result;
1795 
1796 	dev->entry[0].vector = pdev->irq;
1797 	pci_set_master(pdev);
1798 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1799 	if (!bars)
1800 		goto disable_pci;
1801 
1802 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1803 		goto disable_pci;
1804 
1805 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1806 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1807 		goto disable;
1808 
1809 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1810 	if (!dev->bar)
1811 		goto disable;
1812 
1813 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1814 		result = -ENODEV;
1815 		goto unmap;
1816 	}
1817 
1818 	/*
1819 	 * Some devices don't advertse INTx interrupts, pre-enable a single
1820 	 * MSIX vec for setup. We'll adjust this later.
1821 	 */
1822 	if (!pdev->irq) {
1823 		result = pci_enable_msix(pdev, dev->entry, 1);
1824 		if (result < 0)
1825 			goto unmap;
1826 	}
1827 
1828 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1829 
1830 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1831 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1832 	dev->dbs = dev->bar + 4096;
1833 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1834 		dev->cmb = nvme_map_cmb(dev);
1835 
1836 	return 0;
1837 
1838  unmap:
1839 	iounmap(dev->bar);
1840 	dev->bar = NULL;
1841  disable:
1842 	pci_release_regions(pdev);
1843  disable_pci:
1844 	pci_disable_device(pdev);
1845 	return result;
1846 }
1847 
1848 static void nvme_dev_unmap(struct nvme_dev *dev)
1849 {
1850 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1851 
1852 	if (pdev->msi_enabled)
1853 		pci_disable_msi(pdev);
1854 	else if (pdev->msix_enabled)
1855 		pci_disable_msix(pdev);
1856 
1857 	if (dev->bar) {
1858 		iounmap(dev->bar);
1859 		dev->bar = NULL;
1860 		pci_release_regions(pdev);
1861 	}
1862 
1863 	if (pci_is_enabled(pdev))
1864 		pci_disable_device(pdev);
1865 }
1866 
1867 struct nvme_delq_ctx {
1868 	struct task_struct *waiter;
1869 	struct kthread_worker *worker;
1870 	atomic_t refcount;
1871 };
1872 
1873 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1874 {
1875 	dq->waiter = current;
1876 	mb();
1877 
1878 	for (;;) {
1879 		set_current_state(TASK_KILLABLE);
1880 		if (!atomic_read(&dq->refcount))
1881 			break;
1882 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
1883 					fatal_signal_pending(current)) {
1884 			/*
1885 			 * Disable the controller first since we can't trust it
1886 			 * at this point, but leave the admin queue enabled
1887 			 * until all queue deletion requests are flushed.
1888 			 * FIXME: This may take a while if there are more h/w
1889 			 * queues than admin tags.
1890 			 */
1891 			set_current_state(TASK_RUNNING);
1892 			nvme_disable_ctrl(&dev->ctrl,
1893 				lo_hi_readq(dev->bar + NVME_REG_CAP));
1894 			nvme_clear_queue(dev->queues[0]);
1895 			flush_kthread_worker(dq->worker);
1896 			nvme_disable_queue(dev, 0);
1897 			return;
1898 		}
1899 	}
1900 	set_current_state(TASK_RUNNING);
1901 }
1902 
1903 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1904 {
1905 	atomic_dec(&dq->refcount);
1906 	if (dq->waiter)
1907 		wake_up_process(dq->waiter);
1908 }
1909 
1910 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1911 {
1912 	atomic_inc(&dq->refcount);
1913 	return dq;
1914 }
1915 
1916 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1917 {
1918 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1919 	nvme_put_dq(dq);
1920 
1921 	spin_lock_irq(&nvmeq->q_lock);
1922 	nvme_process_cq(nvmeq);
1923 	spin_unlock_irq(&nvmeq->q_lock);
1924 }
1925 
1926 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1927 						kthread_work_func_t fn)
1928 {
1929 	struct nvme_command c;
1930 
1931 	memset(&c, 0, sizeof(c));
1932 	c.delete_queue.opcode = opcode;
1933 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1934 
1935 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
1936 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1937 								ADMIN_TIMEOUT);
1938 }
1939 
1940 static void nvme_del_cq_work_handler(struct kthread_work *work)
1941 {
1942 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1943 							cmdinfo.work);
1944 	nvme_del_queue_end(nvmeq);
1945 }
1946 
1947 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1948 {
1949 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1950 						nvme_del_cq_work_handler);
1951 }
1952 
1953 static void nvme_del_sq_work_handler(struct kthread_work *work)
1954 {
1955 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1956 							cmdinfo.work);
1957 	int status = nvmeq->cmdinfo.status;
1958 
1959 	if (!status)
1960 		status = nvme_delete_cq(nvmeq);
1961 	if (status)
1962 		nvme_del_queue_end(nvmeq);
1963 }
1964 
1965 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1966 {
1967 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1968 						nvme_del_sq_work_handler);
1969 }
1970 
1971 static void nvme_del_queue_start(struct kthread_work *work)
1972 {
1973 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1974 							cmdinfo.work);
1975 	if (nvme_delete_sq(nvmeq))
1976 		nvme_del_queue_end(nvmeq);
1977 }
1978 
1979 static void nvme_disable_io_queues(struct nvme_dev *dev)
1980 {
1981 	int i;
1982 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1983 	struct nvme_delq_ctx dq;
1984 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1985 					&worker, "nvme%d", dev->ctrl.instance);
1986 
1987 	if (IS_ERR(kworker_task)) {
1988 		dev_err(dev->dev,
1989 			"Failed to create queue del task\n");
1990 		for (i = dev->queue_count - 1; i > 0; i--)
1991 			nvme_disable_queue(dev, i);
1992 		return;
1993 	}
1994 
1995 	dq.waiter = NULL;
1996 	atomic_set(&dq.refcount, 0);
1997 	dq.worker = &worker;
1998 	for (i = dev->queue_count - 1; i > 0; i--) {
1999 		struct nvme_queue *nvmeq = dev->queues[i];
2000 
2001 		if (nvme_suspend_queue(nvmeq))
2002 			continue;
2003 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2004 		nvmeq->cmdinfo.worker = dq.worker;
2005 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2006 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2007 	}
2008 	nvme_wait_dq(&dq, dev);
2009 	kthread_stop(kworker_task);
2010 }
2011 
2012 static int nvme_dev_list_add(struct nvme_dev *dev)
2013 {
2014 	bool start_thread = false;
2015 
2016 	spin_lock(&dev_list_lock);
2017 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2018 		start_thread = true;
2019 		nvme_thread = NULL;
2020 	}
2021 	list_add(&dev->node, &dev_list);
2022 	spin_unlock(&dev_list_lock);
2023 
2024 	if (start_thread) {
2025 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2026 		wake_up_all(&nvme_kthread_wait);
2027 	} else
2028 		wait_event_killable(nvme_kthread_wait, nvme_thread);
2029 
2030 	if (IS_ERR_OR_NULL(nvme_thread))
2031 		return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2032 
2033 	return 0;
2034 }
2035 
2036 /*
2037 * Remove the node from the device list and check
2038 * for whether or not we need to stop the nvme_thread.
2039 */
2040 static void nvme_dev_list_remove(struct nvme_dev *dev)
2041 {
2042 	struct task_struct *tmp = NULL;
2043 
2044 	spin_lock(&dev_list_lock);
2045 	list_del_init(&dev->node);
2046 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2047 		tmp = nvme_thread;
2048 		nvme_thread = NULL;
2049 	}
2050 	spin_unlock(&dev_list_lock);
2051 
2052 	if (tmp)
2053 		kthread_stop(tmp);
2054 }
2055 
2056 static void nvme_freeze_queues(struct nvme_dev *dev)
2057 {
2058 	struct nvme_ns *ns;
2059 
2060 	list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2061 		blk_mq_freeze_queue_start(ns->queue);
2062 
2063 		spin_lock_irq(ns->queue->queue_lock);
2064 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2065 		spin_unlock_irq(ns->queue->queue_lock);
2066 
2067 		blk_mq_cancel_requeue_work(ns->queue);
2068 		blk_mq_stop_hw_queues(ns->queue);
2069 	}
2070 }
2071 
2072 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2073 {
2074 	struct nvme_ns *ns;
2075 
2076 	list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2077 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2078 		blk_mq_unfreeze_queue(ns->queue);
2079 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2080 		blk_mq_kick_requeue_list(ns->queue);
2081 	}
2082 }
2083 
2084 static void nvme_dev_shutdown(struct nvme_dev *dev)
2085 {
2086 	int i;
2087 	u32 csts = -1;
2088 
2089 	nvme_dev_list_remove(dev);
2090 
2091 	mutex_lock(&dev->shutdown_lock);
2092 	if (dev->bar) {
2093 		nvme_freeze_queues(dev);
2094 		csts = readl(dev->bar + NVME_REG_CSTS);
2095 	}
2096 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2097 		for (i = dev->queue_count - 1; i >= 0; i--) {
2098 			struct nvme_queue *nvmeq = dev->queues[i];
2099 			nvme_suspend_queue(nvmeq);
2100 		}
2101 	} else {
2102 		nvme_disable_io_queues(dev);
2103 		nvme_shutdown_ctrl(&dev->ctrl);
2104 		nvme_disable_queue(dev, 0);
2105 	}
2106 	nvme_dev_unmap(dev);
2107 
2108 	for (i = dev->queue_count - 1; i >= 0; i--)
2109 		nvme_clear_queue(dev->queues[i]);
2110 	mutex_unlock(&dev->shutdown_lock);
2111 }
2112 
2113 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2114 {
2115 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2116 						PAGE_SIZE, PAGE_SIZE, 0);
2117 	if (!dev->prp_page_pool)
2118 		return -ENOMEM;
2119 
2120 	/* Optimisation for I/Os between 4k and 128k */
2121 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2122 						256, 256, 0);
2123 	if (!dev->prp_small_pool) {
2124 		dma_pool_destroy(dev->prp_page_pool);
2125 		return -ENOMEM;
2126 	}
2127 	return 0;
2128 }
2129 
2130 static void nvme_release_prp_pools(struct nvme_dev *dev)
2131 {
2132 	dma_pool_destroy(dev->prp_page_pool);
2133 	dma_pool_destroy(dev->prp_small_pool);
2134 }
2135 
2136 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2137 {
2138 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2139 
2140 	put_device(dev->dev);
2141 	if (dev->tagset.tags)
2142 		blk_mq_free_tag_set(&dev->tagset);
2143 	if (dev->ctrl.admin_q)
2144 		blk_put_queue(dev->ctrl.admin_q);
2145 	kfree(dev->queues);
2146 	kfree(dev->entry);
2147 	kfree(dev);
2148 }
2149 
2150 static void nvme_reset_work(struct work_struct *work)
2151 {
2152 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2153 	int result;
2154 
2155 	if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2156 		goto out;
2157 
2158 	/*
2159 	 * If we're called to reset a live controller first shut it down before
2160 	 * moving on.
2161 	 */
2162 	if (dev->bar)
2163 		nvme_dev_shutdown(dev);
2164 
2165 	set_bit(NVME_CTRL_RESETTING, &dev->flags);
2166 
2167 	result = nvme_dev_map(dev);
2168 	if (result)
2169 		goto out;
2170 
2171 	result = nvme_configure_admin_queue(dev);
2172 	if (result)
2173 		goto unmap;
2174 
2175 	nvme_init_queue(dev->queues[0], 0);
2176 	result = nvme_alloc_admin_tags(dev);
2177 	if (result)
2178 		goto disable;
2179 
2180 	result = nvme_init_identify(&dev->ctrl);
2181 	if (result)
2182 		goto free_tags;
2183 
2184 	result = nvme_setup_io_queues(dev);
2185 	if (result)
2186 		goto free_tags;
2187 
2188 	dev->ctrl.event_limit = 1;
2189 
2190 	result = nvme_dev_list_add(dev);
2191 	if (result)
2192 		goto remove;
2193 
2194 	/*
2195 	 * Keep the controller around but remove all namespaces if we don't have
2196 	 * any working I/O queue.
2197 	 */
2198 	if (dev->online_queues < 2) {
2199 		dev_warn(dev->dev, "IO queues not created\n");
2200 		nvme_remove_namespaces(&dev->ctrl);
2201 	} else {
2202 		nvme_unfreeze_queues(dev);
2203 		nvme_dev_add(dev);
2204 	}
2205 
2206 	clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2207 	return;
2208 
2209  remove:
2210 	nvme_dev_list_remove(dev);
2211  free_tags:
2212 	nvme_dev_remove_admin(dev);
2213 	blk_put_queue(dev->ctrl.admin_q);
2214 	dev->ctrl.admin_q = NULL;
2215 	dev->queues[0]->tags = NULL;
2216  disable:
2217 	nvme_disable_queue(dev, 0);
2218  unmap:
2219 	nvme_dev_unmap(dev);
2220  out:
2221 	if (!work_pending(&dev->reset_work))
2222 		nvme_dead_ctrl(dev);
2223 }
2224 
2225 static int nvme_remove_dead_ctrl(void *arg)
2226 {
2227 	struct nvme_dev *dev = (struct nvme_dev *)arg;
2228 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2229 
2230 	if (pci_get_drvdata(pdev))
2231 		pci_stop_and_remove_bus_device_locked(pdev);
2232 	nvme_put_ctrl(&dev->ctrl);
2233 	return 0;
2234 }
2235 
2236 static void nvme_dead_ctrl(struct nvme_dev *dev)
2237 {
2238 	dev_warn(dev->dev, "Device failed to resume\n");
2239 	kref_get(&dev->ctrl.kref);
2240 	if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2241 						dev->ctrl.instance))) {
2242 		dev_err(dev->dev,
2243 			"Failed to start controller remove task\n");
2244 		nvme_put_ctrl(&dev->ctrl);
2245 	}
2246 }
2247 
2248 static int nvme_reset(struct nvme_dev *dev)
2249 {
2250 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2251 		return -ENODEV;
2252 
2253 	if (!queue_work(nvme_workq, &dev->reset_work))
2254 		return -EBUSY;
2255 
2256 	flush_work(&dev->reset_work);
2257 	return 0;
2258 }
2259 
2260 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2261 {
2262 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2263 	return 0;
2264 }
2265 
2266 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2267 {
2268 	writel(val, to_nvme_dev(ctrl)->bar + off);
2269 	return 0;
2270 }
2271 
2272 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2273 {
2274 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2275 	return 0;
2276 }
2277 
2278 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2279 {
2280 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2281 
2282 	return !dev->bar || dev->online_queues < 2;
2283 }
2284 
2285 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2286 {
2287 	return nvme_reset(to_nvme_dev(ctrl));
2288 }
2289 
2290 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2291 	.reg_read32		= nvme_pci_reg_read32,
2292 	.reg_write32		= nvme_pci_reg_write32,
2293 	.reg_read64		= nvme_pci_reg_read64,
2294 	.io_incapable		= nvme_pci_io_incapable,
2295 	.reset_ctrl		= nvme_pci_reset_ctrl,
2296 	.free_ctrl		= nvme_pci_free_ctrl,
2297 };
2298 
2299 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2300 {
2301 	int node, result = -ENOMEM;
2302 	struct nvme_dev *dev;
2303 
2304 	node = dev_to_node(&pdev->dev);
2305 	if (node == NUMA_NO_NODE)
2306 		set_dev_node(&pdev->dev, 0);
2307 
2308 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2309 	if (!dev)
2310 		return -ENOMEM;
2311 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2312 							GFP_KERNEL, node);
2313 	if (!dev->entry)
2314 		goto free;
2315 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2316 							GFP_KERNEL, node);
2317 	if (!dev->queues)
2318 		goto free;
2319 
2320 	dev->dev = get_device(&pdev->dev);
2321 	pci_set_drvdata(pdev, dev);
2322 
2323 	INIT_LIST_HEAD(&dev->node);
2324 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
2325 	INIT_WORK(&dev->reset_work, nvme_reset_work);
2326 	mutex_init(&dev->shutdown_lock);
2327 
2328 	result = nvme_setup_prp_pools(dev);
2329 	if (result)
2330 		goto put_pci;
2331 
2332 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2333 			id->driver_data);
2334 	if (result)
2335 		goto release_pools;
2336 
2337 	schedule_work(&dev->reset_work);
2338 	return 0;
2339 
2340  release_pools:
2341 	nvme_release_prp_pools(dev);
2342  put_pci:
2343 	put_device(dev->dev);
2344  free:
2345 	kfree(dev->queues);
2346 	kfree(dev->entry);
2347 	kfree(dev);
2348 	return result;
2349 }
2350 
2351 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2352 {
2353 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2354 
2355 	if (prepare)
2356 		nvme_dev_shutdown(dev);
2357 	else
2358 		schedule_work(&dev->reset_work);
2359 }
2360 
2361 static void nvme_shutdown(struct pci_dev *pdev)
2362 {
2363 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2364 	nvme_dev_shutdown(dev);
2365 }
2366 
2367 static void nvme_remove(struct pci_dev *pdev)
2368 {
2369 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2370 
2371 	spin_lock(&dev_list_lock);
2372 	list_del_init(&dev->node);
2373 	spin_unlock(&dev_list_lock);
2374 
2375 	pci_set_drvdata(pdev, NULL);
2376 	flush_work(&dev->reset_work);
2377 	flush_work(&dev->scan_work);
2378 	nvme_remove_namespaces(&dev->ctrl);
2379 	nvme_dev_shutdown(dev);
2380 	nvme_dev_remove_admin(dev);
2381 	nvme_free_queues(dev, 0);
2382 	nvme_release_cmb(dev);
2383 	nvme_release_prp_pools(dev);
2384 	nvme_put_ctrl(&dev->ctrl);
2385 }
2386 
2387 /* These functions are yet to be implemented */
2388 #define nvme_error_detected NULL
2389 #define nvme_dump_registers NULL
2390 #define nvme_link_reset NULL
2391 #define nvme_slot_reset NULL
2392 #define nvme_error_resume NULL
2393 
2394 #ifdef CONFIG_PM_SLEEP
2395 static int nvme_suspend(struct device *dev)
2396 {
2397 	struct pci_dev *pdev = to_pci_dev(dev);
2398 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2399 
2400 	nvme_dev_shutdown(ndev);
2401 	return 0;
2402 }
2403 
2404 static int nvme_resume(struct device *dev)
2405 {
2406 	struct pci_dev *pdev = to_pci_dev(dev);
2407 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2408 
2409 	schedule_work(&ndev->reset_work);
2410 	return 0;
2411 }
2412 #endif
2413 
2414 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2415 
2416 static const struct pci_error_handlers nvme_err_handler = {
2417 	.error_detected	= nvme_error_detected,
2418 	.mmio_enabled	= nvme_dump_registers,
2419 	.link_reset	= nvme_link_reset,
2420 	.slot_reset	= nvme_slot_reset,
2421 	.resume		= nvme_error_resume,
2422 	.reset_notify	= nvme_reset_notify,
2423 };
2424 
2425 /* Move to pci_ids.h later */
2426 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2427 
2428 static const struct pci_device_id nvme_id_table[] = {
2429 	{ PCI_VDEVICE(INTEL, 0x0953),
2430 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
2431 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2432 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2433 	{ 0, }
2434 };
2435 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2436 
2437 static struct pci_driver nvme_driver = {
2438 	.name		= "nvme",
2439 	.id_table	= nvme_id_table,
2440 	.probe		= nvme_probe,
2441 	.remove		= nvme_remove,
2442 	.shutdown	= nvme_shutdown,
2443 	.driver		= {
2444 		.pm	= &nvme_dev_pm_ops,
2445 	},
2446 	.err_handler	= &nvme_err_handler,
2447 };
2448 
2449 static int __init nvme_init(void)
2450 {
2451 	int result;
2452 
2453 	init_waitqueue_head(&nvme_kthread_wait);
2454 
2455 	nvme_workq = create_singlethread_workqueue("nvme");
2456 	if (!nvme_workq)
2457 		return -ENOMEM;
2458 
2459 	result = nvme_core_init();
2460 	if (result < 0)
2461 		goto kill_workq;
2462 
2463 	result = pci_register_driver(&nvme_driver);
2464 	if (result)
2465 		goto core_exit;
2466 	return 0;
2467 
2468  core_exit:
2469 	nvme_core_exit();
2470  kill_workq:
2471 	destroy_workqueue(nvme_workq);
2472 	return result;
2473 }
2474 
2475 static void __exit nvme_exit(void)
2476 {
2477 	pci_unregister_driver(&nvme_driver);
2478 	nvme_core_exit();
2479 	destroy_workqueue(nvme_workq);
2480 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2481 	_nvme_check_size();
2482 }
2483 
2484 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2485 MODULE_LICENSE("GPL");
2486 MODULE_VERSION("1.0");
2487 module_init(nvme_init);
2488 module_exit(nvme_exit);
2489