1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/suspend.h> 22 #include <linux/t10-pi.h> 23 #include <linux/types.h> 24 #include <linux/io-64-nonatomic-lo-hi.h> 25 #include <linux/sed-opal.h> 26 #include <linux/pci-p2pdma.h> 27 28 #include "trace.h" 29 #include "nvme.h" 30 31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 33 34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 35 36 /* 37 * These can be higher, but we need to ensure that any command doesn't 38 * require an sg allocation that needs more than a page of data. 39 */ 40 #define NVME_MAX_KB_SZ 4096 41 #define NVME_MAX_SEGS 127 42 43 static int use_threaded_interrupts; 44 module_param(use_threaded_interrupts, int, 0); 45 46 static bool use_cmb_sqes = true; 47 module_param(use_cmb_sqes, bool, 0444); 48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 49 50 static unsigned int max_host_mem_size_mb = 128; 51 module_param(max_host_mem_size_mb, uint, 0444); 52 MODULE_PARM_DESC(max_host_mem_size_mb, 53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 54 55 static unsigned int sgl_threshold = SZ_32K; 56 module_param(sgl_threshold, uint, 0644); 57 MODULE_PARM_DESC(sgl_threshold, 58 "Use SGLs when average request segment size is larger or equal to " 59 "this size. Use 0 to disable SGLs."); 60 61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 62 static const struct kernel_param_ops io_queue_depth_ops = { 63 .set = io_queue_depth_set, 64 .get = param_get_int, 65 }; 66 67 static int io_queue_depth = 1024; 68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 70 71 static unsigned int write_queues; 72 module_param(write_queues, uint, 0644); 73 MODULE_PARM_DESC(write_queues, 74 "Number of queues to use for writes. If not set, reads and writes " 75 "will share a queue set."); 76 77 static unsigned int poll_queues; 78 module_param(poll_queues, uint, 0644); 79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 80 81 struct nvme_dev; 82 struct nvme_queue; 83 84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 86 87 /* 88 * Represents an NVM Express device. Each nvme_dev is a PCI function. 89 */ 90 struct nvme_dev { 91 struct nvme_queue *queues; 92 struct blk_mq_tag_set tagset; 93 struct blk_mq_tag_set admin_tagset; 94 u32 __iomem *dbs; 95 struct device *dev; 96 struct dma_pool *prp_page_pool; 97 struct dma_pool *prp_small_pool; 98 unsigned online_queues; 99 unsigned max_qid; 100 unsigned io_queues[HCTX_MAX_TYPES]; 101 unsigned int num_vecs; 102 int q_depth; 103 int io_sqes; 104 u32 db_stride; 105 void __iomem *bar; 106 unsigned long bar_mapped_size; 107 struct work_struct remove_work; 108 struct mutex shutdown_lock; 109 bool subsystem; 110 u64 cmb_size; 111 bool cmb_use_sqes; 112 u32 cmbsz; 113 u32 cmbloc; 114 struct nvme_ctrl ctrl; 115 u32 last_ps; 116 117 mempool_t *iod_mempool; 118 119 /* shadow doorbell buffer support: */ 120 u32 *dbbuf_dbs; 121 dma_addr_t dbbuf_dbs_dma_addr; 122 u32 *dbbuf_eis; 123 dma_addr_t dbbuf_eis_dma_addr; 124 125 /* host memory buffer support: */ 126 u64 host_mem_size; 127 u32 nr_host_mem_descs; 128 dma_addr_t host_mem_descs_dma; 129 struct nvme_host_mem_buf_desc *host_mem_descs; 130 void **host_mem_desc_bufs; 131 }; 132 133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 134 { 135 int n = 0, ret; 136 137 ret = kstrtoint(val, 10, &n); 138 if (ret != 0 || n < 2) 139 return -EINVAL; 140 141 return param_set_int(val, kp); 142 } 143 144 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 145 { 146 return qid * 2 * stride; 147 } 148 149 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 150 { 151 return (qid * 2 + 1) * stride; 152 } 153 154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 155 { 156 return container_of(ctrl, struct nvme_dev, ctrl); 157 } 158 159 /* 160 * An NVM Express queue. Each device has at least two (one for admin 161 * commands and one for I/O commands). 162 */ 163 struct nvme_queue { 164 struct nvme_dev *dev; 165 spinlock_t sq_lock; 166 void *sq_cmds; 167 /* only used for poll queues: */ 168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 169 volatile struct nvme_completion *cqes; 170 dma_addr_t sq_dma_addr; 171 dma_addr_t cq_dma_addr; 172 u32 __iomem *q_db; 173 u16 q_depth; 174 u16 cq_vector; 175 u16 sq_tail; 176 u16 last_sq_tail; 177 u16 cq_head; 178 u16 qid; 179 u8 cq_phase; 180 u8 sqes; 181 unsigned long flags; 182 #define NVMEQ_ENABLED 0 183 #define NVMEQ_SQ_CMB 1 184 #define NVMEQ_DELETE_ERROR 2 185 #define NVMEQ_POLLED 3 186 u32 *dbbuf_sq_db; 187 u32 *dbbuf_cq_db; 188 u32 *dbbuf_sq_ei; 189 u32 *dbbuf_cq_ei; 190 struct completion delete_done; 191 }; 192 193 /* 194 * The nvme_iod describes the data in an I/O. 195 * 196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 197 * to the actual struct scatterlist. 198 */ 199 struct nvme_iod { 200 struct nvme_request req; 201 struct nvme_queue *nvmeq; 202 bool use_sgl; 203 int aborted; 204 int npages; /* In the PRP list. 0 means small pool in use */ 205 int nents; /* Used in scatterlist */ 206 dma_addr_t first_dma; 207 unsigned int dma_len; /* length of single DMA segment mapping */ 208 dma_addr_t meta_dma; 209 struct scatterlist *sg; 210 }; 211 212 static unsigned int max_io_queues(void) 213 { 214 return num_possible_cpus() + write_queues + poll_queues; 215 } 216 217 static unsigned int max_queue_count(void) 218 { 219 /* IO queues + admin queue */ 220 return 1 + max_io_queues(); 221 } 222 223 static inline unsigned int nvme_dbbuf_size(u32 stride) 224 { 225 return (max_queue_count() * 8 * stride); 226 } 227 228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 229 { 230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 231 232 if (dev->dbbuf_dbs) 233 return 0; 234 235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 236 &dev->dbbuf_dbs_dma_addr, 237 GFP_KERNEL); 238 if (!dev->dbbuf_dbs) 239 return -ENOMEM; 240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 241 &dev->dbbuf_eis_dma_addr, 242 GFP_KERNEL); 243 if (!dev->dbbuf_eis) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 return -ENOMEM; 248 } 249 250 return 0; 251 } 252 253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 256 257 if (dev->dbbuf_dbs) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 } 262 if (dev->dbbuf_eis) { 263 dma_free_coherent(dev->dev, mem_size, 264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 265 dev->dbbuf_eis = NULL; 266 } 267 } 268 269 static void nvme_dbbuf_init(struct nvme_dev *dev, 270 struct nvme_queue *nvmeq, int qid) 271 { 272 if (!dev->dbbuf_dbs || !qid) 273 return; 274 275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 279 } 280 281 static void nvme_dbbuf_set(struct nvme_dev *dev) 282 { 283 struct nvme_command c; 284 285 if (!dev->dbbuf_dbs) 286 return; 287 288 memset(&c, 0, sizeof(c)); 289 c.dbbuf.opcode = nvme_admin_dbbuf; 290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 292 293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 295 /* Free memory and continue on */ 296 nvme_dbbuf_dma_free(dev); 297 } 298 } 299 300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 301 { 302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 303 } 304 305 /* Update dbbuf and return true if an MMIO is required */ 306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 307 volatile u32 *dbbuf_ei) 308 { 309 if (dbbuf_db) { 310 u16 old_value; 311 312 /* 313 * Ensure that the queue is written before updating 314 * the doorbell in memory 315 */ 316 wmb(); 317 318 old_value = *dbbuf_db; 319 *dbbuf_db = value; 320 321 /* 322 * Ensure that the doorbell is updated before reading the event 323 * index from memory. The controller needs to provide similar 324 * ordering to ensure the envent index is updated before reading 325 * the doorbell. 326 */ 327 mb(); 328 329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 330 return false; 331 } 332 333 return true; 334 } 335 336 /* 337 * Will slightly overestimate the number of pages needed. This is OK 338 * as it only leads to a small amount of wasted memory for the lifetime of 339 * the I/O. 340 */ 341 static int nvme_npages(unsigned size, struct nvme_dev *dev) 342 { 343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 344 dev->ctrl.page_size); 345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 346 } 347 348 /* 349 * Calculates the number of pages needed for the SGL segments. For example a 4k 350 * page can accommodate 256 SGL descriptors. 351 */ 352 static int nvme_pci_npages_sgl(unsigned int num_seg) 353 { 354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 355 } 356 357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 358 unsigned int size, unsigned int nseg, bool use_sgl) 359 { 360 size_t alloc_size; 361 362 if (use_sgl) 363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 364 else 365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 366 367 return alloc_size + sizeof(struct scatterlist) * nseg; 368 } 369 370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 371 unsigned int hctx_idx) 372 { 373 struct nvme_dev *dev = data; 374 struct nvme_queue *nvmeq = &dev->queues[0]; 375 376 WARN_ON(hctx_idx != 0); 377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 378 379 hctx->driver_data = nvmeq; 380 return 0; 381 } 382 383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 384 unsigned int hctx_idx) 385 { 386 struct nvme_dev *dev = data; 387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 388 389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 390 hctx->driver_data = nvmeq; 391 return 0; 392 } 393 394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 395 unsigned int hctx_idx, unsigned int numa_node) 396 { 397 struct nvme_dev *dev = set->driver_data; 398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 400 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 401 402 BUG_ON(!nvmeq); 403 iod->nvmeq = nvmeq; 404 405 nvme_req(req)->ctrl = &dev->ctrl; 406 return 0; 407 } 408 409 static int queue_irq_offset(struct nvme_dev *dev) 410 { 411 /* if we have more than 1 vec, admin queue offsets us by 1 */ 412 if (dev->num_vecs > 1) 413 return 1; 414 415 return 0; 416 } 417 418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 419 { 420 struct nvme_dev *dev = set->driver_data; 421 int i, qoff, offset; 422 423 offset = queue_irq_offset(dev); 424 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 425 struct blk_mq_queue_map *map = &set->map[i]; 426 427 map->nr_queues = dev->io_queues[i]; 428 if (!map->nr_queues) { 429 BUG_ON(i == HCTX_TYPE_DEFAULT); 430 continue; 431 } 432 433 /* 434 * The poll queue(s) doesn't have an IRQ (and hence IRQ 435 * affinity), so use the regular blk-mq cpu mapping 436 */ 437 map->queue_offset = qoff; 438 if (i != HCTX_TYPE_POLL && offset) 439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 440 else 441 blk_mq_map_queues(map); 442 qoff += map->nr_queues; 443 offset += map->nr_queues; 444 } 445 446 return 0; 447 } 448 449 /* 450 * Write sq tail if we are asked to, or if the next command would wrap. 451 */ 452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 453 { 454 if (!write_sq) { 455 u16 next_tail = nvmeq->sq_tail + 1; 456 457 if (next_tail == nvmeq->q_depth) 458 next_tail = 0; 459 if (next_tail != nvmeq->last_sq_tail) 460 return; 461 } 462 463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 465 writel(nvmeq->sq_tail, nvmeq->q_db); 466 nvmeq->last_sq_tail = nvmeq->sq_tail; 467 } 468 469 /** 470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 471 * @nvmeq: The queue to use 472 * @cmd: The command to send 473 * @write_sq: whether to write to the SQ doorbell 474 */ 475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 476 bool write_sq) 477 { 478 spin_lock(&nvmeq->sq_lock); 479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 480 cmd, sizeof(*cmd)); 481 if (++nvmeq->sq_tail == nvmeq->q_depth) 482 nvmeq->sq_tail = 0; 483 nvme_write_sq_db(nvmeq, write_sq); 484 spin_unlock(&nvmeq->sq_lock); 485 } 486 487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 488 { 489 struct nvme_queue *nvmeq = hctx->driver_data; 490 491 spin_lock(&nvmeq->sq_lock); 492 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 493 nvme_write_sq_db(nvmeq, true); 494 spin_unlock(&nvmeq->sq_lock); 495 } 496 497 static void **nvme_pci_iod_list(struct request *req) 498 { 499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 501 } 502 503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 504 { 505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 506 int nseg = blk_rq_nr_phys_segments(req); 507 unsigned int avg_seg_size; 508 509 if (nseg == 0) 510 return false; 511 512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 513 514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 515 return false; 516 if (!iod->nvmeq->qid) 517 return false; 518 if (!sgl_threshold || avg_seg_size < sgl_threshold) 519 return false; 520 return true; 521 } 522 523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 528 int i; 529 530 if (iod->dma_len) { 531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 532 rq_dma_dir(req)); 533 return; 534 } 535 536 WARN_ON_ONCE(!iod->nents); 537 538 if (is_pci_p2pdma_page(sg_page(iod->sg))) 539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 540 rq_dma_dir(req)); 541 else 542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 543 544 545 if (iod->npages == 0) 546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 547 dma_addr); 548 549 for (i = 0; i < iod->npages; i++) { 550 void *addr = nvme_pci_iod_list(req)[i]; 551 552 if (iod->use_sgl) { 553 struct nvme_sgl_desc *sg_list = addr; 554 555 next_dma_addr = 556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 557 } else { 558 __le64 *prp_list = addr; 559 560 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 561 } 562 563 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 564 dma_addr = next_dma_addr; 565 } 566 567 mempool_free(iod->sg, dev->iod_mempool); 568 } 569 570 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 571 { 572 int i; 573 struct scatterlist *sg; 574 575 for_each_sg(sgl, sg, nents, i) { 576 dma_addr_t phys = sg_phys(sg); 577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 578 "dma_address:%pad dma_length:%d\n", 579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 580 sg_dma_len(sg)); 581 } 582 } 583 584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 585 struct request *req, struct nvme_rw_command *cmnd) 586 { 587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 588 struct dma_pool *pool; 589 int length = blk_rq_payload_bytes(req); 590 struct scatterlist *sg = iod->sg; 591 int dma_len = sg_dma_len(sg); 592 u64 dma_addr = sg_dma_address(sg); 593 u32 page_size = dev->ctrl.page_size; 594 int offset = dma_addr & (page_size - 1); 595 __le64 *prp_list; 596 void **list = nvme_pci_iod_list(req); 597 dma_addr_t prp_dma; 598 int nprps, i; 599 600 length -= (page_size - offset); 601 if (length <= 0) { 602 iod->first_dma = 0; 603 goto done; 604 } 605 606 dma_len -= (page_size - offset); 607 if (dma_len) { 608 dma_addr += (page_size - offset); 609 } else { 610 sg = sg_next(sg); 611 dma_addr = sg_dma_address(sg); 612 dma_len = sg_dma_len(sg); 613 } 614 615 if (length <= page_size) { 616 iod->first_dma = dma_addr; 617 goto done; 618 } 619 620 nprps = DIV_ROUND_UP(length, page_size); 621 if (nprps <= (256 / 8)) { 622 pool = dev->prp_small_pool; 623 iod->npages = 0; 624 } else { 625 pool = dev->prp_page_pool; 626 iod->npages = 1; 627 } 628 629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 630 if (!prp_list) { 631 iod->first_dma = dma_addr; 632 iod->npages = -1; 633 return BLK_STS_RESOURCE; 634 } 635 list[0] = prp_list; 636 iod->first_dma = prp_dma; 637 i = 0; 638 for (;;) { 639 if (i == page_size >> 3) { 640 __le64 *old_prp_list = prp_list; 641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 642 if (!prp_list) 643 return BLK_STS_RESOURCE; 644 list[iod->npages++] = prp_list; 645 prp_list[0] = old_prp_list[i - 1]; 646 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 647 i = 1; 648 } 649 prp_list[i++] = cpu_to_le64(dma_addr); 650 dma_len -= page_size; 651 dma_addr += page_size; 652 length -= page_size; 653 if (length <= 0) 654 break; 655 if (dma_len > 0) 656 continue; 657 if (unlikely(dma_len < 0)) 658 goto bad_sgl; 659 sg = sg_next(sg); 660 dma_addr = sg_dma_address(sg); 661 dma_len = sg_dma_len(sg); 662 } 663 664 done: 665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 667 668 return BLK_STS_OK; 669 670 bad_sgl: 671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 672 "Invalid SGL for payload:%d nents:%d\n", 673 blk_rq_payload_bytes(req), iod->nents); 674 return BLK_STS_IOERR; 675 } 676 677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 678 struct scatterlist *sg) 679 { 680 sge->addr = cpu_to_le64(sg_dma_address(sg)); 681 sge->length = cpu_to_le32(sg_dma_len(sg)); 682 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 683 } 684 685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 686 dma_addr_t dma_addr, int entries) 687 { 688 sge->addr = cpu_to_le64(dma_addr); 689 if (entries < SGES_PER_PAGE) { 690 sge->length = cpu_to_le32(entries * sizeof(*sge)); 691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 692 } else { 693 sge->length = cpu_to_le32(PAGE_SIZE); 694 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 695 } 696 } 697 698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 699 struct request *req, struct nvme_rw_command *cmd, int entries) 700 { 701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 702 struct dma_pool *pool; 703 struct nvme_sgl_desc *sg_list; 704 struct scatterlist *sg = iod->sg; 705 dma_addr_t sgl_dma; 706 int i = 0; 707 708 /* setting the transfer type as SGL */ 709 cmd->flags = NVME_CMD_SGL_METABUF; 710 711 if (entries == 1) { 712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 713 return BLK_STS_OK; 714 } 715 716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 717 pool = dev->prp_small_pool; 718 iod->npages = 0; 719 } else { 720 pool = dev->prp_page_pool; 721 iod->npages = 1; 722 } 723 724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 725 if (!sg_list) { 726 iod->npages = -1; 727 return BLK_STS_RESOURCE; 728 } 729 730 nvme_pci_iod_list(req)[0] = sg_list; 731 iod->first_dma = sgl_dma; 732 733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 734 735 do { 736 if (i == SGES_PER_PAGE) { 737 struct nvme_sgl_desc *old_sg_desc = sg_list; 738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 739 740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 741 if (!sg_list) 742 return BLK_STS_RESOURCE; 743 744 i = 0; 745 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 746 sg_list[i++] = *link; 747 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 748 } 749 750 nvme_pci_sgl_set_data(&sg_list[i++], sg); 751 sg = sg_next(sg); 752 } while (--entries > 0); 753 754 return BLK_STS_OK; 755 } 756 757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 758 struct request *req, struct nvme_rw_command *cmnd, 759 struct bio_vec *bv) 760 { 761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1); 763 unsigned int first_prp_len = dev->ctrl.page_size - offset; 764 765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 766 if (dma_mapping_error(dev->dev, iod->first_dma)) 767 return BLK_STS_RESOURCE; 768 iod->dma_len = bv->bv_len; 769 770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 771 if (bv->bv_len > first_prp_len) 772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 773 return 0; 774 } 775 776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 777 struct request *req, struct nvme_rw_command *cmnd, 778 struct bio_vec *bv) 779 { 780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 781 782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 783 if (dma_mapping_error(dev->dev, iod->first_dma)) 784 return BLK_STS_RESOURCE; 785 iod->dma_len = bv->bv_len; 786 787 cmnd->flags = NVME_CMD_SGL_METABUF; 788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 791 return 0; 792 } 793 794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 795 struct nvme_command *cmnd) 796 { 797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 798 blk_status_t ret = BLK_STS_RESOURCE; 799 int nr_mapped; 800 801 if (blk_rq_nr_phys_segments(req) == 1) { 802 struct bio_vec bv = req_bvec(req); 803 804 if (!is_pci_p2pdma_page(bv.bv_page)) { 805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2) 806 return nvme_setup_prp_simple(dev, req, 807 &cmnd->rw, &bv); 808 809 if (iod->nvmeq->qid && 810 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 811 return nvme_setup_sgl_simple(dev, req, 812 &cmnd->rw, &bv); 813 } 814 } 815 816 iod->dma_len = 0; 817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 818 if (!iod->sg) 819 return BLK_STS_RESOURCE; 820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 822 if (!iod->nents) 823 goto out; 824 825 if (is_pci_p2pdma_page(sg_page(iod->sg))) 826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 828 else 829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 830 rq_dma_dir(req), DMA_ATTR_NO_WARN); 831 if (!nr_mapped) 832 goto out; 833 834 iod->use_sgl = nvme_pci_use_sgls(dev, req); 835 if (iod->use_sgl) 836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 837 else 838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 839 out: 840 if (ret != BLK_STS_OK) 841 nvme_unmap_data(dev, req); 842 return ret; 843 } 844 845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 846 struct nvme_command *cmnd) 847 { 848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 849 850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 851 rq_dma_dir(req), 0); 852 if (dma_mapping_error(dev->dev, iod->meta_dma)) 853 return BLK_STS_IOERR; 854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 855 return 0; 856 } 857 858 /* 859 * NOTE: ns is NULL when called on the admin queue. 860 */ 861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 862 const struct blk_mq_queue_data *bd) 863 { 864 struct nvme_ns *ns = hctx->queue->queuedata; 865 struct nvme_queue *nvmeq = hctx->driver_data; 866 struct nvme_dev *dev = nvmeq->dev; 867 struct request *req = bd->rq; 868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 869 struct nvme_command cmnd; 870 blk_status_t ret; 871 872 iod->aborted = 0; 873 iod->npages = -1; 874 iod->nents = 0; 875 876 /* 877 * We should not need to do this, but we're still using this to 878 * ensure we can drain requests on a dying queue. 879 */ 880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 881 return BLK_STS_IOERR; 882 883 ret = nvme_setup_cmd(ns, req, &cmnd); 884 if (ret) 885 return ret; 886 887 if (blk_rq_nr_phys_segments(req)) { 888 ret = nvme_map_data(dev, req, &cmnd); 889 if (ret) 890 goto out_free_cmd; 891 } 892 893 if (blk_integrity_rq(req)) { 894 ret = nvme_map_metadata(dev, req, &cmnd); 895 if (ret) 896 goto out_unmap_data; 897 } 898 899 blk_mq_start_request(req); 900 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 901 return BLK_STS_OK; 902 out_unmap_data: 903 nvme_unmap_data(dev, req); 904 out_free_cmd: 905 nvme_cleanup_cmd(req); 906 return ret; 907 } 908 909 static void nvme_pci_complete_rq(struct request *req) 910 { 911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 912 struct nvme_dev *dev = iod->nvmeq->dev; 913 914 if (blk_integrity_rq(req)) 915 dma_unmap_page(dev->dev, iod->meta_dma, 916 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 917 if (blk_rq_nr_phys_segments(req)) 918 nvme_unmap_data(dev, req); 919 nvme_complete_rq(req); 920 } 921 922 /* We read the CQE phase first to check if the rest of the entry is valid */ 923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 924 { 925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 926 nvmeq->cq_phase; 927 } 928 929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 930 { 931 u16 head = nvmeq->cq_head; 932 933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 934 nvmeq->dbbuf_cq_ei)) 935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 936 } 937 938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 939 { 940 if (!nvmeq->qid) 941 return nvmeq->dev->admin_tagset.tags[0]; 942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 943 } 944 945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 946 { 947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; 948 struct request *req; 949 950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 951 dev_warn(nvmeq->dev->ctrl.device, 952 "invalid id %d completed on queue %d\n", 953 cqe->command_id, le16_to_cpu(cqe->sq_id)); 954 return; 955 } 956 957 /* 958 * AEN requests are special as they don't time out and can 959 * survive any kind of queue freeze and often don't respond to 960 * aborts. We don't even bother to allocate a struct request 961 * for them but rather special case them here. 962 */ 963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 964 nvme_complete_async_event(&nvmeq->dev->ctrl, 965 cqe->status, &cqe->result); 966 return; 967 } 968 969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 971 nvme_end_request(req, cqe->status, cqe->result); 972 } 973 974 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 975 { 976 u16 tmp = nvmeq->cq_head + 1; 977 978 if (tmp == nvmeq->q_depth) { 979 nvmeq->cq_head = 0; 980 nvmeq->cq_phase ^= 1; 981 } else { 982 nvmeq->cq_head = tmp; 983 } 984 } 985 986 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 987 { 988 int found = 0; 989 990 while (nvme_cqe_pending(nvmeq)) { 991 found++; 992 /* 993 * load-load control dependency between phase and the rest of 994 * the cqe requires a full read memory barrier 995 */ 996 dma_rmb(); 997 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 998 nvme_update_cq_head(nvmeq); 999 } 1000 1001 if (found) 1002 nvme_ring_cq_doorbell(nvmeq); 1003 return found; 1004 } 1005 1006 static irqreturn_t nvme_irq(int irq, void *data) 1007 { 1008 struct nvme_queue *nvmeq = data; 1009 irqreturn_t ret = IRQ_NONE; 1010 1011 /* 1012 * The rmb/wmb pair ensures we see all updates from a previous run of 1013 * the irq handler, even if that was on another CPU. 1014 */ 1015 rmb(); 1016 if (nvme_process_cq(nvmeq)) 1017 ret = IRQ_HANDLED; 1018 wmb(); 1019 1020 return ret; 1021 } 1022 1023 static irqreturn_t nvme_irq_check(int irq, void *data) 1024 { 1025 struct nvme_queue *nvmeq = data; 1026 if (nvme_cqe_pending(nvmeq)) 1027 return IRQ_WAKE_THREAD; 1028 return IRQ_NONE; 1029 } 1030 1031 /* 1032 * Poll for completions for any interrupt driven queue 1033 * Can be called from any context. 1034 */ 1035 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1036 { 1037 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1038 1039 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1040 1041 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1042 nvme_process_cq(nvmeq); 1043 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1044 } 1045 1046 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1047 { 1048 struct nvme_queue *nvmeq = hctx->driver_data; 1049 bool found; 1050 1051 if (!nvme_cqe_pending(nvmeq)) 1052 return 0; 1053 1054 spin_lock(&nvmeq->cq_poll_lock); 1055 found = nvme_process_cq(nvmeq); 1056 spin_unlock(&nvmeq->cq_poll_lock); 1057 1058 return found; 1059 } 1060 1061 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1062 { 1063 struct nvme_dev *dev = to_nvme_dev(ctrl); 1064 struct nvme_queue *nvmeq = &dev->queues[0]; 1065 struct nvme_command c; 1066 1067 memset(&c, 0, sizeof(c)); 1068 c.common.opcode = nvme_admin_async_event; 1069 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1070 nvme_submit_cmd(nvmeq, &c, true); 1071 } 1072 1073 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1074 { 1075 struct nvme_command c; 1076 1077 memset(&c, 0, sizeof(c)); 1078 c.delete_queue.opcode = opcode; 1079 c.delete_queue.qid = cpu_to_le16(id); 1080 1081 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1082 } 1083 1084 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1085 struct nvme_queue *nvmeq, s16 vector) 1086 { 1087 struct nvme_command c; 1088 int flags = NVME_QUEUE_PHYS_CONTIG; 1089 1090 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1091 flags |= NVME_CQ_IRQ_ENABLED; 1092 1093 /* 1094 * Note: we (ab)use the fact that the prp fields survive if no data 1095 * is attached to the request. 1096 */ 1097 memset(&c, 0, sizeof(c)); 1098 c.create_cq.opcode = nvme_admin_create_cq; 1099 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1100 c.create_cq.cqid = cpu_to_le16(qid); 1101 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1102 c.create_cq.cq_flags = cpu_to_le16(flags); 1103 c.create_cq.irq_vector = cpu_to_le16(vector); 1104 1105 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1106 } 1107 1108 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1109 struct nvme_queue *nvmeq) 1110 { 1111 struct nvme_ctrl *ctrl = &dev->ctrl; 1112 struct nvme_command c; 1113 int flags = NVME_QUEUE_PHYS_CONTIG; 1114 1115 /* 1116 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1117 * set. Since URGENT priority is zeroes, it makes all queues 1118 * URGENT. 1119 */ 1120 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1121 flags |= NVME_SQ_PRIO_MEDIUM; 1122 1123 /* 1124 * Note: we (ab)use the fact that the prp fields survive if no data 1125 * is attached to the request. 1126 */ 1127 memset(&c, 0, sizeof(c)); 1128 c.create_sq.opcode = nvme_admin_create_sq; 1129 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1130 c.create_sq.sqid = cpu_to_le16(qid); 1131 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1132 c.create_sq.sq_flags = cpu_to_le16(flags); 1133 c.create_sq.cqid = cpu_to_le16(qid); 1134 1135 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1136 } 1137 1138 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1139 { 1140 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1141 } 1142 1143 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1144 { 1145 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1146 } 1147 1148 static void abort_endio(struct request *req, blk_status_t error) 1149 { 1150 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1151 struct nvme_queue *nvmeq = iod->nvmeq; 1152 1153 dev_warn(nvmeq->dev->ctrl.device, 1154 "Abort status: 0x%x", nvme_req(req)->status); 1155 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1156 blk_mq_free_request(req); 1157 } 1158 1159 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1160 { 1161 1162 /* If true, indicates loss of adapter communication, possibly by a 1163 * NVMe Subsystem reset. 1164 */ 1165 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1166 1167 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1168 switch (dev->ctrl.state) { 1169 case NVME_CTRL_RESETTING: 1170 case NVME_CTRL_CONNECTING: 1171 return false; 1172 default: 1173 break; 1174 } 1175 1176 /* We shouldn't reset unless the controller is on fatal error state 1177 * _or_ if we lost the communication with it. 1178 */ 1179 if (!(csts & NVME_CSTS_CFS) && !nssro) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1186 { 1187 /* Read a config register to help see what died. */ 1188 u16 pci_status; 1189 int result; 1190 1191 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1192 &pci_status); 1193 if (result == PCIBIOS_SUCCESSFUL) 1194 dev_warn(dev->ctrl.device, 1195 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1196 csts, pci_status); 1197 else 1198 dev_warn(dev->ctrl.device, 1199 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1200 csts, result); 1201 } 1202 1203 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1204 { 1205 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1206 struct nvme_queue *nvmeq = iod->nvmeq; 1207 struct nvme_dev *dev = nvmeq->dev; 1208 struct request *abort_req; 1209 struct nvme_command cmd; 1210 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1211 1212 /* If PCI error recovery process is happening, we cannot reset or 1213 * the recovery mechanism will surely fail. 1214 */ 1215 mb(); 1216 if (pci_channel_offline(to_pci_dev(dev->dev))) 1217 return BLK_EH_RESET_TIMER; 1218 1219 /* 1220 * Reset immediately if the controller is failed 1221 */ 1222 if (nvme_should_reset(dev, csts)) { 1223 nvme_warn_reset(dev, csts); 1224 nvme_dev_disable(dev, false); 1225 nvme_reset_ctrl(&dev->ctrl); 1226 return BLK_EH_DONE; 1227 } 1228 1229 /* 1230 * Did we miss an interrupt? 1231 */ 1232 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1233 nvme_poll(req->mq_hctx); 1234 else 1235 nvme_poll_irqdisable(nvmeq); 1236 1237 if (blk_mq_request_completed(req)) { 1238 dev_warn(dev->ctrl.device, 1239 "I/O %d QID %d timeout, completion polled\n", 1240 req->tag, nvmeq->qid); 1241 return BLK_EH_DONE; 1242 } 1243 1244 /* 1245 * Shutdown immediately if controller times out while starting. The 1246 * reset work will see the pci device disabled when it gets the forced 1247 * cancellation error. All outstanding requests are completed on 1248 * shutdown, so we return BLK_EH_DONE. 1249 */ 1250 switch (dev->ctrl.state) { 1251 case NVME_CTRL_CONNECTING: 1252 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1253 /* fall through */ 1254 case NVME_CTRL_DELETING: 1255 dev_warn_ratelimited(dev->ctrl.device, 1256 "I/O %d QID %d timeout, disable controller\n", 1257 req->tag, nvmeq->qid); 1258 nvme_dev_disable(dev, true); 1259 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1260 return BLK_EH_DONE; 1261 case NVME_CTRL_RESETTING: 1262 return BLK_EH_RESET_TIMER; 1263 default: 1264 break; 1265 } 1266 1267 /* 1268 * Shutdown the controller immediately and schedule a reset if the 1269 * command was already aborted once before and still hasn't been 1270 * returned to the driver, or if this is the admin queue. 1271 */ 1272 if (!nvmeq->qid || iod->aborted) { 1273 dev_warn(dev->ctrl.device, 1274 "I/O %d QID %d timeout, reset controller\n", 1275 req->tag, nvmeq->qid); 1276 nvme_dev_disable(dev, false); 1277 nvme_reset_ctrl(&dev->ctrl); 1278 1279 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1280 return BLK_EH_DONE; 1281 } 1282 1283 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1284 atomic_inc(&dev->ctrl.abort_limit); 1285 return BLK_EH_RESET_TIMER; 1286 } 1287 iod->aborted = 1; 1288 1289 memset(&cmd, 0, sizeof(cmd)); 1290 cmd.abort.opcode = nvme_admin_abort_cmd; 1291 cmd.abort.cid = req->tag; 1292 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1293 1294 dev_warn(nvmeq->dev->ctrl.device, 1295 "I/O %d QID %d timeout, aborting\n", 1296 req->tag, nvmeq->qid); 1297 1298 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1299 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1300 if (IS_ERR(abort_req)) { 1301 atomic_inc(&dev->ctrl.abort_limit); 1302 return BLK_EH_RESET_TIMER; 1303 } 1304 1305 abort_req->timeout = ADMIN_TIMEOUT; 1306 abort_req->end_io_data = NULL; 1307 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1308 1309 /* 1310 * The aborted req will be completed on receiving the abort req. 1311 * We enable the timer again. If hit twice, it'll cause a device reset, 1312 * as the device then is in a faulty state. 1313 */ 1314 return BLK_EH_RESET_TIMER; 1315 } 1316 1317 static void nvme_free_queue(struct nvme_queue *nvmeq) 1318 { 1319 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1320 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1321 if (!nvmeq->sq_cmds) 1322 return; 1323 1324 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1325 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1326 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1327 } else { 1328 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1329 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1330 } 1331 } 1332 1333 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1334 { 1335 int i; 1336 1337 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1338 dev->ctrl.queue_count--; 1339 nvme_free_queue(&dev->queues[i]); 1340 } 1341 } 1342 1343 /** 1344 * nvme_suspend_queue - put queue into suspended state 1345 * @nvmeq: queue to suspend 1346 */ 1347 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1348 { 1349 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1350 return 1; 1351 1352 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1353 mb(); 1354 1355 nvmeq->dev->online_queues--; 1356 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1357 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1358 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1359 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1360 return 0; 1361 } 1362 1363 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1364 { 1365 int i; 1366 1367 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1368 nvme_suspend_queue(&dev->queues[i]); 1369 } 1370 1371 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1372 { 1373 struct nvme_queue *nvmeq = &dev->queues[0]; 1374 1375 if (shutdown) 1376 nvme_shutdown_ctrl(&dev->ctrl); 1377 else 1378 nvme_disable_ctrl(&dev->ctrl); 1379 1380 nvme_poll_irqdisable(nvmeq); 1381 } 1382 1383 /* 1384 * Called only on a device that has been disabled and after all other threads 1385 * that can check this device's completion queues have synced. This is the 1386 * last chance for the driver to see a natural completion before 1387 * nvme_cancel_request() terminates all incomplete requests. 1388 */ 1389 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1390 { 1391 int i; 1392 1393 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1394 nvme_process_cq(&dev->queues[i]); 1395 } 1396 1397 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1398 int entry_size) 1399 { 1400 int q_depth = dev->q_depth; 1401 unsigned q_size_aligned = roundup(q_depth * entry_size, 1402 dev->ctrl.page_size); 1403 1404 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1405 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1406 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1407 q_depth = div_u64(mem_per_q, entry_size); 1408 1409 /* 1410 * Ensure the reduced q_depth is above some threshold where it 1411 * would be better to map queues in system memory with the 1412 * original depth 1413 */ 1414 if (q_depth < 64) 1415 return -ENOMEM; 1416 } 1417 1418 return q_depth; 1419 } 1420 1421 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1422 int qid) 1423 { 1424 struct pci_dev *pdev = to_pci_dev(dev->dev); 1425 1426 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1427 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1428 if (nvmeq->sq_cmds) { 1429 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1430 nvmeq->sq_cmds); 1431 if (nvmeq->sq_dma_addr) { 1432 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1433 return 0; 1434 } 1435 1436 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1437 } 1438 } 1439 1440 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1441 &nvmeq->sq_dma_addr, GFP_KERNEL); 1442 if (!nvmeq->sq_cmds) 1443 return -ENOMEM; 1444 return 0; 1445 } 1446 1447 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1448 { 1449 struct nvme_queue *nvmeq = &dev->queues[qid]; 1450 1451 if (dev->ctrl.queue_count > qid) 1452 return 0; 1453 1454 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1455 nvmeq->q_depth = depth; 1456 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1457 &nvmeq->cq_dma_addr, GFP_KERNEL); 1458 if (!nvmeq->cqes) 1459 goto free_nvmeq; 1460 1461 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1462 goto free_cqdma; 1463 1464 nvmeq->dev = dev; 1465 spin_lock_init(&nvmeq->sq_lock); 1466 spin_lock_init(&nvmeq->cq_poll_lock); 1467 nvmeq->cq_head = 0; 1468 nvmeq->cq_phase = 1; 1469 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1470 nvmeq->qid = qid; 1471 dev->ctrl.queue_count++; 1472 1473 return 0; 1474 1475 free_cqdma: 1476 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1477 nvmeq->cq_dma_addr); 1478 free_nvmeq: 1479 return -ENOMEM; 1480 } 1481 1482 static int queue_request_irq(struct nvme_queue *nvmeq) 1483 { 1484 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1485 int nr = nvmeq->dev->ctrl.instance; 1486 1487 if (use_threaded_interrupts) { 1488 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1489 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1490 } else { 1491 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1492 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1493 } 1494 } 1495 1496 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1497 { 1498 struct nvme_dev *dev = nvmeq->dev; 1499 1500 nvmeq->sq_tail = 0; 1501 nvmeq->last_sq_tail = 0; 1502 nvmeq->cq_head = 0; 1503 nvmeq->cq_phase = 1; 1504 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1505 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1506 nvme_dbbuf_init(dev, nvmeq, qid); 1507 dev->online_queues++; 1508 wmb(); /* ensure the first interrupt sees the initialization */ 1509 } 1510 1511 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1512 { 1513 struct nvme_dev *dev = nvmeq->dev; 1514 int result; 1515 u16 vector = 0; 1516 1517 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1518 1519 /* 1520 * A queue's vector matches the queue identifier unless the controller 1521 * has only one vector available. 1522 */ 1523 if (!polled) 1524 vector = dev->num_vecs == 1 ? 0 : qid; 1525 else 1526 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1527 1528 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1529 if (result) 1530 return result; 1531 1532 result = adapter_alloc_sq(dev, qid, nvmeq); 1533 if (result < 0) 1534 return result; 1535 if (result) 1536 goto release_cq; 1537 1538 nvmeq->cq_vector = vector; 1539 nvme_init_queue(nvmeq, qid); 1540 1541 if (!polled) { 1542 result = queue_request_irq(nvmeq); 1543 if (result < 0) 1544 goto release_sq; 1545 } 1546 1547 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1548 return result; 1549 1550 release_sq: 1551 dev->online_queues--; 1552 adapter_delete_sq(dev, qid); 1553 release_cq: 1554 adapter_delete_cq(dev, qid); 1555 return result; 1556 } 1557 1558 static const struct blk_mq_ops nvme_mq_admin_ops = { 1559 .queue_rq = nvme_queue_rq, 1560 .complete = nvme_pci_complete_rq, 1561 .init_hctx = nvme_admin_init_hctx, 1562 .init_request = nvme_init_request, 1563 .timeout = nvme_timeout, 1564 }; 1565 1566 static const struct blk_mq_ops nvme_mq_ops = { 1567 .queue_rq = nvme_queue_rq, 1568 .complete = nvme_pci_complete_rq, 1569 .commit_rqs = nvme_commit_rqs, 1570 .init_hctx = nvme_init_hctx, 1571 .init_request = nvme_init_request, 1572 .map_queues = nvme_pci_map_queues, 1573 .timeout = nvme_timeout, 1574 .poll = nvme_poll, 1575 }; 1576 1577 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1578 { 1579 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1580 /* 1581 * If the controller was reset during removal, it's possible 1582 * user requests may be waiting on a stopped queue. Start the 1583 * queue to flush these to completion. 1584 */ 1585 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1586 blk_cleanup_queue(dev->ctrl.admin_q); 1587 blk_mq_free_tag_set(&dev->admin_tagset); 1588 } 1589 } 1590 1591 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1592 { 1593 if (!dev->ctrl.admin_q) { 1594 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1595 dev->admin_tagset.nr_hw_queues = 1; 1596 1597 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1598 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1599 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1600 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1601 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1602 dev->admin_tagset.driver_data = dev; 1603 1604 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1605 return -ENOMEM; 1606 dev->ctrl.admin_tagset = &dev->admin_tagset; 1607 1608 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1609 if (IS_ERR(dev->ctrl.admin_q)) { 1610 blk_mq_free_tag_set(&dev->admin_tagset); 1611 return -ENOMEM; 1612 } 1613 if (!blk_get_queue(dev->ctrl.admin_q)) { 1614 nvme_dev_remove_admin(dev); 1615 dev->ctrl.admin_q = NULL; 1616 return -ENODEV; 1617 } 1618 } else 1619 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1620 1621 return 0; 1622 } 1623 1624 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1625 { 1626 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1627 } 1628 1629 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1630 { 1631 struct pci_dev *pdev = to_pci_dev(dev->dev); 1632 1633 if (size <= dev->bar_mapped_size) 1634 return 0; 1635 if (size > pci_resource_len(pdev, 0)) 1636 return -ENOMEM; 1637 if (dev->bar) 1638 iounmap(dev->bar); 1639 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1640 if (!dev->bar) { 1641 dev->bar_mapped_size = 0; 1642 return -ENOMEM; 1643 } 1644 dev->bar_mapped_size = size; 1645 dev->dbs = dev->bar + NVME_REG_DBS; 1646 1647 return 0; 1648 } 1649 1650 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1651 { 1652 int result; 1653 u32 aqa; 1654 struct nvme_queue *nvmeq; 1655 1656 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1657 if (result < 0) 1658 return result; 1659 1660 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1661 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1662 1663 if (dev->subsystem && 1664 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1665 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1666 1667 result = nvme_disable_ctrl(&dev->ctrl); 1668 if (result < 0) 1669 return result; 1670 1671 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1672 if (result) 1673 return result; 1674 1675 nvmeq = &dev->queues[0]; 1676 aqa = nvmeq->q_depth - 1; 1677 aqa |= aqa << 16; 1678 1679 writel(aqa, dev->bar + NVME_REG_AQA); 1680 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1681 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1682 1683 result = nvme_enable_ctrl(&dev->ctrl); 1684 if (result) 1685 return result; 1686 1687 nvmeq->cq_vector = 0; 1688 nvme_init_queue(nvmeq, 0); 1689 result = queue_request_irq(nvmeq); 1690 if (result) { 1691 dev->online_queues--; 1692 return result; 1693 } 1694 1695 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1696 return result; 1697 } 1698 1699 static int nvme_create_io_queues(struct nvme_dev *dev) 1700 { 1701 unsigned i, max, rw_queues; 1702 int ret = 0; 1703 1704 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1705 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1706 ret = -ENOMEM; 1707 break; 1708 } 1709 } 1710 1711 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1712 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1713 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1714 dev->io_queues[HCTX_TYPE_READ]; 1715 } else { 1716 rw_queues = max; 1717 } 1718 1719 for (i = dev->online_queues; i <= max; i++) { 1720 bool polled = i > rw_queues; 1721 1722 ret = nvme_create_queue(&dev->queues[i], i, polled); 1723 if (ret) 1724 break; 1725 } 1726 1727 /* 1728 * Ignore failing Create SQ/CQ commands, we can continue with less 1729 * than the desired amount of queues, and even a controller without 1730 * I/O queues can still be used to issue admin commands. This might 1731 * be useful to upgrade a buggy firmware for example. 1732 */ 1733 return ret >= 0 ? 0 : ret; 1734 } 1735 1736 static ssize_t nvme_cmb_show(struct device *dev, 1737 struct device_attribute *attr, 1738 char *buf) 1739 { 1740 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1741 1742 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1743 ndev->cmbloc, ndev->cmbsz); 1744 } 1745 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1746 1747 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1748 { 1749 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1750 1751 return 1ULL << (12 + 4 * szu); 1752 } 1753 1754 static u32 nvme_cmb_size(struct nvme_dev *dev) 1755 { 1756 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1757 } 1758 1759 static void nvme_map_cmb(struct nvme_dev *dev) 1760 { 1761 u64 size, offset; 1762 resource_size_t bar_size; 1763 struct pci_dev *pdev = to_pci_dev(dev->dev); 1764 int bar; 1765 1766 if (dev->cmb_size) 1767 return; 1768 1769 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1770 if (!dev->cmbsz) 1771 return; 1772 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1773 1774 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1775 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1776 bar = NVME_CMB_BIR(dev->cmbloc); 1777 bar_size = pci_resource_len(pdev, bar); 1778 1779 if (offset > bar_size) 1780 return; 1781 1782 /* 1783 * Controllers may support a CMB size larger than their BAR, 1784 * for example, due to being behind a bridge. Reduce the CMB to 1785 * the reported size of the BAR 1786 */ 1787 if (size > bar_size - offset) 1788 size = bar_size - offset; 1789 1790 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1791 dev_warn(dev->ctrl.device, 1792 "failed to register the CMB\n"); 1793 return; 1794 } 1795 1796 dev->cmb_size = size; 1797 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1798 1799 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1800 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1801 pci_p2pmem_publish(pdev, true); 1802 1803 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1804 &dev_attr_cmb.attr, NULL)) 1805 dev_warn(dev->ctrl.device, 1806 "failed to add sysfs attribute for CMB\n"); 1807 } 1808 1809 static inline void nvme_release_cmb(struct nvme_dev *dev) 1810 { 1811 if (dev->cmb_size) { 1812 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1813 &dev_attr_cmb.attr, NULL); 1814 dev->cmb_size = 0; 1815 } 1816 } 1817 1818 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1819 { 1820 u64 dma_addr = dev->host_mem_descs_dma; 1821 struct nvme_command c; 1822 int ret; 1823 1824 memset(&c, 0, sizeof(c)); 1825 c.features.opcode = nvme_admin_set_features; 1826 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1827 c.features.dword11 = cpu_to_le32(bits); 1828 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1829 ilog2(dev->ctrl.page_size)); 1830 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1831 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1832 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1833 1834 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1835 if (ret) { 1836 dev_warn(dev->ctrl.device, 1837 "failed to set host mem (err %d, flags %#x).\n", 1838 ret, bits); 1839 } 1840 return ret; 1841 } 1842 1843 static void nvme_free_host_mem(struct nvme_dev *dev) 1844 { 1845 int i; 1846 1847 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1848 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1849 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1850 1851 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1852 le64_to_cpu(desc->addr), 1853 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1854 } 1855 1856 kfree(dev->host_mem_desc_bufs); 1857 dev->host_mem_desc_bufs = NULL; 1858 dma_free_coherent(dev->dev, 1859 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1860 dev->host_mem_descs, dev->host_mem_descs_dma); 1861 dev->host_mem_descs = NULL; 1862 dev->nr_host_mem_descs = 0; 1863 } 1864 1865 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1866 u32 chunk_size) 1867 { 1868 struct nvme_host_mem_buf_desc *descs; 1869 u32 max_entries, len; 1870 dma_addr_t descs_dma; 1871 int i = 0; 1872 void **bufs; 1873 u64 size, tmp; 1874 1875 tmp = (preferred + chunk_size - 1); 1876 do_div(tmp, chunk_size); 1877 max_entries = tmp; 1878 1879 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1880 max_entries = dev->ctrl.hmmaxd; 1881 1882 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1883 &descs_dma, GFP_KERNEL); 1884 if (!descs) 1885 goto out; 1886 1887 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1888 if (!bufs) 1889 goto out_free_descs; 1890 1891 for (size = 0; size < preferred && i < max_entries; size += len) { 1892 dma_addr_t dma_addr; 1893 1894 len = min_t(u64, chunk_size, preferred - size); 1895 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1896 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1897 if (!bufs[i]) 1898 break; 1899 1900 descs[i].addr = cpu_to_le64(dma_addr); 1901 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1902 i++; 1903 } 1904 1905 if (!size) 1906 goto out_free_bufs; 1907 1908 dev->nr_host_mem_descs = i; 1909 dev->host_mem_size = size; 1910 dev->host_mem_descs = descs; 1911 dev->host_mem_descs_dma = descs_dma; 1912 dev->host_mem_desc_bufs = bufs; 1913 return 0; 1914 1915 out_free_bufs: 1916 while (--i >= 0) { 1917 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1918 1919 dma_free_attrs(dev->dev, size, bufs[i], 1920 le64_to_cpu(descs[i].addr), 1921 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1922 } 1923 1924 kfree(bufs); 1925 out_free_descs: 1926 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1927 descs_dma); 1928 out: 1929 dev->host_mem_descs = NULL; 1930 return -ENOMEM; 1931 } 1932 1933 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1934 { 1935 u32 chunk_size; 1936 1937 /* start big and work our way down */ 1938 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1939 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1940 chunk_size /= 2) { 1941 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1942 if (!min || dev->host_mem_size >= min) 1943 return 0; 1944 nvme_free_host_mem(dev); 1945 } 1946 } 1947 1948 return -ENOMEM; 1949 } 1950 1951 static int nvme_setup_host_mem(struct nvme_dev *dev) 1952 { 1953 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1954 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1955 u64 min = (u64)dev->ctrl.hmmin * 4096; 1956 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1957 int ret; 1958 1959 preferred = min(preferred, max); 1960 if (min > max) { 1961 dev_warn(dev->ctrl.device, 1962 "min host memory (%lld MiB) above limit (%d MiB).\n", 1963 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1964 nvme_free_host_mem(dev); 1965 return 0; 1966 } 1967 1968 /* 1969 * If we already have a buffer allocated check if we can reuse it. 1970 */ 1971 if (dev->host_mem_descs) { 1972 if (dev->host_mem_size >= min) 1973 enable_bits |= NVME_HOST_MEM_RETURN; 1974 else 1975 nvme_free_host_mem(dev); 1976 } 1977 1978 if (!dev->host_mem_descs) { 1979 if (nvme_alloc_host_mem(dev, min, preferred)) { 1980 dev_warn(dev->ctrl.device, 1981 "failed to allocate host memory buffer.\n"); 1982 return 0; /* controller must work without HMB */ 1983 } 1984 1985 dev_info(dev->ctrl.device, 1986 "allocated %lld MiB host memory buffer.\n", 1987 dev->host_mem_size >> ilog2(SZ_1M)); 1988 } 1989 1990 ret = nvme_set_host_mem(dev, enable_bits); 1991 if (ret) 1992 nvme_free_host_mem(dev); 1993 return ret; 1994 } 1995 1996 /* 1997 * nirqs is the number of interrupts available for write and read 1998 * queues. The core already reserved an interrupt for the admin queue. 1999 */ 2000 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2001 { 2002 struct nvme_dev *dev = affd->priv; 2003 unsigned int nr_read_queues; 2004 2005 /* 2006 * If there is no interupt available for queues, ensure that 2007 * the default queue is set to 1. The affinity set size is 2008 * also set to one, but the irq core ignores it for this case. 2009 * 2010 * If only one interrupt is available or 'write_queue' == 0, combine 2011 * write and read queues. 2012 * 2013 * If 'write_queues' > 0, ensure it leaves room for at least one read 2014 * queue. 2015 */ 2016 if (!nrirqs) { 2017 nrirqs = 1; 2018 nr_read_queues = 0; 2019 } else if (nrirqs == 1 || !write_queues) { 2020 nr_read_queues = 0; 2021 } else if (write_queues >= nrirqs) { 2022 nr_read_queues = 1; 2023 } else { 2024 nr_read_queues = nrirqs - write_queues; 2025 } 2026 2027 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2028 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2029 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2030 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2031 affd->nr_sets = nr_read_queues ? 2 : 1; 2032 } 2033 2034 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2035 { 2036 struct pci_dev *pdev = to_pci_dev(dev->dev); 2037 struct irq_affinity affd = { 2038 .pre_vectors = 1, 2039 .calc_sets = nvme_calc_irq_sets, 2040 .priv = dev, 2041 }; 2042 unsigned int irq_queues, this_p_queues; 2043 2044 /* 2045 * Poll queues don't need interrupts, but we need at least one IO 2046 * queue left over for non-polled IO. 2047 */ 2048 this_p_queues = poll_queues; 2049 if (this_p_queues >= nr_io_queues) { 2050 this_p_queues = nr_io_queues - 1; 2051 irq_queues = 1; 2052 } else { 2053 irq_queues = nr_io_queues - this_p_queues + 1; 2054 } 2055 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2056 2057 /* Initialize for the single interrupt case */ 2058 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2059 dev->io_queues[HCTX_TYPE_READ] = 0; 2060 2061 /* 2062 * Some Apple controllers require all queues to use the 2063 * first vector. 2064 */ 2065 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR) 2066 irq_queues = 1; 2067 2068 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2069 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2070 } 2071 2072 static void nvme_disable_io_queues(struct nvme_dev *dev) 2073 { 2074 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2075 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2076 } 2077 2078 static int nvme_setup_io_queues(struct nvme_dev *dev) 2079 { 2080 struct nvme_queue *adminq = &dev->queues[0]; 2081 struct pci_dev *pdev = to_pci_dev(dev->dev); 2082 int result, nr_io_queues; 2083 unsigned long size; 2084 2085 nr_io_queues = max_io_queues(); 2086 2087 /* 2088 * If tags are shared with admin queue (Apple bug), then 2089 * make sure we only use one IO queue. 2090 */ 2091 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2092 nr_io_queues = 1; 2093 2094 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2095 if (result < 0) 2096 return result; 2097 2098 if (nr_io_queues == 0) 2099 return 0; 2100 2101 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2102 2103 if (dev->cmb_use_sqes) { 2104 result = nvme_cmb_qdepth(dev, nr_io_queues, 2105 sizeof(struct nvme_command)); 2106 if (result > 0) 2107 dev->q_depth = result; 2108 else 2109 dev->cmb_use_sqes = false; 2110 } 2111 2112 do { 2113 size = db_bar_size(dev, nr_io_queues); 2114 result = nvme_remap_bar(dev, size); 2115 if (!result) 2116 break; 2117 if (!--nr_io_queues) 2118 return -ENOMEM; 2119 } while (1); 2120 adminq->q_db = dev->dbs; 2121 2122 retry: 2123 /* Deregister the admin queue's interrupt */ 2124 pci_free_irq(pdev, 0, adminq); 2125 2126 /* 2127 * If we enable msix early due to not intx, disable it again before 2128 * setting up the full range we need. 2129 */ 2130 pci_free_irq_vectors(pdev); 2131 2132 result = nvme_setup_irqs(dev, nr_io_queues); 2133 if (result <= 0) 2134 return -EIO; 2135 2136 dev->num_vecs = result; 2137 result = max(result - 1, 1); 2138 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2139 2140 /* 2141 * Should investigate if there's a performance win from allocating 2142 * more queues than interrupt vectors; it might allow the submission 2143 * path to scale better, even if the receive path is limited by the 2144 * number of interrupts. 2145 */ 2146 result = queue_request_irq(adminq); 2147 if (result) 2148 return result; 2149 set_bit(NVMEQ_ENABLED, &adminq->flags); 2150 2151 result = nvme_create_io_queues(dev); 2152 if (result || dev->online_queues < 2) 2153 return result; 2154 2155 if (dev->online_queues - 1 < dev->max_qid) { 2156 nr_io_queues = dev->online_queues - 1; 2157 nvme_disable_io_queues(dev); 2158 nvme_suspend_io_queues(dev); 2159 goto retry; 2160 } 2161 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2162 dev->io_queues[HCTX_TYPE_DEFAULT], 2163 dev->io_queues[HCTX_TYPE_READ], 2164 dev->io_queues[HCTX_TYPE_POLL]); 2165 return 0; 2166 } 2167 2168 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2169 { 2170 struct nvme_queue *nvmeq = req->end_io_data; 2171 2172 blk_mq_free_request(req); 2173 complete(&nvmeq->delete_done); 2174 } 2175 2176 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2177 { 2178 struct nvme_queue *nvmeq = req->end_io_data; 2179 2180 if (error) 2181 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2182 2183 nvme_del_queue_end(req, error); 2184 } 2185 2186 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2187 { 2188 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2189 struct request *req; 2190 struct nvme_command cmd; 2191 2192 memset(&cmd, 0, sizeof(cmd)); 2193 cmd.delete_queue.opcode = opcode; 2194 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2195 2196 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2197 if (IS_ERR(req)) 2198 return PTR_ERR(req); 2199 2200 req->timeout = ADMIN_TIMEOUT; 2201 req->end_io_data = nvmeq; 2202 2203 init_completion(&nvmeq->delete_done); 2204 blk_execute_rq_nowait(q, NULL, req, false, 2205 opcode == nvme_admin_delete_cq ? 2206 nvme_del_cq_end : nvme_del_queue_end); 2207 return 0; 2208 } 2209 2210 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2211 { 2212 int nr_queues = dev->online_queues - 1, sent = 0; 2213 unsigned long timeout; 2214 2215 retry: 2216 timeout = ADMIN_TIMEOUT; 2217 while (nr_queues > 0) { 2218 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2219 break; 2220 nr_queues--; 2221 sent++; 2222 } 2223 while (sent) { 2224 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2225 2226 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2227 timeout); 2228 if (timeout == 0) 2229 return false; 2230 2231 sent--; 2232 if (nr_queues) 2233 goto retry; 2234 } 2235 return true; 2236 } 2237 2238 static void nvme_dev_add(struct nvme_dev *dev) 2239 { 2240 int ret; 2241 2242 if (!dev->ctrl.tagset) { 2243 dev->tagset.ops = &nvme_mq_ops; 2244 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2245 dev->tagset.nr_maps = 2; /* default + read */ 2246 if (dev->io_queues[HCTX_TYPE_POLL]) 2247 dev->tagset.nr_maps++; 2248 dev->tagset.timeout = NVME_IO_TIMEOUT; 2249 dev->tagset.numa_node = dev_to_node(dev->dev); 2250 dev->tagset.queue_depth = 2251 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2252 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2253 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2254 dev->tagset.driver_data = dev; 2255 2256 /* 2257 * Some Apple controllers requires tags to be unique 2258 * across admin and IO queue, so reserve the first 32 2259 * tags of the IO queue. 2260 */ 2261 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2262 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2263 2264 ret = blk_mq_alloc_tag_set(&dev->tagset); 2265 if (ret) { 2266 dev_warn(dev->ctrl.device, 2267 "IO queues tagset allocation failed %d\n", ret); 2268 return; 2269 } 2270 dev->ctrl.tagset = &dev->tagset; 2271 } else { 2272 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2273 2274 /* Free previously allocated queues that are no longer usable */ 2275 nvme_free_queues(dev, dev->online_queues); 2276 } 2277 2278 nvme_dbbuf_set(dev); 2279 } 2280 2281 static int nvme_pci_enable(struct nvme_dev *dev) 2282 { 2283 int result = -ENOMEM; 2284 struct pci_dev *pdev = to_pci_dev(dev->dev); 2285 2286 if (pci_enable_device_mem(pdev)) 2287 return result; 2288 2289 pci_set_master(pdev); 2290 2291 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2292 goto disable; 2293 2294 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2295 result = -ENODEV; 2296 goto disable; 2297 } 2298 2299 /* 2300 * Some devices and/or platforms don't advertise or work with INTx 2301 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2302 * adjust this later. 2303 */ 2304 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2305 if (result < 0) 2306 return result; 2307 2308 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2309 2310 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2311 io_queue_depth); 2312 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2313 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2314 dev->dbs = dev->bar + 4096; 2315 2316 /* 2317 * Some Apple controllers require a non-standard SQE size. 2318 * Interestingly they also seem to ignore the CC:IOSQES register 2319 * so we don't bother updating it here. 2320 */ 2321 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2322 dev->io_sqes = 7; 2323 else 2324 dev->io_sqes = NVME_NVM_IOSQES; 2325 2326 /* 2327 * Temporary fix for the Apple controller found in the MacBook8,1 and 2328 * some MacBook7,1 to avoid controller resets and data loss. 2329 */ 2330 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2331 dev->q_depth = 2; 2332 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2333 "set queue depth=%u to work around controller resets\n", 2334 dev->q_depth); 2335 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2336 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2337 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2338 dev->q_depth = 64; 2339 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2340 "set queue depth=%u\n", dev->q_depth); 2341 } 2342 2343 /* 2344 * Controllers with the shared tags quirk need the IO queue to be 2345 * big enough so that we get 32 tags for the admin queue 2346 */ 2347 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2348 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2349 dev->q_depth = NVME_AQ_DEPTH + 2; 2350 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2351 dev->q_depth); 2352 } 2353 2354 2355 nvme_map_cmb(dev); 2356 2357 pci_enable_pcie_error_reporting(pdev); 2358 pci_save_state(pdev); 2359 return 0; 2360 2361 disable: 2362 pci_disable_device(pdev); 2363 return result; 2364 } 2365 2366 static void nvme_dev_unmap(struct nvme_dev *dev) 2367 { 2368 if (dev->bar) 2369 iounmap(dev->bar); 2370 pci_release_mem_regions(to_pci_dev(dev->dev)); 2371 } 2372 2373 static void nvme_pci_disable(struct nvme_dev *dev) 2374 { 2375 struct pci_dev *pdev = to_pci_dev(dev->dev); 2376 2377 pci_free_irq_vectors(pdev); 2378 2379 if (pci_is_enabled(pdev)) { 2380 pci_disable_pcie_error_reporting(pdev); 2381 pci_disable_device(pdev); 2382 } 2383 } 2384 2385 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2386 { 2387 bool dead = true, freeze = false; 2388 struct pci_dev *pdev = to_pci_dev(dev->dev); 2389 2390 mutex_lock(&dev->shutdown_lock); 2391 if (pci_is_enabled(pdev)) { 2392 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2393 2394 if (dev->ctrl.state == NVME_CTRL_LIVE || 2395 dev->ctrl.state == NVME_CTRL_RESETTING) { 2396 freeze = true; 2397 nvme_start_freeze(&dev->ctrl); 2398 } 2399 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2400 pdev->error_state != pci_channel_io_normal); 2401 } 2402 2403 /* 2404 * Give the controller a chance to complete all entered requests if 2405 * doing a safe shutdown. 2406 */ 2407 if (!dead && shutdown && freeze) 2408 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2409 2410 nvme_stop_queues(&dev->ctrl); 2411 2412 if (!dead && dev->ctrl.queue_count > 0) { 2413 nvme_disable_io_queues(dev); 2414 nvme_disable_admin_queue(dev, shutdown); 2415 } 2416 nvme_suspend_io_queues(dev); 2417 nvme_suspend_queue(&dev->queues[0]); 2418 nvme_pci_disable(dev); 2419 nvme_reap_pending_cqes(dev); 2420 2421 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2422 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2423 blk_mq_tagset_wait_completed_request(&dev->tagset); 2424 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2425 2426 /* 2427 * The driver will not be starting up queues again if shutting down so 2428 * must flush all entered requests to their failed completion to avoid 2429 * deadlocking blk-mq hot-cpu notifier. 2430 */ 2431 if (shutdown) { 2432 nvme_start_queues(&dev->ctrl); 2433 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2434 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2435 } 2436 mutex_unlock(&dev->shutdown_lock); 2437 } 2438 2439 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2440 { 2441 if (!nvme_wait_reset(&dev->ctrl)) 2442 return -EBUSY; 2443 nvme_dev_disable(dev, shutdown); 2444 return 0; 2445 } 2446 2447 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2448 { 2449 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2450 PAGE_SIZE, PAGE_SIZE, 0); 2451 if (!dev->prp_page_pool) 2452 return -ENOMEM; 2453 2454 /* Optimisation for I/Os between 4k and 128k */ 2455 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2456 256, 256, 0); 2457 if (!dev->prp_small_pool) { 2458 dma_pool_destroy(dev->prp_page_pool); 2459 return -ENOMEM; 2460 } 2461 return 0; 2462 } 2463 2464 static void nvme_release_prp_pools(struct nvme_dev *dev) 2465 { 2466 dma_pool_destroy(dev->prp_page_pool); 2467 dma_pool_destroy(dev->prp_small_pool); 2468 } 2469 2470 static void nvme_free_tagset(struct nvme_dev *dev) 2471 { 2472 if (dev->tagset.tags) 2473 blk_mq_free_tag_set(&dev->tagset); 2474 dev->ctrl.tagset = NULL; 2475 } 2476 2477 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2478 { 2479 struct nvme_dev *dev = to_nvme_dev(ctrl); 2480 2481 nvme_dbbuf_dma_free(dev); 2482 nvme_free_tagset(dev); 2483 if (dev->ctrl.admin_q) 2484 blk_put_queue(dev->ctrl.admin_q); 2485 free_opal_dev(dev->ctrl.opal_dev); 2486 mempool_destroy(dev->iod_mempool); 2487 put_device(dev->dev); 2488 kfree(dev->queues); 2489 kfree(dev); 2490 } 2491 2492 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2493 { 2494 /* 2495 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2496 * may be holding this pci_dev's device lock. 2497 */ 2498 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2499 nvme_get_ctrl(&dev->ctrl); 2500 nvme_dev_disable(dev, false); 2501 nvme_kill_queues(&dev->ctrl); 2502 if (!queue_work(nvme_wq, &dev->remove_work)) 2503 nvme_put_ctrl(&dev->ctrl); 2504 } 2505 2506 static void nvme_reset_work(struct work_struct *work) 2507 { 2508 struct nvme_dev *dev = 2509 container_of(work, struct nvme_dev, ctrl.reset_work); 2510 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2511 int result; 2512 2513 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2514 result = -ENODEV; 2515 goto out; 2516 } 2517 2518 /* 2519 * If we're called to reset a live controller first shut it down before 2520 * moving on. 2521 */ 2522 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2523 nvme_dev_disable(dev, false); 2524 nvme_sync_queues(&dev->ctrl); 2525 2526 mutex_lock(&dev->shutdown_lock); 2527 result = nvme_pci_enable(dev); 2528 if (result) 2529 goto out_unlock; 2530 2531 result = nvme_pci_configure_admin_queue(dev); 2532 if (result) 2533 goto out_unlock; 2534 2535 result = nvme_alloc_admin_tags(dev); 2536 if (result) 2537 goto out_unlock; 2538 2539 /* 2540 * Limit the max command size to prevent iod->sg allocations going 2541 * over a single page. 2542 */ 2543 dev->ctrl.max_hw_sectors = min_t(u32, 2544 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2545 dev->ctrl.max_segments = NVME_MAX_SEGS; 2546 2547 /* 2548 * Don't limit the IOMMU merged segment size. 2549 */ 2550 dma_set_max_seg_size(dev->dev, 0xffffffff); 2551 2552 mutex_unlock(&dev->shutdown_lock); 2553 2554 /* 2555 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2556 * initializing procedure here. 2557 */ 2558 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2559 dev_warn(dev->ctrl.device, 2560 "failed to mark controller CONNECTING\n"); 2561 result = -EBUSY; 2562 goto out; 2563 } 2564 2565 result = nvme_init_identify(&dev->ctrl); 2566 if (result) 2567 goto out; 2568 2569 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2570 if (!dev->ctrl.opal_dev) 2571 dev->ctrl.opal_dev = 2572 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2573 else if (was_suspend) 2574 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2575 } else { 2576 free_opal_dev(dev->ctrl.opal_dev); 2577 dev->ctrl.opal_dev = NULL; 2578 } 2579 2580 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2581 result = nvme_dbbuf_dma_alloc(dev); 2582 if (result) 2583 dev_warn(dev->dev, 2584 "unable to allocate dma for dbbuf\n"); 2585 } 2586 2587 if (dev->ctrl.hmpre) { 2588 result = nvme_setup_host_mem(dev); 2589 if (result < 0) 2590 goto out; 2591 } 2592 2593 result = nvme_setup_io_queues(dev); 2594 if (result) 2595 goto out; 2596 2597 /* 2598 * Keep the controller around but remove all namespaces if we don't have 2599 * any working I/O queue. 2600 */ 2601 if (dev->online_queues < 2) { 2602 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2603 nvme_kill_queues(&dev->ctrl); 2604 nvme_remove_namespaces(&dev->ctrl); 2605 nvme_free_tagset(dev); 2606 } else { 2607 nvme_start_queues(&dev->ctrl); 2608 nvme_wait_freeze(&dev->ctrl); 2609 nvme_dev_add(dev); 2610 nvme_unfreeze(&dev->ctrl); 2611 } 2612 2613 /* 2614 * If only admin queue live, keep it to do further investigation or 2615 * recovery. 2616 */ 2617 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2618 dev_warn(dev->ctrl.device, 2619 "failed to mark controller live state\n"); 2620 result = -ENODEV; 2621 goto out; 2622 } 2623 2624 nvme_start_ctrl(&dev->ctrl); 2625 return; 2626 2627 out_unlock: 2628 mutex_unlock(&dev->shutdown_lock); 2629 out: 2630 if (result) 2631 dev_warn(dev->ctrl.device, 2632 "Removing after probe failure status: %d\n", result); 2633 nvme_remove_dead_ctrl(dev); 2634 } 2635 2636 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2637 { 2638 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2639 struct pci_dev *pdev = to_pci_dev(dev->dev); 2640 2641 if (pci_get_drvdata(pdev)) 2642 device_release_driver(&pdev->dev); 2643 nvme_put_ctrl(&dev->ctrl); 2644 } 2645 2646 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2647 { 2648 *val = readl(to_nvme_dev(ctrl)->bar + off); 2649 return 0; 2650 } 2651 2652 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2653 { 2654 writel(val, to_nvme_dev(ctrl)->bar + off); 2655 return 0; 2656 } 2657 2658 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2659 { 2660 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2661 return 0; 2662 } 2663 2664 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2665 { 2666 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2667 2668 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2669 } 2670 2671 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2672 .name = "pcie", 2673 .module = THIS_MODULE, 2674 .flags = NVME_F_METADATA_SUPPORTED | 2675 NVME_F_PCI_P2PDMA, 2676 .reg_read32 = nvme_pci_reg_read32, 2677 .reg_write32 = nvme_pci_reg_write32, 2678 .reg_read64 = nvme_pci_reg_read64, 2679 .free_ctrl = nvme_pci_free_ctrl, 2680 .submit_async_event = nvme_pci_submit_async_event, 2681 .get_address = nvme_pci_get_address, 2682 }; 2683 2684 static int nvme_dev_map(struct nvme_dev *dev) 2685 { 2686 struct pci_dev *pdev = to_pci_dev(dev->dev); 2687 2688 if (pci_request_mem_regions(pdev, "nvme")) 2689 return -ENODEV; 2690 2691 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2692 goto release; 2693 2694 return 0; 2695 release: 2696 pci_release_mem_regions(pdev); 2697 return -ENODEV; 2698 } 2699 2700 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2701 { 2702 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2703 /* 2704 * Several Samsung devices seem to drop off the PCIe bus 2705 * randomly when APST is on and uses the deepest sleep state. 2706 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2707 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2708 * 950 PRO 256GB", but it seems to be restricted to two Dell 2709 * laptops. 2710 */ 2711 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2712 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2713 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2714 return NVME_QUIRK_NO_DEEPEST_PS; 2715 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2716 /* 2717 * Samsung SSD 960 EVO drops off the PCIe bus after system 2718 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2719 * within few minutes after bootup on a Coffee Lake board - 2720 * ASUS PRIME Z370-A 2721 */ 2722 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2723 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2724 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2725 return NVME_QUIRK_NO_APST; 2726 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2727 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2728 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2729 /* 2730 * Forcing to use host managed nvme power settings for 2731 * lowest idle power with quick resume latency on 2732 * Samsung and Toshiba SSDs based on suspend behavior 2733 * on Coffee Lake board for LENOVO C640 2734 */ 2735 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2736 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2737 return NVME_QUIRK_SIMPLE_SUSPEND; 2738 } 2739 2740 return 0; 2741 } 2742 2743 static void nvme_async_probe(void *data, async_cookie_t cookie) 2744 { 2745 struct nvme_dev *dev = data; 2746 2747 flush_work(&dev->ctrl.reset_work); 2748 flush_work(&dev->ctrl.scan_work); 2749 nvme_put_ctrl(&dev->ctrl); 2750 } 2751 2752 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2753 { 2754 int node, result = -ENOMEM; 2755 struct nvme_dev *dev; 2756 unsigned long quirks = id->driver_data; 2757 size_t alloc_size; 2758 2759 node = dev_to_node(&pdev->dev); 2760 if (node == NUMA_NO_NODE) 2761 set_dev_node(&pdev->dev, first_memory_node); 2762 2763 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2764 if (!dev) 2765 return -ENOMEM; 2766 2767 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), 2768 GFP_KERNEL, node); 2769 if (!dev->queues) 2770 goto free; 2771 2772 dev->dev = get_device(&pdev->dev); 2773 pci_set_drvdata(pdev, dev); 2774 2775 result = nvme_dev_map(dev); 2776 if (result) 2777 goto put_pci; 2778 2779 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2780 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2781 mutex_init(&dev->shutdown_lock); 2782 2783 result = nvme_setup_prp_pools(dev); 2784 if (result) 2785 goto unmap; 2786 2787 quirks |= check_vendor_combination_bug(pdev); 2788 2789 /* 2790 * Double check that our mempool alloc size will cover the biggest 2791 * command we support. 2792 */ 2793 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2794 NVME_MAX_SEGS, true); 2795 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2796 2797 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2798 mempool_kfree, 2799 (void *) alloc_size, 2800 GFP_KERNEL, node); 2801 if (!dev->iod_mempool) { 2802 result = -ENOMEM; 2803 goto release_pools; 2804 } 2805 2806 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2807 quirks); 2808 if (result) 2809 goto release_mempool; 2810 2811 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2812 2813 nvme_reset_ctrl(&dev->ctrl); 2814 async_schedule(nvme_async_probe, dev); 2815 2816 return 0; 2817 2818 release_mempool: 2819 mempool_destroy(dev->iod_mempool); 2820 release_pools: 2821 nvme_release_prp_pools(dev); 2822 unmap: 2823 nvme_dev_unmap(dev); 2824 put_pci: 2825 put_device(dev->dev); 2826 free: 2827 kfree(dev->queues); 2828 kfree(dev); 2829 return result; 2830 } 2831 2832 static void nvme_reset_prepare(struct pci_dev *pdev) 2833 { 2834 struct nvme_dev *dev = pci_get_drvdata(pdev); 2835 2836 /* 2837 * We don't need to check the return value from waiting for the reset 2838 * state as pci_dev device lock is held, making it impossible to race 2839 * with ->remove(). 2840 */ 2841 nvme_disable_prepare_reset(dev, false); 2842 nvme_sync_queues(&dev->ctrl); 2843 } 2844 2845 static void nvme_reset_done(struct pci_dev *pdev) 2846 { 2847 struct nvme_dev *dev = pci_get_drvdata(pdev); 2848 2849 if (!nvme_try_sched_reset(&dev->ctrl)) 2850 flush_work(&dev->ctrl.reset_work); 2851 } 2852 2853 static void nvme_shutdown(struct pci_dev *pdev) 2854 { 2855 struct nvme_dev *dev = pci_get_drvdata(pdev); 2856 nvme_disable_prepare_reset(dev, true); 2857 } 2858 2859 /* 2860 * The driver's remove may be called on a device in a partially initialized 2861 * state. This function must not have any dependencies on the device state in 2862 * order to proceed. 2863 */ 2864 static void nvme_remove(struct pci_dev *pdev) 2865 { 2866 struct nvme_dev *dev = pci_get_drvdata(pdev); 2867 2868 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2869 pci_set_drvdata(pdev, NULL); 2870 2871 if (!pci_device_is_present(pdev)) { 2872 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2873 nvme_dev_disable(dev, true); 2874 nvme_dev_remove_admin(dev); 2875 } 2876 2877 flush_work(&dev->ctrl.reset_work); 2878 nvme_stop_ctrl(&dev->ctrl); 2879 nvme_remove_namespaces(&dev->ctrl); 2880 nvme_dev_disable(dev, true); 2881 nvme_release_cmb(dev); 2882 nvme_free_host_mem(dev); 2883 nvme_dev_remove_admin(dev); 2884 nvme_free_queues(dev, 0); 2885 nvme_release_prp_pools(dev); 2886 nvme_dev_unmap(dev); 2887 nvme_uninit_ctrl(&dev->ctrl); 2888 } 2889 2890 #ifdef CONFIG_PM_SLEEP 2891 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2892 { 2893 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2894 } 2895 2896 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2897 { 2898 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2899 } 2900 2901 static int nvme_resume(struct device *dev) 2902 { 2903 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2904 struct nvme_ctrl *ctrl = &ndev->ctrl; 2905 2906 if (ndev->last_ps == U32_MAX || 2907 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2908 return nvme_try_sched_reset(&ndev->ctrl); 2909 return 0; 2910 } 2911 2912 static int nvme_suspend(struct device *dev) 2913 { 2914 struct pci_dev *pdev = to_pci_dev(dev); 2915 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2916 struct nvme_ctrl *ctrl = &ndev->ctrl; 2917 int ret = -EBUSY; 2918 2919 ndev->last_ps = U32_MAX; 2920 2921 /* 2922 * The platform does not remove power for a kernel managed suspend so 2923 * use host managed nvme power settings for lowest idle power if 2924 * possible. This should have quicker resume latency than a full device 2925 * shutdown. But if the firmware is involved after the suspend or the 2926 * device does not support any non-default power states, shut down the 2927 * device fully. 2928 * 2929 * If ASPM is not enabled for the device, shut down the device and allow 2930 * the PCI bus layer to put it into D3 in order to take the PCIe link 2931 * down, so as to allow the platform to achieve its minimum low-power 2932 * state (which may not be possible if the link is up). 2933 */ 2934 if (pm_suspend_via_firmware() || !ctrl->npss || 2935 !pcie_aspm_enabled(pdev) || 2936 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 2937 return nvme_disable_prepare_reset(ndev, true); 2938 2939 nvme_start_freeze(ctrl); 2940 nvme_wait_freeze(ctrl); 2941 nvme_sync_queues(ctrl); 2942 2943 if (ctrl->state != NVME_CTRL_LIVE) 2944 goto unfreeze; 2945 2946 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 2947 if (ret < 0) 2948 goto unfreeze; 2949 2950 /* 2951 * A saved state prevents pci pm from generically controlling the 2952 * device's power. If we're using protocol specific settings, we don't 2953 * want pci interfering. 2954 */ 2955 pci_save_state(pdev); 2956 2957 ret = nvme_set_power_state(ctrl, ctrl->npss); 2958 if (ret < 0) 2959 goto unfreeze; 2960 2961 if (ret) { 2962 /* discard the saved state */ 2963 pci_load_saved_state(pdev, NULL); 2964 2965 /* 2966 * Clearing npss forces a controller reset on resume. The 2967 * correct value will be rediscovered then. 2968 */ 2969 ret = nvme_disable_prepare_reset(ndev, true); 2970 ctrl->npss = 0; 2971 } 2972 unfreeze: 2973 nvme_unfreeze(ctrl); 2974 return ret; 2975 } 2976 2977 static int nvme_simple_suspend(struct device *dev) 2978 { 2979 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2980 return nvme_disable_prepare_reset(ndev, true); 2981 } 2982 2983 static int nvme_simple_resume(struct device *dev) 2984 { 2985 struct pci_dev *pdev = to_pci_dev(dev); 2986 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2987 2988 return nvme_try_sched_reset(&ndev->ctrl); 2989 } 2990 2991 static const struct dev_pm_ops nvme_dev_pm_ops = { 2992 .suspend = nvme_suspend, 2993 .resume = nvme_resume, 2994 .freeze = nvme_simple_suspend, 2995 .thaw = nvme_simple_resume, 2996 .poweroff = nvme_simple_suspend, 2997 .restore = nvme_simple_resume, 2998 }; 2999 #endif /* CONFIG_PM_SLEEP */ 3000 3001 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3002 pci_channel_state_t state) 3003 { 3004 struct nvme_dev *dev = pci_get_drvdata(pdev); 3005 3006 /* 3007 * A frozen channel requires a reset. When detected, this method will 3008 * shutdown the controller to quiesce. The controller will be restarted 3009 * after the slot reset through driver's slot_reset callback. 3010 */ 3011 switch (state) { 3012 case pci_channel_io_normal: 3013 return PCI_ERS_RESULT_CAN_RECOVER; 3014 case pci_channel_io_frozen: 3015 dev_warn(dev->ctrl.device, 3016 "frozen state error detected, reset controller\n"); 3017 nvme_dev_disable(dev, false); 3018 return PCI_ERS_RESULT_NEED_RESET; 3019 case pci_channel_io_perm_failure: 3020 dev_warn(dev->ctrl.device, 3021 "failure state error detected, request disconnect\n"); 3022 return PCI_ERS_RESULT_DISCONNECT; 3023 } 3024 return PCI_ERS_RESULT_NEED_RESET; 3025 } 3026 3027 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3028 { 3029 struct nvme_dev *dev = pci_get_drvdata(pdev); 3030 3031 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3032 pci_restore_state(pdev); 3033 nvme_reset_ctrl(&dev->ctrl); 3034 return PCI_ERS_RESULT_RECOVERED; 3035 } 3036 3037 static void nvme_error_resume(struct pci_dev *pdev) 3038 { 3039 struct nvme_dev *dev = pci_get_drvdata(pdev); 3040 3041 flush_work(&dev->ctrl.reset_work); 3042 } 3043 3044 static const struct pci_error_handlers nvme_err_handler = { 3045 .error_detected = nvme_error_detected, 3046 .slot_reset = nvme_slot_reset, 3047 .resume = nvme_error_resume, 3048 .reset_prepare = nvme_reset_prepare, 3049 .reset_done = nvme_reset_done, 3050 }; 3051 3052 static const struct pci_device_id nvme_id_table[] = { 3053 { PCI_VDEVICE(INTEL, 0x0953), 3054 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3055 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3056 { PCI_VDEVICE(INTEL, 0x0a53), 3057 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3058 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3059 { PCI_VDEVICE(INTEL, 0x0a54), 3060 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3061 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3062 { PCI_VDEVICE(INTEL, 0x0a55), 3063 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3064 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3065 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3066 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3067 NVME_QUIRK_MEDIUM_PRIO_SQ | 3068 NVME_QUIRK_NO_TEMP_THRESH_CHANGE }, 3069 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3070 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3071 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3072 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3073 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3074 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3075 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3076 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3077 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3078 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3079 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3080 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3081 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3082 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3083 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3084 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3085 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3086 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3087 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3088 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3089 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3090 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3091 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3092 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3093 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3094 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3095 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3096 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3097 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3098 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3099 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3100 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3101 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3102 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3103 NVME_QUIRK_128_BYTES_SQES | 3104 NVME_QUIRK_SHARED_TAGS }, 3105 { 0, } 3106 }; 3107 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3108 3109 static struct pci_driver nvme_driver = { 3110 .name = "nvme", 3111 .id_table = nvme_id_table, 3112 .probe = nvme_probe, 3113 .remove = nvme_remove, 3114 .shutdown = nvme_shutdown, 3115 #ifdef CONFIG_PM_SLEEP 3116 .driver = { 3117 .pm = &nvme_dev_pm_ops, 3118 }, 3119 #endif 3120 .sriov_configure = pci_sriov_configure_simple, 3121 .err_handler = &nvme_err_handler, 3122 }; 3123 3124 static int __init nvme_init(void) 3125 { 3126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3129 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3130 3131 write_queues = min(write_queues, num_possible_cpus()); 3132 poll_queues = min(poll_queues, num_possible_cpus()); 3133 return pci_register_driver(&nvme_driver); 3134 } 3135 3136 static void __exit nvme_exit(void) 3137 { 3138 pci_unregister_driver(&nvme_driver); 3139 flush_workqueue(nvme_wq); 3140 } 3141 3142 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3143 MODULE_LICENSE("GPL"); 3144 MODULE_VERSION("1.0"); 3145 module_init(nvme_init); 3146 module_exit(nvme_exit); 3147