xref: /openbmc/linux/drivers/nvme/host/pci.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/sed-opal.h>
27 #include <linux/pci-p2pdma.h>
28 
29 #include "trace.h"
30 #include "nvme.h"
31 
32 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
33 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
34 
35 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
36 
37 /*
38  * These can be higher, but we need to ensure that any command doesn't
39  * require an sg allocation that needs more than a page of data.
40  */
41 #define NVME_MAX_KB_SZ	4096
42 #define NVME_MAX_SEGS	127
43 
44 static int use_threaded_interrupts;
45 module_param(use_threaded_interrupts, int, 0);
46 
47 static bool use_cmb_sqes = true;
48 module_param(use_cmb_sqes, bool, 0444);
49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
50 
51 static unsigned int max_host_mem_size_mb = 128;
52 module_param(max_host_mem_size_mb, uint, 0444);
53 MODULE_PARM_DESC(max_host_mem_size_mb,
54 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
55 
56 static unsigned int sgl_threshold = SZ_32K;
57 module_param(sgl_threshold, uint, 0644);
58 MODULE_PARM_DESC(sgl_threshold,
59 		"Use SGLs when average request segment size is larger or equal to "
60 		"this size. Use 0 to disable SGLs.");
61 
62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
63 static const struct kernel_param_ops io_queue_depth_ops = {
64 	.set = io_queue_depth_set,
65 	.get = param_get_uint,
66 };
67 
68 static unsigned int io_queue_depth = 1024;
69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
71 
72 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
73 {
74 	unsigned int n;
75 	int ret;
76 
77 	ret = kstrtouint(val, 10, &n);
78 	if (ret != 0 || n > num_possible_cpus())
79 		return -EINVAL;
80 	return param_set_uint(val, kp);
81 }
82 
83 static const struct kernel_param_ops io_queue_count_ops = {
84 	.set = io_queue_count_set,
85 	.get = param_get_uint,
86 };
87 
88 static unsigned int write_queues;
89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
90 MODULE_PARM_DESC(write_queues,
91 	"Number of queues to use for writes. If not set, reads and writes "
92 	"will share a queue set.");
93 
94 static unsigned int poll_queues;
95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
97 
98 static bool noacpi;
99 module_param(noacpi, bool, 0444);
100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
101 
102 struct nvme_dev;
103 struct nvme_queue;
104 
105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
107 
108 /*
109  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
110  */
111 struct nvme_dev {
112 	struct nvme_queue *queues;
113 	struct blk_mq_tag_set tagset;
114 	struct blk_mq_tag_set admin_tagset;
115 	u32 __iomem *dbs;
116 	struct device *dev;
117 	struct dma_pool *prp_page_pool;
118 	struct dma_pool *prp_small_pool;
119 	unsigned online_queues;
120 	unsigned max_qid;
121 	unsigned io_queues[HCTX_MAX_TYPES];
122 	unsigned int num_vecs;
123 	u32 q_depth;
124 	int io_sqes;
125 	u32 db_stride;
126 	void __iomem *bar;
127 	unsigned long bar_mapped_size;
128 	struct work_struct remove_work;
129 	struct mutex shutdown_lock;
130 	bool subsystem;
131 	u64 cmb_size;
132 	bool cmb_use_sqes;
133 	u32 cmbsz;
134 	u32 cmbloc;
135 	struct nvme_ctrl ctrl;
136 	u32 last_ps;
137 
138 	mempool_t *iod_mempool;
139 
140 	/* shadow doorbell buffer support: */
141 	u32 *dbbuf_dbs;
142 	dma_addr_t dbbuf_dbs_dma_addr;
143 	u32 *dbbuf_eis;
144 	dma_addr_t dbbuf_eis_dma_addr;
145 
146 	/* host memory buffer support: */
147 	u64 host_mem_size;
148 	u32 nr_host_mem_descs;
149 	dma_addr_t host_mem_descs_dma;
150 	struct nvme_host_mem_buf_desc *host_mem_descs;
151 	void **host_mem_desc_bufs;
152 	unsigned int nr_allocated_queues;
153 	unsigned int nr_write_queues;
154 	unsigned int nr_poll_queues;
155 };
156 
157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
158 {
159 	int ret;
160 	u32 n;
161 
162 	ret = kstrtou32(val, 10, &n);
163 	if (ret != 0 || n < 2)
164 		return -EINVAL;
165 
166 	return param_set_uint(val, kp);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 cq_head;
202 	u16 qid;
203 	u8 cq_phase;
204 	u8 sqes;
205 	unsigned long flags;
206 #define NVMEQ_ENABLED		0
207 #define NVMEQ_SQ_CMB		1
208 #define NVMEQ_DELETE_ERROR	2
209 #define NVMEQ_POLLED		3
210 	u32 *dbbuf_sq_db;
211 	u32 *dbbuf_cq_db;
212 	u32 *dbbuf_sq_ei;
213 	u32 *dbbuf_cq_ei;
214 	struct completion delete_done;
215 };
216 
217 /*
218  * The nvme_iod describes the data in an I/O.
219  *
220  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
221  * to the actual struct scatterlist.
222  */
223 struct nvme_iod {
224 	struct nvme_request req;
225 	struct nvme_queue *nvmeq;
226 	bool use_sgl;
227 	int aborted;
228 	int npages;		/* In the PRP list. 0 means small pool in use */
229 	int nents;		/* Used in scatterlist */
230 	dma_addr_t first_dma;
231 	unsigned int dma_len;	/* length of single DMA segment mapping */
232 	dma_addr_t meta_dma;
233 	struct scatterlist *sg;
234 };
235 
236 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
237 {
238 	return dev->nr_allocated_queues * 8 * dev->db_stride;
239 }
240 
241 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
242 {
243 	unsigned int mem_size = nvme_dbbuf_size(dev);
244 
245 	if (dev->dbbuf_dbs)
246 		return 0;
247 
248 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
249 					    &dev->dbbuf_dbs_dma_addr,
250 					    GFP_KERNEL);
251 	if (!dev->dbbuf_dbs)
252 		return -ENOMEM;
253 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
254 					    &dev->dbbuf_eis_dma_addr,
255 					    GFP_KERNEL);
256 	if (!dev->dbbuf_eis) {
257 		dma_free_coherent(dev->dev, mem_size,
258 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
259 		dev->dbbuf_dbs = NULL;
260 		return -ENOMEM;
261 	}
262 
263 	return 0;
264 }
265 
266 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
267 {
268 	unsigned int mem_size = nvme_dbbuf_size(dev);
269 
270 	if (dev->dbbuf_dbs) {
271 		dma_free_coherent(dev->dev, mem_size,
272 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
273 		dev->dbbuf_dbs = NULL;
274 	}
275 	if (dev->dbbuf_eis) {
276 		dma_free_coherent(dev->dev, mem_size,
277 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
278 		dev->dbbuf_eis = NULL;
279 	}
280 }
281 
282 static void nvme_dbbuf_init(struct nvme_dev *dev,
283 			    struct nvme_queue *nvmeq, int qid)
284 {
285 	if (!dev->dbbuf_dbs || !qid)
286 		return;
287 
288 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
289 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
290 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
291 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
292 }
293 
294 static void nvme_dbbuf_set(struct nvme_dev *dev)
295 {
296 	struct nvme_command c;
297 
298 	if (!dev->dbbuf_dbs)
299 		return;
300 
301 	memset(&c, 0, sizeof(c));
302 	c.dbbuf.opcode = nvme_admin_dbbuf;
303 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
304 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
305 
306 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
307 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
308 		/* Free memory and continue on */
309 		nvme_dbbuf_dma_free(dev);
310 	}
311 }
312 
313 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
314 {
315 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
316 }
317 
318 /* Update dbbuf and return true if an MMIO is required */
319 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
320 					      volatile u32 *dbbuf_ei)
321 {
322 	if (dbbuf_db) {
323 		u16 old_value;
324 
325 		/*
326 		 * Ensure that the queue is written before updating
327 		 * the doorbell in memory
328 		 */
329 		wmb();
330 
331 		old_value = *dbbuf_db;
332 		*dbbuf_db = value;
333 
334 		/*
335 		 * Ensure that the doorbell is updated before reading the event
336 		 * index from memory.  The controller needs to provide similar
337 		 * ordering to ensure the envent index is updated before reading
338 		 * the doorbell.
339 		 */
340 		mb();
341 
342 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
343 			return false;
344 	}
345 
346 	return true;
347 }
348 
349 /*
350  * Will slightly overestimate the number of pages needed.  This is OK
351  * as it only leads to a small amount of wasted memory for the lifetime of
352  * the I/O.
353  */
354 static int nvme_pci_npages_prp(void)
355 {
356 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
357 				      NVME_CTRL_PAGE_SIZE);
358 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
359 }
360 
361 /*
362  * Calculates the number of pages needed for the SGL segments. For example a 4k
363  * page can accommodate 256 SGL descriptors.
364  */
365 static int nvme_pci_npages_sgl(void)
366 {
367 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
368 			PAGE_SIZE);
369 }
370 
371 static size_t nvme_pci_iod_alloc_size(void)
372 {
373 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
374 
375 	return sizeof(__le64 *) * npages +
376 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
377 }
378 
379 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
380 				unsigned int hctx_idx)
381 {
382 	struct nvme_dev *dev = data;
383 	struct nvme_queue *nvmeq = &dev->queues[0];
384 
385 	WARN_ON(hctx_idx != 0);
386 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
387 
388 	hctx->driver_data = nvmeq;
389 	return 0;
390 }
391 
392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393 			  unsigned int hctx_idx)
394 {
395 	struct nvme_dev *dev = data;
396 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
397 
398 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
399 	hctx->driver_data = nvmeq;
400 	return 0;
401 }
402 
403 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
404 		unsigned int hctx_idx, unsigned int numa_node)
405 {
406 	struct nvme_dev *dev = set->driver_data;
407 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
408 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
409 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
410 
411 	BUG_ON(!nvmeq);
412 	iod->nvmeq = nvmeq;
413 
414 	nvme_req(req)->ctrl = &dev->ctrl;
415 	return 0;
416 }
417 
418 static int queue_irq_offset(struct nvme_dev *dev)
419 {
420 	/* if we have more than 1 vec, admin queue offsets us by 1 */
421 	if (dev->num_vecs > 1)
422 		return 1;
423 
424 	return 0;
425 }
426 
427 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
428 {
429 	struct nvme_dev *dev = set->driver_data;
430 	int i, qoff, offset;
431 
432 	offset = queue_irq_offset(dev);
433 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
434 		struct blk_mq_queue_map *map = &set->map[i];
435 
436 		map->nr_queues = dev->io_queues[i];
437 		if (!map->nr_queues) {
438 			BUG_ON(i == HCTX_TYPE_DEFAULT);
439 			continue;
440 		}
441 
442 		/*
443 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
444 		 * affinity), so use the regular blk-mq cpu mapping
445 		 */
446 		map->queue_offset = qoff;
447 		if (i != HCTX_TYPE_POLL && offset)
448 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
449 		else
450 			blk_mq_map_queues(map);
451 		qoff += map->nr_queues;
452 		offset += map->nr_queues;
453 	}
454 
455 	return 0;
456 }
457 
458 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq)
459 {
460 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
461 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
462 		writel(nvmeq->sq_tail, nvmeq->q_db);
463 }
464 
465 /**
466  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
467  * @nvmeq: The queue to use
468  * @cmd: The command to send
469  * @write_sq: whether to write to the SQ doorbell
470  */
471 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
472 			    bool write_sq)
473 {
474 	spin_lock(&nvmeq->sq_lock);
475 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
476 	       cmd, sizeof(*cmd));
477 	if (++nvmeq->sq_tail == nvmeq->q_depth)
478 		nvmeq->sq_tail = 0;
479 	if (write_sq)
480 		nvme_write_sq_db(nvmeq);
481 	spin_unlock(&nvmeq->sq_lock);
482 }
483 
484 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
485 {
486 	struct nvme_queue *nvmeq = hctx->driver_data;
487 
488 	spin_lock(&nvmeq->sq_lock);
489 	nvme_write_sq_db(nvmeq);
490 	spin_unlock(&nvmeq->sq_lock);
491 }
492 
493 static void **nvme_pci_iod_list(struct request *req)
494 {
495 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
496 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
497 }
498 
499 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
500 {
501 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
502 	int nseg = blk_rq_nr_phys_segments(req);
503 	unsigned int avg_seg_size;
504 
505 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
506 
507 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
508 		return false;
509 	if (!iod->nvmeq->qid)
510 		return false;
511 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
512 		return false;
513 	return true;
514 }
515 
516 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
517 {
518 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
520 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
521 	int i;
522 
523 	if (iod->dma_len) {
524 		dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
525 			       rq_dma_dir(req));
526 		return;
527 	}
528 
529 	WARN_ON_ONCE(!iod->nents);
530 
531 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
532 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
533 				    rq_dma_dir(req));
534 	else
535 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
536 
537 
538 	if (iod->npages == 0)
539 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
540 			dma_addr);
541 
542 	for (i = 0; i < iod->npages; i++) {
543 		void *addr = nvme_pci_iod_list(req)[i];
544 
545 		if (iod->use_sgl) {
546 			struct nvme_sgl_desc *sg_list = addr;
547 
548 			next_dma_addr =
549 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
550 		} else {
551 			__le64 *prp_list = addr;
552 
553 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
554 		}
555 
556 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
557 		dma_addr = next_dma_addr;
558 	}
559 
560 	mempool_free(iod->sg, dev->iod_mempool);
561 }
562 
563 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
564 {
565 	int i;
566 	struct scatterlist *sg;
567 
568 	for_each_sg(sgl, sg, nents, i) {
569 		dma_addr_t phys = sg_phys(sg);
570 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
571 			"dma_address:%pad dma_length:%d\n",
572 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
573 			sg_dma_len(sg));
574 	}
575 }
576 
577 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
578 		struct request *req, struct nvme_rw_command *cmnd)
579 {
580 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
581 	struct dma_pool *pool;
582 	int length = blk_rq_payload_bytes(req);
583 	struct scatterlist *sg = iod->sg;
584 	int dma_len = sg_dma_len(sg);
585 	u64 dma_addr = sg_dma_address(sg);
586 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
587 	__le64 *prp_list;
588 	void **list = nvme_pci_iod_list(req);
589 	dma_addr_t prp_dma;
590 	int nprps, i;
591 
592 	length -= (NVME_CTRL_PAGE_SIZE - offset);
593 	if (length <= 0) {
594 		iod->first_dma = 0;
595 		goto done;
596 	}
597 
598 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
599 	if (dma_len) {
600 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
601 	} else {
602 		sg = sg_next(sg);
603 		dma_addr = sg_dma_address(sg);
604 		dma_len = sg_dma_len(sg);
605 	}
606 
607 	if (length <= NVME_CTRL_PAGE_SIZE) {
608 		iod->first_dma = dma_addr;
609 		goto done;
610 	}
611 
612 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
613 	if (nprps <= (256 / 8)) {
614 		pool = dev->prp_small_pool;
615 		iod->npages = 0;
616 	} else {
617 		pool = dev->prp_page_pool;
618 		iod->npages = 1;
619 	}
620 
621 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
622 	if (!prp_list) {
623 		iod->first_dma = dma_addr;
624 		iod->npages = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	list[0] = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				return BLK_STS_RESOURCE;
636 			list[iod->npages++] = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 
656 done:
657 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
658 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 
660 	return BLK_STS_OK;
661 
662  bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	if (entries < SGES_PER_PAGE) {
682 		sge->length = cpu_to_le32(entries * sizeof(*sge));
683 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 	} else {
685 		sge->length = cpu_to_le32(PAGE_SIZE);
686 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
687 	}
688 }
689 
690 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
691 		struct request *req, struct nvme_rw_command *cmd, int entries)
692 {
693 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 	struct dma_pool *pool;
695 	struct nvme_sgl_desc *sg_list;
696 	struct scatterlist *sg = iod->sg;
697 	dma_addr_t sgl_dma;
698 	int i = 0;
699 
700 	/* setting the transfer type as SGL */
701 	cmd->flags = NVME_CMD_SGL_METABUF;
702 
703 	if (entries == 1) {
704 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
705 		return BLK_STS_OK;
706 	}
707 
708 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
709 		pool = dev->prp_small_pool;
710 		iod->npages = 0;
711 	} else {
712 		pool = dev->prp_page_pool;
713 		iod->npages = 1;
714 	}
715 
716 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
717 	if (!sg_list) {
718 		iod->npages = -1;
719 		return BLK_STS_RESOURCE;
720 	}
721 
722 	nvme_pci_iod_list(req)[0] = sg_list;
723 	iod->first_dma = sgl_dma;
724 
725 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
726 
727 	do {
728 		if (i == SGES_PER_PAGE) {
729 			struct nvme_sgl_desc *old_sg_desc = sg_list;
730 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
731 
732 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
733 			if (!sg_list)
734 				return BLK_STS_RESOURCE;
735 
736 			i = 0;
737 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
738 			sg_list[i++] = *link;
739 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
740 		}
741 
742 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
743 		sg = sg_next(sg);
744 	} while (--entries > 0);
745 
746 	return BLK_STS_OK;
747 }
748 
749 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
750 		struct request *req, struct nvme_rw_command *cmnd,
751 		struct bio_vec *bv)
752 {
753 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
754 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
755 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
763 	if (bv->bv_len > first_prp_len)
764 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
765 	return BLK_STS_OK;
766 }
767 
768 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
769 		struct request *req, struct nvme_rw_command *cmnd,
770 		struct bio_vec *bv)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 
774 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
775 	if (dma_mapping_error(dev->dev, iod->first_dma))
776 		return BLK_STS_RESOURCE;
777 	iod->dma_len = bv->bv_len;
778 
779 	cmnd->flags = NVME_CMD_SGL_METABUF;
780 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
781 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
782 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
783 	return BLK_STS_OK;
784 }
785 
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787 		struct nvme_command *cmnd)
788 {
789 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 	blk_status_t ret = BLK_STS_RESOURCE;
791 	int nr_mapped;
792 
793 	if (blk_rq_nr_phys_segments(req) == 1) {
794 		struct bio_vec bv = req_bvec(req);
795 
796 		if (!is_pci_p2pdma_page(bv.bv_page)) {
797 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
798 				return nvme_setup_prp_simple(dev, req,
799 							     &cmnd->rw, &bv);
800 
801 			if (iod->nvmeq->qid &&
802 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
803 				return nvme_setup_sgl_simple(dev, req,
804 							     &cmnd->rw, &bv);
805 		}
806 	}
807 
808 	iod->dma_len = 0;
809 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
810 	if (!iod->sg)
811 		return BLK_STS_RESOURCE;
812 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
813 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
814 	if (!iod->nents)
815 		goto out;
816 
817 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
818 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
819 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
820 	else
821 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
822 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
823 	if (!nr_mapped)
824 		goto out;
825 
826 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
827 	if (iod->use_sgl)
828 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
829 	else
830 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 out:
832 	if (ret != BLK_STS_OK)
833 		nvme_unmap_data(dev, req);
834 	return ret;
835 }
836 
837 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
838 		struct nvme_command *cmnd)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 
842 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
843 			rq_dma_dir(req), 0);
844 	if (dma_mapping_error(dev->dev, iod->meta_dma))
845 		return BLK_STS_IOERR;
846 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
847 	return BLK_STS_OK;
848 }
849 
850 /*
851  * NOTE: ns is NULL when called on the admin queue.
852  */
853 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
854 			 const struct blk_mq_queue_data *bd)
855 {
856 	struct nvme_ns *ns = hctx->queue->queuedata;
857 	struct nvme_queue *nvmeq = hctx->driver_data;
858 	struct nvme_dev *dev = nvmeq->dev;
859 	struct request *req = bd->rq;
860 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
861 	struct nvme_command cmnd;
862 	blk_status_t ret;
863 
864 	iod->aborted = 0;
865 	iod->npages = -1;
866 	iod->nents = 0;
867 
868 	/*
869 	 * We should not need to do this, but we're still using this to
870 	 * ensure we can drain requests on a dying queue.
871 	 */
872 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
873 		return BLK_STS_IOERR;
874 
875 	ret = nvme_setup_cmd(ns, req, &cmnd);
876 	if (ret)
877 		return ret;
878 
879 	if (blk_rq_nr_phys_segments(req)) {
880 		ret = nvme_map_data(dev, req, &cmnd);
881 		if (ret)
882 			goto out_free_cmd;
883 	}
884 
885 	if (blk_integrity_rq(req)) {
886 		ret = nvme_map_metadata(dev, req, &cmnd);
887 		if (ret)
888 			goto out_unmap_data;
889 	}
890 
891 	blk_mq_start_request(req);
892 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
893 	return BLK_STS_OK;
894 out_unmap_data:
895 	nvme_unmap_data(dev, req);
896 out_free_cmd:
897 	nvme_cleanup_cmd(req);
898 	return ret;
899 }
900 
901 static void nvme_pci_complete_rq(struct request *req)
902 {
903 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
904 	struct nvme_dev *dev = iod->nvmeq->dev;
905 
906 	if (blk_integrity_rq(req))
907 		dma_unmap_page(dev->dev, iod->meta_dma,
908 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
909 	if (blk_rq_nr_phys_segments(req))
910 		nvme_unmap_data(dev, req);
911 	nvme_complete_rq(req);
912 }
913 
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
916 {
917 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
918 
919 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
920 }
921 
922 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
923 {
924 	u16 head = nvmeq->cq_head;
925 
926 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927 					      nvmeq->dbbuf_cq_ei))
928 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
929 }
930 
931 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
932 {
933 	if (!nvmeq->qid)
934 		return nvmeq->dev->admin_tagset.tags[0];
935 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
936 }
937 
938 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
939 {
940 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
941 	struct request *req;
942 
943 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
944 		dev_warn(nvmeq->dev->ctrl.device,
945 			"invalid id %d completed on queue %d\n",
946 			cqe->command_id, le16_to_cpu(cqe->sq_id));
947 		return;
948 	}
949 
950 	/*
951 	 * AEN requests are special as they don't time out and can
952 	 * survive any kind of queue freeze and often don't respond to
953 	 * aborts.  We don't even bother to allocate a struct request
954 	 * for them but rather special case them here.
955 	 */
956 	if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
957 		nvme_complete_async_event(&nvmeq->dev->ctrl,
958 				cqe->status, &cqe->result);
959 		return;
960 	}
961 
962 	req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
963 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
964 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
965 		nvme_pci_complete_rq(req);
966 }
967 
968 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
969 {
970 	u16 tmp = nvmeq->cq_head + 1;
971 
972 	if (tmp == nvmeq->q_depth) {
973 		nvmeq->cq_head = 0;
974 		nvmeq->cq_phase ^= 1;
975 	} else {
976 		nvmeq->cq_head = tmp;
977 	}
978 }
979 
980 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
981 {
982 	int found = 0;
983 
984 	while (nvme_cqe_pending(nvmeq)) {
985 		found++;
986 		/*
987 		 * load-load control dependency between phase and the rest of
988 		 * the cqe requires a full read memory barrier
989 		 */
990 		dma_rmb();
991 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
992 		nvme_update_cq_head(nvmeq);
993 	}
994 
995 	if (found)
996 		nvme_ring_cq_doorbell(nvmeq);
997 	return found;
998 }
999 
1000 static irqreturn_t nvme_irq(int irq, void *data)
1001 {
1002 	struct nvme_queue *nvmeq = data;
1003 	irqreturn_t ret = IRQ_NONE;
1004 
1005 	/*
1006 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1007 	 * the irq handler, even if that was on another CPU.
1008 	 */
1009 	rmb();
1010 	if (nvme_process_cq(nvmeq))
1011 		ret = IRQ_HANDLED;
1012 	wmb();
1013 
1014 	return ret;
1015 }
1016 
1017 static irqreturn_t nvme_irq_check(int irq, void *data)
1018 {
1019 	struct nvme_queue *nvmeq = data;
1020 
1021 	if (nvme_cqe_pending(nvmeq))
1022 		return IRQ_WAKE_THREAD;
1023 	return IRQ_NONE;
1024 }
1025 
1026 /*
1027  * Poll for completions for any interrupt driven queue
1028  * Can be called from any context.
1029  */
1030 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1031 {
1032 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1033 
1034 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1035 
1036 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1037 	nvme_process_cq(nvmeq);
1038 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1039 }
1040 
1041 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1042 {
1043 	struct nvme_queue *nvmeq = hctx->driver_data;
1044 	bool found;
1045 
1046 	if (!nvme_cqe_pending(nvmeq))
1047 		return 0;
1048 
1049 	spin_lock(&nvmeq->cq_poll_lock);
1050 	found = nvme_process_cq(nvmeq);
1051 	spin_unlock(&nvmeq->cq_poll_lock);
1052 
1053 	return found;
1054 }
1055 
1056 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1057 {
1058 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1059 	struct nvme_queue *nvmeq = &dev->queues[0];
1060 	struct nvme_command c;
1061 
1062 	memset(&c, 0, sizeof(c));
1063 	c.common.opcode = nvme_admin_async_event;
1064 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1065 	nvme_submit_cmd(nvmeq, &c, true);
1066 }
1067 
1068 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1069 {
1070 	struct nvme_command c;
1071 
1072 	memset(&c, 0, sizeof(c));
1073 	c.delete_queue.opcode = opcode;
1074 	c.delete_queue.qid = cpu_to_le16(id);
1075 
1076 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1077 }
1078 
1079 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1080 		struct nvme_queue *nvmeq, s16 vector)
1081 {
1082 	struct nvme_command c;
1083 	int flags = NVME_QUEUE_PHYS_CONTIG;
1084 
1085 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1086 		flags |= NVME_CQ_IRQ_ENABLED;
1087 
1088 	/*
1089 	 * Note: we (ab)use the fact that the prp fields survive if no data
1090 	 * is attached to the request.
1091 	 */
1092 	memset(&c, 0, sizeof(c));
1093 	c.create_cq.opcode = nvme_admin_create_cq;
1094 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1095 	c.create_cq.cqid = cpu_to_le16(qid);
1096 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1097 	c.create_cq.cq_flags = cpu_to_le16(flags);
1098 	c.create_cq.irq_vector = cpu_to_le16(vector);
1099 
1100 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1101 }
1102 
1103 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1104 						struct nvme_queue *nvmeq)
1105 {
1106 	struct nvme_ctrl *ctrl = &dev->ctrl;
1107 	struct nvme_command c;
1108 	int flags = NVME_QUEUE_PHYS_CONTIG;
1109 
1110 	/*
1111 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1112 	 * set. Since URGENT priority is zeroes, it makes all queues
1113 	 * URGENT.
1114 	 */
1115 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1116 		flags |= NVME_SQ_PRIO_MEDIUM;
1117 
1118 	/*
1119 	 * Note: we (ab)use the fact that the prp fields survive if no data
1120 	 * is attached to the request.
1121 	 */
1122 	memset(&c, 0, sizeof(c));
1123 	c.create_sq.opcode = nvme_admin_create_sq;
1124 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1125 	c.create_sq.sqid = cpu_to_le16(qid);
1126 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1127 	c.create_sq.sq_flags = cpu_to_le16(flags);
1128 	c.create_sq.cqid = cpu_to_le16(qid);
1129 
1130 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1131 }
1132 
1133 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1134 {
1135 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1136 }
1137 
1138 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1139 {
1140 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1141 }
1142 
1143 static void abort_endio(struct request *req, blk_status_t error)
1144 {
1145 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1146 	struct nvme_queue *nvmeq = iod->nvmeq;
1147 
1148 	dev_warn(nvmeq->dev->ctrl.device,
1149 		 "Abort status: 0x%x", nvme_req(req)->status);
1150 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1151 	blk_mq_free_request(req);
1152 }
1153 
1154 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1155 {
1156 	/* If true, indicates loss of adapter communication, possibly by a
1157 	 * NVMe Subsystem reset.
1158 	 */
1159 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1160 
1161 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1162 	switch (dev->ctrl.state) {
1163 	case NVME_CTRL_RESETTING:
1164 	case NVME_CTRL_CONNECTING:
1165 		return false;
1166 	default:
1167 		break;
1168 	}
1169 
1170 	/* We shouldn't reset unless the controller is on fatal error state
1171 	 * _or_ if we lost the communication with it.
1172 	 */
1173 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1174 		return false;
1175 
1176 	return true;
1177 }
1178 
1179 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1180 {
1181 	/* Read a config register to help see what died. */
1182 	u16 pci_status;
1183 	int result;
1184 
1185 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1186 				      &pci_status);
1187 	if (result == PCIBIOS_SUCCESSFUL)
1188 		dev_warn(dev->ctrl.device,
1189 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1190 			 csts, pci_status);
1191 	else
1192 		dev_warn(dev->ctrl.device,
1193 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1194 			 csts, result);
1195 }
1196 
1197 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1198 {
1199 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1200 	struct nvme_queue *nvmeq = iod->nvmeq;
1201 	struct nvme_dev *dev = nvmeq->dev;
1202 	struct request *abort_req;
1203 	struct nvme_command cmd;
1204 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1205 
1206 	/* If PCI error recovery process is happening, we cannot reset or
1207 	 * the recovery mechanism will surely fail.
1208 	 */
1209 	mb();
1210 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1211 		return BLK_EH_RESET_TIMER;
1212 
1213 	/*
1214 	 * Reset immediately if the controller is failed
1215 	 */
1216 	if (nvme_should_reset(dev, csts)) {
1217 		nvme_warn_reset(dev, csts);
1218 		nvme_dev_disable(dev, false);
1219 		nvme_reset_ctrl(&dev->ctrl);
1220 		return BLK_EH_DONE;
1221 	}
1222 
1223 	/*
1224 	 * Did we miss an interrupt?
1225 	 */
1226 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1227 		nvme_poll(req->mq_hctx);
1228 	else
1229 		nvme_poll_irqdisable(nvmeq);
1230 
1231 	if (blk_mq_request_completed(req)) {
1232 		dev_warn(dev->ctrl.device,
1233 			 "I/O %d QID %d timeout, completion polled\n",
1234 			 req->tag, nvmeq->qid);
1235 		return BLK_EH_DONE;
1236 	}
1237 
1238 	/*
1239 	 * Shutdown immediately if controller times out while starting. The
1240 	 * reset work will see the pci device disabled when it gets the forced
1241 	 * cancellation error. All outstanding requests are completed on
1242 	 * shutdown, so we return BLK_EH_DONE.
1243 	 */
1244 	switch (dev->ctrl.state) {
1245 	case NVME_CTRL_CONNECTING:
1246 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1247 		fallthrough;
1248 	case NVME_CTRL_DELETING:
1249 		dev_warn_ratelimited(dev->ctrl.device,
1250 			 "I/O %d QID %d timeout, disable controller\n",
1251 			 req->tag, nvmeq->qid);
1252 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1253 		nvme_dev_disable(dev, true);
1254 		return BLK_EH_DONE;
1255 	case NVME_CTRL_RESETTING:
1256 		return BLK_EH_RESET_TIMER;
1257 	default:
1258 		break;
1259 	}
1260 
1261 	/*
1262 	 * Shutdown the controller immediately and schedule a reset if the
1263 	 * command was already aborted once before and still hasn't been
1264 	 * returned to the driver, or if this is the admin queue.
1265 	 */
1266 	if (!nvmeq->qid || iod->aborted) {
1267 		dev_warn(dev->ctrl.device,
1268 			 "I/O %d QID %d timeout, reset controller\n",
1269 			 req->tag, nvmeq->qid);
1270 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1271 		nvme_dev_disable(dev, false);
1272 		nvme_reset_ctrl(&dev->ctrl);
1273 
1274 		return BLK_EH_DONE;
1275 	}
1276 
1277 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1278 		atomic_inc(&dev->ctrl.abort_limit);
1279 		return BLK_EH_RESET_TIMER;
1280 	}
1281 	iod->aborted = 1;
1282 
1283 	memset(&cmd, 0, sizeof(cmd));
1284 	cmd.abort.opcode = nvme_admin_abort_cmd;
1285 	cmd.abort.cid = req->tag;
1286 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1287 
1288 	dev_warn(nvmeq->dev->ctrl.device,
1289 		"I/O %d QID %d timeout, aborting\n",
1290 		 req->tag, nvmeq->qid);
1291 
1292 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1293 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1294 	if (IS_ERR(abort_req)) {
1295 		atomic_inc(&dev->ctrl.abort_limit);
1296 		return BLK_EH_RESET_TIMER;
1297 	}
1298 
1299 	abort_req->timeout = ADMIN_TIMEOUT;
1300 	abort_req->end_io_data = NULL;
1301 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1302 
1303 	/*
1304 	 * The aborted req will be completed on receiving the abort req.
1305 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1306 	 * as the device then is in a faulty state.
1307 	 */
1308 	return BLK_EH_RESET_TIMER;
1309 }
1310 
1311 static void nvme_free_queue(struct nvme_queue *nvmeq)
1312 {
1313 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1314 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1315 	if (!nvmeq->sq_cmds)
1316 		return;
1317 
1318 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1319 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1320 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1321 	} else {
1322 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1323 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1324 	}
1325 }
1326 
1327 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1328 {
1329 	int i;
1330 
1331 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1332 		dev->ctrl.queue_count--;
1333 		nvme_free_queue(&dev->queues[i]);
1334 	}
1335 }
1336 
1337 /**
1338  * nvme_suspend_queue - put queue into suspended state
1339  * @nvmeq: queue to suspend
1340  */
1341 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1342 {
1343 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1344 		return 1;
1345 
1346 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1347 	mb();
1348 
1349 	nvmeq->dev->online_queues--;
1350 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1351 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1352 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1353 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1354 	return 0;
1355 }
1356 
1357 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1358 {
1359 	int i;
1360 
1361 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1362 		nvme_suspend_queue(&dev->queues[i]);
1363 }
1364 
1365 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1366 {
1367 	struct nvme_queue *nvmeq = &dev->queues[0];
1368 
1369 	if (shutdown)
1370 		nvme_shutdown_ctrl(&dev->ctrl);
1371 	else
1372 		nvme_disable_ctrl(&dev->ctrl);
1373 
1374 	nvme_poll_irqdisable(nvmeq);
1375 }
1376 
1377 /*
1378  * Called only on a device that has been disabled and after all other threads
1379  * that can check this device's completion queues have synced, except
1380  * nvme_poll(). This is the last chance for the driver to see a natural
1381  * completion before nvme_cancel_request() terminates all incomplete requests.
1382  */
1383 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1384 {
1385 	int i;
1386 
1387 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1388 		spin_lock(&dev->queues[i].cq_poll_lock);
1389 		nvme_process_cq(&dev->queues[i]);
1390 		spin_unlock(&dev->queues[i].cq_poll_lock);
1391 	}
1392 }
1393 
1394 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1395 				int entry_size)
1396 {
1397 	int q_depth = dev->q_depth;
1398 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1399 					  NVME_CTRL_PAGE_SIZE);
1400 
1401 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1402 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1403 
1404 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1405 		q_depth = div_u64(mem_per_q, entry_size);
1406 
1407 		/*
1408 		 * Ensure the reduced q_depth is above some threshold where it
1409 		 * would be better to map queues in system memory with the
1410 		 * original depth
1411 		 */
1412 		if (q_depth < 64)
1413 			return -ENOMEM;
1414 	}
1415 
1416 	return q_depth;
1417 }
1418 
1419 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1420 				int qid)
1421 {
1422 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1423 
1424 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1425 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1426 		if (nvmeq->sq_cmds) {
1427 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1428 							nvmeq->sq_cmds);
1429 			if (nvmeq->sq_dma_addr) {
1430 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1431 				return 0;
1432 			}
1433 
1434 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1435 		}
1436 	}
1437 
1438 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1439 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1440 	if (!nvmeq->sq_cmds)
1441 		return -ENOMEM;
1442 	return 0;
1443 }
1444 
1445 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1446 {
1447 	struct nvme_queue *nvmeq = &dev->queues[qid];
1448 
1449 	if (dev->ctrl.queue_count > qid)
1450 		return 0;
1451 
1452 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1453 	nvmeq->q_depth = depth;
1454 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1455 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1456 	if (!nvmeq->cqes)
1457 		goto free_nvmeq;
1458 
1459 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1460 		goto free_cqdma;
1461 
1462 	nvmeq->dev = dev;
1463 	spin_lock_init(&nvmeq->sq_lock);
1464 	spin_lock_init(&nvmeq->cq_poll_lock);
1465 	nvmeq->cq_head = 0;
1466 	nvmeq->cq_phase = 1;
1467 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1468 	nvmeq->qid = qid;
1469 	dev->ctrl.queue_count++;
1470 
1471 	return 0;
1472 
1473  free_cqdma:
1474 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1475 			  nvmeq->cq_dma_addr);
1476  free_nvmeq:
1477 	return -ENOMEM;
1478 }
1479 
1480 static int queue_request_irq(struct nvme_queue *nvmeq)
1481 {
1482 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1483 	int nr = nvmeq->dev->ctrl.instance;
1484 
1485 	if (use_threaded_interrupts) {
1486 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1487 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1488 	} else {
1489 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1490 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1491 	}
1492 }
1493 
1494 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1495 {
1496 	struct nvme_dev *dev = nvmeq->dev;
1497 
1498 	nvmeq->sq_tail = 0;
1499 	nvmeq->cq_head = 0;
1500 	nvmeq->cq_phase = 1;
1501 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1502 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1503 	nvme_dbbuf_init(dev, nvmeq, qid);
1504 	dev->online_queues++;
1505 	wmb(); /* ensure the first interrupt sees the initialization */
1506 }
1507 
1508 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1509 {
1510 	struct nvme_dev *dev = nvmeq->dev;
1511 	int result;
1512 	u16 vector = 0;
1513 
1514 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1515 
1516 	/*
1517 	 * A queue's vector matches the queue identifier unless the controller
1518 	 * has only one vector available.
1519 	 */
1520 	if (!polled)
1521 		vector = dev->num_vecs == 1 ? 0 : qid;
1522 	else
1523 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1524 
1525 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1526 	if (result)
1527 		return result;
1528 
1529 	result = adapter_alloc_sq(dev, qid, nvmeq);
1530 	if (result < 0)
1531 		return result;
1532 	if (result)
1533 		goto release_cq;
1534 
1535 	nvmeq->cq_vector = vector;
1536 	nvme_init_queue(nvmeq, qid);
1537 
1538 	if (!polled) {
1539 		result = queue_request_irq(nvmeq);
1540 		if (result < 0)
1541 			goto release_sq;
1542 	}
1543 
1544 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1545 	return result;
1546 
1547 release_sq:
1548 	dev->online_queues--;
1549 	adapter_delete_sq(dev, qid);
1550 release_cq:
1551 	adapter_delete_cq(dev, qid);
1552 	return result;
1553 }
1554 
1555 static const struct blk_mq_ops nvme_mq_admin_ops = {
1556 	.queue_rq	= nvme_queue_rq,
1557 	.complete	= nvme_pci_complete_rq,
1558 	.init_hctx	= nvme_admin_init_hctx,
1559 	.init_request	= nvme_init_request,
1560 	.timeout	= nvme_timeout,
1561 };
1562 
1563 static const struct blk_mq_ops nvme_mq_ops = {
1564 	.queue_rq	= nvme_queue_rq,
1565 	.complete	= nvme_pci_complete_rq,
1566 	.commit_rqs	= nvme_commit_rqs,
1567 	.init_hctx	= nvme_init_hctx,
1568 	.init_request	= nvme_init_request,
1569 	.map_queues	= nvme_pci_map_queues,
1570 	.timeout	= nvme_timeout,
1571 	.poll		= nvme_poll,
1572 };
1573 
1574 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1575 {
1576 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1577 		/*
1578 		 * If the controller was reset during removal, it's possible
1579 		 * user requests may be waiting on a stopped queue. Start the
1580 		 * queue to flush these to completion.
1581 		 */
1582 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1583 		blk_cleanup_queue(dev->ctrl.admin_q);
1584 		blk_mq_free_tag_set(&dev->admin_tagset);
1585 	}
1586 }
1587 
1588 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1589 {
1590 	if (!dev->ctrl.admin_q) {
1591 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1592 		dev->admin_tagset.nr_hw_queues = 1;
1593 
1594 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1595 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1596 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1597 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1598 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1599 		dev->admin_tagset.driver_data = dev;
1600 
1601 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1602 			return -ENOMEM;
1603 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1604 
1605 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1606 		if (IS_ERR(dev->ctrl.admin_q)) {
1607 			blk_mq_free_tag_set(&dev->admin_tagset);
1608 			return -ENOMEM;
1609 		}
1610 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1611 			nvme_dev_remove_admin(dev);
1612 			dev->ctrl.admin_q = NULL;
1613 			return -ENODEV;
1614 		}
1615 	} else
1616 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1617 
1618 	return 0;
1619 }
1620 
1621 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1622 {
1623 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1624 }
1625 
1626 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1627 {
1628 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1629 
1630 	if (size <= dev->bar_mapped_size)
1631 		return 0;
1632 	if (size > pci_resource_len(pdev, 0))
1633 		return -ENOMEM;
1634 	if (dev->bar)
1635 		iounmap(dev->bar);
1636 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1637 	if (!dev->bar) {
1638 		dev->bar_mapped_size = 0;
1639 		return -ENOMEM;
1640 	}
1641 	dev->bar_mapped_size = size;
1642 	dev->dbs = dev->bar + NVME_REG_DBS;
1643 
1644 	return 0;
1645 }
1646 
1647 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1648 {
1649 	int result;
1650 	u32 aqa;
1651 	struct nvme_queue *nvmeq;
1652 
1653 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1654 	if (result < 0)
1655 		return result;
1656 
1657 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1658 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1659 
1660 	if (dev->subsystem &&
1661 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1662 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1663 
1664 	result = nvme_disable_ctrl(&dev->ctrl);
1665 	if (result < 0)
1666 		return result;
1667 
1668 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1669 	if (result)
1670 		return result;
1671 
1672 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1673 
1674 	nvmeq = &dev->queues[0];
1675 	aqa = nvmeq->q_depth - 1;
1676 	aqa |= aqa << 16;
1677 
1678 	writel(aqa, dev->bar + NVME_REG_AQA);
1679 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1680 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1681 
1682 	result = nvme_enable_ctrl(&dev->ctrl);
1683 	if (result)
1684 		return result;
1685 
1686 	nvmeq->cq_vector = 0;
1687 	nvme_init_queue(nvmeq, 0);
1688 	result = queue_request_irq(nvmeq);
1689 	if (result) {
1690 		dev->online_queues--;
1691 		return result;
1692 	}
1693 
1694 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1695 	return result;
1696 }
1697 
1698 static int nvme_create_io_queues(struct nvme_dev *dev)
1699 {
1700 	unsigned i, max, rw_queues;
1701 	int ret = 0;
1702 
1703 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1704 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1705 			ret = -ENOMEM;
1706 			break;
1707 		}
1708 	}
1709 
1710 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1711 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1712 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1713 				dev->io_queues[HCTX_TYPE_READ];
1714 	} else {
1715 		rw_queues = max;
1716 	}
1717 
1718 	for (i = dev->online_queues; i <= max; i++) {
1719 		bool polled = i > rw_queues;
1720 
1721 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1722 		if (ret)
1723 			break;
1724 	}
1725 
1726 	/*
1727 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1728 	 * than the desired amount of queues, and even a controller without
1729 	 * I/O queues can still be used to issue admin commands.  This might
1730 	 * be useful to upgrade a buggy firmware for example.
1731 	 */
1732 	return ret >= 0 ? 0 : ret;
1733 }
1734 
1735 static ssize_t nvme_cmb_show(struct device *dev,
1736 			     struct device_attribute *attr,
1737 			     char *buf)
1738 {
1739 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1740 
1741 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1742 		       ndev->cmbloc, ndev->cmbsz);
1743 }
1744 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1745 
1746 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1747 {
1748 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1749 
1750 	return 1ULL << (12 + 4 * szu);
1751 }
1752 
1753 static u32 nvme_cmb_size(struct nvme_dev *dev)
1754 {
1755 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1756 }
1757 
1758 static void nvme_map_cmb(struct nvme_dev *dev)
1759 {
1760 	u64 size, offset;
1761 	resource_size_t bar_size;
1762 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1763 	int bar;
1764 
1765 	if (dev->cmb_size)
1766 		return;
1767 
1768 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1769 	if (!dev->cmbsz)
1770 		return;
1771 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1772 
1773 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1774 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1775 	bar = NVME_CMB_BIR(dev->cmbloc);
1776 	bar_size = pci_resource_len(pdev, bar);
1777 
1778 	if (offset > bar_size)
1779 		return;
1780 
1781 	/*
1782 	 * Controllers may support a CMB size larger than their BAR,
1783 	 * for example, due to being behind a bridge. Reduce the CMB to
1784 	 * the reported size of the BAR
1785 	 */
1786 	if (size > bar_size - offset)
1787 		size = bar_size - offset;
1788 
1789 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1790 		dev_warn(dev->ctrl.device,
1791 			 "failed to register the CMB\n");
1792 		return;
1793 	}
1794 
1795 	dev->cmb_size = size;
1796 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1797 
1798 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1799 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1800 		pci_p2pmem_publish(pdev, true);
1801 
1802 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1803 				    &dev_attr_cmb.attr, NULL))
1804 		dev_warn(dev->ctrl.device,
1805 			 "failed to add sysfs attribute for CMB\n");
1806 }
1807 
1808 static inline void nvme_release_cmb(struct nvme_dev *dev)
1809 {
1810 	if (dev->cmb_size) {
1811 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1812 					     &dev_attr_cmb.attr, NULL);
1813 		dev->cmb_size = 0;
1814 	}
1815 }
1816 
1817 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1818 {
1819 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1820 	u64 dma_addr = dev->host_mem_descs_dma;
1821 	struct nvme_command c;
1822 	int ret;
1823 
1824 	memset(&c, 0, sizeof(c));
1825 	c.features.opcode	= nvme_admin_set_features;
1826 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1827 	c.features.dword11	= cpu_to_le32(bits);
1828 	c.features.dword12	= cpu_to_le32(host_mem_size);
1829 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1830 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1831 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1832 
1833 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1834 	if (ret) {
1835 		dev_warn(dev->ctrl.device,
1836 			 "failed to set host mem (err %d, flags %#x).\n",
1837 			 ret, bits);
1838 	}
1839 	return ret;
1840 }
1841 
1842 static void nvme_free_host_mem(struct nvme_dev *dev)
1843 {
1844 	int i;
1845 
1846 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1847 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1848 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1849 
1850 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1851 			       le64_to_cpu(desc->addr),
1852 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1853 	}
1854 
1855 	kfree(dev->host_mem_desc_bufs);
1856 	dev->host_mem_desc_bufs = NULL;
1857 	dma_free_coherent(dev->dev,
1858 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1859 			dev->host_mem_descs, dev->host_mem_descs_dma);
1860 	dev->host_mem_descs = NULL;
1861 	dev->nr_host_mem_descs = 0;
1862 }
1863 
1864 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1865 		u32 chunk_size)
1866 {
1867 	struct nvme_host_mem_buf_desc *descs;
1868 	u32 max_entries, len;
1869 	dma_addr_t descs_dma;
1870 	int i = 0;
1871 	void **bufs;
1872 	u64 size, tmp;
1873 
1874 	tmp = (preferred + chunk_size - 1);
1875 	do_div(tmp, chunk_size);
1876 	max_entries = tmp;
1877 
1878 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1879 		max_entries = dev->ctrl.hmmaxd;
1880 
1881 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1882 				   &descs_dma, GFP_KERNEL);
1883 	if (!descs)
1884 		goto out;
1885 
1886 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1887 	if (!bufs)
1888 		goto out_free_descs;
1889 
1890 	for (size = 0; size < preferred && i < max_entries; size += len) {
1891 		dma_addr_t dma_addr;
1892 
1893 		len = min_t(u64, chunk_size, preferred - size);
1894 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1895 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1896 		if (!bufs[i])
1897 			break;
1898 
1899 		descs[i].addr = cpu_to_le64(dma_addr);
1900 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1901 		i++;
1902 	}
1903 
1904 	if (!size)
1905 		goto out_free_bufs;
1906 
1907 	dev->nr_host_mem_descs = i;
1908 	dev->host_mem_size = size;
1909 	dev->host_mem_descs = descs;
1910 	dev->host_mem_descs_dma = descs_dma;
1911 	dev->host_mem_desc_bufs = bufs;
1912 	return 0;
1913 
1914 out_free_bufs:
1915 	while (--i >= 0) {
1916 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1917 
1918 		dma_free_attrs(dev->dev, size, bufs[i],
1919 			       le64_to_cpu(descs[i].addr),
1920 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1921 	}
1922 
1923 	kfree(bufs);
1924 out_free_descs:
1925 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1926 			descs_dma);
1927 out:
1928 	dev->host_mem_descs = NULL;
1929 	return -ENOMEM;
1930 }
1931 
1932 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1933 {
1934 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1935 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1936 	u64 chunk_size;
1937 
1938 	/* start big and work our way down */
1939 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1940 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1941 			if (!min || dev->host_mem_size >= min)
1942 				return 0;
1943 			nvme_free_host_mem(dev);
1944 		}
1945 	}
1946 
1947 	return -ENOMEM;
1948 }
1949 
1950 static int nvme_setup_host_mem(struct nvme_dev *dev)
1951 {
1952 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1953 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1954 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1955 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1956 	int ret;
1957 
1958 	preferred = min(preferred, max);
1959 	if (min > max) {
1960 		dev_warn(dev->ctrl.device,
1961 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1962 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1963 		nvme_free_host_mem(dev);
1964 		return 0;
1965 	}
1966 
1967 	/*
1968 	 * If we already have a buffer allocated check if we can reuse it.
1969 	 */
1970 	if (dev->host_mem_descs) {
1971 		if (dev->host_mem_size >= min)
1972 			enable_bits |= NVME_HOST_MEM_RETURN;
1973 		else
1974 			nvme_free_host_mem(dev);
1975 	}
1976 
1977 	if (!dev->host_mem_descs) {
1978 		if (nvme_alloc_host_mem(dev, min, preferred)) {
1979 			dev_warn(dev->ctrl.device,
1980 				"failed to allocate host memory buffer.\n");
1981 			return 0; /* controller must work without HMB */
1982 		}
1983 
1984 		dev_info(dev->ctrl.device,
1985 			"allocated %lld MiB host memory buffer.\n",
1986 			dev->host_mem_size >> ilog2(SZ_1M));
1987 	}
1988 
1989 	ret = nvme_set_host_mem(dev, enable_bits);
1990 	if (ret)
1991 		nvme_free_host_mem(dev);
1992 	return ret;
1993 }
1994 
1995 /*
1996  * nirqs is the number of interrupts available for write and read
1997  * queues. The core already reserved an interrupt for the admin queue.
1998  */
1999 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2000 {
2001 	struct nvme_dev *dev = affd->priv;
2002 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2003 
2004 	/*
2005 	 * If there is no interrupt available for queues, ensure that
2006 	 * the default queue is set to 1. The affinity set size is
2007 	 * also set to one, but the irq core ignores it for this case.
2008 	 *
2009 	 * If only one interrupt is available or 'write_queue' == 0, combine
2010 	 * write and read queues.
2011 	 *
2012 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2013 	 * queue.
2014 	 */
2015 	if (!nrirqs) {
2016 		nrirqs = 1;
2017 		nr_read_queues = 0;
2018 	} else if (nrirqs == 1 || !nr_write_queues) {
2019 		nr_read_queues = 0;
2020 	} else if (nr_write_queues >= nrirqs) {
2021 		nr_read_queues = 1;
2022 	} else {
2023 		nr_read_queues = nrirqs - nr_write_queues;
2024 	}
2025 
2026 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2027 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2028 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2029 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2030 	affd->nr_sets = nr_read_queues ? 2 : 1;
2031 }
2032 
2033 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2034 {
2035 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2036 	struct irq_affinity affd = {
2037 		.pre_vectors	= 1,
2038 		.calc_sets	= nvme_calc_irq_sets,
2039 		.priv		= dev,
2040 	};
2041 	unsigned int irq_queues, this_p_queues;
2042 
2043 	/*
2044 	 * Poll queues don't need interrupts, but we need at least one IO
2045 	 * queue left over for non-polled IO.
2046 	 */
2047 	this_p_queues = dev->nr_poll_queues;
2048 	if (this_p_queues >= nr_io_queues) {
2049 		this_p_queues = nr_io_queues - 1;
2050 		irq_queues = 1;
2051 	} else {
2052 		irq_queues = nr_io_queues - this_p_queues + 1;
2053 	}
2054 	dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2055 
2056 	/* Initialize for the single interrupt case */
2057 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2058 	dev->io_queues[HCTX_TYPE_READ] = 0;
2059 
2060 	/*
2061 	 * Some Apple controllers require all queues to use the
2062 	 * first vector.
2063 	 */
2064 	if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2065 		irq_queues = 1;
2066 
2067 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2068 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2069 }
2070 
2071 static void nvme_disable_io_queues(struct nvme_dev *dev)
2072 {
2073 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2074 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2075 }
2076 
2077 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2078 {
2079 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2080 }
2081 
2082 static int nvme_setup_io_queues(struct nvme_dev *dev)
2083 {
2084 	struct nvme_queue *adminq = &dev->queues[0];
2085 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2086 	unsigned int nr_io_queues;
2087 	unsigned long size;
2088 	int result;
2089 
2090 	/*
2091 	 * Sample the module parameters once at reset time so that we have
2092 	 * stable values to work with.
2093 	 */
2094 	dev->nr_write_queues = write_queues;
2095 	dev->nr_poll_queues = poll_queues;
2096 
2097 	/*
2098 	 * If tags are shared with admin queue (Apple bug), then
2099 	 * make sure we only use one IO queue.
2100 	 */
2101 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2102 		nr_io_queues = 1;
2103 	else
2104 		nr_io_queues = min(nvme_max_io_queues(dev),
2105 				   dev->nr_allocated_queues - 1);
2106 
2107 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2108 	if (result < 0)
2109 		return result;
2110 
2111 	if (nr_io_queues == 0)
2112 		return 0;
2113 
2114 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2115 
2116 	if (dev->cmb_use_sqes) {
2117 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2118 				sizeof(struct nvme_command));
2119 		if (result > 0)
2120 			dev->q_depth = result;
2121 		else
2122 			dev->cmb_use_sqes = false;
2123 	}
2124 
2125 	do {
2126 		size = db_bar_size(dev, nr_io_queues);
2127 		result = nvme_remap_bar(dev, size);
2128 		if (!result)
2129 			break;
2130 		if (!--nr_io_queues)
2131 			return -ENOMEM;
2132 	} while (1);
2133 	adminq->q_db = dev->dbs;
2134 
2135  retry:
2136 	/* Deregister the admin queue's interrupt */
2137 	pci_free_irq(pdev, 0, adminq);
2138 
2139 	/*
2140 	 * If we enable msix early due to not intx, disable it again before
2141 	 * setting up the full range we need.
2142 	 */
2143 	pci_free_irq_vectors(pdev);
2144 
2145 	result = nvme_setup_irqs(dev, nr_io_queues);
2146 	if (result <= 0)
2147 		return -EIO;
2148 
2149 	dev->num_vecs = result;
2150 	result = max(result - 1, 1);
2151 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2152 
2153 	/*
2154 	 * Should investigate if there's a performance win from allocating
2155 	 * more queues than interrupt vectors; it might allow the submission
2156 	 * path to scale better, even if the receive path is limited by the
2157 	 * number of interrupts.
2158 	 */
2159 	result = queue_request_irq(adminq);
2160 	if (result)
2161 		return result;
2162 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2163 
2164 	result = nvme_create_io_queues(dev);
2165 	if (result || dev->online_queues < 2)
2166 		return result;
2167 
2168 	if (dev->online_queues - 1 < dev->max_qid) {
2169 		nr_io_queues = dev->online_queues - 1;
2170 		nvme_disable_io_queues(dev);
2171 		nvme_suspend_io_queues(dev);
2172 		goto retry;
2173 	}
2174 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2175 					dev->io_queues[HCTX_TYPE_DEFAULT],
2176 					dev->io_queues[HCTX_TYPE_READ],
2177 					dev->io_queues[HCTX_TYPE_POLL]);
2178 	return 0;
2179 }
2180 
2181 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2182 {
2183 	struct nvme_queue *nvmeq = req->end_io_data;
2184 
2185 	blk_mq_free_request(req);
2186 	complete(&nvmeq->delete_done);
2187 }
2188 
2189 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2190 {
2191 	struct nvme_queue *nvmeq = req->end_io_data;
2192 
2193 	if (error)
2194 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2195 
2196 	nvme_del_queue_end(req, error);
2197 }
2198 
2199 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2200 {
2201 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2202 	struct request *req;
2203 	struct nvme_command cmd;
2204 
2205 	memset(&cmd, 0, sizeof(cmd));
2206 	cmd.delete_queue.opcode = opcode;
2207 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2208 
2209 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2210 	if (IS_ERR(req))
2211 		return PTR_ERR(req);
2212 
2213 	req->timeout = ADMIN_TIMEOUT;
2214 	req->end_io_data = nvmeq;
2215 
2216 	init_completion(&nvmeq->delete_done);
2217 	blk_execute_rq_nowait(q, NULL, req, false,
2218 			opcode == nvme_admin_delete_cq ?
2219 				nvme_del_cq_end : nvme_del_queue_end);
2220 	return 0;
2221 }
2222 
2223 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2224 {
2225 	int nr_queues = dev->online_queues - 1, sent = 0;
2226 	unsigned long timeout;
2227 
2228  retry:
2229 	timeout = ADMIN_TIMEOUT;
2230 	while (nr_queues > 0) {
2231 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2232 			break;
2233 		nr_queues--;
2234 		sent++;
2235 	}
2236 	while (sent) {
2237 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2238 
2239 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2240 				timeout);
2241 		if (timeout == 0)
2242 			return false;
2243 
2244 		sent--;
2245 		if (nr_queues)
2246 			goto retry;
2247 	}
2248 	return true;
2249 }
2250 
2251 static void nvme_dev_add(struct nvme_dev *dev)
2252 {
2253 	int ret;
2254 
2255 	if (!dev->ctrl.tagset) {
2256 		dev->tagset.ops = &nvme_mq_ops;
2257 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2258 		dev->tagset.nr_maps = 2; /* default + read */
2259 		if (dev->io_queues[HCTX_TYPE_POLL])
2260 			dev->tagset.nr_maps++;
2261 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2262 		dev->tagset.numa_node = dev->ctrl.numa_node;
2263 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2264 						BLK_MQ_MAX_DEPTH) - 1;
2265 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2266 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2267 		dev->tagset.driver_data = dev;
2268 
2269 		/*
2270 		 * Some Apple controllers requires tags to be unique
2271 		 * across admin and IO queue, so reserve the first 32
2272 		 * tags of the IO queue.
2273 		 */
2274 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2275 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2276 
2277 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2278 		if (ret) {
2279 			dev_warn(dev->ctrl.device,
2280 				"IO queues tagset allocation failed %d\n", ret);
2281 			return;
2282 		}
2283 		dev->ctrl.tagset = &dev->tagset;
2284 	} else {
2285 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2286 
2287 		/* Free previously allocated queues that are no longer usable */
2288 		nvme_free_queues(dev, dev->online_queues);
2289 	}
2290 
2291 	nvme_dbbuf_set(dev);
2292 }
2293 
2294 static int nvme_pci_enable(struct nvme_dev *dev)
2295 {
2296 	int result = -ENOMEM;
2297 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2298 
2299 	if (pci_enable_device_mem(pdev))
2300 		return result;
2301 
2302 	pci_set_master(pdev);
2303 
2304 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2305 		goto disable;
2306 
2307 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2308 		result = -ENODEV;
2309 		goto disable;
2310 	}
2311 
2312 	/*
2313 	 * Some devices and/or platforms don't advertise or work with INTx
2314 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2315 	 * adjust this later.
2316 	 */
2317 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2318 	if (result < 0)
2319 		return result;
2320 
2321 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2322 
2323 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2324 				io_queue_depth);
2325 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2326 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2327 	dev->dbs = dev->bar + 4096;
2328 
2329 	/*
2330 	 * Some Apple controllers require a non-standard SQE size.
2331 	 * Interestingly they also seem to ignore the CC:IOSQES register
2332 	 * so we don't bother updating it here.
2333 	 */
2334 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2335 		dev->io_sqes = 7;
2336 	else
2337 		dev->io_sqes = NVME_NVM_IOSQES;
2338 
2339 	/*
2340 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2341 	 * some MacBook7,1 to avoid controller resets and data loss.
2342 	 */
2343 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2344 		dev->q_depth = 2;
2345 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2346 			"set queue depth=%u to work around controller resets\n",
2347 			dev->q_depth);
2348 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2349 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2350 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2351 		dev->q_depth = 64;
2352 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2353                         "set queue depth=%u\n", dev->q_depth);
2354 	}
2355 
2356 	/*
2357 	 * Controllers with the shared tags quirk need the IO queue to be
2358 	 * big enough so that we get 32 tags for the admin queue
2359 	 */
2360 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2361 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2362 		dev->q_depth = NVME_AQ_DEPTH + 2;
2363 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2364 			 dev->q_depth);
2365 	}
2366 
2367 
2368 	nvme_map_cmb(dev);
2369 
2370 	pci_enable_pcie_error_reporting(pdev);
2371 	pci_save_state(pdev);
2372 	return 0;
2373 
2374  disable:
2375 	pci_disable_device(pdev);
2376 	return result;
2377 }
2378 
2379 static void nvme_dev_unmap(struct nvme_dev *dev)
2380 {
2381 	if (dev->bar)
2382 		iounmap(dev->bar);
2383 	pci_release_mem_regions(to_pci_dev(dev->dev));
2384 }
2385 
2386 static void nvme_pci_disable(struct nvme_dev *dev)
2387 {
2388 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2389 
2390 	pci_free_irq_vectors(pdev);
2391 
2392 	if (pci_is_enabled(pdev)) {
2393 		pci_disable_pcie_error_reporting(pdev);
2394 		pci_disable_device(pdev);
2395 	}
2396 }
2397 
2398 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2399 {
2400 	bool dead = true, freeze = false;
2401 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2402 
2403 	mutex_lock(&dev->shutdown_lock);
2404 	if (pci_is_enabled(pdev)) {
2405 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2406 
2407 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2408 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2409 			freeze = true;
2410 			nvme_start_freeze(&dev->ctrl);
2411 		}
2412 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2413 			pdev->error_state  != pci_channel_io_normal);
2414 	}
2415 
2416 	/*
2417 	 * Give the controller a chance to complete all entered requests if
2418 	 * doing a safe shutdown.
2419 	 */
2420 	if (!dead && shutdown && freeze)
2421 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2422 
2423 	nvme_stop_queues(&dev->ctrl);
2424 
2425 	if (!dead && dev->ctrl.queue_count > 0) {
2426 		nvme_disable_io_queues(dev);
2427 		nvme_disable_admin_queue(dev, shutdown);
2428 	}
2429 	nvme_suspend_io_queues(dev);
2430 	nvme_suspend_queue(&dev->queues[0]);
2431 	nvme_pci_disable(dev);
2432 	nvme_reap_pending_cqes(dev);
2433 
2434 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2435 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2436 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2437 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2438 
2439 	/*
2440 	 * The driver will not be starting up queues again if shutting down so
2441 	 * must flush all entered requests to their failed completion to avoid
2442 	 * deadlocking blk-mq hot-cpu notifier.
2443 	 */
2444 	if (shutdown) {
2445 		nvme_start_queues(&dev->ctrl);
2446 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2447 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2448 	}
2449 	mutex_unlock(&dev->shutdown_lock);
2450 }
2451 
2452 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2453 {
2454 	if (!nvme_wait_reset(&dev->ctrl))
2455 		return -EBUSY;
2456 	nvme_dev_disable(dev, shutdown);
2457 	return 0;
2458 }
2459 
2460 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2461 {
2462 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2463 						NVME_CTRL_PAGE_SIZE,
2464 						NVME_CTRL_PAGE_SIZE, 0);
2465 	if (!dev->prp_page_pool)
2466 		return -ENOMEM;
2467 
2468 	/* Optimisation for I/Os between 4k and 128k */
2469 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2470 						256, 256, 0);
2471 	if (!dev->prp_small_pool) {
2472 		dma_pool_destroy(dev->prp_page_pool);
2473 		return -ENOMEM;
2474 	}
2475 	return 0;
2476 }
2477 
2478 static void nvme_release_prp_pools(struct nvme_dev *dev)
2479 {
2480 	dma_pool_destroy(dev->prp_page_pool);
2481 	dma_pool_destroy(dev->prp_small_pool);
2482 }
2483 
2484 static void nvme_free_tagset(struct nvme_dev *dev)
2485 {
2486 	if (dev->tagset.tags)
2487 		blk_mq_free_tag_set(&dev->tagset);
2488 	dev->ctrl.tagset = NULL;
2489 }
2490 
2491 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2492 {
2493 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2494 
2495 	nvme_dbbuf_dma_free(dev);
2496 	nvme_free_tagset(dev);
2497 	if (dev->ctrl.admin_q)
2498 		blk_put_queue(dev->ctrl.admin_q);
2499 	free_opal_dev(dev->ctrl.opal_dev);
2500 	mempool_destroy(dev->iod_mempool);
2501 	put_device(dev->dev);
2502 	kfree(dev->queues);
2503 	kfree(dev);
2504 }
2505 
2506 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2507 {
2508 	/*
2509 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2510 	 * may be holding this pci_dev's device lock.
2511 	 */
2512 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2513 	nvme_get_ctrl(&dev->ctrl);
2514 	nvme_dev_disable(dev, false);
2515 	nvme_kill_queues(&dev->ctrl);
2516 	if (!queue_work(nvme_wq, &dev->remove_work))
2517 		nvme_put_ctrl(&dev->ctrl);
2518 }
2519 
2520 static void nvme_reset_work(struct work_struct *work)
2521 {
2522 	struct nvme_dev *dev =
2523 		container_of(work, struct nvme_dev, ctrl.reset_work);
2524 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2525 	int result;
2526 
2527 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2528 		result = -ENODEV;
2529 		goto out;
2530 	}
2531 
2532 	/*
2533 	 * If we're called to reset a live controller first shut it down before
2534 	 * moving on.
2535 	 */
2536 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2537 		nvme_dev_disable(dev, false);
2538 	nvme_sync_queues(&dev->ctrl);
2539 
2540 	mutex_lock(&dev->shutdown_lock);
2541 	result = nvme_pci_enable(dev);
2542 	if (result)
2543 		goto out_unlock;
2544 
2545 	result = nvme_pci_configure_admin_queue(dev);
2546 	if (result)
2547 		goto out_unlock;
2548 
2549 	result = nvme_alloc_admin_tags(dev);
2550 	if (result)
2551 		goto out_unlock;
2552 
2553 	/*
2554 	 * Limit the max command size to prevent iod->sg allocations going
2555 	 * over a single page.
2556 	 */
2557 	dev->ctrl.max_hw_sectors = min_t(u32,
2558 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2559 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2560 
2561 	/*
2562 	 * Don't limit the IOMMU merged segment size.
2563 	 */
2564 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2565 
2566 	mutex_unlock(&dev->shutdown_lock);
2567 
2568 	/*
2569 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2570 	 * initializing procedure here.
2571 	 */
2572 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2573 		dev_warn(dev->ctrl.device,
2574 			"failed to mark controller CONNECTING\n");
2575 		result = -EBUSY;
2576 		goto out;
2577 	}
2578 
2579 	/*
2580 	 * We do not support an SGL for metadata (yet), so we are limited to a
2581 	 * single integrity segment for the separate metadata pointer.
2582 	 */
2583 	dev->ctrl.max_integrity_segments = 1;
2584 
2585 	result = nvme_init_identify(&dev->ctrl);
2586 	if (result)
2587 		goto out;
2588 
2589 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2590 		if (!dev->ctrl.opal_dev)
2591 			dev->ctrl.opal_dev =
2592 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2593 		else if (was_suspend)
2594 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2595 	} else {
2596 		free_opal_dev(dev->ctrl.opal_dev);
2597 		dev->ctrl.opal_dev = NULL;
2598 	}
2599 
2600 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2601 		result = nvme_dbbuf_dma_alloc(dev);
2602 		if (result)
2603 			dev_warn(dev->dev,
2604 				 "unable to allocate dma for dbbuf\n");
2605 	}
2606 
2607 	if (dev->ctrl.hmpre) {
2608 		result = nvme_setup_host_mem(dev);
2609 		if (result < 0)
2610 			goto out;
2611 	}
2612 
2613 	result = nvme_setup_io_queues(dev);
2614 	if (result)
2615 		goto out;
2616 
2617 	/*
2618 	 * Keep the controller around but remove all namespaces if we don't have
2619 	 * any working I/O queue.
2620 	 */
2621 	if (dev->online_queues < 2) {
2622 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2623 		nvme_kill_queues(&dev->ctrl);
2624 		nvme_remove_namespaces(&dev->ctrl);
2625 		nvme_free_tagset(dev);
2626 	} else {
2627 		nvme_start_queues(&dev->ctrl);
2628 		nvme_wait_freeze(&dev->ctrl);
2629 		nvme_dev_add(dev);
2630 		nvme_unfreeze(&dev->ctrl);
2631 	}
2632 
2633 	/*
2634 	 * If only admin queue live, keep it to do further investigation or
2635 	 * recovery.
2636 	 */
2637 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2638 		dev_warn(dev->ctrl.device,
2639 			"failed to mark controller live state\n");
2640 		result = -ENODEV;
2641 		goto out;
2642 	}
2643 
2644 	nvme_start_ctrl(&dev->ctrl);
2645 	return;
2646 
2647  out_unlock:
2648 	mutex_unlock(&dev->shutdown_lock);
2649  out:
2650 	if (result)
2651 		dev_warn(dev->ctrl.device,
2652 			 "Removing after probe failure status: %d\n", result);
2653 	nvme_remove_dead_ctrl(dev);
2654 }
2655 
2656 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2657 {
2658 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2659 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2660 
2661 	if (pci_get_drvdata(pdev))
2662 		device_release_driver(&pdev->dev);
2663 	nvme_put_ctrl(&dev->ctrl);
2664 }
2665 
2666 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2667 {
2668 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2669 	return 0;
2670 }
2671 
2672 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2673 {
2674 	writel(val, to_nvme_dev(ctrl)->bar + off);
2675 	return 0;
2676 }
2677 
2678 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2679 {
2680 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2681 	return 0;
2682 }
2683 
2684 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2685 {
2686 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2687 
2688 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2689 }
2690 
2691 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2692 	.name			= "pcie",
2693 	.module			= THIS_MODULE,
2694 	.flags			= NVME_F_METADATA_SUPPORTED |
2695 				  NVME_F_PCI_P2PDMA,
2696 	.reg_read32		= nvme_pci_reg_read32,
2697 	.reg_write32		= nvme_pci_reg_write32,
2698 	.reg_read64		= nvme_pci_reg_read64,
2699 	.free_ctrl		= nvme_pci_free_ctrl,
2700 	.submit_async_event	= nvme_pci_submit_async_event,
2701 	.get_address		= nvme_pci_get_address,
2702 };
2703 
2704 static int nvme_dev_map(struct nvme_dev *dev)
2705 {
2706 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2707 
2708 	if (pci_request_mem_regions(pdev, "nvme"))
2709 		return -ENODEV;
2710 
2711 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2712 		goto release;
2713 
2714 	return 0;
2715   release:
2716 	pci_release_mem_regions(pdev);
2717 	return -ENODEV;
2718 }
2719 
2720 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2721 {
2722 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2723 		/*
2724 		 * Several Samsung devices seem to drop off the PCIe bus
2725 		 * randomly when APST is on and uses the deepest sleep state.
2726 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2727 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2728 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2729 		 * laptops.
2730 		 */
2731 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2732 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2733 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2734 			return NVME_QUIRK_NO_DEEPEST_PS;
2735 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2736 		/*
2737 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2738 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2739 		 * within few minutes after bootup on a Coffee Lake board -
2740 		 * ASUS PRIME Z370-A
2741 		 */
2742 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2743 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2744 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2745 			return NVME_QUIRK_NO_APST;
2746 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2747 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2748 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2749 		/*
2750 		 * Forcing to use host managed nvme power settings for
2751 		 * lowest idle power with quick resume latency on
2752 		 * Samsung and Toshiba SSDs based on suspend behavior
2753 		 * on Coffee Lake board for LENOVO C640
2754 		 */
2755 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2756 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2757 			return NVME_QUIRK_SIMPLE_SUSPEND;
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 #ifdef CONFIG_ACPI
2764 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2765 {
2766 	struct acpi_device *adev;
2767 	struct pci_dev *root;
2768 	acpi_handle handle;
2769 	acpi_status status;
2770 	u8 val;
2771 
2772 	/*
2773 	 * Look for _DSD property specifying that the storage device on the port
2774 	 * must use D3 to support deep platform power savings during
2775 	 * suspend-to-idle.
2776 	 */
2777 	root = pcie_find_root_port(dev);
2778 	if (!root)
2779 		return false;
2780 
2781 	adev = ACPI_COMPANION(&root->dev);
2782 	if (!adev)
2783 		return false;
2784 
2785 	/*
2786 	 * The property is defined in the PXSX device for South complex ports
2787 	 * and in the PEGP device for North complex ports.
2788 	 */
2789 	status = acpi_get_handle(adev->handle, "PXSX", &handle);
2790 	if (ACPI_FAILURE(status)) {
2791 		status = acpi_get_handle(adev->handle, "PEGP", &handle);
2792 		if (ACPI_FAILURE(status))
2793 			return false;
2794 	}
2795 
2796 	if (acpi_bus_get_device(handle, &adev))
2797 		return false;
2798 
2799 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2800 			&val))
2801 		return false;
2802 	return val == 1;
2803 }
2804 #else
2805 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2806 {
2807 	return false;
2808 }
2809 #endif /* CONFIG_ACPI */
2810 
2811 static void nvme_async_probe(void *data, async_cookie_t cookie)
2812 {
2813 	struct nvme_dev *dev = data;
2814 
2815 	flush_work(&dev->ctrl.reset_work);
2816 	flush_work(&dev->ctrl.scan_work);
2817 	nvme_put_ctrl(&dev->ctrl);
2818 }
2819 
2820 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2821 {
2822 	int node, result = -ENOMEM;
2823 	struct nvme_dev *dev;
2824 	unsigned long quirks = id->driver_data;
2825 	size_t alloc_size;
2826 
2827 	node = dev_to_node(&pdev->dev);
2828 	if (node == NUMA_NO_NODE)
2829 		set_dev_node(&pdev->dev, first_memory_node);
2830 
2831 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2832 	if (!dev)
2833 		return -ENOMEM;
2834 
2835 	dev->nr_write_queues = write_queues;
2836 	dev->nr_poll_queues = poll_queues;
2837 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2838 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2839 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2840 	if (!dev->queues)
2841 		goto free;
2842 
2843 	dev->dev = get_device(&pdev->dev);
2844 	pci_set_drvdata(pdev, dev);
2845 
2846 	result = nvme_dev_map(dev);
2847 	if (result)
2848 		goto put_pci;
2849 
2850 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2851 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2852 	mutex_init(&dev->shutdown_lock);
2853 
2854 	result = nvme_setup_prp_pools(dev);
2855 	if (result)
2856 		goto unmap;
2857 
2858 	quirks |= check_vendor_combination_bug(pdev);
2859 
2860 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2861 		/*
2862 		 * Some systems use a bios work around to ask for D3 on
2863 		 * platforms that support kernel managed suspend.
2864 		 */
2865 		dev_info(&pdev->dev,
2866 			 "platform quirk: setting simple suspend\n");
2867 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2868 	}
2869 
2870 	/*
2871 	 * Double check that our mempool alloc size will cover the biggest
2872 	 * command we support.
2873 	 */
2874 	alloc_size = nvme_pci_iod_alloc_size();
2875 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2876 
2877 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2878 						mempool_kfree,
2879 						(void *) alloc_size,
2880 						GFP_KERNEL, node);
2881 	if (!dev->iod_mempool) {
2882 		result = -ENOMEM;
2883 		goto release_pools;
2884 	}
2885 
2886 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2887 			quirks);
2888 	if (result)
2889 		goto release_mempool;
2890 
2891 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2892 
2893 	nvme_reset_ctrl(&dev->ctrl);
2894 	async_schedule(nvme_async_probe, dev);
2895 
2896 	return 0;
2897 
2898  release_mempool:
2899 	mempool_destroy(dev->iod_mempool);
2900  release_pools:
2901 	nvme_release_prp_pools(dev);
2902  unmap:
2903 	nvme_dev_unmap(dev);
2904  put_pci:
2905 	put_device(dev->dev);
2906  free:
2907 	kfree(dev->queues);
2908 	kfree(dev);
2909 	return result;
2910 }
2911 
2912 static void nvme_reset_prepare(struct pci_dev *pdev)
2913 {
2914 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2915 
2916 	/*
2917 	 * We don't need to check the return value from waiting for the reset
2918 	 * state as pci_dev device lock is held, making it impossible to race
2919 	 * with ->remove().
2920 	 */
2921 	nvme_disable_prepare_reset(dev, false);
2922 	nvme_sync_queues(&dev->ctrl);
2923 }
2924 
2925 static void nvme_reset_done(struct pci_dev *pdev)
2926 {
2927 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2928 
2929 	if (!nvme_try_sched_reset(&dev->ctrl))
2930 		flush_work(&dev->ctrl.reset_work);
2931 }
2932 
2933 static void nvme_shutdown(struct pci_dev *pdev)
2934 {
2935 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2936 
2937 	nvme_disable_prepare_reset(dev, true);
2938 }
2939 
2940 /*
2941  * The driver's remove may be called on a device in a partially initialized
2942  * state. This function must not have any dependencies on the device state in
2943  * order to proceed.
2944  */
2945 static void nvme_remove(struct pci_dev *pdev)
2946 {
2947 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2948 
2949 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2950 	pci_set_drvdata(pdev, NULL);
2951 
2952 	if (!pci_device_is_present(pdev)) {
2953 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2954 		nvme_dev_disable(dev, true);
2955 		nvme_dev_remove_admin(dev);
2956 	}
2957 
2958 	flush_work(&dev->ctrl.reset_work);
2959 	nvme_stop_ctrl(&dev->ctrl);
2960 	nvme_remove_namespaces(&dev->ctrl);
2961 	nvme_dev_disable(dev, true);
2962 	nvme_release_cmb(dev);
2963 	nvme_free_host_mem(dev);
2964 	nvme_dev_remove_admin(dev);
2965 	nvme_free_queues(dev, 0);
2966 	nvme_release_prp_pools(dev);
2967 	nvme_dev_unmap(dev);
2968 	nvme_uninit_ctrl(&dev->ctrl);
2969 }
2970 
2971 #ifdef CONFIG_PM_SLEEP
2972 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2973 {
2974 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2975 }
2976 
2977 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2978 {
2979 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2980 }
2981 
2982 static int nvme_resume(struct device *dev)
2983 {
2984 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2985 	struct nvme_ctrl *ctrl = &ndev->ctrl;
2986 
2987 	if (ndev->last_ps == U32_MAX ||
2988 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2989 		return nvme_try_sched_reset(&ndev->ctrl);
2990 	return 0;
2991 }
2992 
2993 static int nvme_suspend(struct device *dev)
2994 {
2995 	struct pci_dev *pdev = to_pci_dev(dev);
2996 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2997 	struct nvme_ctrl *ctrl = &ndev->ctrl;
2998 	int ret = -EBUSY;
2999 
3000 	ndev->last_ps = U32_MAX;
3001 
3002 	/*
3003 	 * The platform does not remove power for a kernel managed suspend so
3004 	 * use host managed nvme power settings for lowest idle power if
3005 	 * possible. This should have quicker resume latency than a full device
3006 	 * shutdown.  But if the firmware is involved after the suspend or the
3007 	 * device does not support any non-default power states, shut down the
3008 	 * device fully.
3009 	 *
3010 	 * If ASPM is not enabled for the device, shut down the device and allow
3011 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3012 	 * down, so as to allow the platform to achieve its minimum low-power
3013 	 * state (which may not be possible if the link is up).
3014 	 *
3015 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3016 	 * specification allows the device to access the host memory buffer in
3017 	 * host DRAM from all power states, but hosts will fail access to DRAM
3018 	 * during S3.
3019 	 */
3020 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3021 	    !pcie_aspm_enabled(pdev) ||
3022 	    ndev->nr_host_mem_descs ||
3023 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3024 		return nvme_disable_prepare_reset(ndev, true);
3025 
3026 	nvme_start_freeze(ctrl);
3027 	nvme_wait_freeze(ctrl);
3028 	nvme_sync_queues(ctrl);
3029 
3030 	if (ctrl->state != NVME_CTRL_LIVE)
3031 		goto unfreeze;
3032 
3033 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3034 	if (ret < 0)
3035 		goto unfreeze;
3036 
3037 	/*
3038 	 * A saved state prevents pci pm from generically controlling the
3039 	 * device's power. If we're using protocol specific settings, we don't
3040 	 * want pci interfering.
3041 	 */
3042 	pci_save_state(pdev);
3043 
3044 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3045 	if (ret < 0)
3046 		goto unfreeze;
3047 
3048 	if (ret) {
3049 		/* discard the saved state */
3050 		pci_load_saved_state(pdev, NULL);
3051 
3052 		/*
3053 		 * Clearing npss forces a controller reset on resume. The
3054 		 * correct value will be rediscovered then.
3055 		 */
3056 		ret = nvme_disable_prepare_reset(ndev, true);
3057 		ctrl->npss = 0;
3058 	}
3059 unfreeze:
3060 	nvme_unfreeze(ctrl);
3061 	return ret;
3062 }
3063 
3064 static int nvme_simple_suspend(struct device *dev)
3065 {
3066 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3067 
3068 	return nvme_disable_prepare_reset(ndev, true);
3069 }
3070 
3071 static int nvme_simple_resume(struct device *dev)
3072 {
3073 	struct pci_dev *pdev = to_pci_dev(dev);
3074 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3075 
3076 	return nvme_try_sched_reset(&ndev->ctrl);
3077 }
3078 
3079 static const struct dev_pm_ops nvme_dev_pm_ops = {
3080 	.suspend	= nvme_suspend,
3081 	.resume		= nvme_resume,
3082 	.freeze		= nvme_simple_suspend,
3083 	.thaw		= nvme_simple_resume,
3084 	.poweroff	= nvme_simple_suspend,
3085 	.restore	= nvme_simple_resume,
3086 };
3087 #endif /* CONFIG_PM_SLEEP */
3088 
3089 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3090 						pci_channel_state_t state)
3091 {
3092 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3093 
3094 	/*
3095 	 * A frozen channel requires a reset. When detected, this method will
3096 	 * shutdown the controller to quiesce. The controller will be restarted
3097 	 * after the slot reset through driver's slot_reset callback.
3098 	 */
3099 	switch (state) {
3100 	case pci_channel_io_normal:
3101 		return PCI_ERS_RESULT_CAN_RECOVER;
3102 	case pci_channel_io_frozen:
3103 		dev_warn(dev->ctrl.device,
3104 			"frozen state error detected, reset controller\n");
3105 		nvme_dev_disable(dev, false);
3106 		return PCI_ERS_RESULT_NEED_RESET;
3107 	case pci_channel_io_perm_failure:
3108 		dev_warn(dev->ctrl.device,
3109 			"failure state error detected, request disconnect\n");
3110 		return PCI_ERS_RESULT_DISCONNECT;
3111 	}
3112 	return PCI_ERS_RESULT_NEED_RESET;
3113 }
3114 
3115 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3116 {
3117 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3118 
3119 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3120 	pci_restore_state(pdev);
3121 	nvme_reset_ctrl(&dev->ctrl);
3122 	return PCI_ERS_RESULT_RECOVERED;
3123 }
3124 
3125 static void nvme_error_resume(struct pci_dev *pdev)
3126 {
3127 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3128 
3129 	flush_work(&dev->ctrl.reset_work);
3130 }
3131 
3132 static const struct pci_error_handlers nvme_err_handler = {
3133 	.error_detected	= nvme_error_detected,
3134 	.slot_reset	= nvme_slot_reset,
3135 	.resume		= nvme_error_resume,
3136 	.reset_prepare	= nvme_reset_prepare,
3137 	.reset_done	= nvme_reset_done,
3138 };
3139 
3140 static const struct pci_device_id nvme_id_table[] = {
3141 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3142 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3143 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3144 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3145 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3146 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3147 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3148 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3149 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3150 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3151 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3152 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3153 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3154 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3155 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3156 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3157 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3158 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3159 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3160 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3161 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3162 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3163 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3164 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3165 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3166 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3167 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3168 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3169 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3170 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3171 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3172 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3173 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3174 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3175 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3176 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3177 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3178 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3179 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3180 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3181 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3182 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3183 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3184 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3185 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3186 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3187 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3188 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3189 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3190 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3191 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3192 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3193 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3194 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3195 				NVME_QUIRK_128_BYTES_SQES |
3196 				NVME_QUIRK_SHARED_TAGS },
3197 	{ 0, }
3198 };
3199 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3200 
3201 static struct pci_driver nvme_driver = {
3202 	.name		= "nvme",
3203 	.id_table	= nvme_id_table,
3204 	.probe		= nvme_probe,
3205 	.remove		= nvme_remove,
3206 	.shutdown	= nvme_shutdown,
3207 #ifdef CONFIG_PM_SLEEP
3208 	.driver		= {
3209 		.pm	= &nvme_dev_pm_ops,
3210 	},
3211 #endif
3212 	.sriov_configure = pci_sriov_configure_simple,
3213 	.err_handler	= &nvme_err_handler,
3214 };
3215 
3216 static int __init nvme_init(void)
3217 {
3218 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3219 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3220 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3221 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3222 
3223 	return pci_register_driver(&nvme_driver);
3224 }
3225 
3226 static void __exit nvme_exit(void)
3227 {
3228 	pci_unregister_driver(&nvme_driver);
3229 	flush_workqueue(nvme_wq);
3230 }
3231 
3232 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3233 MODULE_LICENSE("GPL");
3234 MODULE_VERSION("1.0");
3235 module_init(nvme_init);
3236 module_exit(nvme_exit);
3237