1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 #include <linux/sed-opal.h> 47 48 #include "nvme.h" 49 50 #define NVME_Q_DEPTH 1024 51 #define NVME_AQ_DEPTH 256 52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 54 55 /* 56 * We handle AEN commands ourselves and don't even let the 57 * block layer know about them. 58 */ 59 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 60 61 static int use_threaded_interrupts; 62 module_param(use_threaded_interrupts, int, 0); 63 64 static bool use_cmb_sqes = true; 65 module_param(use_cmb_sqes, bool, 0644); 66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 67 68 static struct workqueue_struct *nvme_workq; 69 70 struct nvme_dev; 71 struct nvme_queue; 72 73 static int nvme_reset(struct nvme_dev *dev); 74 static void nvme_process_cq(struct nvme_queue *nvmeq); 75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 76 77 /* 78 * Represents an NVM Express device. Each nvme_dev is a PCI function. 79 */ 80 struct nvme_dev { 81 struct nvme_queue **queues; 82 struct blk_mq_tag_set tagset; 83 struct blk_mq_tag_set admin_tagset; 84 u32 __iomem *dbs; 85 struct device *dev; 86 struct dma_pool *prp_page_pool; 87 struct dma_pool *prp_small_pool; 88 unsigned queue_count; 89 unsigned online_queues; 90 unsigned max_qid; 91 int q_depth; 92 u32 db_stride; 93 void __iomem *bar; 94 struct work_struct reset_work; 95 struct work_struct remove_work; 96 struct timer_list watchdog_timer; 97 struct mutex shutdown_lock; 98 bool subsystem; 99 void __iomem *cmb; 100 dma_addr_t cmb_dma_addr; 101 u64 cmb_size; 102 u32 cmbsz; 103 u32 cmbloc; 104 struct nvme_ctrl ctrl; 105 struct completion ioq_wait; 106 }; 107 108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 109 { 110 return container_of(ctrl, struct nvme_dev, ctrl); 111 } 112 113 /* 114 * An NVM Express queue. Each device has at least two (one for admin 115 * commands and one for I/O commands). 116 */ 117 struct nvme_queue { 118 struct device *q_dmadev; 119 struct nvme_dev *dev; 120 char irqname[24]; /* nvme4294967295-65535\0 */ 121 spinlock_t q_lock; 122 struct nvme_command *sq_cmds; 123 struct nvme_command __iomem *sq_cmds_io; 124 volatile struct nvme_completion *cqes; 125 struct blk_mq_tags **tags; 126 dma_addr_t sq_dma_addr; 127 dma_addr_t cq_dma_addr; 128 u32 __iomem *q_db; 129 u16 q_depth; 130 s16 cq_vector; 131 u16 sq_tail; 132 u16 cq_head; 133 u16 qid; 134 u8 cq_phase; 135 u8 cqe_seen; 136 }; 137 138 /* 139 * The nvme_iod describes the data in an I/O, including the list of PRP 140 * entries. You can't see it in this data structure because C doesn't let 141 * me express that. Use nvme_init_iod to ensure there's enough space 142 * allocated to store the PRP list. 143 */ 144 struct nvme_iod { 145 struct nvme_request req; 146 struct nvme_queue *nvmeq; 147 int aborted; 148 int npages; /* In the PRP list. 0 means small pool in use */ 149 int nents; /* Used in scatterlist */ 150 int length; /* Of data, in bytes */ 151 dma_addr_t first_dma; 152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 153 struct scatterlist *sg; 154 struct scatterlist inline_sg[0]; 155 }; 156 157 /* 158 * Check we didin't inadvertently grow the command struct 159 */ 160 static inline void _nvme_check_size(void) 161 { 162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 174 } 175 176 /* 177 * Max size of iod being embedded in the request payload 178 */ 179 #define NVME_INT_PAGES 2 180 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 181 182 /* 183 * Will slightly overestimate the number of pages needed. This is OK 184 * as it only leads to a small amount of wasted memory for the lifetime of 185 * the I/O. 186 */ 187 static int nvme_npages(unsigned size, struct nvme_dev *dev) 188 { 189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 190 dev->ctrl.page_size); 191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 192 } 193 194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 195 unsigned int size, unsigned int nseg) 196 { 197 return sizeof(__le64 *) * nvme_npages(size, dev) + 198 sizeof(struct scatterlist) * nseg; 199 } 200 201 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 202 { 203 return sizeof(struct nvme_iod) + 204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 205 } 206 207 static int nvmeq_irq(struct nvme_queue *nvmeq) 208 { 209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 210 } 211 212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 213 unsigned int hctx_idx) 214 { 215 struct nvme_dev *dev = data; 216 struct nvme_queue *nvmeq = dev->queues[0]; 217 218 WARN_ON(hctx_idx != 0); 219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 220 WARN_ON(nvmeq->tags); 221 222 hctx->driver_data = nvmeq; 223 nvmeq->tags = &dev->admin_tagset.tags[0]; 224 return 0; 225 } 226 227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 228 { 229 struct nvme_queue *nvmeq = hctx->driver_data; 230 231 nvmeq->tags = NULL; 232 } 233 234 static int nvme_admin_init_request(void *data, struct request *req, 235 unsigned int hctx_idx, unsigned int rq_idx, 236 unsigned int numa_node) 237 { 238 struct nvme_dev *dev = data; 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 240 struct nvme_queue *nvmeq = dev->queues[0]; 241 242 BUG_ON(!nvmeq); 243 iod->nvmeq = nvmeq; 244 return 0; 245 } 246 247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 248 unsigned int hctx_idx) 249 { 250 struct nvme_dev *dev = data; 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 252 253 if (!nvmeq->tags) 254 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 255 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 257 hctx->driver_data = nvmeq; 258 return 0; 259 } 260 261 static int nvme_init_request(void *data, struct request *req, 262 unsigned int hctx_idx, unsigned int rq_idx, 263 unsigned int numa_node) 264 { 265 struct nvme_dev *dev = data; 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 268 269 BUG_ON(!nvmeq); 270 iod->nvmeq = nvmeq; 271 return 0; 272 } 273 274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 275 { 276 struct nvme_dev *dev = set->driver_data; 277 278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 279 } 280 281 /** 282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 283 * @nvmeq: The queue to use 284 * @cmd: The command to send 285 * 286 * Safe to use from interrupt context 287 */ 288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 289 struct nvme_command *cmd) 290 { 291 u16 tail = nvmeq->sq_tail; 292 293 if (nvmeq->sq_cmds_io) 294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 295 else 296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 297 298 if (++tail == nvmeq->q_depth) 299 tail = 0; 300 writel(tail, nvmeq->q_db); 301 nvmeq->sq_tail = tail; 302 } 303 304 static __le64 **iod_list(struct request *req) 305 { 306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 308 } 309 310 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 311 { 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 313 int nseg = blk_rq_nr_phys_segments(rq); 314 unsigned int size = blk_rq_payload_bytes(rq); 315 316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 318 if (!iod->sg) 319 return BLK_MQ_RQ_QUEUE_BUSY; 320 } else { 321 iod->sg = iod->inline_sg; 322 } 323 324 iod->aborted = 0; 325 iod->npages = -1; 326 iod->nents = 0; 327 iod->length = size; 328 329 if (!(rq->rq_flags & RQF_DONTPREP)) { 330 rq->retries = 0; 331 rq->rq_flags |= RQF_DONTPREP; 332 } 333 return BLK_MQ_RQ_QUEUE_OK; 334 } 335 336 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 337 { 338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 339 const int last_prp = dev->ctrl.page_size / 8 - 1; 340 int i; 341 __le64 **list = iod_list(req); 342 dma_addr_t prp_dma = iod->first_dma; 343 344 if (iod->npages == 0) 345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 346 for (i = 0; i < iod->npages; i++) { 347 __le64 *prp_list = list[i]; 348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 350 prp_dma = next_prp_dma; 351 } 352 353 if (iod->sg != iod->inline_sg) 354 kfree(iod->sg); 355 } 356 357 #ifdef CONFIG_BLK_DEV_INTEGRITY 358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 359 { 360 if (be32_to_cpu(pi->ref_tag) == v) 361 pi->ref_tag = cpu_to_be32(p); 362 } 363 364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 365 { 366 if (be32_to_cpu(pi->ref_tag) == p) 367 pi->ref_tag = cpu_to_be32(v); 368 } 369 370 /** 371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 372 * 373 * The virtual start sector is the one that was originally submitted by the 374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 375 * start sector may be different. Remap protection information to match the 376 * physical LBA on writes, and back to the original seed on reads. 377 * 378 * Type 0 and 3 do not have a ref tag, so no remapping required. 379 */ 380 static void nvme_dif_remap(struct request *req, 381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 382 { 383 struct nvme_ns *ns = req->rq_disk->private_data; 384 struct bio_integrity_payload *bip; 385 struct t10_pi_tuple *pi; 386 void *p, *pmap; 387 u32 i, nlb, ts, phys, virt; 388 389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 390 return; 391 392 bip = bio_integrity(req->bio); 393 if (!bip) 394 return; 395 396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 397 398 p = pmap; 399 virt = bip_get_seed(bip); 400 phys = nvme_block_nr(ns, blk_rq_pos(req)); 401 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 402 ts = ns->disk->queue->integrity.tuple_size; 403 404 for (i = 0; i < nlb; i++, virt++, phys++) { 405 pi = (struct t10_pi_tuple *)p; 406 dif_swap(phys, virt, pi); 407 p += ts; 408 } 409 kunmap_atomic(pmap); 410 } 411 #else /* CONFIG_BLK_DEV_INTEGRITY */ 412 static void nvme_dif_remap(struct request *req, 413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 414 { 415 } 416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 417 { 418 } 419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 420 { 421 } 422 #endif 423 424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req) 425 { 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 427 struct dma_pool *pool; 428 int length = blk_rq_payload_bytes(req); 429 struct scatterlist *sg = iod->sg; 430 int dma_len = sg_dma_len(sg); 431 u64 dma_addr = sg_dma_address(sg); 432 u32 page_size = dev->ctrl.page_size; 433 int offset = dma_addr & (page_size - 1); 434 __le64 *prp_list; 435 __le64 **list = iod_list(req); 436 dma_addr_t prp_dma; 437 int nprps, i; 438 439 length -= (page_size - offset); 440 if (length <= 0) 441 return true; 442 443 dma_len -= (page_size - offset); 444 if (dma_len) { 445 dma_addr += (page_size - offset); 446 } else { 447 sg = sg_next(sg); 448 dma_addr = sg_dma_address(sg); 449 dma_len = sg_dma_len(sg); 450 } 451 452 if (length <= page_size) { 453 iod->first_dma = dma_addr; 454 return true; 455 } 456 457 nprps = DIV_ROUND_UP(length, page_size); 458 if (nprps <= (256 / 8)) { 459 pool = dev->prp_small_pool; 460 iod->npages = 0; 461 } else { 462 pool = dev->prp_page_pool; 463 iod->npages = 1; 464 } 465 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 467 if (!prp_list) { 468 iod->first_dma = dma_addr; 469 iod->npages = -1; 470 return false; 471 } 472 list[0] = prp_list; 473 iod->first_dma = prp_dma; 474 i = 0; 475 for (;;) { 476 if (i == page_size >> 3) { 477 __le64 *old_prp_list = prp_list; 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 479 if (!prp_list) 480 return false; 481 list[iod->npages++] = prp_list; 482 prp_list[0] = old_prp_list[i - 1]; 483 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 484 i = 1; 485 } 486 prp_list[i++] = cpu_to_le64(dma_addr); 487 dma_len -= page_size; 488 dma_addr += page_size; 489 length -= page_size; 490 if (length <= 0) 491 break; 492 if (dma_len > 0) 493 continue; 494 BUG_ON(dma_len < 0); 495 sg = sg_next(sg); 496 dma_addr = sg_dma_address(sg); 497 dma_len = sg_dma_len(sg); 498 } 499 500 return true; 501 } 502 503 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 504 struct nvme_command *cmnd) 505 { 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 507 struct request_queue *q = req->q; 508 enum dma_data_direction dma_dir = rq_data_dir(req) ? 509 DMA_TO_DEVICE : DMA_FROM_DEVICE; 510 int ret = BLK_MQ_RQ_QUEUE_ERROR; 511 512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 513 iod->nents = blk_rq_map_sg(q, req, iod->sg); 514 if (!iod->nents) 515 goto out; 516 517 ret = BLK_MQ_RQ_QUEUE_BUSY; 518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 519 DMA_ATTR_NO_WARN)) 520 goto out; 521 522 if (!nvme_setup_prps(dev, req)) 523 goto out_unmap; 524 525 ret = BLK_MQ_RQ_QUEUE_ERROR; 526 if (blk_integrity_rq(req)) { 527 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 528 goto out_unmap; 529 530 sg_init_table(&iod->meta_sg, 1); 531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 532 goto out_unmap; 533 534 if (rq_data_dir(req)) 535 nvme_dif_remap(req, nvme_dif_prep); 536 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 538 goto out_unmap; 539 } 540 541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 543 if (blk_integrity_rq(req)) 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 545 return BLK_MQ_RQ_QUEUE_OK; 546 547 out_unmap: 548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 549 out: 550 return ret; 551 } 552 553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 554 { 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 556 enum dma_data_direction dma_dir = rq_data_dir(req) ? 557 DMA_TO_DEVICE : DMA_FROM_DEVICE; 558 559 if (iod->nents) { 560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 561 if (blk_integrity_rq(req)) { 562 if (!rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_complete); 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 565 } 566 } 567 568 nvme_cleanup_cmd(req); 569 nvme_free_iod(dev, req); 570 } 571 572 /* 573 * NOTE: ns is NULL when called on the admin queue. 574 */ 575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 576 const struct blk_mq_queue_data *bd) 577 { 578 struct nvme_ns *ns = hctx->queue->queuedata; 579 struct nvme_queue *nvmeq = hctx->driver_data; 580 struct nvme_dev *dev = nvmeq->dev; 581 struct request *req = bd->rq; 582 struct nvme_command cmnd; 583 int ret = BLK_MQ_RQ_QUEUE_OK; 584 585 /* 586 * If formated with metadata, require the block layer provide a buffer 587 * unless this namespace is formated such that the metadata can be 588 * stripped/generated by the controller with PRACT=1. 589 */ 590 if (ns && ns->ms && !blk_integrity_rq(req)) { 591 if (!(ns->pi_type && ns->ms == 8) && 592 !blk_rq_is_passthrough(req)) { 593 blk_mq_end_request(req, -EFAULT); 594 return BLK_MQ_RQ_QUEUE_OK; 595 } 596 } 597 598 ret = nvme_setup_cmd(ns, req, &cmnd); 599 if (ret != BLK_MQ_RQ_QUEUE_OK) 600 return ret; 601 602 ret = nvme_init_iod(req, dev); 603 if (ret != BLK_MQ_RQ_QUEUE_OK) 604 goto out_free_cmd; 605 606 if (blk_rq_nr_phys_segments(req)) 607 ret = nvme_map_data(dev, req, &cmnd); 608 609 if (ret != BLK_MQ_RQ_QUEUE_OK) 610 goto out_cleanup_iod; 611 612 blk_mq_start_request(req); 613 614 spin_lock_irq(&nvmeq->q_lock); 615 if (unlikely(nvmeq->cq_vector < 0)) { 616 ret = BLK_MQ_RQ_QUEUE_ERROR; 617 spin_unlock_irq(&nvmeq->q_lock); 618 goto out_cleanup_iod; 619 } 620 __nvme_submit_cmd(nvmeq, &cmnd); 621 nvme_process_cq(nvmeq); 622 spin_unlock_irq(&nvmeq->q_lock); 623 return BLK_MQ_RQ_QUEUE_OK; 624 out_cleanup_iod: 625 nvme_free_iod(dev, req); 626 out_free_cmd: 627 nvme_cleanup_cmd(req); 628 return ret; 629 } 630 631 static void nvme_complete_rq(struct request *req) 632 { 633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 634 struct nvme_dev *dev = iod->nvmeq->dev; 635 int error = 0; 636 637 nvme_unmap_data(dev, req); 638 639 if (unlikely(req->errors)) { 640 if (nvme_req_needs_retry(req, req->errors)) { 641 req->retries++; 642 nvme_requeue_req(req); 643 return; 644 } 645 646 if (blk_rq_is_passthrough(req)) 647 error = req->errors; 648 else 649 error = nvme_error_status(req->errors); 650 } 651 652 if (unlikely(iod->aborted)) { 653 dev_warn(dev->ctrl.device, 654 "completing aborted command with status: %04x\n", 655 req->errors); 656 } 657 658 blk_mq_end_request(req, error); 659 } 660 661 /* We read the CQE phase first to check if the rest of the entry is valid */ 662 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 663 u16 phase) 664 { 665 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 666 } 667 668 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 669 { 670 u16 head, phase; 671 672 head = nvmeq->cq_head; 673 phase = nvmeq->cq_phase; 674 675 while (nvme_cqe_valid(nvmeq, head, phase)) { 676 struct nvme_completion cqe = nvmeq->cqes[head]; 677 struct request *req; 678 679 if (++head == nvmeq->q_depth) { 680 head = 0; 681 phase = !phase; 682 } 683 684 if (tag && *tag == cqe.command_id) 685 *tag = -1; 686 687 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 688 dev_warn(nvmeq->dev->ctrl.device, 689 "invalid id %d completed on queue %d\n", 690 cqe.command_id, le16_to_cpu(cqe.sq_id)); 691 continue; 692 } 693 694 /* 695 * AEN requests are special as they don't time out and can 696 * survive any kind of queue freeze and often don't respond to 697 * aborts. We don't even bother to allocate a struct request 698 * for them but rather special case them here. 699 */ 700 if (unlikely(nvmeq->qid == 0 && 701 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 702 nvme_complete_async_event(&nvmeq->dev->ctrl, 703 cqe.status, &cqe.result); 704 continue; 705 } 706 707 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 708 nvme_req(req)->result = cqe.result; 709 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 710 } 711 712 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 713 return; 714 715 if (likely(nvmeq->cq_vector >= 0)) 716 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 717 nvmeq->cq_head = head; 718 nvmeq->cq_phase = phase; 719 720 nvmeq->cqe_seen = 1; 721 } 722 723 static void nvme_process_cq(struct nvme_queue *nvmeq) 724 { 725 __nvme_process_cq(nvmeq, NULL); 726 } 727 728 static irqreturn_t nvme_irq(int irq, void *data) 729 { 730 irqreturn_t result; 731 struct nvme_queue *nvmeq = data; 732 spin_lock(&nvmeq->q_lock); 733 nvme_process_cq(nvmeq); 734 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 735 nvmeq->cqe_seen = 0; 736 spin_unlock(&nvmeq->q_lock); 737 return result; 738 } 739 740 static irqreturn_t nvme_irq_check(int irq, void *data) 741 { 742 struct nvme_queue *nvmeq = data; 743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 744 return IRQ_WAKE_THREAD; 745 return IRQ_NONE; 746 } 747 748 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 749 { 750 struct nvme_queue *nvmeq = hctx->driver_data; 751 752 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 753 spin_lock_irq(&nvmeq->q_lock); 754 __nvme_process_cq(nvmeq, &tag); 755 spin_unlock_irq(&nvmeq->q_lock); 756 757 if (tag == -1) 758 return 1; 759 } 760 761 return 0; 762 } 763 764 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 765 { 766 struct nvme_dev *dev = to_nvme_dev(ctrl); 767 struct nvme_queue *nvmeq = dev->queues[0]; 768 struct nvme_command c; 769 770 memset(&c, 0, sizeof(c)); 771 c.common.opcode = nvme_admin_async_event; 772 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 773 774 spin_lock_irq(&nvmeq->q_lock); 775 __nvme_submit_cmd(nvmeq, &c); 776 spin_unlock_irq(&nvmeq->q_lock); 777 } 778 779 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 780 { 781 struct nvme_command c; 782 783 memset(&c, 0, sizeof(c)); 784 c.delete_queue.opcode = opcode; 785 c.delete_queue.qid = cpu_to_le16(id); 786 787 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 788 } 789 790 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 791 struct nvme_queue *nvmeq) 792 { 793 struct nvme_command c; 794 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 795 796 /* 797 * Note: we (ab)use the fact the the prp fields survive if no data 798 * is attached to the request. 799 */ 800 memset(&c, 0, sizeof(c)); 801 c.create_cq.opcode = nvme_admin_create_cq; 802 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 803 c.create_cq.cqid = cpu_to_le16(qid); 804 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 805 c.create_cq.cq_flags = cpu_to_le16(flags); 806 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 807 808 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 809 } 810 811 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 812 struct nvme_queue *nvmeq) 813 { 814 struct nvme_command c; 815 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 816 817 /* 818 * Note: we (ab)use the fact the the prp fields survive if no data 819 * is attached to the request. 820 */ 821 memset(&c, 0, sizeof(c)); 822 c.create_sq.opcode = nvme_admin_create_sq; 823 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 824 c.create_sq.sqid = cpu_to_le16(qid); 825 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 826 c.create_sq.sq_flags = cpu_to_le16(flags); 827 c.create_sq.cqid = cpu_to_le16(qid); 828 829 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 830 } 831 832 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 833 { 834 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 835 } 836 837 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 838 { 839 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 840 } 841 842 static void abort_endio(struct request *req, int error) 843 { 844 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 845 struct nvme_queue *nvmeq = iod->nvmeq; 846 u16 status = req->errors; 847 848 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 849 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 850 blk_mq_free_request(req); 851 } 852 853 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 854 { 855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 856 struct nvme_queue *nvmeq = iod->nvmeq; 857 struct nvme_dev *dev = nvmeq->dev; 858 struct request *abort_req; 859 struct nvme_command cmd; 860 861 /* 862 * Shutdown immediately if controller times out while starting. The 863 * reset work will see the pci device disabled when it gets the forced 864 * cancellation error. All outstanding requests are completed on 865 * shutdown, so we return BLK_EH_HANDLED. 866 */ 867 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 868 dev_warn(dev->ctrl.device, 869 "I/O %d QID %d timeout, disable controller\n", 870 req->tag, nvmeq->qid); 871 nvme_dev_disable(dev, false); 872 req->errors = NVME_SC_CANCELLED; 873 return BLK_EH_HANDLED; 874 } 875 876 /* 877 * Shutdown the controller immediately and schedule a reset if the 878 * command was already aborted once before and still hasn't been 879 * returned to the driver, or if this is the admin queue. 880 */ 881 if (!nvmeq->qid || iod->aborted) { 882 dev_warn(dev->ctrl.device, 883 "I/O %d QID %d timeout, reset controller\n", 884 req->tag, nvmeq->qid); 885 nvme_dev_disable(dev, false); 886 nvme_reset(dev); 887 888 /* 889 * Mark the request as handled, since the inline shutdown 890 * forces all outstanding requests to complete. 891 */ 892 req->errors = NVME_SC_CANCELLED; 893 return BLK_EH_HANDLED; 894 } 895 896 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 897 atomic_inc(&dev->ctrl.abort_limit); 898 return BLK_EH_RESET_TIMER; 899 } 900 iod->aborted = 1; 901 902 memset(&cmd, 0, sizeof(cmd)); 903 cmd.abort.opcode = nvme_admin_abort_cmd; 904 cmd.abort.cid = req->tag; 905 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 906 907 dev_warn(nvmeq->dev->ctrl.device, 908 "I/O %d QID %d timeout, aborting\n", 909 req->tag, nvmeq->qid); 910 911 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 912 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 913 if (IS_ERR(abort_req)) { 914 atomic_inc(&dev->ctrl.abort_limit); 915 return BLK_EH_RESET_TIMER; 916 } 917 918 abort_req->timeout = ADMIN_TIMEOUT; 919 abort_req->end_io_data = NULL; 920 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 921 922 /* 923 * The aborted req will be completed on receiving the abort req. 924 * We enable the timer again. If hit twice, it'll cause a device reset, 925 * as the device then is in a faulty state. 926 */ 927 return BLK_EH_RESET_TIMER; 928 } 929 930 static void nvme_free_queue(struct nvme_queue *nvmeq) 931 { 932 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 933 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 934 if (nvmeq->sq_cmds) 935 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 936 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 937 kfree(nvmeq); 938 } 939 940 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 941 { 942 int i; 943 944 for (i = dev->queue_count - 1; i >= lowest; i--) { 945 struct nvme_queue *nvmeq = dev->queues[i]; 946 dev->queue_count--; 947 dev->queues[i] = NULL; 948 nvme_free_queue(nvmeq); 949 } 950 } 951 952 /** 953 * nvme_suspend_queue - put queue into suspended state 954 * @nvmeq - queue to suspend 955 */ 956 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 957 { 958 int vector; 959 960 spin_lock_irq(&nvmeq->q_lock); 961 if (nvmeq->cq_vector == -1) { 962 spin_unlock_irq(&nvmeq->q_lock); 963 return 1; 964 } 965 vector = nvmeq_irq(nvmeq); 966 nvmeq->dev->online_queues--; 967 nvmeq->cq_vector = -1; 968 spin_unlock_irq(&nvmeq->q_lock); 969 970 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 971 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 972 973 free_irq(vector, nvmeq); 974 975 return 0; 976 } 977 978 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 979 { 980 struct nvme_queue *nvmeq = dev->queues[0]; 981 982 if (!nvmeq) 983 return; 984 if (nvme_suspend_queue(nvmeq)) 985 return; 986 987 if (shutdown) 988 nvme_shutdown_ctrl(&dev->ctrl); 989 else 990 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 991 dev->bar + NVME_REG_CAP)); 992 993 spin_lock_irq(&nvmeq->q_lock); 994 nvme_process_cq(nvmeq); 995 spin_unlock_irq(&nvmeq->q_lock); 996 } 997 998 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 999 int entry_size) 1000 { 1001 int q_depth = dev->q_depth; 1002 unsigned q_size_aligned = roundup(q_depth * entry_size, 1003 dev->ctrl.page_size); 1004 1005 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1006 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1007 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1008 q_depth = div_u64(mem_per_q, entry_size); 1009 1010 /* 1011 * Ensure the reduced q_depth is above some threshold where it 1012 * would be better to map queues in system memory with the 1013 * original depth 1014 */ 1015 if (q_depth < 64) 1016 return -ENOMEM; 1017 } 1018 1019 return q_depth; 1020 } 1021 1022 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1023 int qid, int depth) 1024 { 1025 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1026 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1027 dev->ctrl.page_size); 1028 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1029 nvmeq->sq_cmds_io = dev->cmb + offset; 1030 } else { 1031 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1032 &nvmeq->sq_dma_addr, GFP_KERNEL); 1033 if (!nvmeq->sq_cmds) 1034 return -ENOMEM; 1035 } 1036 1037 return 0; 1038 } 1039 1040 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1041 int depth, int node) 1042 { 1043 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL, 1044 node); 1045 if (!nvmeq) 1046 return NULL; 1047 1048 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1049 &nvmeq->cq_dma_addr, GFP_KERNEL); 1050 if (!nvmeq->cqes) 1051 goto free_nvmeq; 1052 1053 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1054 goto free_cqdma; 1055 1056 nvmeq->q_dmadev = dev->dev; 1057 nvmeq->dev = dev; 1058 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1059 dev->ctrl.instance, qid); 1060 spin_lock_init(&nvmeq->q_lock); 1061 nvmeq->cq_head = 0; 1062 nvmeq->cq_phase = 1; 1063 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1064 nvmeq->q_depth = depth; 1065 nvmeq->qid = qid; 1066 nvmeq->cq_vector = -1; 1067 dev->queues[qid] = nvmeq; 1068 dev->queue_count++; 1069 1070 return nvmeq; 1071 1072 free_cqdma: 1073 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1074 nvmeq->cq_dma_addr); 1075 free_nvmeq: 1076 kfree(nvmeq); 1077 return NULL; 1078 } 1079 1080 static int queue_request_irq(struct nvme_queue *nvmeq) 1081 { 1082 if (use_threaded_interrupts) 1083 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1084 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1085 else 1086 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1087 nvmeq->irqname, nvmeq); 1088 } 1089 1090 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1091 { 1092 struct nvme_dev *dev = nvmeq->dev; 1093 1094 spin_lock_irq(&nvmeq->q_lock); 1095 nvmeq->sq_tail = 0; 1096 nvmeq->cq_head = 0; 1097 nvmeq->cq_phase = 1; 1098 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1099 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1100 dev->online_queues++; 1101 spin_unlock_irq(&nvmeq->q_lock); 1102 } 1103 1104 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1105 { 1106 struct nvme_dev *dev = nvmeq->dev; 1107 int result; 1108 1109 nvmeq->cq_vector = qid - 1; 1110 result = adapter_alloc_cq(dev, qid, nvmeq); 1111 if (result < 0) 1112 return result; 1113 1114 result = adapter_alloc_sq(dev, qid, nvmeq); 1115 if (result < 0) 1116 goto release_cq; 1117 1118 result = queue_request_irq(nvmeq); 1119 if (result < 0) 1120 goto release_sq; 1121 1122 nvme_init_queue(nvmeq, qid); 1123 return result; 1124 1125 release_sq: 1126 adapter_delete_sq(dev, qid); 1127 release_cq: 1128 adapter_delete_cq(dev, qid); 1129 return result; 1130 } 1131 1132 static struct blk_mq_ops nvme_mq_admin_ops = { 1133 .queue_rq = nvme_queue_rq, 1134 .complete = nvme_complete_rq, 1135 .init_hctx = nvme_admin_init_hctx, 1136 .exit_hctx = nvme_admin_exit_hctx, 1137 .init_request = nvme_admin_init_request, 1138 .timeout = nvme_timeout, 1139 }; 1140 1141 static struct blk_mq_ops nvme_mq_ops = { 1142 .queue_rq = nvme_queue_rq, 1143 .complete = nvme_complete_rq, 1144 .init_hctx = nvme_init_hctx, 1145 .init_request = nvme_init_request, 1146 .map_queues = nvme_pci_map_queues, 1147 .timeout = nvme_timeout, 1148 .poll = nvme_poll, 1149 }; 1150 1151 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1152 { 1153 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1154 /* 1155 * If the controller was reset during removal, it's possible 1156 * user requests may be waiting on a stopped queue. Start the 1157 * queue to flush these to completion. 1158 */ 1159 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1160 blk_cleanup_queue(dev->ctrl.admin_q); 1161 blk_mq_free_tag_set(&dev->admin_tagset); 1162 } 1163 } 1164 1165 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1166 { 1167 if (!dev->ctrl.admin_q) { 1168 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1169 dev->admin_tagset.nr_hw_queues = 1; 1170 1171 /* 1172 * Subtract one to leave an empty queue entry for 'Full Queue' 1173 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1174 */ 1175 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1176 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1177 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1178 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1179 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1180 dev->admin_tagset.driver_data = dev; 1181 1182 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1183 return -ENOMEM; 1184 1185 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1186 if (IS_ERR(dev->ctrl.admin_q)) { 1187 blk_mq_free_tag_set(&dev->admin_tagset); 1188 return -ENOMEM; 1189 } 1190 if (!blk_get_queue(dev->ctrl.admin_q)) { 1191 nvme_dev_remove_admin(dev); 1192 dev->ctrl.admin_q = NULL; 1193 return -ENODEV; 1194 } 1195 } else 1196 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1197 1198 return 0; 1199 } 1200 1201 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1202 { 1203 int result; 1204 u32 aqa; 1205 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1206 struct nvme_queue *nvmeq; 1207 1208 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1209 NVME_CAP_NSSRC(cap) : 0; 1210 1211 if (dev->subsystem && 1212 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1213 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1214 1215 result = nvme_disable_ctrl(&dev->ctrl, cap); 1216 if (result < 0) 1217 return result; 1218 1219 nvmeq = dev->queues[0]; 1220 if (!nvmeq) { 1221 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 1222 dev_to_node(dev->dev)); 1223 if (!nvmeq) 1224 return -ENOMEM; 1225 } 1226 1227 aqa = nvmeq->q_depth - 1; 1228 aqa |= aqa << 16; 1229 1230 writel(aqa, dev->bar + NVME_REG_AQA); 1231 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1232 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1233 1234 result = nvme_enable_ctrl(&dev->ctrl, cap); 1235 if (result) 1236 return result; 1237 1238 nvmeq->cq_vector = 0; 1239 result = queue_request_irq(nvmeq); 1240 if (result) { 1241 nvmeq->cq_vector = -1; 1242 return result; 1243 } 1244 1245 return result; 1246 } 1247 1248 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1249 { 1250 1251 /* If true, indicates loss of adapter communication, possibly by a 1252 * NVMe Subsystem reset. 1253 */ 1254 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1255 1256 /* If there is a reset ongoing, we shouldn't reset again. */ 1257 if (work_busy(&dev->reset_work)) 1258 return false; 1259 1260 /* We shouldn't reset unless the controller is on fatal error state 1261 * _or_ if we lost the communication with it. 1262 */ 1263 if (!(csts & NVME_CSTS_CFS) && !nssro) 1264 return false; 1265 1266 /* If PCI error recovery process is happening, we cannot reset or 1267 * the recovery mechanism will surely fail. 1268 */ 1269 if (pci_channel_offline(to_pci_dev(dev->dev))) 1270 return false; 1271 1272 return true; 1273 } 1274 1275 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1276 { 1277 /* Read a config register to help see what died. */ 1278 u16 pci_status; 1279 int result; 1280 1281 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1282 &pci_status); 1283 if (result == PCIBIOS_SUCCESSFUL) 1284 dev_warn(dev->dev, 1285 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1286 csts, pci_status); 1287 else 1288 dev_warn(dev->dev, 1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1290 csts, result); 1291 } 1292 1293 static void nvme_watchdog_timer(unsigned long data) 1294 { 1295 struct nvme_dev *dev = (struct nvme_dev *)data; 1296 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1297 1298 /* Skip controllers under certain specific conditions. */ 1299 if (nvme_should_reset(dev, csts)) { 1300 if (!nvme_reset(dev)) 1301 nvme_warn_reset(dev, csts); 1302 return; 1303 } 1304 1305 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1306 } 1307 1308 static int nvme_create_io_queues(struct nvme_dev *dev) 1309 { 1310 unsigned i, max; 1311 int ret = 0; 1312 1313 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1314 /* vector == qid - 1, match nvme_create_queue */ 1315 if (!nvme_alloc_queue(dev, i, dev->q_depth, 1316 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) { 1317 ret = -ENOMEM; 1318 break; 1319 } 1320 } 1321 1322 max = min(dev->max_qid, dev->queue_count - 1); 1323 for (i = dev->online_queues; i <= max; i++) { 1324 ret = nvme_create_queue(dev->queues[i], i); 1325 if (ret) 1326 break; 1327 } 1328 1329 /* 1330 * Ignore failing Create SQ/CQ commands, we can continue with less 1331 * than the desired aount of queues, and even a controller without 1332 * I/O queues an still be used to issue admin commands. This might 1333 * be useful to upgrade a buggy firmware for example. 1334 */ 1335 return ret >= 0 ? 0 : ret; 1336 } 1337 1338 static ssize_t nvme_cmb_show(struct device *dev, 1339 struct device_attribute *attr, 1340 char *buf) 1341 { 1342 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1343 1344 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1345 ndev->cmbloc, ndev->cmbsz); 1346 } 1347 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1348 1349 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1350 { 1351 u64 szu, size, offset; 1352 resource_size_t bar_size; 1353 struct pci_dev *pdev = to_pci_dev(dev->dev); 1354 void __iomem *cmb; 1355 dma_addr_t dma_addr; 1356 1357 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1358 if (!(NVME_CMB_SZ(dev->cmbsz))) 1359 return NULL; 1360 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1361 1362 if (!use_cmb_sqes) 1363 return NULL; 1364 1365 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1366 size = szu * NVME_CMB_SZ(dev->cmbsz); 1367 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1368 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1369 1370 if (offset > bar_size) 1371 return NULL; 1372 1373 /* 1374 * Controllers may support a CMB size larger than their BAR, 1375 * for example, due to being behind a bridge. Reduce the CMB to 1376 * the reported size of the BAR 1377 */ 1378 if (size > bar_size - offset) 1379 size = bar_size - offset; 1380 1381 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1382 cmb = ioremap_wc(dma_addr, size); 1383 if (!cmb) 1384 return NULL; 1385 1386 dev->cmb_dma_addr = dma_addr; 1387 dev->cmb_size = size; 1388 return cmb; 1389 } 1390 1391 static inline void nvme_release_cmb(struct nvme_dev *dev) 1392 { 1393 if (dev->cmb) { 1394 iounmap(dev->cmb); 1395 dev->cmb = NULL; 1396 } 1397 } 1398 1399 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1400 { 1401 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1402 } 1403 1404 static int nvme_setup_io_queues(struct nvme_dev *dev) 1405 { 1406 struct nvme_queue *adminq = dev->queues[0]; 1407 struct pci_dev *pdev = to_pci_dev(dev->dev); 1408 int result, nr_io_queues, size; 1409 1410 nr_io_queues = num_online_cpus(); 1411 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1412 if (result < 0) 1413 return result; 1414 1415 if (nr_io_queues == 0) 1416 return 0; 1417 1418 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1419 result = nvme_cmb_qdepth(dev, nr_io_queues, 1420 sizeof(struct nvme_command)); 1421 if (result > 0) 1422 dev->q_depth = result; 1423 else 1424 nvme_release_cmb(dev); 1425 } 1426 1427 size = db_bar_size(dev, nr_io_queues); 1428 if (size > 8192) { 1429 iounmap(dev->bar); 1430 do { 1431 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1432 if (dev->bar) 1433 break; 1434 if (!--nr_io_queues) 1435 return -ENOMEM; 1436 size = db_bar_size(dev, nr_io_queues); 1437 } while (1); 1438 dev->dbs = dev->bar + 4096; 1439 adminq->q_db = dev->dbs; 1440 } 1441 1442 /* Deregister the admin queue's interrupt */ 1443 free_irq(pci_irq_vector(pdev, 0), adminq); 1444 1445 /* 1446 * If we enable msix early due to not intx, disable it again before 1447 * setting up the full range we need. 1448 */ 1449 pci_free_irq_vectors(pdev); 1450 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1451 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1452 if (nr_io_queues <= 0) 1453 return -EIO; 1454 dev->max_qid = nr_io_queues; 1455 1456 /* 1457 * Should investigate if there's a performance win from allocating 1458 * more queues than interrupt vectors; it might allow the submission 1459 * path to scale better, even if the receive path is limited by the 1460 * number of interrupts. 1461 */ 1462 1463 result = queue_request_irq(adminq); 1464 if (result) { 1465 adminq->cq_vector = -1; 1466 return result; 1467 } 1468 return nvme_create_io_queues(dev); 1469 } 1470 1471 static void nvme_del_queue_end(struct request *req, int error) 1472 { 1473 struct nvme_queue *nvmeq = req->end_io_data; 1474 1475 blk_mq_free_request(req); 1476 complete(&nvmeq->dev->ioq_wait); 1477 } 1478 1479 static void nvme_del_cq_end(struct request *req, int error) 1480 { 1481 struct nvme_queue *nvmeq = req->end_io_data; 1482 1483 if (!error) { 1484 unsigned long flags; 1485 1486 /* 1487 * We might be called with the AQ q_lock held 1488 * and the I/O queue q_lock should always 1489 * nest inside the AQ one. 1490 */ 1491 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1492 SINGLE_DEPTH_NESTING); 1493 nvme_process_cq(nvmeq); 1494 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1495 } 1496 1497 nvme_del_queue_end(req, error); 1498 } 1499 1500 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1501 { 1502 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1503 struct request *req; 1504 struct nvme_command cmd; 1505 1506 memset(&cmd, 0, sizeof(cmd)); 1507 cmd.delete_queue.opcode = opcode; 1508 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1509 1510 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1511 if (IS_ERR(req)) 1512 return PTR_ERR(req); 1513 1514 req->timeout = ADMIN_TIMEOUT; 1515 req->end_io_data = nvmeq; 1516 1517 blk_execute_rq_nowait(q, NULL, req, false, 1518 opcode == nvme_admin_delete_cq ? 1519 nvme_del_cq_end : nvme_del_queue_end); 1520 return 0; 1521 } 1522 1523 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1524 { 1525 int pass; 1526 unsigned long timeout; 1527 u8 opcode = nvme_admin_delete_sq; 1528 1529 for (pass = 0; pass < 2; pass++) { 1530 int sent = 0, i = queues; 1531 1532 reinit_completion(&dev->ioq_wait); 1533 retry: 1534 timeout = ADMIN_TIMEOUT; 1535 for (; i > 0; i--, sent++) 1536 if (nvme_delete_queue(dev->queues[i], opcode)) 1537 break; 1538 1539 while (sent--) { 1540 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1541 if (timeout == 0) 1542 return; 1543 if (i) 1544 goto retry; 1545 } 1546 opcode = nvme_admin_delete_cq; 1547 } 1548 } 1549 1550 /* 1551 * Return: error value if an error occurred setting up the queues or calling 1552 * Identify Device. 0 if these succeeded, even if adding some of the 1553 * namespaces failed. At the moment, these failures are silent. TBD which 1554 * failures should be reported. 1555 */ 1556 static int nvme_dev_add(struct nvme_dev *dev) 1557 { 1558 if (!dev->ctrl.tagset) { 1559 dev->tagset.ops = &nvme_mq_ops; 1560 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1561 dev->tagset.timeout = NVME_IO_TIMEOUT; 1562 dev->tagset.numa_node = dev_to_node(dev->dev); 1563 dev->tagset.queue_depth = 1564 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1565 dev->tagset.cmd_size = nvme_cmd_size(dev); 1566 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1567 dev->tagset.driver_data = dev; 1568 1569 if (blk_mq_alloc_tag_set(&dev->tagset)) 1570 return 0; 1571 dev->ctrl.tagset = &dev->tagset; 1572 } else { 1573 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1574 1575 /* Free previously allocated queues that are no longer usable */ 1576 nvme_free_queues(dev, dev->online_queues); 1577 } 1578 1579 return 0; 1580 } 1581 1582 static int nvme_pci_enable(struct nvme_dev *dev) 1583 { 1584 u64 cap; 1585 int result = -ENOMEM; 1586 struct pci_dev *pdev = to_pci_dev(dev->dev); 1587 1588 if (pci_enable_device_mem(pdev)) 1589 return result; 1590 1591 pci_set_master(pdev); 1592 1593 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1594 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1595 goto disable; 1596 1597 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1598 result = -ENODEV; 1599 goto disable; 1600 } 1601 1602 /* 1603 * Some devices and/or platforms don't advertise or work with INTx 1604 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1605 * adjust this later. 1606 */ 1607 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1608 if (result < 0) 1609 return result; 1610 1611 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1612 1613 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1614 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1615 dev->dbs = dev->bar + 4096; 1616 1617 /* 1618 * Temporary fix for the Apple controller found in the MacBook8,1 and 1619 * some MacBook7,1 to avoid controller resets and data loss. 1620 */ 1621 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1622 dev->q_depth = 2; 1623 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1624 "queue depth=%u to work around controller resets\n", 1625 dev->q_depth); 1626 } 1627 1628 /* 1629 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1630 * populate sysfs if a CMB is implemented. Note that we add the 1631 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1632 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1633 * NULL as final argument to sysfs_add_file_to_group. 1634 */ 1635 1636 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1637 dev->cmb = nvme_map_cmb(dev); 1638 1639 if (dev->cmbsz) { 1640 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1641 &dev_attr_cmb.attr, NULL)) 1642 dev_warn(dev->dev, 1643 "failed to add sysfs attribute for CMB\n"); 1644 } 1645 } 1646 1647 pci_enable_pcie_error_reporting(pdev); 1648 pci_save_state(pdev); 1649 return 0; 1650 1651 disable: 1652 pci_disable_device(pdev); 1653 return result; 1654 } 1655 1656 static void nvme_dev_unmap(struct nvme_dev *dev) 1657 { 1658 if (dev->bar) 1659 iounmap(dev->bar); 1660 pci_release_mem_regions(to_pci_dev(dev->dev)); 1661 } 1662 1663 static void nvme_pci_disable(struct nvme_dev *dev) 1664 { 1665 struct pci_dev *pdev = to_pci_dev(dev->dev); 1666 1667 pci_free_irq_vectors(pdev); 1668 1669 if (pci_is_enabled(pdev)) { 1670 pci_disable_pcie_error_reporting(pdev); 1671 pci_disable_device(pdev); 1672 } 1673 } 1674 1675 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1676 { 1677 int i, queues; 1678 bool dead = true; 1679 struct pci_dev *pdev = to_pci_dev(dev->dev); 1680 1681 del_timer_sync(&dev->watchdog_timer); 1682 1683 mutex_lock(&dev->shutdown_lock); 1684 if (pci_is_enabled(pdev)) { 1685 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1686 1687 if (dev->ctrl.state == NVME_CTRL_LIVE) 1688 nvme_start_freeze(&dev->ctrl); 1689 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 1690 pdev->error_state != pci_channel_io_normal); 1691 } 1692 1693 /* 1694 * Give the controller a chance to complete all entered requests if 1695 * doing a safe shutdown. 1696 */ 1697 if (!dead && shutdown) 1698 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 1699 nvme_stop_queues(&dev->ctrl); 1700 1701 queues = dev->online_queues - 1; 1702 for (i = dev->queue_count - 1; i > 0; i--) 1703 nvme_suspend_queue(dev->queues[i]); 1704 1705 if (dead) { 1706 /* A device might become IO incapable very soon during 1707 * probe, before the admin queue is configured. Thus, 1708 * queue_count can be 0 here. 1709 */ 1710 if (dev->queue_count) 1711 nvme_suspend_queue(dev->queues[0]); 1712 } else { 1713 nvme_disable_io_queues(dev, queues); 1714 nvme_disable_admin_queue(dev, shutdown); 1715 } 1716 nvme_pci_disable(dev); 1717 1718 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1719 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1720 1721 /* 1722 * The driver will not be starting up queues again if shutting down so 1723 * must flush all entered requests to their failed completion to avoid 1724 * deadlocking blk-mq hot-cpu notifier. 1725 */ 1726 if (shutdown) 1727 nvme_start_queues(&dev->ctrl); 1728 mutex_unlock(&dev->shutdown_lock); 1729 } 1730 1731 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1732 { 1733 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1734 PAGE_SIZE, PAGE_SIZE, 0); 1735 if (!dev->prp_page_pool) 1736 return -ENOMEM; 1737 1738 /* Optimisation for I/Os between 4k and 128k */ 1739 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1740 256, 256, 0); 1741 if (!dev->prp_small_pool) { 1742 dma_pool_destroy(dev->prp_page_pool); 1743 return -ENOMEM; 1744 } 1745 return 0; 1746 } 1747 1748 static void nvme_release_prp_pools(struct nvme_dev *dev) 1749 { 1750 dma_pool_destroy(dev->prp_page_pool); 1751 dma_pool_destroy(dev->prp_small_pool); 1752 } 1753 1754 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1755 { 1756 struct nvme_dev *dev = to_nvme_dev(ctrl); 1757 1758 put_device(dev->dev); 1759 if (dev->tagset.tags) 1760 blk_mq_free_tag_set(&dev->tagset); 1761 if (dev->ctrl.admin_q) 1762 blk_put_queue(dev->ctrl.admin_q); 1763 kfree(dev->queues); 1764 free_opal_dev(dev->ctrl.opal_dev); 1765 kfree(dev); 1766 } 1767 1768 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1769 { 1770 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1771 1772 kref_get(&dev->ctrl.kref); 1773 nvme_dev_disable(dev, false); 1774 if (!schedule_work(&dev->remove_work)) 1775 nvme_put_ctrl(&dev->ctrl); 1776 } 1777 1778 static void nvme_reset_work(struct work_struct *work) 1779 { 1780 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1781 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 1782 int result = -ENODEV; 1783 1784 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1785 goto out; 1786 1787 /* 1788 * If we're called to reset a live controller first shut it down before 1789 * moving on. 1790 */ 1791 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1792 nvme_dev_disable(dev, false); 1793 1794 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1795 goto out; 1796 1797 result = nvme_pci_enable(dev); 1798 if (result) 1799 goto out; 1800 1801 result = nvme_configure_admin_queue(dev); 1802 if (result) 1803 goto out; 1804 1805 nvme_init_queue(dev->queues[0], 0); 1806 result = nvme_alloc_admin_tags(dev); 1807 if (result) 1808 goto out; 1809 1810 result = nvme_init_identify(&dev->ctrl); 1811 if (result) 1812 goto out; 1813 1814 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 1815 if (!dev->ctrl.opal_dev) 1816 dev->ctrl.opal_dev = 1817 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 1818 else if (was_suspend) 1819 opal_unlock_from_suspend(dev->ctrl.opal_dev); 1820 } else { 1821 free_opal_dev(dev->ctrl.opal_dev); 1822 dev->ctrl.opal_dev = NULL; 1823 } 1824 1825 result = nvme_setup_io_queues(dev); 1826 if (result) 1827 goto out; 1828 1829 /* 1830 * A controller that can not execute IO typically requires user 1831 * intervention to correct. For such degraded controllers, the driver 1832 * should not submit commands the user did not request, so skip 1833 * registering for asynchronous event notification on this condition. 1834 */ 1835 if (dev->online_queues > 1) 1836 nvme_queue_async_events(&dev->ctrl); 1837 1838 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1839 1840 /* 1841 * Keep the controller around but remove all namespaces if we don't have 1842 * any working I/O queue. 1843 */ 1844 if (dev->online_queues < 2) { 1845 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1846 nvme_kill_queues(&dev->ctrl); 1847 nvme_remove_namespaces(&dev->ctrl); 1848 } else { 1849 nvme_start_queues(&dev->ctrl); 1850 nvme_wait_freeze(&dev->ctrl); 1851 nvme_dev_add(dev); 1852 nvme_unfreeze(&dev->ctrl); 1853 } 1854 1855 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1856 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1857 goto out; 1858 } 1859 1860 if (dev->online_queues > 1) 1861 nvme_queue_scan(&dev->ctrl); 1862 return; 1863 1864 out: 1865 nvme_remove_dead_ctrl(dev, result); 1866 } 1867 1868 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1869 { 1870 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1871 struct pci_dev *pdev = to_pci_dev(dev->dev); 1872 1873 nvme_kill_queues(&dev->ctrl); 1874 if (pci_get_drvdata(pdev)) 1875 device_release_driver(&pdev->dev); 1876 nvme_put_ctrl(&dev->ctrl); 1877 } 1878 1879 static int nvme_reset(struct nvme_dev *dev) 1880 { 1881 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1882 return -ENODEV; 1883 if (work_busy(&dev->reset_work)) 1884 return -ENODEV; 1885 if (!queue_work(nvme_workq, &dev->reset_work)) 1886 return -EBUSY; 1887 return 0; 1888 } 1889 1890 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1891 { 1892 *val = readl(to_nvme_dev(ctrl)->bar + off); 1893 return 0; 1894 } 1895 1896 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1897 { 1898 writel(val, to_nvme_dev(ctrl)->bar + off); 1899 return 0; 1900 } 1901 1902 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1903 { 1904 *val = readq(to_nvme_dev(ctrl)->bar + off); 1905 return 0; 1906 } 1907 1908 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1909 { 1910 struct nvme_dev *dev = to_nvme_dev(ctrl); 1911 int ret = nvme_reset(dev); 1912 1913 if (!ret) 1914 flush_work(&dev->reset_work); 1915 return ret; 1916 } 1917 1918 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1919 .name = "pcie", 1920 .module = THIS_MODULE, 1921 .reg_read32 = nvme_pci_reg_read32, 1922 .reg_write32 = nvme_pci_reg_write32, 1923 .reg_read64 = nvme_pci_reg_read64, 1924 .reset_ctrl = nvme_pci_reset_ctrl, 1925 .free_ctrl = nvme_pci_free_ctrl, 1926 .submit_async_event = nvme_pci_submit_async_event, 1927 }; 1928 1929 static int nvme_dev_map(struct nvme_dev *dev) 1930 { 1931 struct pci_dev *pdev = to_pci_dev(dev->dev); 1932 1933 if (pci_request_mem_regions(pdev, "nvme")) 1934 return -ENODEV; 1935 1936 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1937 if (!dev->bar) 1938 goto release; 1939 1940 return 0; 1941 release: 1942 pci_release_mem_regions(pdev); 1943 return -ENODEV; 1944 } 1945 1946 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1947 { 1948 int node, result = -ENOMEM; 1949 struct nvme_dev *dev; 1950 1951 node = dev_to_node(&pdev->dev); 1952 if (node == NUMA_NO_NODE) 1953 set_dev_node(&pdev->dev, first_memory_node); 1954 1955 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1956 if (!dev) 1957 return -ENOMEM; 1958 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1959 GFP_KERNEL, node); 1960 if (!dev->queues) 1961 goto free; 1962 1963 dev->dev = get_device(&pdev->dev); 1964 pci_set_drvdata(pdev, dev); 1965 1966 result = nvme_dev_map(dev); 1967 if (result) 1968 goto free; 1969 1970 INIT_WORK(&dev->reset_work, nvme_reset_work); 1971 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1972 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1973 (unsigned long)dev); 1974 mutex_init(&dev->shutdown_lock); 1975 init_completion(&dev->ioq_wait); 1976 1977 result = nvme_setup_prp_pools(dev); 1978 if (result) 1979 goto put_pci; 1980 1981 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1982 id->driver_data); 1983 if (result) 1984 goto release_pools; 1985 1986 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1987 1988 queue_work(nvme_workq, &dev->reset_work); 1989 return 0; 1990 1991 release_pools: 1992 nvme_release_prp_pools(dev); 1993 put_pci: 1994 put_device(dev->dev); 1995 nvme_dev_unmap(dev); 1996 free: 1997 kfree(dev->queues); 1998 kfree(dev); 1999 return result; 2000 } 2001 2002 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 2003 { 2004 struct nvme_dev *dev = pci_get_drvdata(pdev); 2005 2006 if (prepare) 2007 nvme_dev_disable(dev, false); 2008 else 2009 nvme_reset(dev); 2010 } 2011 2012 static void nvme_shutdown(struct pci_dev *pdev) 2013 { 2014 struct nvme_dev *dev = pci_get_drvdata(pdev); 2015 nvme_dev_disable(dev, true); 2016 } 2017 2018 /* 2019 * The driver's remove may be called on a device in a partially initialized 2020 * state. This function must not have any dependencies on the device state in 2021 * order to proceed. 2022 */ 2023 static void nvme_remove(struct pci_dev *pdev) 2024 { 2025 struct nvme_dev *dev = pci_get_drvdata(pdev); 2026 2027 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2028 2029 pci_set_drvdata(pdev, NULL); 2030 2031 if (!pci_device_is_present(pdev)) { 2032 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2033 nvme_dev_disable(dev, false); 2034 } 2035 2036 flush_work(&dev->reset_work); 2037 nvme_uninit_ctrl(&dev->ctrl); 2038 nvme_dev_disable(dev, true); 2039 nvme_dev_remove_admin(dev); 2040 nvme_free_queues(dev, 0); 2041 nvme_release_cmb(dev); 2042 nvme_release_prp_pools(dev); 2043 nvme_dev_unmap(dev); 2044 nvme_put_ctrl(&dev->ctrl); 2045 } 2046 2047 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2048 { 2049 int ret = 0; 2050 2051 if (numvfs == 0) { 2052 if (pci_vfs_assigned(pdev)) { 2053 dev_warn(&pdev->dev, 2054 "Cannot disable SR-IOV VFs while assigned\n"); 2055 return -EPERM; 2056 } 2057 pci_disable_sriov(pdev); 2058 return 0; 2059 } 2060 2061 ret = pci_enable_sriov(pdev, numvfs); 2062 return ret ? ret : numvfs; 2063 } 2064 2065 #ifdef CONFIG_PM_SLEEP 2066 static int nvme_suspend(struct device *dev) 2067 { 2068 struct pci_dev *pdev = to_pci_dev(dev); 2069 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2070 2071 nvme_dev_disable(ndev, true); 2072 return 0; 2073 } 2074 2075 static int nvme_resume(struct device *dev) 2076 { 2077 struct pci_dev *pdev = to_pci_dev(dev); 2078 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2079 2080 nvme_reset(ndev); 2081 return 0; 2082 } 2083 #endif 2084 2085 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2086 2087 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2088 pci_channel_state_t state) 2089 { 2090 struct nvme_dev *dev = pci_get_drvdata(pdev); 2091 2092 /* 2093 * A frozen channel requires a reset. When detected, this method will 2094 * shutdown the controller to quiesce. The controller will be restarted 2095 * after the slot reset through driver's slot_reset callback. 2096 */ 2097 switch (state) { 2098 case pci_channel_io_normal: 2099 return PCI_ERS_RESULT_CAN_RECOVER; 2100 case pci_channel_io_frozen: 2101 dev_warn(dev->ctrl.device, 2102 "frozen state error detected, reset controller\n"); 2103 nvme_dev_disable(dev, false); 2104 return PCI_ERS_RESULT_NEED_RESET; 2105 case pci_channel_io_perm_failure: 2106 dev_warn(dev->ctrl.device, 2107 "failure state error detected, request disconnect\n"); 2108 return PCI_ERS_RESULT_DISCONNECT; 2109 } 2110 return PCI_ERS_RESULT_NEED_RESET; 2111 } 2112 2113 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2114 { 2115 struct nvme_dev *dev = pci_get_drvdata(pdev); 2116 2117 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2118 pci_restore_state(pdev); 2119 nvme_reset(dev); 2120 return PCI_ERS_RESULT_RECOVERED; 2121 } 2122 2123 static void nvme_error_resume(struct pci_dev *pdev) 2124 { 2125 pci_cleanup_aer_uncorrect_error_status(pdev); 2126 } 2127 2128 static const struct pci_error_handlers nvme_err_handler = { 2129 .error_detected = nvme_error_detected, 2130 .slot_reset = nvme_slot_reset, 2131 .resume = nvme_error_resume, 2132 .reset_notify = nvme_reset_notify, 2133 }; 2134 2135 static const struct pci_device_id nvme_id_table[] = { 2136 { PCI_VDEVICE(INTEL, 0x0953), 2137 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2138 NVME_QUIRK_DISCARD_ZEROES, }, 2139 { PCI_VDEVICE(INTEL, 0x0a53), 2140 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2141 NVME_QUIRK_DISCARD_ZEROES, }, 2142 { PCI_VDEVICE(INTEL, 0x0a54), 2143 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2144 NVME_QUIRK_DISCARD_ZEROES, }, 2145 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2146 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2147 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2148 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2149 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2150 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2151 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2152 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2153 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2154 { 0, } 2155 }; 2156 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2157 2158 static struct pci_driver nvme_driver = { 2159 .name = "nvme", 2160 .id_table = nvme_id_table, 2161 .probe = nvme_probe, 2162 .remove = nvme_remove, 2163 .shutdown = nvme_shutdown, 2164 .driver = { 2165 .pm = &nvme_dev_pm_ops, 2166 }, 2167 .sriov_configure = nvme_pci_sriov_configure, 2168 .err_handler = &nvme_err_handler, 2169 }; 2170 2171 static int __init nvme_init(void) 2172 { 2173 int result; 2174 2175 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2176 if (!nvme_workq) 2177 return -ENOMEM; 2178 2179 result = pci_register_driver(&nvme_driver); 2180 if (result) 2181 destroy_workqueue(nvme_workq); 2182 return result; 2183 } 2184 2185 static void __exit nvme_exit(void) 2186 { 2187 pci_unregister_driver(&nvme_driver); 2188 destroy_workqueue(nvme_workq); 2189 _nvme_check_size(); 2190 } 2191 2192 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2193 MODULE_LICENSE("GPL"); 2194 MODULE_VERSION("1.0"); 2195 module_init(nvme_init); 2196 module_exit(nvme_exit); 2197